1
|
Gallo M, Ferrari E, Terrazzan A, Brugnoli F, Spisni A, Taccioli C, Aguiari G, Trentini A, Volinia S, Keillor JW, Bergamini CM, Bianchi N, Pertinhez TA. Metabolic characterisation of transglutaminase 2 inhibitor effects in breast cancer cell lines. FEBS J 2023; 290:5411-5433. [PMID: 37597264 DOI: 10.1111/febs.16931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 07/04/2023] [Accepted: 08/09/2023] [Indexed: 08/21/2023]
Abstract
Transglutaminase 2 (TG2), which mediates post-translational modifications of multiple intracellular enzymes, is involved in the pathogenesis and progression of cancer. We used 1 H-NMR metabolomics to study the effects of AA9, a novel TG2 inhibitor, on two breast cancer cell lines with distinct phenotypes, MCF-7 and MDA-MB-231. AA9 can promote apoptosis in both cell lines, but it is particularly effective in MD-MB-231, inhibiting transamidation reactions and decreasing cell migration and invasiveness. This metabolomics study provides evidence of a major effect of AA9 on MDA-MB-231 cells, impacting glutamate and aspartate metabolism, rather than on MCF-7 cells, characterised by choline and O-phosphocholine decrease. Interestingly, AA9 treatment induces myo-inositol alteration in both cell lines, indicating action on phosphatidylinositol metabolism, likely modulated by the G protein activity of TG2 on phospholipase C. Considering the metabolic deregulations that characterise various breast cancer subtypes, the existence of a metabolic pathway affected by AA9 further points to TG2 as a promising hot spot. The metabolomics approach provides a powerful tool to monitor the effectiveness of inhibitors and better understand the role of TG2 in cancer.
Collapse
Affiliation(s)
- Mariana Gallo
- Department of Medicine and Surgery, University of Parma, Italy
| | - Elena Ferrari
- Department of Medicine and Surgery, University of Parma, Italy
| | - Anna Terrazzan
- Department of Translational Medicine, University of Ferrara, Italy
| | | | - Alberto Spisni
- Department of Medicine and Surgery, University of Parma, Italy
| | - Cristian Taccioli
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Italy
| | - Gianluca Aguiari
- Department of Neuroscience and Rehabilitation, University of Ferrara, Italy
| | - Alessandro Trentini
- Department of Environmental Sciences and Prevention, University of Ferrara, Italy
| | - Stefano Volinia
- Department of Translational Medicine, University of Ferrara, Italy
| | - Jeffrey W Keillor
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Canada
| | - Carlo M Bergamini
- Department of Neuroscience and Rehabilitation, University of Ferrara, Italy
| | | | | |
Collapse
|
2
|
Kanemaru K, Nakamura Y. Activation Mechanisms and Diverse Functions of Mammalian Phospholipase C. Biomolecules 2023; 13:915. [PMID: 37371495 DOI: 10.3390/biom13060915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Phospholipase C (PLC) plays pivotal roles in regulating various cellular functions by metabolizing phosphatidylinositol 4,5-bisphosphate in the plasma membrane. This process generates two second messengers, inositol 1,4,5-trisphosphate and diacylglycerol, which respectively regulate the intracellular Ca2+ levels and protein kinase C activation. In mammals, six classes of typical PLC have been identified and classified based on their structure and activation mechanisms. They all share X and Y domains, which are responsible for enzymatic activity, as well as subtype-specific domains. Furthermore, in addition to typical PLC, atypical PLC with unique structures solely harboring an X domain has been recently discovered. Collectively, seven classes and 16 isozymes of mammalian PLC are known to date. Dysregulation of PLC activity has been implicated in several pathophysiological conditions, including cancer, cardiovascular diseases, and neurological disorders. Therefore, identification of new drug targets that can selectively modulate PLC activity is important. The present review focuses on the structures, activation mechanisms, and physiological functions of mammalian PLC.
Collapse
Affiliation(s)
- Kaori Kanemaru
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba 278-8510, Japan
| | - Yoshikazu Nakamura
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba 278-8510, Japan
| |
Collapse
|
3
|
Canella R, Brugnoli F, Gallo M, Keillor JW, Terrazzan A, Ferrari E, Grassilli S, Gates EWJ, Volinia S, Bertagnolo V, Bianchi N, Bergamini CM. A Multidisciplinary Approach Establishes a Link between Transglutaminase 2 and the Kv10.1 Voltage-Dependent K + Channel in Breast Cancer. Cancers (Basel) 2022; 15:cancers15010178. [PMID: 36612174 PMCID: PMC9818547 DOI: 10.3390/cancers15010178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/15/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Since the multifunctionality of transglutaminase 2 (TG2) includes extra- and intracellular functions, we investigated the effects of intracellular administration of TG2 inhibitors in three breast cancer cell lines, MDA-MB-231, MDA-MB-436 and MDA-MB-468, which are representative of different triple-negative phenotypes, using a patch-clamp technique. The first cell line has a highly voltage-dependent a membrane current, which is low in the second and almost absent in the third one. While applying a voltage protocol to responsive single cells, injection of TG2 inhibitors triggered a significant decrease of the current in MDA-MB-231 that we attributed to voltage-dependent K+ channels using the specific inhibitors 4-aminopyridine and astemizole. Since the Kv10.1 channel plays a dominant role as a marker of cell migration and survival in breast cancer, we investigated its relationship with TG2 by immunoprecipitation. Our data reveal their physical interaction affects membrane currents in MDA-MB-231 but not in the less sensitive MDA-MB-436 cells. We further correlated the efficacy of TG2 inhibition with metabolic changes in the supernatants of treated cells, resulting in increased concentration of methyl- and dimethylamines, representing possible response markers. In conclusion, our findings highlight the interference of TG2 inhibitors with the Kv10.1 channel as a potential therapeutic tool depending on the specific features of cancer cells.
Collapse
Affiliation(s)
- Rita Canella
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
| | - Federica Brugnoli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Mariana Gallo
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | - Jeffrey W. Keillor
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Anna Terrazzan
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Elena Ferrari
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | - Silvia Grassilli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Eric W. J. Gates
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Stefano Volinia
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Valeria Bertagnolo
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Nicoletta Bianchi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Correspondence: ; Tel.: +39-0532-455854
| | - Carlo M. Bergamini
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
4
|
Lénárt K, Bankó C, Ujlaki G, Póliska S, Kis G, Csősz É, Antal M, Bacso Z, Bai P, Fésüs L, Mádi A. Tissue Transglutaminase Knock-Out Preadipocytes and Beige Cells of Epididymal Fat Origin Possess Decreased Mitochondrial Functions Required for Thermogenesis. Int J Mol Sci 2022; 23:5175. [PMID: 35563567 PMCID: PMC9105016 DOI: 10.3390/ijms23095175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 11/24/2022] Open
Abstract
Beige adipocytes with thermogenic function are activated during cold exposure in white adipose tissue through the process of browning. These cells, similar to brown adipocytes, dissipate stored chemical energy in the form of heat with the help of uncoupling protein 1 (UCP1). Recently, we have shown that tissue transglutaminase (TG2) knock-out mice have decreased cold tolerance in parallel with lower utilization of their epididymal adipose tissue and reduced browning. To learn more about the thermogenic function of this fat depot, we isolated preadipocytes from the epididymal adipose tissue of wild-type and TG2 knock-out mice and differentiated them in the beige direction. Although differentiation of TG2 knock-out preadipocytes is phenotypically similar to the wild-type cells, the mitochondria of the knock-out beige cells have multiple impairments including an altered electron transport system generating lower electrochemical potential difference, reduced oxygen consumption, lower UCP1 protein content, and a higher portion of fragmented mitochondria. Most of these differences are present in preadipocytes as well, and the differentiation process cannot overcome the functional disadvantages completely. TG2 knock-out beige adipocytes produce more iodothyronine deiodinase 3 (DIO3) which may inactivate thyroid hormones required for the establishment of optimal mitochondrial function. The TG2 knock-out preadipocytes and beige cells are both hypometabolic as compared with the wild-type controls which may also be explained by the lower expression of solute carrier proteins SLC25A45, SLC25A47, and SLC25A42 which transport acylcarnitine, Co-A, and amino acids into the mitochondrial matrix. As a consequence, the mitochondria in TG2 knock-out beige adipocytes probably cannot reach the energy-producing threshold required for normal thermogenic functions, which may contribute to the decreased cold tolerance of TG2 knock-out mice.
Collapse
Affiliation(s)
- Kinga Lénárt
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1., H-4032 Debrecen, Hungary; (K.L.); (S.P.); (É.C.); (L.F.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Egyetem ter 1., H-4032 Debrecen, Hungary;
| | - Csaba Bankó
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Egyetem ter 1., H-4032 Debrecen, Hungary;
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1., H-4032 Debrecen, Hungary;
| | - Gyula Ujlaki
- NKFIH-DE Lendület Laboratory of Cellular Metabolism, Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem ter 1., H-4032 Debrecen, Hungary; (G.U.); (P.B.)
| | - Szilárd Póliska
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1., H-4032 Debrecen, Hungary; (K.L.); (S.P.); (É.C.); (L.F.)
| | - Gréta Kis
- Department of Anatomy, Histology Embryology, Faculty of Medicine, University of Debrecen, Egyetem ter 1., H-4032 Debrecen, Hungary; (G.K.); (M.A.)
| | - Éva Csősz
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1., H-4032 Debrecen, Hungary; (K.L.); (S.P.); (É.C.); (L.F.)
| | - Miklós Antal
- Department of Anatomy, Histology Embryology, Faculty of Medicine, University of Debrecen, Egyetem ter 1., H-4032 Debrecen, Hungary; (G.K.); (M.A.)
| | - Zsolt Bacso
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1., H-4032 Debrecen, Hungary;
| | - Péter Bai
- NKFIH-DE Lendület Laboratory of Cellular Metabolism, Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem ter 1., H-4032 Debrecen, Hungary; (G.U.); (P.B.)
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Egyetem ter 1., H-4032 Debrecen, Hungary
| | - László Fésüs
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1., H-4032 Debrecen, Hungary; (K.L.); (S.P.); (É.C.); (L.F.)
| | - András Mádi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1., H-4032 Debrecen, Hungary; (K.L.); (S.P.); (É.C.); (L.F.)
| |
Collapse
|
5
|
Biringer RG. A Review of Prostanoid Receptors: Expression, Characterization, Regulation, and Mechanism of Action. J Cell Commun Signal 2021; 15:155-184. [PMID: 32970276 PMCID: PMC7991060 DOI: 10.1007/s12079-020-00585-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 09/15/2020] [Indexed: 12/22/2022] Open
Abstract
Prostaglandin signaling controls a wide range of biological processes from blood pressure homeostasis to inflammation and resolution thereof to the perception of pain to cell survival. Disruption of normal prostanoid signaling is implicated in numerous disease states. Prostaglandin signaling is facilitated by G-protein-coupled, prostanoid-specific receptors and the array of associated G-proteins. This review focuses on the expression, characterization, regulation, and mechanism of action of prostanoid receptors with particular emphasis on human isoforms.
Collapse
Affiliation(s)
- Roger G Biringer
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Blvd, Bradenton, FL, 34211, USA.
| |
Collapse
|
6
|
Perez DM. Current Developments on the Role of α 1-Adrenergic Receptors in Cognition, Cardioprotection, and Metabolism. Front Cell Dev Biol 2021; 9:652152. [PMID: 34113612 PMCID: PMC8185284 DOI: 10.3389/fcell.2021.652152] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/29/2021] [Indexed: 12/13/2022] Open
Abstract
The α1-adrenergic receptors (ARs) are G-protein coupled receptors that bind the endogenous catecholamines, norepinephrine, and epinephrine. They play a key role in the regulation of the sympathetic nervous system along with β and α2-AR family members. While all of the adrenergic receptors bind with similar affinity to the catecholamines, they can regulate different physiologies and pathophysiologies in the body because they couple to different G-proteins and signal transduction pathways, commonly in opposition to one another. While α1-AR subtypes (α1A, α1B, α1C) have long been known to be primary regulators of vascular smooth muscle contraction, blood pressure, and cardiac hypertrophy, their role in neurotransmission, improving cognition, protecting the heart during ischemia and failure, and regulating whole body and organ metabolism are not well known and are more recent developments. These advancements have been made possible through the development of transgenic and knockout mouse models and more selective ligands to advance their research. Here, we will review the recent literature to provide new insights into these physiological functions and possible use as a therapeutic target.
Collapse
Affiliation(s)
- Dianne M Perez
- The Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH, United States
| |
Collapse
|
7
|
Katan M, Cockcroft S. Phospholipase C families: Common themes and versatility in physiology and pathology. Prog Lipid Res 2020; 80:101065. [PMID: 32966869 DOI: 10.1016/j.plipres.2020.101065] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/14/2020] [Accepted: 09/17/2020] [Indexed: 12/20/2022]
Abstract
Phosphoinositide-specific phospholipase Cs (PLCs) are expressed in all mammalian cells and play critical roles in signal transduction. To obtain a comprehensive understanding of these enzymes in physiology and pathology, a detailed structural, biochemical, cell biological and genetic information is required. In this review, we cover all these aspects to summarize current knowledge of the entire superfamily. The families of PLCs have expanded from 13 enzymes to 16 with the identification of the atypical PLCs in the human genome. Recent structural insights highlight the common themes that cover not only the substrate catalysis but also the mechanisms of activation. This involves the release of autoinhibitory interactions that, in the absence of stimulation, maintain classical PLC enzymes in their inactive forms. Studies of individual PLCs provide a rich repertoire of PLC function in different physiologies. Furthermore, the genetic studies discovered numerous mutated and rare variants of PLC enzymes and their link to human disease development, greatly expanding our understanding of their roles in diverse pathologies. Notably, substantial evidence now supports involvement of different PLC isoforms in the development of specific cancer types, immune disorders and neurodegeneration. These advances will stimulate the generation of new drugs that target PLC enzymes, and will therefore open new possibilities for treatment of a number of diseases where current therapies remain ineffective.
Collapse
Affiliation(s)
- Matilda Katan
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, UK
| | - Shamshad Cockcroft
- Department of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, 21 University Street, London WC1E 6JJ, UK.
| |
Collapse
|
8
|
Lénárt K, Pap A, Pórszász R, V. Oláh A, Fésüs L, Mádi A. Transglutaminase 2 Has Metabolic and Vascular Regulatory Functions Revealed by In Vivo Activation of Alpha1-Adrenergic Receptor. Int J Mol Sci 2020; 21:E3865. [PMID: 32485850 PMCID: PMC7312910 DOI: 10.3390/ijms21113865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/20/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022] Open
Abstract
The multifunctional tissue transglutaminase has been demonstrated to act as α1-adrenergic receptor-coupled G protein with GTPase activity in several cell types. To explore further the pathophysiological significance of this function we investigated the in vivo effects of the α1-adrenergic receptor agonist phenylephrine comparing responses in wild type and TG2-/- mice. Injection of phenylephrine, but not a beta3-adrenergic agonist (CL-316,243), resulted in the long-term decline of the respiratory exchange ratio and lower lactate concentration in TG2-/- mice indicating they preferred to utilize fatty acids instead of glucose as fuels. Measurement of tail blood pressure revealed that the vasoconstrictive effect of phenylephrine was milder in TG2-/- mice leading to lower levels of lactate dehydrogenase (LDH) isoenzymes in blood. LDH isoenzyme patterns indicated more damage in lung, liver, kidney, skeletal, and cardiac muscle of wild type mice; the latter was confirmed by a higher level of heart-specific CK-MB. Our data suggest that TG2 as an α1-adrenergic receptor-coupled G protein has important regulatory functions in alpha1-adrenergic receptor-mediated metabolic processes and vascular functions.
Collapse
Affiliation(s)
- Kinga Lénárt
- Department of Biochemistry and Molecular Biology, University of Debrecen, H-4032 Debrecen, Hungary; (K.L.); (A.P.); (L.F.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, H-4032 Debrecen, Hungary
| | - Attila Pap
- Department of Biochemistry and Molecular Biology, University of Debrecen, H-4032 Debrecen, Hungary; (K.L.); (A.P.); (L.F.)
| | - Róbert Pórszász
- Department of Pharmacology and Pharmacotherapy, University of Debrecen, H-4032 Debrecen, Hungary;
| | - Anna V. Oláh
- Department of Laboratory Medicine, University of Debrecen, H-4032 Debrecen, Hungary;
| | - László Fésüs
- Department of Biochemistry and Molecular Biology, University of Debrecen, H-4032 Debrecen, Hungary; (K.L.); (A.P.); (L.F.)
| | - András Mádi
- Department of Biochemistry and Molecular Biology, University of Debrecen, H-4032 Debrecen, Hungary; (K.L.); (A.P.); (L.F.)
| |
Collapse
|
9
|
Fais P, Leopizzi M, Di Maio V, Longo L, Della Rocca C, Tagliaro F, Bortolotti F, Lo Vasco VR. Phosphoinositide-specific phospholipase C in normal human liver and in alcohol abuse. J Cell Biochem 2019; 120:7907-7917. [PMID: 30426534 DOI: 10.1002/jcb.28067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 10/22/2018] [Indexed: 01/24/2023]
Abstract
The phosphoinositide (PI) signal transduction pathway participates in liver metabolism. Abnormal activity or expression of PI-specific phospholipase C (PLC) enzymes has been described in different liver diseases. We resume the role of the PI metabolism in liver and PLC abnormalities in different liver diseases. Moreover, we present the results of PLC analyses in a normal human liver and an alcohol-damaged liver. PLC enzymes and the expression of the corresponding genes in liver biopsies from individuals deceased for complications of the alcoholic liver disease (ALD) at different stages compared with normal controls (deceased individuals with histologically normal livers without alcohol addiction anamnesis) were analyzed by using immunohistochemistry and molecular biology techniques. The expression panel of PLCs was described in normal and alcohol abuse liver. Our observations suggest that the regulation of PLC expression might be due to posttranscriptional events and that alcohol affects the epigenetic control of PLC expression belonging to PI signaling. We also describe the alternate expression of PLCB1 and PLCH1 genes in liver. Our results corroborate literature data suggesting that PLC enzymes are differently expressed in normal versus pathological liver, playing a role in the histopathogenesis of liver tissue damage. The expression and/or localization of selected PLC isoforms is especially affected in alcohol-related liver tissue histopathology. Our present observations confirm that the modulation of protein synthesis plays a role in the regulation of PLC enzymes. We also suggest that this modulation might act at the transcription level. Further studies are required to investigate related epigenetic mechanisms.
Collapse
Affiliation(s)
- Paolo Fais
- Department of Medical and Surgical Sciences, Unit of Legal Medicine, University of Bologna, Bologna, Italy
| | - Martina Leopizzi
- Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino-Sapienza University, Latina, Italy
| | - Valeria Di Maio
- Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino-Sapienza University, Latina, Italy
| | - Lucia Longo
- Department of Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Carlo Della Rocca
- Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino-Sapienza University, Latina, Italy
| | - Franco Tagliaro
- Department of Medical and Surgical Sciences, Unit of Legal Medicine, University of Bologna, Bologna, Italy.,Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino-Sapienza University, Latina, Italy.,Department of Sensory Organs, Sapienza University of Rome, Rome, Italy.,Department of Diagnostics and Public Health, Unit of Forensic Medicine, University of Verona, Verona, Italy
| | - Federica Bortolotti
- Department of Medical and Surgical Sciences, Unit of Legal Medicine, University of Bologna, Bologna, Italy.,Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino-Sapienza University, Latina, Italy.,Department of Sensory Organs, Sapienza University of Rome, Rome, Italy.,Department of Diagnostics and Public Health, Unit of Forensic Medicine, University of Verona, Verona, Italy
| | | |
Collapse
|
10
|
Abstract
Transglutaminases (TGs) and especially TG2 play important roles in neurotransmitter and receptor signaling pathways. Three different mechanisms by which TG2 interacts with neurotransmitter and receptor signaling systems will be discussed in this review. The first way in which TG2 interacts with receptor signaling is via its function as a guanine nucleotide binding protein (G-protein) coupling to G-protein coupled receptors (GPCRs) to activate down-stream signaling pathways. TG2 can exist in a least two conformations, a closed GTP-bound conformation and an open calcium-bound conformation. In the closed GTP-bound conformation, TG2 is capable of functioning as a G-protein for GPCRs. In the open calcium-bound conformation, TG2 catalyzes a transamidation reaction cross-linking proteins or catalyzing the covalent binding of a mono- or polyamine to a protein. The second mechanism is regulation of the transamidation reaction catalyzed by TG2 via receptor stimulation which can increase local calcium concentrations and thereby increase transamidation reactions. The third way in which TG2 plays a role in neurotransmitter and receptor signaling systems is via its use of monoamine neurotransmitters as a substrate. Monoamine neurotransmitters including serotonin can be substrates for transamidation to a protein often a small G-protein (also known as a small GTPase) resulting in activation of the small G-protein. The transamidation of a monoamine neurotransmitter or serotonin has been designated as monoaminylation or more specifically serotonylation, respectively. Other proteins are also targets for monoaminylation such as fibronectin and cytoskeletal proteins. These receptor and neurotransmitter-regulated reactions by TG2 play roles in physiological and key pathophysiological processes.
Collapse
|
11
|
Abstract
Tissue transglutaminase (tTG), also referred to as type 2 transglutaminase or Gαh, can bind and hydrolyze GTP, as well as function as a protein crosslinking enzyme. tTG is widely expressed and can be detected both inside cells and in the extracellular space. In contrast to many enzymes, the active and inactive conformations of tTG are markedly different. The catalytically inactive form of tTG adopts a compact “closed-state” conformation, while the catalytically active form of the protein adopts an elongated “open-state” conformation. tTG has long been appreciated as an important player in numerous diseases, including celiac disease, neuronal degenerative diseases, and cancer, and its roles in these diseases often depend as much upon its conformation as its catalytic activity. While its ability to promote these diseases has been traditionally thought to be dependent on its protein crosslinking activity, more recent findings suggest that the conformational state tTG adopts is also important for mediating its effects. In particular, we and others have shown that the closed-state of tTG is important for promoting cell growth and survival, while maintaining tTG in the open-state is cytotoxic. In this review, we examine the two unique conformations of tTG and how they contribute to distinct biological processes. We will also describe how this information can be used to generate novel therapies to treat diseases, with a special focus on cancer.
Collapse
|
12
|
Browning deficiency and low mobilization of fatty acids in gonadal white adipose tissue leads to decreased cold-tolerance of transglutaminase 2 knock-out mice. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1575-1586. [PMID: 28774822 DOI: 10.1016/j.bbalip.2017.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 07/03/2017] [Accepted: 07/28/2017] [Indexed: 12/12/2022]
Abstract
During cold-exposure 'beige' adipocytes with increased mitochondrial content are activated in white adipose tissue (WAT). These cells, similarly to brown adipose tissue (BAT), dissipate stored chemical energy in the form of heat with the help of uncoupling protein 1 (UCP1). We investigated the effect of tissue transglutaminase (TG2) ablation on the function of ATs in mice. Although TG2+/+ and TG2-/- mice had the same amount of WAT and BAT, we found that TG2+/+ animals could tolerate acute cold exposure for 4h, whereas TG2-/- mice only for 3h. Both TG2-/- and TG2+/+ animals used up half of the triacylglycerol content of subcutaneous WAT (SCAT) after 3h treatment; however, TG2-/- mice still possessed markedly whiter and higher amount of gonadal WAT (GONAT) as reflected in the larger size of adipocytes and lower free fatty acid levels in serum. Furthermore, lower expression of 'beige' marker genes such as UCP1, TBX1 and TNFRFS9 was observed after cold exposure in GONAT of TG2-/- mice, paralleled with a lower level of UCP1 protein and a decreased mitochondrial content. The detected changes in gene expression of Resistin and Adiponectin did not provoke glucose intolerance in the investigated TG2-/- mice, and TG2 deletion did not influence adrenaline, noradrenaline, glucagon and insulin production. Our data suggest that TG2 has a tissue-specific role in GONAT function and browning, which becomes apparent under acute cold exposure.
Collapse
|
13
|
Huang SP, Liu PY, Kuo CJ, Chen CL, Lee WJ, Tsai YH, Lin YF. The Gαh-PLCδ1 signaling axis drives metastatic progression in triple-negative breast cancer. J Hematol Oncol 2017; 10:114. [PMID: 28576130 PMCID: PMC5457652 DOI: 10.1186/s13045-017-0481-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/25/2017] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Distant metastasis of triple-negative breast cancer (TNBC) to other organs, e.g., the lungs, has been correlated with poor survival rates among breast cancer patients. Therefore, the identification of useful therapeutic targets to prevent metastasis or even inhibit tumor growth of TNBC is urgently needed. Gαh is a novel GTP-binding protein and known as an inactive form of calcium-dependent tissue transglutaminase. However, the functional consequences of transamidating and G-protein activities of tissue transglutaminase in promoting cancer metastasis are still controversial. METHODS Kaplan-Meier analyses were performed to estimate the prognostic values of Gαh and PLCδ1 by utilizing public databases and performing immunohistochemical staining experiments. Cell-based invasion assays and in vivo lung colony-forming and orthotropic lung metastasis models were established to evaluate the effectiveness of interrupting the protein-protein interaction (PPI) between Gαh and PLCδ1 in inhibiting the invasive ability and metastatic potential of TNBC cells. RESULTS Here, we showed that the increased level of cytosolic, not extracellular, Gαh is a poor prognostic marker in breast cancer patients and correlates with the metastatic evolution of TNBC cells. Moreover, clinicopathological analyses revealed that the combined signature of high Gαh/PLCδ1 levels indicates worse prognosis in patients with breast cancer and correlates with lymph node metastasis of ER-negative breast cancer. Blocking the PPI of the Gαh/PLCδ1 complex by synthetically myristoylated PLCδ1 peptide corresponding to the Gαh-binding interface appeared to significantly suppress cellular invasiveness in vitro and inhibit lung metastatic colonies of TNBC cells in vivo. CONCLUSIONS This study establishes Gαh/PLCδ1 as a poor prognostic factor for patients with estrogen receptor-negative breast cancers, including TNBCs, and provides therapeutic value by targeting the PPI of the Gαh/PLCδ1 complex to combat the metastatic progression of TNBCs.
Collapse
Affiliation(s)
- Shang-Pen Huang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, 110, Taipei, Taiwan
| | - Pei-Yao Liu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, 110, Taipei, Taiwan
| | - Chih-Jung Kuo
- Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Chi-Long Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, 110, Taipei, Taiwan.,Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Wei-Jiunn Lee
- Department of Urology, School of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yu-Hui Tsai
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yuan-Feng Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, 110, Taipei, Taiwan.
| |
Collapse
|
14
|
Steppan J, Bergman Y, Viegas K, Armstrong D, Tan S, Wang H, Melucci S, Hori D, Park SY, Barreto SF, Isak A, Jandu S, Flavahan N, Butlin M, An SS, Avolio A, Berkowitz DE, Halushka MK, Santhanam L. Tissue Transglutaminase Modulates Vascular Stiffness and Function Through Crosslinking-Dependent and Crosslinking-Independent Functions. J Am Heart Assoc 2017; 6:JAHA.116.004161. [PMID: 28159817 PMCID: PMC5523743 DOI: 10.1161/jaha.116.004161] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background The structural elements of the vascular wall, namely, extracellular matrix and smooth muscle cells (SMCs), contribute to the overall stiffness of the vessel. In this study, we examined the crosslinking‐dependent and crosslinking‐independent roles of tissue transglutaminase (TG2) in vascular function and stiffness. Methods and Results SMCs were isolated from the aortae of TG2−/− and wild‐type (WT) mice. Cell adhesion was examined by using electrical cell–substrate impedance sensing and PicoGreen assay. Cell motility was examined using a Boyden chamber assay. Cell proliferation was examined by electrical cell–substrate impedance sensing and EdU incorporation assays. Cell micromechanics were studied using magnetic torsion cytometry and spontaneous nanobead tracer motions. Aortic mechanics were examined by tensile testing. Vasoreactivity was studied by wire myography. SMCs from TG2−/− mice had delayed adhesion, reduced motility, and accelerated de‐adhesion and proliferation rates compared with those from WT. TG2−/− SMCs were stiffer and displayed fewer cytoskeletal remodeling events than WT. Collagen assembly was delayed in TG2−/− SMCs and recovered with adenoviral transduction of TG2. Aortic rings from TG2−/− mice were less stiff than those from WT; stiffness was partly recovered by incubation with guinea pig liver TG2 independent of crosslinking function. TG2−/− rings showed augmented response to phenylephrine‐mediated vasoconstriction when compared with WT. In human coronary arteries, vascular media and plaque, high abundance of fibronectin expression, and colocalization with TG2 were observed. Conclusions TG2 modulates vascular function/tone by altering SMC contractility independent of its crosslinking function and contributes to vascular stiffness by regulating SMC proliferation and matrix remodeling.
Collapse
Affiliation(s)
- Jochen Steppan
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University, Baltimore, MD
| | - Yehudit Bergman
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University, Baltimore, MD
| | - Kayla Viegas
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Dinani Armstrong
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University, Baltimore, MD
| | - Siqi Tan
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
| | - Huilei Wang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD
| | - Sean Melucci
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
| | - Daijiro Hori
- Department of Surgery, Johns Hopkins University, Baltimore, MD
| | - Sung Yong Park
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University, Baltimore, MD.,Department of Anesthesiology, Yonsei University, Seoul, Korea
| | - Sebastian F Barreto
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University, Baltimore, MD
| | - Abraham Isak
- Department of Environmental Health Sciences, Johns Hopkins University, Baltimore, MD
| | - Sandeep Jandu
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University, Baltimore, MD
| | - Nicholas Flavahan
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University, Baltimore, MD
| | - Mark Butlin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Steven S An
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD.,Department of Environmental Health Sciences, Johns Hopkins University, Baltimore, MD
| | - Alberto Avolio
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Dan E Berkowitz
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University, Baltimore, MD.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD
| | - Marc K Halushka
- Department of Pathology, Johns Hopkins University, Baltimore, MD
| | - Lakshmi Santhanam
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University, Baltimore, MD .,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
15
|
Tatsukawa H, Furutani Y, Hitomi K, Kojima S. Transglutaminase 2 has opposing roles in the regulation of cellular functions as well as cell growth and death. Cell Death Dis 2016; 7:e2244. [PMID: 27253408 PMCID: PMC5143380 DOI: 10.1038/cddis.2016.150] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/28/2016] [Accepted: 04/28/2016] [Indexed: 01/27/2023]
Abstract
Transglutaminase 2 (TG2) is primarily known as the most ubiquitously expressed member of the transglutaminase family with Ca2+-dependent protein crosslinking activity; however, this enzyme exhibits multiple additional functions through GTPase, cell adhesion, protein disulfide isomerase, kinase, and scaffold activities and is associated with cell growth, differentiation, and apoptosis. TG2 is found in the extracellular matrix, plasma membrane, cytosol, mitochondria, recycling endosomes, and nucleus, and its subcellular localization is an important determinant of its function. Depending upon the cell type and stimuli, TG2 changes its subcellular localization and biological activities, playing both anti- and pro-apoptotic roles. Increasing evidence indicates that the GTP-bound form of the enzyme (in its closed form) protects cells from apoptosis but that the transamidation activity of TG2 (in its open form) participates in both facilitating and inhibiting apoptosis. A difficulty in the study and understanding of this enigmatic protein is that opposing effects have been reported regarding its roles in the same physiological and/or pathological systems. These include neuroprotective or neurodegenerative effects, hepatic cell growth-promoting or hepatic cell death-inducing effects, exacerbating or having no effect on liver fibrosis, and anti- and pro-apoptotic effects on cancer cells. The reasons for these discrepancies have been ascribed to TG2's multifunctional activities, genetic variants, conformational changes induced by the immediate environment, and differences in the genetic background of the mice used in each of the experiments. In this article, we first report that TG2 has opposing roles like the protagonist in the novel Dr. Jekyll and Mr. Hyde, followed by a summary of the controversies reported, and finally discuss the possible reasons for these discrepancies.
Collapse
Affiliation(s)
- H Tatsukawa
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Y Furutani
- Micro-Signaling Regulation Technology Unit, RIKEN Center for Life Science Technologies, 2-1 Hirosawa, Saitama 351-0198, Japan
| | - K Hitomi
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - S Kojima
- Micro-Signaling Regulation Technology Unit, RIKEN Center for Life Science Technologies, 2-1 Hirosawa, Saitama 351-0198, Japan
| |
Collapse
|
16
|
Recktenwald CV, Hansson GC. The Reduction-insensitive Bonds of the MUC2 Mucin Are Isopeptide Bonds. J Biol Chem 2016; 291:13580-90. [PMID: 27129250 DOI: 10.1074/jbc.m116.726406] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Indexed: 11/06/2022] Open
Abstract
The main structural component of the mucus in the gastrointestinal tract is the MUC2 mucin. It forms large networks that in colon build the loose outer mucous layer that provides the habitat for the commensal flora and the inner mucous layer that protects the epithelial cells by being impenetrable to bacteria. The epithelial cells in mice lacking MUC2 are not adequately protected from bacteria, resulting in inflammation and the development of colon cancer as found in human ulcerative colitis. Correct processing of the MUC2 mucin is the basis for the building of these protective networks. During the biosynthesis of the MUC2 mucin, post-translational modifications are formed resulting in reduction-insensitive bonds between MUC2 monomers. By the use of γ-glutamyltranspeptidase and isopeptidase activity in leech saliva, we could show that the molecular nature of these reduction-insensitive bonds is isopeptide bonds formed between side chains of lysine and glutamine. Transglutaminase 2 has an affinity to the MUC2 CysD2 domain in the nanomolar range and can catalyze its cross-linking. By using mass spectrometry, we identified MUC2 residues involved in this cross-linking. This shows for the first time that transamidation is not only stabilizing the skin and the fibrin clot, but is also important for the correct intracellular processing of MUC2 to generate protective mucus.
Collapse
Affiliation(s)
- Christian V Recktenwald
- From the Department of Medical Biochemistry, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Gunnar C Hansson
- From the Department of Medical Biochemistry, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| |
Collapse
|
17
|
Hong Y, Zhao J, Guo L, Kim SC, Deng X, Wang G, Zhang G, Li M, Wang X. Plant phospholipases D and C and their diverse functions in stress responses. Prog Lipid Res 2016; 62:55-74. [DOI: 10.1016/j.plipres.2016.01.002] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 12/23/2015] [Accepted: 01/01/2016] [Indexed: 12/25/2022]
|
18
|
Litosch I. Regulating G protein activity by lipase-independent functions of phospholipase C. Life Sci 2015; 137:116-24. [DOI: 10.1016/j.lfs.2015.07.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 06/18/2015] [Accepted: 07/22/2015] [Indexed: 11/27/2022]
|
19
|
Kanchan K, Fuxreiter M, Fésüs L. Physiological, pathological, and structural implications of non-enzymatic protein-protein interactions of the multifunctional human transglutaminase 2. Cell Mol Life Sci 2015; 72:3009-35. [PMID: 25943306 PMCID: PMC11113818 DOI: 10.1007/s00018-015-1909-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 04/10/2015] [Accepted: 04/13/2015] [Indexed: 12/26/2022]
Abstract
Transglutaminase 2 (TG2) is a ubiquitously expressed member of an enzyme family catalyzing Ca(2+)-dependent transamidation of proteins. It is a multifunctional protein having several well-defined enzymatic (GTP binding and hydrolysis, protein disulfide isomerase, and protein kinase activities) and non-enzymatic (multiple interactions in protein scaffolds) functions. Unlike its enzymatic interactions, the significance of TG2's non-enzymatic regulation of its activities has recently gained importance. In this review, we summarize all the partners that directly interact with TG2 in a non-enzymatic manner and analyze how these interactions could modulate the crosslinking activity and cellular functions of TG2 in different cell compartments. We have found that TG2 mostly acts as a scaffold to bridge various proteins, leading to different functional outcomes. We have also studied how specific structural features, such as intrinsically disordered regions and embedded short linear motifs contribute to multifunctionality of TG2. Conformational diversity of intrinsically disordered regions enables them to interact with multiple partners, which can result in different biological outcomes. Indeed, ID regions in TG2 were identified in functionally relevant locations, indicating that they could facilitate conformational transitions towards the catalytically competent form. We reason that these structural features contribute to modulating the physiological and pathological functions of TG2 and could provide a new direction for detecting unique regulatory partners. Additionally, we have assembled all known anti-TG2 antibodies and have discussed their significance as a toolbox for identifying and confirming novel TG2 regulatory functions.
Collapse
Affiliation(s)
- Kajal Kanchan
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, 4010 Hungary
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - Mónika Fuxreiter
- MTA-DE Momentum Laboratory of Protein Dynamics, University of Debrecen, Debrecen, Hungary
| | - László Fésüs
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, 4010 Hungary
- MTA-DE Apoptosis, Genomics and Stem Cell Research Group of the Hungarian Academy of Sciences, Debrecen, Hungary
| |
Collapse
|
20
|
Sulic AM, Kurppa K, Rauhavirta T, Kaukinen K, Lindfors K. Transglutaminase as a therapeutic target for celiac disease. Expert Opin Ther Targets 2014; 19:335-48. [PMID: 25410283 DOI: 10.1517/14728222.2014.985207] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION The only current treatment for celiac disease is a strict gluten-free diet. The ubiquitous presence of gluten in groceries, however, makes the diet burdensome and difficult to maintain, and alternative treatment options are thus needed. Here, the important role of transglutaminase 2 (TG2) in the pathogenesis of celiac disease makes it an attractive target for drug development. AREAS COVERED The present paper gives an overview of TG2 and addresses its significance in the pathogenesis of celiac disease. Moreover, the article summarizes preclinical studies performed with TG2 inhibitors and scrutinizes issues related to this therapeutic approach. EXPERT OPINION Activation of TG2 in the intestinal mucosa is central in celiac disease pathogenesis and researchers have therefore suggested TG2 inhibitors as a potential therapeutic approach. However, a prerequisite for such a drug is that it should be specific for TG2 and not affect the activity of other members of the transglutaminase family. Such compounds have already been introduced and tested in vitro, but a major obstacle to further development is the lack of a well-defined animal model for celiac disease. Nonetheless, with encouraging results in preclinical studies clinical trials with TG2 inhibitors are eagerly awaited.
Collapse
Affiliation(s)
- Ana-Marija Sulic
- Tampere Center for Child Health Research, University of Tampere and Tampere University Hospital , Tampere , Finland +358 50 3186306; +358 3 3641369 ;
| | | | | | | | | |
Collapse
|
21
|
Lo Vasco VR, Leopizzi M, Puggioni C, Della Rocca C, Businaro R. Neuropeptide Y reduces the expression of PLCB2, PLCD1 and selected PLC genes in cultured human endothelial cells. Mol Cell Biochem 2014; 394:43-52. [PMID: 24903829 DOI: 10.1007/s11010-014-2079-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/03/2014] [Indexed: 12/11/2022]
Abstract
Endothelial cells (EC) are the first elements exposed to mediators circulating in the bloodstream, and react to stimulation with finely tuned responses mediated by different signal transduction pathways, leading the endothelium to adapt. Neuropeptide Y (NPY), the most abundant peptide in heart and brain, is mainly involved in the neuroendocrine regulation of the stress response. The regulatory roles of NPY depend on many factors, including its enzymatic processing, receptor subtypes and related signal transduction systems, including the phosphoinositide (PI) pathway and related phospholipase C (PI-PLC) family of enzymes. The panel of expression of PI-PLC enzymes differs comparing quiescent versus differently stimulated human EC. Growing evidences indicate that the regulation of the expression of PLC genes, which codify for PI-PLC enzymes, might act as an additional mechanism of control of the PI signal transduction pathway. NPY was described to potentiate the activation of PI-PLC enzymes in different cell types, including EC. In the present experiments, we stimulated human umbilical vein EC using different doses of NPY in order to investigate a possible role upon the expression PLC genes. NPY reduced the overall transcription of PLC genes, excepting for PLCE. The most significant effects were observed for PLCB2 and PLCD1, both isoforms recruited by means of G-proteins and G-protein-coupled receptors. NPY behavior was comparable with other PI-PLC interacting molecules that, beside the stimulation of phospholipase activity, also affect the upcoming enzymes' production acting upon gene expression. That might represent a mode to regulate the activity of PI-PLC enzymes after activation.
Collapse
Affiliation(s)
- V R Lo Vasco
- Department Organi di Senso, Policlinico Umberto I, Faculty of Medicina e Odontoiatria, Sapienza University of Rome, viale del Policlinico 155, 00185, Rome, Italy,
| | | | | | | | | |
Collapse
|
22
|
Eckert RL, Kaartinen MT, Nurminskaya M, Belkin AM, Colak G, Johnson GVW, Mehta K. Transglutaminase regulation of cell function. Physiol Rev 2014; 94:383-417. [PMID: 24692352 DOI: 10.1152/physrev.00019.2013] [Citation(s) in RCA: 321] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Transglutaminases (TGs) are multifunctional proteins having enzymatic and scaffolding functions that participate in regulation of cell fate in a wide range of cellular systems and are implicated to have roles in development of disease. This review highlights the mechanism of action of these proteins with respect to their structure, impact on cell differentiation and survival, role in cancer development and progression, and function in signal transduction. We also discuss the mechanisms whereby TG level is controlled and how TGs control downstream targets. The studies described herein begin to clarify the physiological roles of TGs in both normal biology and disease states.
Collapse
|
23
|
Odii BO, Coussons P. Biological functionalities of transglutaminase 2 and the possibility of its compensation by other members of the transglutaminase family. ScientificWorldJournal 2014; 2014:714561. [PMID: 24778599 PMCID: PMC3981525 DOI: 10.1155/2014/714561] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 10/30/2013] [Indexed: 02/01/2023] Open
Abstract
Transglutaminase 2 (TG2) is the most widely distributed and most abundantly expressed member of the transglutaminase family of enzymes, a group of intracellular and extracellular proteins that catalyze the Ca²⁺-dependent posttranslational modification of proteins. It is a unique member of the transglutaminase family owing to its specialized biochemical, structural and functional elements, ubiquitous tissue distribution and subcellular localization, and substrate specificity. The broad substrate specificity of TG2 and its flexible interaction with numerous other gene products may account for its multiple biological functions. In addition to the classic Ca²⁺-dependent transamidation of proteins, which is a hallmark of transglutaminase enzymes, additional Ca²⁺-independent enzymatic and nonenzymatic activities of TG2 have been identified. Many such activities have been directly or indirectly implicated in diverse cellular physiological events, including cell growth and differentiation, cell adhesion and morphology, extracellular matrix stabilization, wound healing, cellular development, receptor-mediated endocytosis, apoptosis, and disease pathology. Given the wide range of activities of the transglutaminase gene family it has been suggested that, in the absence of active versions of TG2, its function could be compensated for by other members of the transglutaminase family. It is in the light of this assertion that we review, herein, TG2 activities and the possibilities and premises for compensation for its absence.
Collapse
Affiliation(s)
- Benedict Onyekachi Odii
- Biomedical Research Group, Department of Life Sciences, Faculty of Science & Technology, Anglia Ruskin University, East Road, Cambridge, CB1 1PT, UK
| | - Peter Coussons
- Biomedical Research Group, Department of Life Sciences, Faculty of Science & Technology, Anglia Ruskin University, East Road, Cambridge, CB1 1PT, UK
| |
Collapse
|
24
|
Kim NY, Ahn SJ, Kim MS, Seo JS, Kim BS, Bak HJ, Lee JY, Park MA, Park JH, Lee HH, Chung JK. PLC-δ1-Lf, a novel N-terminal extended phospholipase C-δ1. Gene X 2013; 528:170-7. [DOI: 10.1016/j.gene.2013.07.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 06/29/2013] [Accepted: 07/02/2013] [Indexed: 11/28/2022] Open
|
25
|
Nakamura Y, Kanemarum K, Fukami K. Physiological functions of phospholipase Cδ1 and phospholipase Cδ3. Adv Biol Regul 2013; 53:356-362. [PMID: 23948486 DOI: 10.1016/j.jbior.2013.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 07/01/2013] [Indexed: 06/02/2023]
Abstract
Phospholipase C (PLC) is a key enzyme in phosphoinositide turnover, and in the regulation of various cellular events. Among the 13 PLC isozymes, PLCδ1 and PLCδ3 share a high sequence homology, and similar tissue distribution. Recent studies with genetically manipulated mice have clarified the importance of these PLC isozymes in a number of tissues. PLCδ1 is required for maintenance of homeostasis in skin and metabolic tissues, while PLCδ3 regulates microvilli formation in enterocytes and the radial migration of neurons in the cerebral cortex of the developing brain. Furthermore, simultaneous loss of PLCδ1 and PLCδ3 in mice causes placental vascular defects, leading to embryonic lethality. Taken together, PLCδ1 and PLCδ3 have unique and redundant roles in various tissues.
Collapse
Affiliation(s)
- Yoshikazu Nakamura
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Hachioji-shi, Tokyo 192-0392, Japan
| | | | | |
Collapse
|
26
|
Mackenzie LS, Lymn JS, Hughes AD. Linking phospholipase C isoforms with differentiation function in human vascular smooth muscle cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3006-3012. [PMID: 23954266 DOI: 10.1016/j.bbamcr.2013.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 07/23/2013] [Accepted: 08/06/2013] [Indexed: 12/23/2022]
Abstract
The phosphoinositol-phospholipase C (PLC) family of enzymes consists of a number of isoforms, each of which has different cellular functions. PLCγ1 is primarily linked to tyrosine kinase transduction pathways, whereas PLCδ1 has been associated with a number of regulatory proteins, including those controlling the cell cycle. Recent studies have shown a central role of PLC in cell organisation and in regulating a wide array of cellular responses. It is of importance to define the precise role of each isoform, and how this changes the functional outcome of the cell. Here we investigated differences in PLC isoform levels and activity in relation to differentiation of human and rat vascular smooth muscle cells. Using Western blotting and PLC activity assay, we show that PLCδ1 and PLCγ1 are the predominant isoforms in randomly cycling human vascular smooth muscle cells (HVSMCs). Growth arrest of HVSMCs for seven days of serum deprivation was consistently associated with increases in PLCδ1 and SM α-actin, whereas there were no changes in PLCγ1 immuno-reactivity. Organ culture of rat mesenteric arteries in serum free media (SFM), a model of de-differentiation, led to a loss of contractility as well as a loss of contractile proteins (SM α-actin and calponin) and PLCδ1, and no change in PLCγ1 immuno-reactivity. Taken together, these data indicate that PLCδ1 is the predominant PLC isoform in vascular smooth muscle, and confirm that PLCδ1 expression is affected by conditions that affect the cell cycle, differentiation status and contractile function.
Collapse
Affiliation(s)
- Louise S Mackenzie
- Department of Pharmacology, School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK; Department of Clinical Pharmacology, National Heart & Lung Institute, Imperial College London, QEQM Wing, St. Mary's Hospital, Paddington, London W2 1NY, UK.
| | - Joanne S Lymn
- Department of Clinical Pharmacology, National Heart & Lung Institute, Imperial College London, QEQM Wing, St. Mary's Hospital, Paddington, London W2 1NY, UK; Institute of Cell Signalling, The School of Health Sciences, The University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, UK
| | - Alun D Hughes
- Department of Clinical Pharmacology, National Heart & Lung Institute, Imperial College London, QEQM Wing, St. Mary's Hospital, Paddington, London W2 1NY, UK
| |
Collapse
|
27
|
Abstract
Phosphoinositides (PIs) make up only a small fraction of cellular phospholipids, yet they control almost all aspects of a cell's life and death. These lipids gained tremendous research interest as plasma membrane signaling molecules when discovered in the 1970s and 1980s. Research in the last 15 years has added a wide range of biological processes regulated by PIs, turning these lipids into one of the most universal signaling entities in eukaryotic cells. PIs control organelle biology by regulating vesicular trafficking, but they also modulate lipid distribution and metabolism via their close relationship with lipid transfer proteins. PIs regulate ion channels, pumps, and transporters and control both endocytic and exocytic processes. The nuclear phosphoinositides have grown from being an epiphenomenon to a research area of its own. As expected from such pleiotropic regulators, derangements of phosphoinositide metabolism are responsible for a number of human diseases ranging from rare genetic disorders to the most common ones such as cancer, obesity, and diabetes. Moreover, it is increasingly evident that a number of infectious agents hijack the PI regulatory systems of host cells for their intracellular movements, replication, and assembly. As a result, PI converting enzymes began to be noticed by pharmaceutical companies as potential therapeutic targets. This review is an attempt to give an overview of this enormous research field focusing on major developments in diverse areas of basic science linked to cellular physiology and disease.
Collapse
Affiliation(s)
- Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
28
|
Functional analysis of duplicated genes and N-terminal splice variant of phospholipase C-δ1 in Paralichthys olivaceus. Comp Biochem Physiol B Biochem Mol Biol 2013; 165:201-10. [PMID: 23629421 DOI: 10.1016/j.cbpb.2013.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 04/22/2013] [Accepted: 04/22/2013] [Indexed: 11/22/2022]
Abstract
Phosphoinositide-specific phospholipase C δ (PLC δ) plays an important role in many cellular responses and is involved in the production of second messenger. Here, we describe the presence of novel N-terminal extended alternative splice form of PLC-δ1B in Paralichthys olivaceus, which differs from the reported mammalian PLC-δ1 isoform. The two variants PoPLC-δ1B-Lf and PoPLC-δ1B-Sf share exon 3 (including the PH domain) to exon 16, but differ at the exon 1 (Short form: Sf) and novel exon 2 (Long form: Lf) of the transcript. For the characterization of the novel duplicated gene variant of PLC-δ1B in P. olivaceus, tissue-specific expression with RT-PCR and real-time PCR, and purification and enzymatic characterization of native and recombinant proteins of all the three-types of PLC-δ1 isoforms (PoPLC-δ1A, PoPLC-δ1B-Lf and PoPLC-δ1B-Sf) of P. olivaceus were studied. The PoPLC-δ1A was ubiquitously distributed in gill, kidney and spleen. The PoPLC-δ1B-Lf gene was widely detected in various tissues, especially in the digestive system, while PoPLC-δ1B-Sf was highly expressed in the stomach. The recombinant PoPLC-δ1A, PoPLC-δ1B-Lf and PoPLC-δ1B-Sf proteins were expressed as a histidine-tagged fusion protein in Escherichia coli. The PLC activity of the PoPLC-δ1 isoform proteins showed a concentration-dependent activity to phosphatidylinositol (PI) and phosphatidylinositol 4,5-bisphosphate (PIP(2)). In addition, U73122, the PLC inhibitor, effectively inhibited PLC activities of PoPLC-δ1A, PoPLC-δ1B-Lf and PoPLC-δ1B-Sf proteins. However, PoPLC-δ1A and PoPLC-δ1B-Lf were sensitive at pH 7.5, while PoPLC-δ1B-Sf was relatively sensitive at pH 7. These results might be useful for the study of phospholipase C-mediated signal transduction in fish.
Collapse
|
29
|
Phospholipase C-δ1 regulates interleukin-1β and tumor necrosis factor-α mRNA expression. Exp Cell Res 2012; 318:1987-93. [DOI: 10.1016/j.yexcr.2012.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 06/05/2012] [Accepted: 06/07/2012] [Indexed: 11/23/2022]
|
30
|
Lo Vasco VR. Role of the phosphoinositide signal transduction pathway in the endometrium. ASIAN PACIFIC JOURNAL OF REPRODUCTION 2012. [DOI: 10.1016/s2305-0500(13)60086-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
31
|
Nurminskaya MV, Belkin AM. Cellular functions of tissue transglutaminase. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 294:1-97. [PMID: 22364871 PMCID: PMC3746560 DOI: 10.1016/b978-0-12-394305-7.00001-x] [Citation(s) in RCA: 190] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Transglutaminase 2 (TG2 or tissue transglutaminase) is a highly complex multifunctional protein that acts as transglutaminase, GTPase/ATPase, protein disulfide isomerase, and protein kinase. Moreover, TG2 has many well-documented nonenzymatic functions that are based on its noncovalent interactions with multiple cellular proteins. A vast array of biochemical activities of TG2 accounts for its involvement in a variety of cellular processes, including adhesion, migration, growth, survival, apoptosis, differentiation, and extracellular matrix organization. In turn, the impact of TG2 on these processes implicates this protein in various physiological responses and pathological states, contributing to wound healing, inflammation, autoimmunity, neurodegeneration, vascular remodeling, tumor growth and metastasis, and tissue fibrosis. TG2 is ubiquitously expressed and is particularly abundant in endothelial cells, fibroblasts, osteoblasts, monocytes/macrophages, and smooth muscle cells. The protein is localized in multiple cellular compartments, including the nucleus, cytosol, mitochondria, endolysosomes, plasma membrane, and cell surface and extracellular matrix, where Ca(2+), nucleotides, nitric oxide, reactive oxygen species, membrane lipids, and distinct protein-protein interactions in the local microenvironment jointly regulate its activities. In this review, we discuss the complex biochemical activities and molecular interactions of TG2 in the context of diverse subcellular compartments and evaluate its wide ranging and cell type-specific biological functions and their regulation.
Collapse
Affiliation(s)
- Maria V Nurminskaya
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
32
|
Abstract
The physiological effects of many extracellular neurotransmitters, hormones, growth factors, and other stimuli are mediated by receptor-promoted activation of phospholipase C (PLC) and consequential activation of inositol lipid signaling pathways. These signaling responses include the classically described conversion of phosphatidylinositol(4,5)P(2) to the Ca(2+)-mobilizing second messenger inositol(1,4,5)P(3) and the protein kinase C-activating second messenger diacylglycerol as well as alterations in membrane association or activity of many proteins that harbor phosphoinositide binding domains. The 13 mammalian PLCs elaborate a minimal catalytic core typified by PLC-d to confer multiple modes of regulation of lipase activity. PLC-b isozymes are activated by Gaq- and Gbg-subunits of heterotrimeric G proteins, and activation of PLC-g isozymes occurs through phosphorylation promoted by receptor and non-receptor tyrosine kinases. PLC-e and certain members of the PLC-b and PLC-g subclasses of isozymes are activated by direct binding of small G proteins of the Ras, Rho, and Rac subfamilies of GTPases. Recent high resolution three dimensional structures together with biochemical studies have illustrated that the X/Y linker region of the catalytic core mediates autoinhibition of most if not all PLC isozymes. Activation occurs as a consequence of removal of this autoinhibition.
Collapse
|
33
|
Transglutaminase 2: biology, relevance to neurodegenerative diseases and therapeutic implications. Pharmacol Ther 2011; 133:392-410. [PMID: 22212614 DOI: 10.1016/j.pharmthera.2011.12.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 12/06/2011] [Indexed: 12/24/2022]
Abstract
Neurodegenerative disorders are characterized by progressive neuronal loss and the aggregation of disease-specific pathogenic proteins in hallmark neuropathologic lesions. Many of these proteins, including amyloid Αβ, tau, α-synuclein and huntingtin, are cross-linked by the enzymatic activity of transglutaminase 2 (TG2). Additionally, the expression and activity of TG2 is increased in affected brain regions in these disorders. These observations along with experimental evidence in cellular and mouse models suggest that TG2 can contribute to the abnormal aggregation of disease causing proteins and consequently to neuronal damage. This accumulating evidence has provided the impetus to develop inhibitors of TG2 as possible neuroprotective agents. However, TG2 has other enzymatic activities in addition to its cross-linking function and can modulate multiple cellular processes including apoptosis, autophagy, energy production, synaptic function, signal transduction and transcription regulation. These diverse properties must be taken into consideration in designing TG2 inhibitors. In this review, we discuss the biochemistry of TG2, its various physiologic functions and our current understanding about its role in degenerative diseases of the brain. We also describe the different approaches to designing TG2 inhibitors that could be developed as potential disease-modifying therapies.
Collapse
|
34
|
|
35
|
Thomas RM, Nechamen CA, Mazurkiewicz JE, Ulloa-Aguirre A, Dias JA. The adapter protein APPL1 links FSH receptor to inositol 1,4,5-trisphosphate production and is implicated in intracellular Ca(2+) mobilization. Endocrinology 2011; 152:1691-701. [PMID: 21285318 PMCID: PMC3060640 DOI: 10.1210/en.2010-1353] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
FSH binds to its receptor (FSHR) on target cells in the ovary and testis, to regulate oogenesis and spermatogenesis, respectively. The signaling cascades activated after ligand binding are extremely complex and have been shown to include protein kinase A, mitogen-activated protein kinase, phosphatidylinositol 3-kinase/protein kinase B, and inositol 1,4,5-trisphosphate-mediated calcium signaling pathways. The adapter protein APPL1 (Adapter protein containing Pleckstrin homology domain, Phosphotyrosine binding domain and Leucine zipper motif), which has been linked to an assortment of other signaling proteins, was previously identified as an interacting protein with FSHR. Thus, alanine substitution mutations in the first intracellular loop of FSHR were generated to determine which residues are essential for FSHR-APPL1 interaction. Three amino acids were essential; when any one of them was altered, APPL1 association with FSHR mutants was abrogated. Two of the mutants (L377A and F382A) that displayed poor cell-surface expression were not studied further. Substitution of FSHR-K376A did not affect FSH binding or agonist-stimulated cAMP production in either transiently transfected human embryonic kidney cells or virally transduced human granulosa cells (KGN). In the KGN line, as well as primary cultures of rat granulosa cells transduced with wild type or mutant receptor, FSH-mediated progesterone or estradiol production was not affected by the mutation. However, in human embryonic kidney cells inositol 1,4,5-trisphosphate production was curtailed and KGN cells transduced with FSHR-K376A evidenced reduced Ca(2+) mobilization from intracellular stores after FSH treatment.
Collapse
Affiliation(s)
- Richard M Thomas
- Wadsworth Center, New York State Department of Health, Albany, New York 12237, USA
| | | | | | | | | |
Collapse
|
36
|
Recent advances in understanding the roles of transglutaminase 2 in alcoholic steatohepatitis. Cell Biol Int 2010; 34:325-34. [DOI: 10.1042/cbi20090130] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
37
|
Park D, Choi SS, Ha KS. Transglutaminase 2: a multi-functional protein in multiple subcellular compartments. Amino Acids 2010; 39:619-31. [PMID: 20148342 DOI: 10.1007/s00726-010-0500-z] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 01/23/2010] [Indexed: 12/16/2022]
Abstract
Transglutaminase 2 (TG2) is a multifunctional protein that can function as a transglutaminase, G protein, kinase, protein disulfide isomerase, and as an adaptor protein. These multiple biochemical activities of TG2 account for, at least in part, its involvement in a wide variety of cellular processes encompassing differentiation, cell death, inflammation, cell migration, and wound healing. The individual biochemical activities of TG2 are regulated by several cellular factors, including calcium, nucleotides, and redox potential, which vary depending on its subcellular location. Thus, the microenvironments of the subcellular compartments to which TG2 localizes, such as the cytosol, plasma membrane, nucleus, mitochondria, or extracellular space, are important determinants to switch on or off various TG2 biochemical activities. Furthermore, TG2 interacts with a distinct subset of proteins and/or substrates depending on its subcellular location. In this review, the biological functions and molecular interactions of TG2 will be discussed in the context of the unique environments of the subcellular compartments to which TG2 localizes.
Collapse
Affiliation(s)
- Donghyun Park
- Department of Molecular and Cellular Biochemistry, Vascular System Research Center, Kangwon National University School of Medicine, Chuncheon, Kangwon-do, 200-701, Republic of Korea
| | | | | |
Collapse
|
38
|
Godin CM, Ferreira LT, Dale LB, Gros R, Cregan SP, Ferguson SSG. The Small GTPase Ral Couples the Angiotensin II Type 1 Receptor to the Activation of Phospholipase C-δ1. Mol Pharmacol 2009; 77:388-95. [DOI: 10.1124/mol.109.061069] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
39
|
Fujii M, Yi KS, Kim MJ, Ha SH, Ryu SH, Suh PG, Yagisawa H. Phosphorylation of phospholipase C-delta 1 regulates its enzymatic activity. J Cell Biochem 2009; 108:638-50. [PMID: 19681039 DOI: 10.1002/jcb.22297] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Phosphorylation of phospholipase C-delta(1) (PLC-delta(1)) in vitro and in vivo was investigated. Of the serine/threonine kinases tested, protein kinase C (PKC) phosphorylated the serine residue(s) of bacterially expressed PLC-delta(1) most potently. It was also demonstrated that PLC-delta(1) directly bound PKC-alpha via its pleckstrin homology (PH) domain. Using deletion mutants of PLC-delta(1) and synthetic peptides, Ser35 in the PH domain was defined as the PKC mediated in vitro phosphorylation site of PLC-delta(1). In vitro phosphorylation of PLC-delta(1) by PKC stimulated [(3)H]PtdIns(4,5)P(2) hydrolyzing activity and [(3)H]Ins(1,4,5)P(3)-binding of the PLC-delta(1). On the other hand, endogenous PLC-delta(1) was constitutively phosphorylated and phosphoamino acid analysis revealed that major phosphorylation sites were threonine residues in quiescent cells. The phosphorylation level and the species of phosphoamino acid were not changed by various stimuli such as PMA, EGF, NGF, and forskolin. Using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry, we determined that Thr209 of PLC-delta(1) is one of the constitutively phosphorylated sites in quiescent cells. The PLC activity was potentiated when constitutively phosphorylated PLC-delta(1) was dephosphorylated by endogenous phosphatase(s) in vitro. Additionally, coexpression with PKC-alpha reduced serine phosphorylation of PLC-delta(1) detected by an anti-phosphoserine antibody and PLC-delta(1)-dependent basal production of inositol phosphates in NIH-3T3 cells, suggesting PKC-alpha activates phosphatase or inactivates another kinase involved in PLC-delta(1) serine phosphorylation to modulate the PLC-delta(1) activity in vivo. Taken together, these results suggest that PLC-delta(1) has multiple phosphorylation sites and phosphorylation status of PLC-delta(1) regulates its activity positively or negatively depends on the phosphorylation sites.
Collapse
Affiliation(s)
- Makoto Fujii
- Graduate School of Life Science, University of Hyogo, Harima Science Garden City, Hyogo 678-1297, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Scarpellini A, Germack R, Lortat-Jacob H, Muramatsu T, Billett E, Johnson T, Verderio EAM. Heparan sulfate proteoglycans are receptors for the cell-surface trafficking and biological activity of transglutaminase-2. J Biol Chem 2009; 284:18411-23. [PMID: 19398782 DOI: 10.1074/jbc.m109.012948] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Transglutaminase type 2 (TG2) is both a protein cross-linking enzyme and a cell adhesion molecule with an elusive unconventional secretion pathway. In normal conditions, TG2-mediated modification of the extracellular matrix modulates cell motility, proliferation and tissue repair, but under continuous cell insult, higher expression and elevated extracellular trafficking of TG2 contribute to the pathogenesis of tissue scarring. In search of TG2 ligands that could contribute to its regulation, we characterized the affinity of TG2 for heparan sulfate (HS) and heparin, an analogue of the chains of HS proteoglycans (HSPGs). By using heparin/HS solid-binding assays and surface plasmon resonance we showed that purified TG2 has high affinity for heparin/HS, comparable to that for fibronectin, and that cell-surface TG2 interacts with heparin/HS. We demonstrated that cell-surface TG2 directly associates with the HS chains of syndecan-4 without the mediation of fibronectin, which has affinity for both syndecan-4 and TG2. Functional inhibition of the cell-surface HS chains of wild-type and syndecan-4-null fibroblasts revealed that the extracellular cross-linking activity of TG2 depends on the HS of HSPG and that syndecan-4 plays a major but not exclusive role. We found that heparin binding did not alter TG2 activity per se. Conversely, fibroblasts deprived of syndecan-4 were unable to effectively externalize TG2, resulting in its cytosolic accumulation. We propose that the membrane trafficking of TG2, and hence its extracellular activity, is linked to TG2 binding to cell-surface HSPG.
Collapse
Affiliation(s)
- Alessandra Scarpellini
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
41
|
Rebecchi MJ, Raghubir A, Scarlata S, Hartenstine MJ, Brown T, Stallings JD. Expression and function of phospholipase C in breast carcinoma. ACTA ACUST UNITED AC 2009; 49:59-73. [DOI: 10.1016/j.advenzreg.2009.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
42
|
Tasma IM, Brendel V, Whitham SA, Bhattacharyya MK. Expression and evolution of the phosphoinositide-specific phospholipase C gene family in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2008; 46:627-637. [PMID: 18534862 DOI: 10.1016/j.plaphy.2008.04.015] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2007] [Indexed: 05/04/2023]
Abstract
Phosphoinositide-specific phospholipase C cleaves the substrate phosphatidylinositol 4,5-bisphosphate and generates inositol 1,4,5-trisphosphate and 1,2-diacylglycerol, both of which are second messengers in the phosphoinositide signal transduction pathways operative in animal cells. Five PI-PLC isoforms, beta, gamma, delta, epsilon and zeta, have been identified in mammals. Plant PI-PLCs are structurally close to the mammalian PI-PLC-zeta isoform. The Arabidopsis genome contains nine AtPLC genes. Expression patterns of all nine genes in different organs and in response to various environmental stimuli were studied by applying a quantitative RT-PCR approach. Multiple members of the gene family were differentially expressed in Arabidopsis organs, suggesting putative roles for this enzyme in plant development, including tissue and organ differentiation. This study also shows that a majority of the AtPLC genes are induced in response to various environmental stimuli, including cold, salt, nutrients Murashige-Skoog salts, dehydration, and the plant hormone abscisic acid. Results of this and previous studies strongly suggest that transcriptional activation of the PI-PLC gene family is important for adapting plants to stress environments. Expression patterns and phylogenetic relationships indicates that AtPLC gene members probably evolved through multiple rounds of gene duplication events, with AtPLC4 and AtPLC5 and AtPLC8 and AtPLC9 being duplicated in tandem in recent times.
Collapse
Affiliation(s)
- I Made Tasma
- Department of Agronomy, Iowa State University, G303 Agronomy Hall, Ames, IA 50011, USA
| | - Volker Brendel
- Department of Genetics, Development and Cell Biology and Department of Statistics, Iowa State University, Ames, IA 50011, USA
| | - Steven A Whitham
- Department of Plant Pathology, Iowa State University, Ames, IA 50011, USA
| | - Madan K Bhattacharyya
- Department of Agronomy, Iowa State University, G303 Agronomy Hall, Ames, IA 50011, USA
| |
Collapse
|
43
|
Suh PG, Park JI, Manzoli L, Cocco L, Peak JC, Katan M, Fukami K, Kataoka T, Yun SU, Ryu SH. Multiple roles of phosphoinositide-specific phospholipase C isozymes. BMB Rep 2008; 41:415-34. [DOI: 10.5483/bmbrep.2008.41.6.415] [Citation(s) in RCA: 369] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
44
|
Some lessons from the tissue transglutaminase knockout mouse. Amino Acids 2008; 36:625-31. [PMID: 18584284 DOI: 10.1007/s00726-008-0130-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 03/15/2008] [Indexed: 12/22/2022]
Abstract
Transglutaminase 2 (TG2) is an inducible transamidating acyltransferase that catalyzes Ca(2+)-dependent protein modifications. It acts as a G protein in transmembrane signaling and as a cell surface adhesion mediator, this distinguishes it from other members of the transglutaminase family. The sequence motifs and domains revealed in the TG2 structure, can each be assigned distinct cellular functions, including the regulation of cytoskeleton, cell adhesion, and cell death. Though many biological functions of the enzyme have already been described or proposed previously, studies of TG2 null mice by our laboratory during the past years revealed several novel in vivo roles of the protein. In this review we will discuss these novel roles in their biological context.
Collapse
|
45
|
Clarke CJ, Forman S, Pritchett J, Ohanian V, Ohanian J. Phospholipase C-delta1 modulates sustained contraction of rat mesenteric small arteries in response to noradrenaline, but not endothelin-1. Am J Physiol Heart Circ Physiol 2008; 295:H826-34. [PMID: 18567701 DOI: 10.1152/ajpheart.01396.2007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vasoconstrictors activate phospholipase C (PLC), which hydrolyzes phosphatidylinositol 4,5-bisphosphate (PIP(2)), leading to calcium mobilization, protein kinase C activation, and contraction. Our aim was to investigate whether PLC-delta(1), a PLC isoform implicated in alpha(1)-adrenoreceptor signaling and the pathogenesis of hypertension, is involved in noradrenaline (NA) or endothelin (ET-1)-induced PIP(2) hydrolysis and contraction. Rat mesenteric small arteries were studied. Contractility was measured by pressure myography, phospholipids or inositol phosphates were measured by radiolabeling with (33)Pi or myo-[(3)H]inositol, and caveolae/rafts were prepared by discontinuous sucrose density centrifugation. PLC-delta(1) was localized by immunoblot analysis and neutralized by delivery of PLC-delta(1) antibody. The PLC inhibitor U73122, but not the negative control U-73342, markedly inhibited NA and ET-1 contraction but had no effect on potassium or phorbol ester contraction, implicating PLC activity in receptor-mediated smooth muscle contraction. PLC-delta(1) was present in caveolae/rafts, and NA, but not ET-1, stimulated a rapid twofold increase in PLC-delta(1) levels in these domains. PLC-delta(1) is calcium dependent, and removal of extracellular calcium prevented its association with caveolae/rafts in response to NA, concomitantly reducing NA-induced [(33)P]PIP(2) hydrolysis and [(3)H]inositol phosphate formation but with no effect on ET-1-induced [(33)P]PIP(2) hydrolysis. Neutralization of PLC-delta(1) by PLC-delta(1) antibody prevented its caveolae/raft association and attenuated the sustained contractile response to NA compared with control antibodies. In contrast, ET-1-induced contraction was not affected by PLC-delta(1) antibody. These results indicate the novel and selective role of caveolae/raft localized PLC-delta(1) in NA-induced PIP(2) hydrolysis and sustained contraction in intact vascular tissue.
Collapse
Affiliation(s)
- Christopher J Clarke
- Cardiovascular Research Group, School of Clinical and Laboratory Science, Univ. of Manchester, Core Technology Facility (3floor 46 Grafton St., Manchester M13 9NT, UK
| | | | | | | | | |
Collapse
|
46
|
Sprossmann F, Pankert P, Sausbier U, Wirth A, Zhou XB, Madlung J, Zhao H, Bucurenciu I, Jakob A, Lamkemeyer T, Neuhuber W, Offermanns S, Shipston MJ, Korth M, Nordheim A, Ruth P, Sausbier M. Inducible knockout mutagenesis reveals compensatory mechanisms elicited by constitutive BK channel deficiency in overactive murine bladder. FEBS J 2008; 276:1680-97. [PMID: 19220851 DOI: 10.1111/j.1742-4658.2009.06900.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The large-conductance, voltage-dependent and Ca(2+)-dependent K(+) (BK) channel links membrane depolarization and local increases in cytosolic free Ca(2+) to hyperpolarizing K(+) outward currents, thereby controlling smooth muscle contractility. Constitutive deletion of the BK channel in mice (BK(-/-)) leads to an overactive bladder associated with increased intravesical pressure and frequent micturition, which has been revealed to be a result of detrusor muscle hyperexcitability. Interestingly, time-dependent and smooth muscle-specific deletion of the BK channel (SM-BK(-/-)) caused a more severe phenotype than displayed by constitutive BK(-/-) mice, suggesting that compensatory pathways are active in the latter. In detrusor muscle of BK(-/-) but not SM-BK(-/-) mice, we found reduced L-type Ca(2+) current density and increased expression of cAMP kinase (protein kinase A; PKA), as compared with control mice. Increased expression of PKA in BK(-/-) mice was accompanied by enhanced beta-adrenoceptor/cAMP-mediated suppression of contractions by isoproterenol. This effect was attenuated by about 60-70% in SM-BK(-/-) mice. However, the Rp isomer of adenosine-3',5'-cyclic monophosphorothioate, a blocker of PKA, only partially inhibited enhanced cAMP signaling in BK(-/-) detrusor muscle, suggesting the existence of additional compensatory pathways. To this end, proteome analysis of BK(-/-) urinary bladder tissue was performed, and revealed additional compensatory regulated proteins. Thus, constitutive and inducible deletion of BK channel activity unmasks compensatory mechanisms that are relevant for urinary bladder relaxation.
Collapse
Affiliation(s)
- Franz Sprossmann
- Pharmakologie und Toxikologie, Institut für Pharmazie, Universität Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Nakahata N. Thromboxane A2: physiology/pathophysiology, cellular signal transduction and pharmacology. Pharmacol Ther 2008; 118:18-35. [PMID: 18374420 DOI: 10.1016/j.pharmthera.2008.01.001] [Citation(s) in RCA: 308] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2007] [Accepted: 01/02/2008] [Indexed: 12/22/2022]
Abstract
Thromboxane A(2) (TXA(2)), an unstable arachidonic acid metabolite, elicits diverse physiological/pathophysiological actions, including platelet aggregation and smooth muscle contraction. TXA(2) has been shown to be involved in allergies, modulation of acquired immunity, atherogenesis, neovascularization, and metastasis of cancer cells. The TXA(2) receptor (TP) communicates mainly with G(q) and G(13), resulting in phospholipase C activation and RhoGEF activation, respectively. In addition, TP couples with G(11), G(12), G(13), G(14), G(15), G(16), G(i), G(s) and G(h). TP is widely distributed in the body, and is expressed at high levels in thymus and spleen. The second extracellular loop of TP is an important ligand-binding site, and Asp(193) is a key amino acid. There are two alternatively spliced isoforms of TP, TPalpha and TPbeta, which differ only in their C-terminals. TPalpha and TPbeta communicate with different G proteins, and undergo hetero-dimerization, resulting in changes in intracellular traffic and receptor protein conformations. TP cross-talks with receptor tyrosine kinases, such as EGF receptor, to induce cell proliferation and differentiation. TP is glycosylated in the N-terminal region for recruitment to plasma membranes. Furthermore, TP conformation is changed by coupling to G proteins, showing several states of agonist binding. Finally, several drugs modify TP-mediated events; these include cyclooxygenase inhibitors, TXA(2) synthase inhibitors and TP antagonists. Some flavonoids of natural origin also have TP receptor antagonistic activity. Recent advances in TP research have clarified TXA(2)-mediated events in detail, and further study will supply more beneficial information about TXA(2) pathophysiology.
Collapse
Affiliation(s)
- Norimichi Nakahata
- Department of Cellular Signaling, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, Sendai 980-0815, Japan
| |
Collapse
|
48
|
Dupuis M, Houdeau E, Mhaouty-Kodja S. Increased potency of α1-adrenergic receptors to induce inositol phosphates production correlates with the up-regulation of α1d/Ghα/phospholipase Cδ1 signaling pathway in term rat myometrium. Reproduction 2008; 135:55-62. [DOI: 10.1530/rep-07-0332] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the present study, we studied the potential regulation by rat myometrial α1-adrenergic receptors (α1-AR) of the newly identified Ghα protein/phospholipase Cδ1 (PLCδ1) signaling pathway and compared myometrial inositol phosphates (InsP) production and activity of the uterine circular muscle in response to α1-AR activation between mid-pregnancy and term. For this, we quantified the level of rat myometrial α1-AR coupling to Ghα protein by photoaffinity-labeling, the cytosolic amount of PLCδ1 enzyme by immunoblotting, and the expression level of α1-AR subtypes by RT-PCR. The results showed an increased level of α1-AR/Ghα protein coupling and the amount of PLCδ1 at term (+147 and +65% respectively, versus mid-pregnancy). This was correlated with an up-regulation of α1d-AR subtype (+70% versus mid-pregnancy). Incubation of myometrial strips with phenylephrine (Phe), a global α1-agonist, increased InsP production in a dose-dependent manner at both mid-pregnancy and term, but with an enhanced potency (tenfold decrease in EC50value) at term. Phe also dose-dependently induced contraction of the circular muscle at both mid-pregnancy and term. However, unlike InsP response, no amelioration of potency was observed at term. Similar results were obtained with the endogenous agonist norepinephrine. Our results show, for the first time, that rat myometrial α1d-AR/Ghα/PLCδ1 signaling pathway is up-regulated at term. This is associated with an increased potency of α1-AR to elicit InsP production but not uterine contraction at this period. It is thus hypothesized that α1-AR, through activation of Ghα/PLCδ1 system, are not primarily involved in the initiation of labor but may rather regulate responses such as myometrial cell proliferation or hypertrophy.
Collapse
|
49
|
Regulation of phospholipase C-δ1 by ARGHAP6, a GTPase-activating protein for RhoA: Possible role for enhanced activity of phospholipase C in hypertension. Int J Biochem Cell Biol 2008; 40:2264-73. [DOI: 10.1016/j.biocel.2008.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 03/07/2008] [Accepted: 03/12/2008] [Indexed: 11/20/2022]
|
50
|
Datta S, Antonyak MA, Cerione RA. GTP-binding-defective forms of tissue transglutaminase trigger cell death. Biochemistry 2007; 46:14819-29. [PMID: 18052077 PMCID: PMC2527651 DOI: 10.1021/bi701422h] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Tissue transglutaminase (TGase-2), which binds GTP and catalyzes the cross-linking of proteins (transamidation), has been implicated both in the promotion of cell death and in the protection of cells against apoptotic insults. However, a novel transcript originally identified from the brains of Alzheimer's patients, encoding a truncated form of TGase-2 (called TGase-S), shows strong apoptotic activity. TGase-S exhibits no detectable GTP-binding capability, suggesting that its ability to induce cell death might be due to its inability to bind GTP. Thus, we have examined whether eliminating the GTP-binding capability of full-length human TGase-2 would prevent it from conferring protection against apoptotic challenges and instead convert it into a protein that causes cell death. A number of point mutants of human TGase-2 defective for binding GTP, as well as a mutant that shows impaired GTP-hydrolytic activity, were generated. Similar to what we had found for TGase-S, there was a time-dependent decrease in the expression of the GTP-binding-defective TGase-2 mutants in different cell lines, whereas the expression of wild-type TGase-2 and the GTP hydrolysis-defective mutant was sustained. Moreover, the GTP-binding-defective TGase-2 mutants induced cell death. The cell death responses triggered by these mutants were not due to their transdamidation activity, because double-mutants that were both GTP-binding- and transamidation-defective also stimulated cell death. Therefore, these results point to the inability to bind GTP as being sufficient for the apoptotic activity exhibited by the TGase-S protein. They also highlight a novel example of how the loss of GTP-binding activity can convert a protein that provides protection against apoptotic stimuli into a cell death-promoting factor.
Collapse
Affiliation(s)
- Sunando Datta
- Department of Chemistry and Chemical Biology, Baker Laboratory
| | - Marc A. Antonyak
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - Richard A. Cerione
- Department of Chemistry and Chemical Biology, Baker Laboratory
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| |
Collapse
|