1
|
Gojanovich AD, Le NTT, Mercer RCC, Park S, Wu B, Anane A, Vultaggio JS, Mostoslavsky G, Harris DA. Abnormal synaptic architecture in iPSC-derived neurons from a multi-generational family with genetic Creutzfeldt-Jakob disease. Stem Cell Reports 2024; 19:1474-1488. [PMID: 39332406 PMCID: PMC11561462 DOI: 10.1016/j.stemcr.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/29/2024] Open
Abstract
Genetic prion diseases are caused by mutations in PRNP, which encodes the prion protein (PrPC). Why these mutations are pathogenic, and how they alter the properties of PrPC are poorly understood. We have consented and accessed 22 individuals of a multi-generational Israeli family harboring the highly penetrant E200K PRNP mutation and generated a library of induced pluripotent stem cells (iPSCs) representing nine carriers and four non-carriers. iPSC-derived neurons from E200K carriers display abnormal synaptic architecture characterized by misalignment of postsynaptic NMDA receptors with the cytoplasmic scaffolding protein PSD95. Differentiated neurons from mutation carriers do not produce PrPSc, the aggregated and infectious conformer of PrP, suggesting that loss of a physiological function of PrPC may contribute to the disease phenotype. Our study shows that iPSC-derived neurons can provide important mechanistic insights into the pathogenesis of genetic prion diseases and can offer a powerful platform for testing candidate therapeutics.
Collapse
Affiliation(s)
- Aldana D Gojanovich
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA
| | - Nhat T T Le
- Department of Biochemistry & Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Robert C C Mercer
- Department of Biochemistry & Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Seonmi Park
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA
| | - Bei Wu
- Department of Biochemistry & Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Alice Anane
- Creutzfeldt-Jakob Disease Foundation, Pardes Hanna-Karkur, Israel
| | - Janelle S Vultaggio
- Department of Biochemistry & Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Gustavo Mostoslavsky
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA; Department of Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
| | - David A Harris
- Department of Biochemistry & Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
| |
Collapse
|
2
|
Restelli E, Capone V, Pozzoli M, Ortolan D, Quaglio E, Corbelli A, Fiordaliso F, Beznoussenko GV, Artuso V, Roiter I, Sallese M, Chiesa R. Activation of Src family kinase ameliorates secretory trafficking in mutant prion protein cells. J Biol Chem 2021; 296:100490. [PMID: 33662396 PMCID: PMC8059059 DOI: 10.1016/j.jbc.2021.100490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 02/04/2021] [Accepted: 02/26/2021] [Indexed: 11/25/2022] Open
Abstract
Fatal familial insomnia (FFI), genetic Creutzfeldt-Jakob disease (gCJD), and Gerstmann-Sträussler-Scheinker (GSS) syndrome are neurodegenerative disorders linked to prion protein (PrP) mutations. The pathogenic mechanisms are not known, but increasing evidence points to mutant PrP misfolding and retention in the secretory pathway. We previously found that the D178N/M129 mutation associated with FFI accumulates in the Golgi of neuronal cells, impairing post-Golgi trafficking. In this study we further characterized the trafficking defect induced by the FFI mutation and tested the 178N/V129 variant linked to gCJD and a nine-octapeptide repeat insertion associated with GSS. We used transfected HeLa cells, embryonic fibroblasts and primary neurons from transgenic mice, and fibroblasts from carriers of the FFI mutation. In all these cell types, the mutant PrPs showed abnormal intracellular localizations, accumulating in the endoplasmic reticulum (ER) and Golgi. To test the efficiency of the membrane trafficking system, we monitored the intracellular transport of the temperature-sensitive vesicular stomatite virus glycoprotein (VSV-G), a well-established cargo reporter, and of endogenous procollagen I (PC-I). We observed marked alterations in secretory trafficking, with VSV-G accumulating mainly in the Golgi complex and PC-I in the ER and Golgi. A redacted version of mutant PrP with reduced propensity to misfold did not impair VSV-G trafficking, nor did artificial ER or Golgi retention of wild-type PrP; this indicates that both misfolding and intracellular retention were required to induce the transport defect. Pharmacological activation of Src family kinase (SFK) improved intracellular transport, suggesting that mutant PrP impairs secretory trafficking through corruption of SFK-mediated signaling.
Collapse
Affiliation(s)
- Elena Restelli
- Laboratory of Prion Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Vanessa Capone
- Department of Innovative Technologies in Medicine & Dentistry, University G. D'Annunzio, Chieti, Italy; Center for Advanced Studies and Technology (CAST), University G. D'Annunzio, Chieti, Italy
| | - Manuela Pozzoli
- Laboratory of Prion Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Davide Ortolan
- Laboratory of Prion Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Elena Quaglio
- Laboratory of Prion Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Alessandro Corbelli
- Bio-Imaging Unit, Department of Cardiovascular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Fabio Fiordaliso
- Bio-Imaging Unit, Department of Cardiovascular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | | | | | - Ignazio Roiter
- ULSS 2 Marca Trevigiana, Ca' Foncello Hospital, Treviso, Italy
| | - Michele Sallese
- Department of Innovative Technologies in Medicine & Dentistry, University G. D'Annunzio, Chieti, Italy; Center for Advanced Studies and Technology (CAST), University G. D'Annunzio, Chieti, Italy
| | - Roberto Chiesa
- Laboratory of Prion Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.
| |
Collapse
|
3
|
Pankiewicz JE, Sanchez S, Kirshenbaum K, Kascsak RB, Kascsak RJ, Sadowski MJ. Anti-prion Protein Antibody 6D11 Restores Cellular Proteostasis of Prion Protein Through Disrupting Recycling Propagation of PrP Sc and Targeting PrP Sc for Lysosomal Degradation. Mol Neurobiol 2018; 56:2073-2091. [PMID: 29987703 DOI: 10.1007/s12035-018-1208-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/26/2018] [Indexed: 10/28/2022]
Abstract
PrPSc is an infectious and disease-specific conformer of the prion protein, which accumulation in the CNS underlies the pathology of prion diseases. PrPSc replicates by binding to the cellular conformer of the prion protein (PrPC) expressed by host cells and rendering its secondary structure a likeness of itself. PrPC is a plasma membrane anchored protein, which constitutively recirculates between the cell surface and the endocytic compartment. Since PrPSc engages PrPC along this trafficking pathway, its replication process is often referred to as "recycling propagation." Certain monoclonal antibodies (mAbs) directed against prion protein can abrogate the presence of PrPSc from prion-infected cells. However, the precise mechanism(s) underlying their therapeutic propensities remains obscure. Using N2A murine neuroblastoma cell line stably infected with 22L mouse-adapted scrapie strain (N2A/22L), we investigated here the modus operandi of the 6D11 clone, which was raised against the PrPSc conformer and has been shown to permanently clear prion-infected cells from PrPSc presence. We determined that 6D11 mAb engages and sequesters PrPC and PrPSc at the cell surface. PrPC/6D11 and PrPSc/6D11 complexes are then endocytosed from the plasma membrane and are directed to lysosomes, therefore precluding recirculation of nascent PrPSc back to the cell surface. Targeting PrPSc by 6D11 mAb to the lysosomal compartment facilitates its proteolysis and eventually shifts the balance between PrPSc formation and degradation. Ongoing translation of PrPC allows maintaining the steady-state level of prion protein within the cells, which was not depleted under 6D11 mAb treatment. Our findings demonstrate that through disrupting recycling propagation of PrPSc and promoting its degradation, 6D11 mAb restores cellular proteostasis of prion protein.
Collapse
Affiliation(s)
- Joanna E Pankiewicz
- Department of Neurology, New York University School of Medicine, 550 First Avenue, Science Building, Room 1007, New York, NY, 10016, USA.,Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
| | - Sandrine Sanchez
- Department of Neurology, New York University School of Medicine, 550 First Avenue, Science Building, Room 1007, New York, NY, 10016, USA
| | - Kent Kirshenbaum
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Regina B Kascsak
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, 10314, USA
| | - Richard J Kascsak
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, 10314, USA
| | - Martin J Sadowski
- Department of Neurology, New York University School of Medicine, 550 First Avenue, Science Building, Room 1007, New York, NY, 10016, USA. .,Department of Psychiatry, New York University School of Medicine, New York, NY, 10016, USA. .,Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
4
|
Abstract
During the course of prion infection, the normally soluble and protease-sensitive mammalian prion protein (PrPC) is refolded into an insoluble, partially protease-resistant, and infectious form called PrPSc. The conformational conversion of PrPC to PrPSc is a critical event during prion infection and is essential for the production of prion infectivity. This chapter briefly summarizes the ways in which cell biological approaches have enhanced our understanding of how PrP contributes to different aspects of prion pathogenesis.
Collapse
|
5
|
Abstract
Fatal familial insomnia (FFI) and sporadic fatal insomnia (sFI), or thalamic form of sporadic Creutzfeldt-Jakob disease MM2 (sCJDMM2T), are prion diseases originally named and characterized in 1992 and 1999, respectively. FFI is genetically determined and linked to a D178N mutation coupled with the M129 genotype in the prion protein gene (PRNP) at chromosome 20. sFI is a phenocopy of FFI and likely its sporadic form. Both diseases are primarily characterized by progressive sleep impairment, disturbances of autonomic nervous system, and motor signs associated with severe loss of nerve cells in medial thalamic nuclei. Both diseases harbor an abnormal disease-associated prion protein isoform, resistant to proteases with relative mass of 19 kDa identified as resPrPTSE type 2. To date at least 70 kindreds affected by FFI with 198 members and 18 unrelated carriers along with 25 typical cases of sFI have been published. The D178N-129M mutation is thought to cause FFI by destabilizing the mutated prion protein and facilitating its conversion to PrPTSE. The thalamus is the brain region first affected. A similar mechanism triggered spontaneously may underlie sFI.
Collapse
|
6
|
Mukundan V, Maksoudian C, Vogel MC, Chehade I, Katsiotis MS, Alhassan SM, Magzoub M. Cytotoxicity of prion protein-derived cell-penetrating peptides is modulated by pH but independent of amyloid formation. Arch Biochem Biophys 2016; 613:31-42. [PMID: 27818203 DOI: 10.1016/j.abb.2016.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 10/30/2016] [Accepted: 11/02/2016] [Indexed: 11/25/2022]
Abstract
Prion diseases are associated with conversion of cellular prion protein (PrPC) into an abnormally folded and infectious scrapie isoform (PrPSc). We previously showed that peptides derived from the unprocessed N-termini of mouse and bovine prion proteins, mPrP1-28 and bPrP1-30, function as cell-penetrating peptides (CPPs), and destabilize model membrane systems, which could explain the infectivity and toxicity of prion diseases. However, subsequent studies revealed that treatment with mPrP1-28 or bPrP1-30 significantly reduce PrPSc levels in prion-infected cells. To explain these seemingly contradictory results, we correlated the aggregation, membrane perturbation and cytotoxicity of the peptides with their cellular uptake and intracellular localization. Although the peptides have a similar primary sequence, mPrP1-28 is amyloidogenic, whereas bPrP1-30 forms smaller oligomeric or non-fibrillar aggregates. Surprisingly, bPrP1-30 induces much higher cytotoxicity than mPrP1-28, indicating that amyloid formation and toxicity are independent. The toxicity is correlated with prolonged residence at the plasma membrane and membrane perturbation. Both ordered aggregation and toxicity of the peptides are inhibited by low pH. Under non-toxic conditions, the peptides are internalized by lipid-raft dependent macropinocytosis and localize to acidic lysosomal compartments. Our results shed light on the antiprion mechanism of the prion protein-derived CPPs and identify a potential site for PrPSc formation.
Collapse
Affiliation(s)
- Vineeth Mukundan
- Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Christy Maksoudian
- Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Maria C Vogel
- Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Ibrahim Chehade
- Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Marios S Katsiotis
- Department of Chemical Engineering, The Petroleum Institute, Abu Dhabi, United Arab Emirates
| | - Saeed M Alhassan
- Department of Chemical Engineering, The Petroleum Institute, Abu Dhabi, United Arab Emirates
| | - Mazin Magzoub
- Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
7
|
Doss CGP, Rajith B, Rajasekaran R, Srajan J, Nagasundaram N, Debajyoti C. In silico analysis of prion protein mutants: a comparative study by molecular dynamics approach. Cell Biochem Biophys 2014; 67:1307-18. [PMID: 23723004 DOI: 10.1007/s12013-013-9663-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Polymorphisms in the human prion proteins lead to amino acid substitutions by the conversion of PrPC to PrPSc and amyloid formation, resulting in prion diseases such as familial Creutzfeldt-Jakob disease, Gerstmann-Straussler-Scheinker disease and fatal familial insomnia. Cation-π interaction is a non-covalent binding force that plays a significant role in protein stability. Here, we employ a novel approach by combining various in silico tools along with molecular dynamics simulation to provide structural and functional insight into the effect of mutation on the stability and activity of mutant prion proteins. We have investigated impressions of prevalent mutations including 1E1S, 1E1P, 1E1U, 1E1P, 1FKC and 2K1D on the human prion proteins and compared them with wild type. Structural analyses of the models were performed with the aid of molecular dynamics simulation methods. According to our results, frequently occurred mutations were observed in conserved sequences of human prion proteins and the most fluctuation values appear in the 2K1D mutant model at around helix 4 with residues ranging from 190 to 194. Our observations in this study could help to further understand the structural stability of prion proteins.
Collapse
Affiliation(s)
- C George Priya Doss
- Medical Biotechnology Division, School of Biosciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India,
| | | | | | | | | | | |
Collapse
|
8
|
Masujin K, Kaku-Ushiki Y, Miwa R, Okada H, Shimizu Y, Kasai K, Matsuura Y, Yokoyama T. The N-terminal sequence of prion protein consists an epitope specific to the abnormal isoform of prion protein (PrP(Sc)). PLoS One 2013; 8:e58013. [PMID: 23469131 PMCID: PMC3585212 DOI: 10.1371/journal.pone.0058013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 01/29/2013] [Indexed: 11/18/2022] Open
Abstract
The conformation of abnormal prion protein (PrPSc) differs from that of cellular prion protein (PrPC), but the precise characteristics of PrPSc remain to be elucidated. To clarify the properties of native PrPSc, we attempted to generate novel PrPSc-specific monoclonal antibodies (mAbs) by immunizing PrP-deficient mice with intact PrPSc purified from bovine spongiform encephalopathy (BSE)-affected mice. The generated mAbs 6A12 and 8D5 selectivity precipitated PrPSc from the brains of prion-affected mice, sheep, and cattle, but did not precipitate PrPC from the brains of healthy animals. In histopathological analysis, mAbs 6A12 and 8D5 strongly reacted with prion-affected mouse brains but not with unaffected mouse brains without antigen retrieval. Epitope analysis revealed that mAbs 8D5 and 6A12 recognized the PrP subregions between amino acids 31–39 and 41–47, respectively. This indicates that a PrPSc-specific epitope exists in the N-terminal region of PrPSc, and mAbs 6A12 and 8D5 are powerful tools with which to detect native and intact PrPSc. We found that the ratio of proteinase K (PK)-sensitive PrPSc to PK-resistant PrPSc was constant throughout the disease time course.
Collapse
Affiliation(s)
- Kentaro Masujin
- Prion Disease Research Center, National Institute of Animal Health, Tsukuba, Ibaraki, Japan
| | | | - Ritsuko Miwa
- Prion Disease Research Center, National Institute of Animal Health, Tsukuba, Ibaraki, Japan
| | - Hiroyuki Okada
- Prion Disease Research Center, National Institute of Animal Health, Tsukuba, Ibaraki, Japan
| | - Yoshihisa Shimizu
- Prion Disease Research Center, National Institute of Animal Health, Tsukuba, Ibaraki, Japan
| | - Kazuo Kasai
- Prion Disease Research Center, National Institute of Animal Health, Tsukuba, Ibaraki, Japan
| | - Yuichi Matsuura
- Prion Disease Research Center, National Institute of Animal Health, Tsukuba, Ibaraki, Japan
| | - Takashi Yokoyama
- Prion Disease Research Center, National Institute of Animal Health, Tsukuba, Ibaraki, Japan
- * E-mail:
| |
Collapse
|
9
|
Cellular aspects of prion replication in vitro. Viruses 2013; 5:374-405. [PMID: 23340381 PMCID: PMC3564126 DOI: 10.3390/v5010374] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 01/07/2013] [Accepted: 01/16/2013] [Indexed: 12/19/2022] Open
Abstract
Prion diseases or transmissible spongiform encephalopathies (TSEs) are fatal neurodegenerative disorders in mammals that are caused by unconventional agents predominantly composed of aggregated misfolded prion protein (PrP). Prions self-propagate by recruitment of host-encoded PrP into highly ordered β-sheet rich aggregates. Prion strains differ in their clinical, pathological and biochemical characteristics and are likely to be the consequence of distinct abnormal prion protein conformers that stably replicate their alternate states in the host cell. Understanding prion cell biology is fundamental for identifying potential drug targets for disease intervention. The development of permissive cell culture models has greatly enhanced our knowledge on entry, propagation and dissemination of TSE agents. However, despite extensive research, the precise mechanism of prion infection and potential strain effects remain enigmatic. This review summarizes our current knowledge of the cell biology and propagation of prions derived from cell culture experiments. We discuss recent findings on the trafficking of cellular and pathologic PrP, the potential sites of abnormal prion protein synthesis and potential co-factors involved in prion entry and propagation.
Collapse
|
10
|
Quaglio E, Restelli E, Garofoli A, Dossena S, De Luigi A, Tagliavacca L, Imperiale D, Migheli A, Salmona M, Sitia R, Forloni G, Chiesa R. Expression of mutant or cytosolic PrP in transgenic mice and cells is not associated with endoplasmic reticulum stress or proteasome dysfunction. PLoS One 2011; 6:e19339. [PMID: 21559407 PMCID: PMC3084828 DOI: 10.1371/journal.pone.0019339] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 03/27/2011] [Indexed: 12/20/2022] Open
Abstract
The cellular pathways activated by mutant prion protein (PrP) in genetic prion diseases, ultimately leading to neuronal dysfunction and degeneration, are not known. Several mutant PrPs misfold in the early secretory pathway and reside longer in the endoplasmic reticulum (ER) possibly stimulating ER stress-related pathogenic mechanisms. To investigate whether mutant PrP induced maladaptive responses, we checked key elements of the unfolded protein response (UPR) in transgenic mice, primary neurons and transfected cells expressing two different mutant PrPs. Because ER stress favors the formation of untranslocated PrP that might aggregate in the cytosol and impair proteasome function, we also measured the activity of the ubiquitin proteasome system (UPS). Molecular, biochemical and immunohistochemical analyses found no increase in the expression of UPR-regulated genes, such as Grp78/Bip, CHOP/GADD153, or ER stress-dependent splicing of the mRNA encoding the X-box-binding protein 1. No alterations in UPS activity were detected in mutant mouse brains and primary neurons using the UbG76V-GFP reporter and a new fluorogenic peptide for monitoring proteasomal proteolytic activity in vivo. Finally, there was no loss of proteasome function in neurons in which endogenous PrP was forced to accumulate in the cytosol by inhibiting cotranslational translocation. These results indicate that neither ER stress, nor perturbation of proteasome activity plays a major pathogenic role in prion diseases.
Collapse
Affiliation(s)
- Elena Quaglio
- Dulbecco Telethon Institute, Milan, Italy
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milan, Italy
| | - Elena Restelli
- Dulbecco Telethon Institute, Milan, Italy
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milan, Italy
| | - Anna Garofoli
- Dulbecco Telethon Institute, Milan, Italy
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milan, Italy
| | - Sara Dossena
- Dulbecco Telethon Institute, Milan, Italy
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milan, Italy
| | - Ada De Luigi
- Department of Biochemistry and Molecular Pharmacology, Mario Negri Institute for Pharmacological Research, Milan, Italy
| | - Luigina Tagliavacca
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute and Università Vita-Salute San Raffaele, Milan, Italy
| | - Daniele Imperiale
- Neurology Unit, Human Prion Diseases Center D.O.M.P., Maria Vittoria Hospital, Torino, Italy
| | - Antonio Migheli
- Neurology Unit, Human Prion Diseases Center D.O.M.P., Maria Vittoria Hospital, Torino, Italy
| | - Mario Salmona
- Department of Biochemistry and Molecular Pharmacology, Mario Negri Institute for Pharmacological Research, Milan, Italy
| | - Roberto Sitia
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute and Università Vita-Salute San Raffaele, Milan, Italy
| | - Gianluigi Forloni
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milan, Italy
| | - Roberto Chiesa
- Dulbecco Telethon Institute, Milan, Italy
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milan, Italy
- * E-mail:
| |
Collapse
|
11
|
Solomon IH, Khatri N, Biasini E, Massignan T, Huettner JE, Harris DA. An N-terminal polybasic domain and cell surface localization are required for mutant prion protein toxicity. J Biol Chem 2011; 286:14724-36. [PMID: 21385869 DOI: 10.1074/jbc.m110.214973] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
There is evidence that alterations in the normal physiological activity of PrP(C) contribute to prion-induced neurotoxicity. This mechanism has been difficult to investigate, however, because the normal function of PrP(C) has remained obscure, and there are no assays available to measure it. We recently reported that cells expressing PrP deleted for residues 105-125 exhibit spontaneous ionic currents and hypersensitivity to certain classes of cationic drugs. Here, we utilize cell culture assays based on these two phenomena to test how changes in PrP sequence and/or cellular localization affect the functional activity of the protein. We report that the toxic activity of Δ105-125 PrP requires localization to the plasma membrane and depends on the presence of a polybasic amino acid segment at the N terminus of PrP. Several different deletions spanning the central region as well as three disease-associated point mutations also confer toxic activity on PrP. The sequence domains identified in our study are also critical for PrP(Sc) formation, suggesting that common structural features may govern both the functional activity of PrP(C) and its conversion to PrP(Sc).
Collapse
Affiliation(s)
- Isaac H Solomon
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | |
Collapse
|
12
|
Wang X, Shi Q, Xu K, Gao C, Chen C, Li XL, Wang GR, Tian C, Han J, Dong XP. Familial CJD associated PrP mutants within transmembrane region induced Ctm-PrP retention in ER and triggered apoptosis by ER stress in SH-SY5Y cells. PLoS One 2011; 6:e14602. [PMID: 21298055 PMCID: PMC3029303 DOI: 10.1371/journal.pone.0014602] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 01/06/2011] [Indexed: 01/22/2023] Open
Abstract
Background Genetic prion diseases are linked to point and inserted mutations in the prion protein (PrP) gene that are presumed to favor conversion of the cellular isoform of PrP (PrPC) to the pathogenic one (PrPSc). The pathogenic mechanisms and the subcellular sites of the conversion are not completely understood. Here we introduce several PRNP gene mutations (such as, PrP-KDEL, PrP-3AV, PrP-A117V, PrP-G114V, PrP-P102L and PrP-E200K) into the cultured cells in order to explore the pathogenic mechanism of familial prion disease. Methodology/Principal Findings To address the roles of aberrant retention of PrP in endoplasmic reticulum (ER), the recombinant plasmids expressing full-length human PrP tailed with an ER signal peptide at the COOH-terminal (PrP-KDEL) and PrP with three amino acids exchange in transmembrane region (PrP-3AV) were constructed. In the preparations of transient transfections, 18-kD COOH-terminal proteolytic resistant fragments (Ctm-PrP) were detected in the cells expressing PrP-KDEL and PrP-3AV. Analyses of the cell viabilities in the presences of tunicamycin and brefeldin A revealed that expressions of PrP-KDEL and PrP-3AV sensitized the transfected cells to ER stress stimuli. Western blots and RT-PCR identified the clear alternations of ER stress associated events in the cells expressing PrP-KDEL and PrP-3AV that induced ER mediated apoptosis by CHOP and capase-12 apoptosis pathway. Moreover, several familial CJD related PrP mutants were transiently introduced into the cultured cells. Only the mutants within the transmembrane region (G114V and A117V) induced the formation of Ctm-PrP and caused the ER stress, while the mutants outside the transmembrane region (P102L and E200K) failed. Conclusions/Significance The data indicate that the retention of PrP in ER through formation of Ctm-PrP results in ER stress and cell apoptosis. The cytopathic activities caused by different familial CJD associated PrP mutants may vary, among them the mutants within the transmembrane region undergo an ER-stress mediated cell apoptosis.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Qi Shi
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Kun Xu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
- School of Medicine, Xi'an Jiao-Tong University, Xi'an, People's Republic of China
| | - Chen Gao
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Cao Chen
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Xiao-Li Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Gui-Rong Wang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Chan Tian
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Jun Han
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Xiao-Ping Dong
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
- * E-mail:
| |
Collapse
|
13
|
Capellari S, Strammiello R, Saverioni D, Kretzschmar H, Parchi P. Genetic Creutzfeldt-Jakob disease and fatal familial insomnia: insights into phenotypic variability and disease pathogenesis. Acta Neuropathol 2011; 121:21-37. [PMID: 20978903 DOI: 10.1007/s00401-010-0760-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 09/17/2010] [Accepted: 10/11/2010] [Indexed: 01/18/2023]
Abstract
Human prion diseases are a group of rare neurodegenerative disorders characterized by the conversion of the constitutively expressed prion protein, PrP(C), into an abnormally aggregated isoform, called PrP(Sc). While most people who develop a prion disease have no identifiable cause and a few acquire the disease through an identified source of infection, about 10-15% of patients are affected by a genetic form and carry either a point mutation or an insertion of octapeptide repeats in the prion protein gene. Prion diseases show the highest extent of phenotypic heterogeneity among neurodegenerative disorders and comprise three major disease entities with variable though overlapping phenotypic features: Creutzfeldt-Jakob disease (CJD), fatal insomnia and the Gerstmann-Sträussler-Scheinker syndrome. Both CJD and fatal insomnia are fully transmissible diseases, a feature that led to the isolation and characterization of different strains of the agent or prion showing distinctive clinical and neuropathological features after transmission to syngenic animals. Here, we review the current knowledge of the effects of the pathogenic mutations linked to genetic CJD and fatal familial insomnia on the prion protein metabolism and physicochemical properties, the disease phenotype and the strain characteristics. The data derived from studies in vitro and from those using cell and animal models are compared with those obtained from the analyses of the naturally occurring disease. The extent of phenotypic variation in genetic prion disease is analyzed in comparison to that of the sporadic disease, which has recently been the topic of a systematic and detailed characterization.
Collapse
|
14
|
The hydrophobic core region governs mutant prion protein aggregation and intracellular retention. Biochem J 2010; 430:477-86. [DOI: 10.1042/bj20100615] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Approx. 15% of human prion diseases have a pattern of autosomal dominant inheritance, and are linked to mutations in the gene encoding PrP (prion protein), a GPI (glycosylphosphatidylinositol)-anchored protein whose function is not clear. The cellular mechanisms by which PrP mutations cause disease are also not known. Soon after synthesis in the ER (endoplasmic reticulum), several mutant PrPs misfold and become resistant to phospholipase cleavage of their GPI anchor. The biosynthetic maturation of the misfolded molecules in the ER is delayed and, during transit in the secretory pathway, they form detergent-insoluble and protease-resistant aggregates, suggesting that intracellular PrP aggregation may play a pathogenic role. We have investigated the consequence of deleting residues 114–121 within the hydrophobic core of PrP on the aggregation and cellular localization of two pathogenic mutants that accumulate in the ER and Golgi apparatus. Compared with their full-length counterparts, the deleted molecules formed smaller protease-sensitive aggregates and were more efficiently transported to the cell surface and released by phospholipase cleavage. These results indicate that mutant PrP aggregation and intracellular retention are closely related and depend critically on the integrity of the hydrophobic core. The discovery that Δ114–121 counteracts misfolding and improves the cellular trafficking of mutant PrP provides an unprecedented model for assessing the role of intracellular aggregation in the pathogenesis of prion diseases.
Collapse
|
15
|
Lawson VA, Lumicisi B, Welton J, Machalek D, Gouramanis K, Klemm HM, Stewart JD, Masters CL, Hoke DE, Collins SJ, Hill AF. Glycosaminoglycan sulphation affects the seeded misfolding of a mutant prion protein. PLoS One 2010; 5:e12351. [PMID: 20808809 PMCID: PMC2925953 DOI: 10.1371/journal.pone.0012351] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 07/22/2010] [Indexed: 11/18/2022] Open
Abstract
Background The accumulation of protease resistant conformers of the prion protein (PrPres) is a key pathological feature of prion diseases. Polyanions, including RNA and glycosaminoglycans have been identified as factors that contribute to the propagation, transmission and pathogenesis of prion disease. Recent studies have suggested that the contribution of these cofactors to prion propagation may be species specific. Methodology/Principal Finding In this study a cell-free assay was used to investigate the molecular basis of polyanion stimulated PrPres formation using brain tissue or cell line derived murine PrP. Enzymatic depletion of endogenous nucleic acids or heparan sulphate (HS) from the PrPC substrate was found to specifically prevent PrPres formation seeded by mouse derived PrPSc. Modification of the negative charge afforded by the sulphation of glycosaminoglycans increased the ability of a familial PrP mutant to act as a substrate for PrPres formation, while having no effect on PrPres formed by wildtype PrP. This difference may be due to the observed differences in the binding of wild type and mutant PrP for glycosaminoglycans. Conclusions/Significance Cofactor requirements for PrPres formation are host species and prion strain specific and affected by disease associated mutations of the prion protein. This may explain both species and strain dependent propagation characteristics and provide insights into the underlying mechanisms of familial prion disease. It further highlights the challenge of designing effective therapeutics against a disease which effects a range of mammalian species, caused by range of aetiologies and prion strains.
Collapse
Affiliation(s)
- Victoria A. Lawson
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
- The Mental Health Research Institute, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail: (VAL); (AFH)
| | - Brooke Lumicisi
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Jeremy Welton
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Dorothy Machalek
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Katrina Gouramanis
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Helen M. Klemm
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - James D. Stewart
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Colin L. Masters
- The Mental Health Research Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - David E. Hoke
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Steven J. Collins
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
- The Mental Health Research Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Andrew F. Hill
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry & Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
- The Mental Health Research Institute, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail: (VAL); (AFH)
| |
Collapse
|
16
|
Biasini E, Seegulam ME, Patti BN, Solforosi L, Medrano AZ, Christensen HM, Senatore A, Chiesa R, Williamson RA, Harris DA. Non-infectious aggregates of the prion protein react with several PrPSc-directed antibodies. J Neurochem 2010; 105:2190-204. [PMID: 18298665 DOI: 10.1111/j.1471-4159.2008.05306.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The key event in the pathogenesis of prion diseases is the conformational conversion of the normal prion protein (PrP) (PrP(C)) into an infectious, aggregated isoform (PrP(Sc)) that has a high content of beta-sheet. Historically, a great deal of effort has been devoted to developing antibodies that specifically recognize PrP(Sc) but not PrP(C), as such antibodies would have enormous diagnostic and experimental value. A mouse monoclonal IgM antibody (designated 15B3) and three PrP motif-grafted monoclonal antibodies (referred to as IgG 19-33, 89-112, and 136-158) have been previously reported to react specifically with infectious PrP(Sc) but not PrP(C). In this study, we extend the characterization of these four antibodies by testing their ability to immunoprecipitate and immunostain infectious and non-infectious aggregates of wild-type, mutant, and recombinant PrP. We find that 15B3 as well as the motif-grafted antibodies recognize multiple types of aggregated PrP, both infectious and non-infectious, including forms found in brain, in transfected cells, and induced in vitro from purified recombinant protein. These antibodies are exquisitely selective for aggregated PrP, and do not react with soluble PrP even when present in vast excess. Our results suggest that 15B3 and the motif-grafted antibodies recognize structural features common to both infectious and non-infectious aggregates of PrP. Our study extends the utility of these antibodies for diagnostic and experimental purposes, and it provides new insight into the structural changes that accompany PrP oligomerization and prion propagation.
Collapse
Affiliation(s)
- Emiliano Biasini
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Massignan T, Biasini E, Lauranzano E, Veglianese P, Pignataro M, Fioriti L, Harris DA, Salmona M, Chiesa R, Bonetto V. Mutant prion protein expression is associated with an alteration of the Rab GDP dissociation inhibitor alpha (GDI)/Rab11 pathway. Mol Cell Proteomics 2009; 9:611-22. [PMID: 19996123 DOI: 10.1074/mcp.m900271-mcp200] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The prion protein (PrP) is a glycosylphosphatidylinositol-anchored membrane glycoprotein that plays a vital role in prion diseases, a class of fatal neurodegenerative disorders of humans and animals. Approximately 20% of human prion diseases display autosomal dominant inheritance and are linked to mutations in the PrP gene on chromosome 20. PrP mutations are thought to favor the conformational conversion of PrP into a misfolded isoform that causes disease by an unknown mechanism. The PrP mutation D178N/Met-129 is linked to fatal familial insomnia, which causes severe sleep abnormalities and autonomic dysfunction. We showed by immunoelectron microscopy that this mutant PrP accumulates abnormally in the endoplasmic reticulum and Golgi of transfected neuroblastoma N2a cells. To investigate the impact of intracellular PrP accumulation on cellular homeostasis, we did a two-dimensional gel-based differential proteomics analysis. We used wide range immobilized pH gradient strips, pH 4-7 and 6-11, to analyze a large number of proteins. We found changes in proteins involved in energy metabolism, redox regulation, and vesicular transport. Rab GDP dissociation inhibitor alpha (GDI) was one of the proteins that changed most. GDI regulates vesicular protein trafficking by acting on the activity of several Rab proteins. We found a specific reduction in the level of functional Rab11 in mutant PrP-expressing cells associated with impaired post-Golgi trafficking. Our data are consistent with a model by which mutant PrP induces overexpression of GDI, activating a cytotoxic feedback loop that leads to protein accumulation in the secretory pathway.
Collapse
Affiliation(s)
- Tania Massignan
- Dulbecco Telethon Institute (DTI) c/o Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Jodoin J, Misiewicz M, Makhijani P, Giannopoulos PN, Hammond J, Goodyer CG, LeBlanc AC. Loss of anti-Bax function in Gerstmann-Sträussler-Scheinker syndrome-associated prion protein mutants. PLoS One 2009; 4:e6647. [PMID: 19680558 PMCID: PMC2722024 DOI: 10.1371/journal.pone.0006647] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2009] [Accepted: 07/15/2009] [Indexed: 11/18/2022] Open
Abstract
Previously, we have shown the loss of anti-Bax function in Creutzfeldt Jakob disease (CJD)-associated prion protein (PrP) mutants that are unable to generate cytosolic PrP (CyPrP). To determine if the anti-Bax function of PrP modulates the manifestation of prion diseases, we further investigated the anti-Bax function of eight familial Gerstmann-Sträussler-Scheinker Syndrome (GSS)-associated PrP mutants. These PrP mutants contained their respective methionine (M) or valine (V) at codon 129. All of the mutants lost their ability to prevent Bax-mediated chromatin condensation or DNA fragmentation in primary human neurons. In the breast carcinoma MCF-7 cells, the F198SV, D202NV, P102LV and Q217RV retained, whereas the P102LM, P105LV, Y145stopM and Q212PM PrP mutants lost their ability to inhibit Bax-mediated condensed chromatin. The inhibition of Bax-mediated condensed chromatin depended on the ability of the mutants to generate cytosolic PrP. However, except for the P102LV, none of the mutants significantly inhibited Bax-mediated caspase activation. These results show that the cytosolic PrP generated from the GSS mutants is not as efficient as wild type PrP in inhibiting Bax-mediated cell death. Furthermore, these results indicate that the anti-Bax function is also disrupted in GSS-associated PrP mutants and is not associated with the difference between CJD and GSS.
Collapse
Affiliation(s)
- Julie Jodoin
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
| | - Micheal Misiewicz
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, Canada
| | - Priya Makhijani
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, Canada
| | - Paresa N. Giannopoulos
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, Canada
| | - Jennifer Hammond
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, Canada
| | | | - Andréa C. LeBlanc
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
- * E-mail: .
| |
Collapse
|
19
|
Shi S, Dong CF, Wang GR, Wang X, An R, Chen JM, Shan B, Zhang BY, Xu K, Shi Q, Tian C, Gao C, Han J, Dong XP. PrP(Sc) of scrapie 263K propagates efficiently in spleen and muscle tissues with protein misfolding cyclic amplification. Virus Res 2009; 141:26-33. [PMID: 19162101 DOI: 10.1016/j.virusres.2008.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Revised: 12/21/2008] [Accepted: 12/22/2008] [Indexed: 11/28/2022]
Abstract
Transmissible spongiform encephalopathies (TSEs), or prion diseases, are transmissible neurodegenerative disorders of protein conformation. This group of diseases is caused by infectious agents, termed prions, which can convert normal conformation (PrP(C)) into misfolded protein (PrP(Sc)). The infectivity of non-neuronal tissues has been wildly addressed, but the propagating features and the biochemical properties of prion generated from these tissues are only partially settled. In this study, utilizing protein misfolding cyclic amplification (PMCA), the in vitro conversion of PrP(C) into PrP(Sc) in spleen and muscle tissues can be induced by PrP(Sc) produced in vivo. The further propagation of newly formed PrP(Sc) in normal brain and some of the biochemical properties of new PrP(Sc) are similar as the brain-derived prions, implying the naturally infectious pathway of prion from peripheral generation to neuro-invasion. However, compared with the brain-derived PrP(Sc), the weaker resistance of new PrP(Sc) to some inactivated agents, i.e. sodium hydroxide and thermal inactivation, are observed. Our data provide the reliable evidence that the brain-derived PrP(Sc) can utilize the PrP(C) from non-neuronal tissues for its propagation. Similarity of the replicative ability in PMCA in vitro and the infectivity in vivo highlights the possibility to use PMCA instead of bioassay to investigate the propagation of prion.
Collapse
Affiliation(s)
- Song Shi
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Ying-Xin Rd 100, Beijing 100052, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kretlow A, Wang Q, Beekes M, Naumann D, Miller LM. Changes in protein structure and distribution observed at pre-clinical stages of scrapie pathogenesis. Biochim Biophys Acta Mol Basis Dis 2008; 1782:559-65. [PMID: 18625306 DOI: 10.1016/j.bbadis.2008.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 06/02/2008] [Accepted: 06/03/2008] [Indexed: 01/19/2023]
Abstract
Scrapie is a neurodegenerative disorder that involves the misfolding, aggregation and accumulation of the prion protein (PrP). The normal cellular PrP (PrP(C)) is rich in alpha-helical secondary structure, whereas the disease-associated pathogenic form of the protein (PrP(Sc)) has an anomalously high beta-sheet content. In this study, protein structural changes were examined in situ in the dorsal root ganglia from perorally 263K scrapie-infected and mock-infected hamsters using synchrotron Fourier Transform InfraRed Microspectroscopy (FTIRM) at four time points over the course of the disease (pre-clinical, 100 and 130 days post-infection (dpi); first clinical signs ( approximately 145 dpi); and terminal ( approximately 170 dpi)). Results showed clear changes in the total protein content, structure, and distribution as the disease progressed. At pre-clinical time points, the scrapie-infected animals exhibited a significant increase in protein expression, but the beta-sheet protein content was significantly lower than controls. Based on these findings, we suggest that the pre-clinical stages of scrapie are characterized by an overexpression of proteins low in beta-sheet content. As the disease progressed, the beta-sheet content increased significantly. Immunostaining with a PrP-specific antibody, 3F4, confirmed that this increase was partly - but not solely - due to the formation of PrP(Sc) in the tissue and indicated that other proteins high in beta-sheet were produced, either by overexpression or misfolding. Elevated beta-sheet was observed near the cell membrane at pre-clinical time points and also in the cytoplasm of infected neurons at later stages of infection. At the terminal stage of the disease, the protein expression declined significantly, likely due to degeneration and death of neurons. These dramatic changes in protein content and structure, especially at pre-clinical time points, emphasize the possibility for identifying other proteins involved in early pathogenesis, which are important for a further understanding of the disease.
Collapse
Affiliation(s)
- Ariane Kretlow
- P25, Robert Koch-Institut, Nordufer 20, 13353 Berlin, Germany
| | | | | | | | | |
Collapse
|
21
|
Schiff E, Campana V, Tivodar S, Lebreton S, Gousset K, Zurzolo C. Coexpression of wild-type and mutant prion proteins alters their cellular localization and partitioning into detergent-resistant membranes. Traffic 2008; 9:1101-15. [PMID: 18410485 DOI: 10.1111/j.1600-0854.2008.00746.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Transmissible spongiform encephalopathies (TSEs) are a group of diseases of infectious, sporadic and genetic origin, found in higher organisms and caused by the pathological form of the prion protein. The inheritable subgroup of TSEs is linked to insertional or point mutations in the prion gene prnp, which favour its misfolding and are passed on to offspring in an autosomal-dominant fashion. The large majority of patients with these diseases are heterozygous for the prnp gene, leading to the coexpression of the wild-type (wt) (PrP(C)) and the mutant forms (PrPmut) in the carriers of these mutations. To mimic this situation in vitro, we produced Fischer rat thyroid cells coexpressing PrPwt alongside mutant versions of mouse PrP including A117V, E200K and T182A relevant to the human TSE diseases Gestmann-Sträussler-Scheinker (GSS) disease and familial Creutzfeldt-Jakob disease (fCJD). We found that coexpression of mutant PrP with wt proteins does not affect the glycosylation pattern or the biochemical characteristics of either protein. However, FRET and co-immunoprecipitation experiments suggest an interaction occurring between the wt and mutant proteins. Furthermore, by comparing the intracellular localization and detergent-resistant membrane (DRM) association in single- and double-expressing clones, we found changes in the intracellular/surface ratio and an increased sequestration of both proteins in DRMs, a site believed to be involved in the pathological conversion (or protection thereof) of the prion protein. We, therefore, propose that the mutant forms alter the subcellular localization and the membrane environment of the wt protein in co-transfected cells. These effects may play a role in the development of these diseases.
Collapse
Affiliation(s)
- Edwin Schiff
- Unité de Trafic Membranaire et Pathogénèse, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | |
Collapse
|
22
|
Vilette D. Cell models of prion infection. Vet Res 2007; 39:10. [PMID: 18073097 DOI: 10.1051/vetres:2007049] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 09/24/2007] [Indexed: 11/14/2022] Open
Abstract
Due to recent renewal of interest and concerns in prion diseases, a number of cell systems permissive to prion multiplication have been generated in the last years. These include established cell lines, neuronal stem cells and primary neuronal cultures. While most of these models are permissive to experimental, mouse-adapted strains of prions, the propagation of natural field isolates from sheep scrapie and chronic wasting disease has been recently achieved. These models have improved our knowledge on the molecular and cellular events controlling the conversion of the PrP(C) protein into abnormal isoforms and on the cell-to-cell spreading of prions. Infected cultured cells will also facilitate investigations on the molecular basis of strain identity and on the mechanisms that lead to neurodegeneration. The ongoing development of new cell models with improved characteristics will certainly be useful for a number of unanswered critical issues in the prion field.
Collapse
Affiliation(s)
- Didier Vilette
- Unité Mixte de Recherche 1225, INRA, ENVT, 31000 Toulouse, France.
| |
Collapse
|
23
|
Jodoin J, Laroche-Pierre S, Goodyer CG, LeBlanc AC. Defective retrotranslocation causes loss of anti-Bax function in human familial prion protein mutants. J Neurosci 2007; 27:5081-91. [PMID: 17494694 PMCID: PMC6672383 DOI: 10.1523/jneurosci.0957-07.2007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Prion protein (PrP) inhibits the activation of proapoptotic Bax in primary human neurons and MCF-7 cells. Because neuronal apoptosis occurs in human prion diseases, here we examine the anti-Bax function of familial PrP mutants. All Creutzfeldt-Jakob disease and fatal familial insomnia-associated prion protein mutations partially or completely lose the anti-Bax function in human neurons and, except for A117V and V203I, in MCF-7 cells. The ability of the mutants to protect against Bax-mediated cell death is divided into three groups: (1) group I, retention of anti-Bax function in both the Val129 and Met129 mutants; (2) group II, retention of anti-Bax function only in Val129 mutants; and (3) group III, reduction or no anti-Bax function in Val129 and Met129 mutants. The loss of anti-Bax function in these PrP mutants correlates completely with a significant decrease in the production of cytosolic PrP, a form of PrP shown previously to have anti-Bax function in human neurons. Cotransfection of the full-length PrP mutants with wild-type or mutant cytosolic PrP, but not with wild type full-length PrP, rescues the anti-Bax function of PrP. The results show that the failure of PrP mutants to produce cytosolic PrP is responsible for the loss of anti-Bax function and that the effect of the PrP mutants is dominant over wild-type PrP. Furthermore, these results imply that misfolded PrP that escapes retrotranslocation could accumulate at the cell surface and cause neuronal dysfunction.
Collapse
Affiliation(s)
- Julie Jodoin
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, Québec, Canada H3T 1E2
| | | | | | | |
Collapse
|
24
|
Li A, Piccardo P, Barmada SJ, Ghetti B, Harris DA. Prion protein with an octapeptide insertion has impaired neuroprotective activity in transgenic mice. EMBO J 2007; 26:2777-85. [PMID: 17510630 PMCID: PMC1888682 DOI: 10.1038/sj.emboj.7601726] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2007] [Accepted: 04/20/2007] [Indexed: 01/13/2023] Open
Abstract
Familial prion diseases are due to dominantly inherited, germline mutations in the PRNP gene that encodes the prion protein (PrP). The cellular mechanism underlying the pathogenic effect of these mutations remains uncertain. To investigate whether pathogenic mutations impair a normal, physiological activity of PrP, we have crossed Tg(PG14) mice, which express PrP with an octapeptide insertion associated with an inherited prion dementia, with Tg(PrPDelta32-134) mice. Tg(PrPDelta32-134) mice, which express an N-terminally truncated form of PrP, spontaneously develop a neurodegenerative phenotype that is stoichiometrically reversed by coexpression of wild-type PrP. We find that, at equivalent expression levels, PG14 PrP is significantly less efficient than wild-type PrP in suppressing the development of clinical symptoms and neuropathology in Tg(PrPDelta32-134) mice. Thus, our results suggest that some features of the neurological illness associated with inherited PrP mutations may be attributable to a loss of PrP neuroprotective function. This mechanism stands in contrast to the toxic gain-of-function mechanisms that are usually invoked to explain the pathogenesis of dominantly inherited neurodegenerative disorders.
Collapse
Affiliation(s)
- Aimin Li
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO, USA
| | - Pedro Piccardo
- Division of Neuropathology, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Biologics Evaluation and Research, Food and Drug Administration, Rockville, MD, USA
| | - Sami J Barmada
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO, USA
| | - Bernardino Ghetti
- Division of Neuropathology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David A Harris
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA. Tel.: +1 314 362 4690; Fax: +1 314 747 0940. E-mail:
| |
Collapse
|
25
|
Yin S, Pham N, Yu S, Li C, Wong P, Chang B, Kang SC, Biasini E, Tien P, Harris DA, Sy MS. Human prion proteins with pathogenic mutations share common conformational changes resulting in enhanced binding to glycosaminoglycans. Proc Natl Acad Sci U S A 2007; 104:7546-51. [PMID: 17456603 PMCID: PMC1863438 DOI: 10.1073/pnas.0610827104] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutation in the prion gene PRNP accounts for 10-15% of human prion diseases. However, little is known about the mechanisms by which mutant prion proteins (PrPs) cause disease. Here we investigated the effects of 10 different pathogenic mutations on the conformation and ligand-binding activity of recombinant human PrP (rPrP). We found that mutant rPrPs react more strongly with N terminus-specific antibodies, indicative of a more exposed N terminus. The N terminus of PrP contains a glycosaminoglycan (GAG)-binding motif. Binding of GAG is important in prion disease. Accordingly, all mutant rPrPs bind more GAG, and GAG promotes the aggregation of mutant rPrPs more efficiently than wild-type recombinant normal cellular PrP (rPrP(C)). Furthermore, point mutations in PRNP also cause conformational changes in the region between residues 109 and 136, resulting in the exposure of a second, normally buried, GAG-binding motif. Importantly, brain-derived PrP from transgenic mice, which express a pathogenic mutant with nine extra octapeptide repeats, also binds more strongly to GAG than wild-type PrP(C). Thus, several rPrPs with distinct pathogenic mutations have common conformational changes, which enhance binding to GAG. These changes may contribute to the pathogenesis of inherited prion diseases.
Collapse
Affiliation(s)
- Shaoman Yin
- *Department of Pathology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106
| | - Nancy Pham
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic Research Foundation, 9500 Euclid Avenue, Cleveland, OH 44195
| | - Shuiliang Yu
- *Department of Pathology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106
| | - Chaoyang Li
- *Department of Pathology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106
| | - Poki Wong
- *Department of Pathology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106
| | - Binggong Chang
- *Department of Pathology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106
| | - Shin-Chung Kang
- *Department of Pathology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106
| | - Emiliano Biasini
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110; and
| | - Po Tien
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 10080, China
| | - David A. Harris
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110; and
| | - Man-Sun Sy
- *Department of Pathology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106
- To whom correspondence should be addressed at:
School of Medicine, Case Western Reserve University, Room 5131, Wolstein Research Building, 2103 Cornell Road, Cleveland, OH 44106-7288. E-mail:
| |
Collapse
|
26
|
Priola SA, Vorberg I. Molecular aspects of disease pathogenesis in the transmissible spongiform encephalopathies. Mol Biotechnol 2007; 33:71-88. [PMID: 16691009 DOI: 10.1385/mb:33:1:71] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/11/2022]
Abstract
The transmissible spongiform encephalopathies (TSE), or prion diseases, are a group of rare, fatal, and transmissible neurodegenerative diseases of mammals for which there are no known viral or bacterial etiological agents. The bovine form of these diseases, bovine spongiform encephalopathy (BSE), has crossed over into humans to cause variant Creutzfeldt-Jakob disease. As a result, BSE and the TSE diseases are now considered a significant threat to human health. Understanding the basic mechanisms of TSE pathogenesis is essential for the development of effective TSE diagnostic tests and anti-TSE therapeutic regimens. This review provides an overview of the molecular mechanisms that underlie this enigmatic group of diseases.
Collapse
Affiliation(s)
- Suzette A Priola
- Laboratory of Persistent Viral Diseases, National Institute of Allergy and Infectious Diseases, Rocky Mountain Laboratories, 903 S. 4th St., Hamilton, MT 59840, USA.
| | | |
Collapse
|
27
|
Yu S, Yin S, Li C, Wong P, Chang B, Xiao F, Kang SC, Yan H, Xiao G, Tien P, Sy MS. Aggregation of prion protein with insertion mutations is proportional to the number of inserts. Biochem J 2007; 403:343-51. [PMID: 17187581 PMCID: PMC1874237 DOI: 10.1042/bj20061592] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mutation in the prion gene, PRNP, accounts for approx. 10-15% of human prion diseases. However, little is known about the mechanisms by which a mutant prion protein (PrP) causes disease. We compared the biochemical properties of a wild-type human prion protein, rPrP(C) (recombinant wild-type PrP), which has five octapeptide-repeats, with two recombinant human prion proteins with insertion mutations, one with three more octapeptide repeats, rPrP(8OR), and the other with five more octapeptide repeats, rPrP(10OR). We found that the insertion mutant proteins are more prone to aggregate, and the degree and kinetics of aggregation are proportional to the number of inserts. The octapeptide-repeat and alpha-helix 1 regions are important in aggregate formation, because aggregation is inhibited with monoclonal antibodies that are specific for epitopes in these regions. We also showed that a small amount of mutant protein could enhance the formation of mixed aggregates that are composed of mutant protein and wild-type rPrP(C). Accordingly, rPrP(10OR) is also more efficient in promoting the aggregation of rPrP(C) than rPrP(8OR). These findings provide a biochemical explanation for the clinical observations that the severity of the disease in patients with insertion mutations is proportional to the number of inserts, and thus have implications for the pathogenesis of inherited human prion disease.
Collapse
Affiliation(s)
- Shuiliang Yu
- *Department of Pathology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44120, U.S.A
| | - Shaoman Yin
- *Department of Pathology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44120, U.S.A
| | - Chaoyang Li
- *Department of Pathology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44120, U.S.A
| | - Poki Wong
- *Department of Pathology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44120, U.S.A
| | - Binggong Chang
- *Department of Pathology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44120, U.S.A
| | - Fan Xiao
- *Department of Pathology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44120, U.S.A
| | - Shin-Chung Kang
- *Department of Pathology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44120, U.S.A
| | - Huimin Yan
- *Department of Pathology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44120, U.S.A
- †Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, People's Republic of China
| | - Gengfu Xiao
- †Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, People's Republic of China
| | - Po Tien
- †Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, People's Republic of China
- ‡Institute of Microbiology, Chinese Academy of Science, Beijing 100080, People's Republic of China
| | - Man-Sun Sy
- *Department of Pathology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44120, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
28
|
Abstract
Prion diseases are among the most intriguing illnesses. Despite their rare incidence, they have captured enormous attention from the scientific community and general public. One of the most hotly debated issues in these diseases is the nature of the infectious material. In recent years increasing evidence has emerged supporting the protein-only hypothesis of prion transmission. In this model PrPSc (the pathological isoform of the prion protein, PrPC) represents the sole component of the infectious particle. However, uncertainties about possible additional factors involved in the conversion of PrPC into PrPSc remain despite extensive attempts to isolate and characterize these elusive components. In this article, we review recent developments concerning the protein-only hypothesis as well as the possible involvement of cellular factors in PrPC to PrPSc conformational change and their influence on the pathogenesis of prion diseases.
Collapse
Affiliation(s)
- K. Abid
- Protein Misfolding Disorders Lab, George and Cynthia Mitchell Center for Alzheimer’s Disease Research, Departments of Neurology, Neuroscience and Cell Biology and Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, Texas 77555 USA
| | - C. Soto
- Protein Misfolding Disorders Lab, George and Cynthia Mitchell Center for Alzheimer’s Disease Research, Departments of Neurology, Neuroscience and Cell Biology and Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, Texas 77555 USA
| |
Collapse
|
29
|
Grenier C, Bissonnette C, Volkov L, Roucou X. Molecular morphology and toxicity of cytoplasmic prion protein aggregates in neuronal and non-neuronal cells. J Neurochem 2006; 97:1456-66. [PMID: 16696854 PMCID: PMC2954960 DOI: 10.1111/j.1471-4159.2006.03837.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Recent studies have revealed that accumulation of prion protein (PrP) in the cytoplasm results in the production of aggregates that are insoluble in non-ionic detergents and partially resistant to proteinase K. Transgenic mice expressing PrP in the cytoplasm develop severe ataxia with cerebellar degeneration and gliosis, suggesting that cytoplasmic PrP may play a role in the pathogenesis of prion diseases. The mechanism of cytoplasmic PrP neurotoxicity is not known. In this report, we determined the molecular morphology of cytoplasmic PrP aggregates by immunofluorescence and electron microscopy, in neuronal and non-neuronal cells. Transient expression of cytoplasmic PrP produced juxtanuclear aggregates reminiscent of aggresomes in human embryonic kidney 293 cells, human neuroblastoma BE2-M17 cells and mouse neuroblastoma N2a cells. Time course studies revealed that discrete aggregates form first throughout the cytoplasm, and then coalesce to form an aggresome. Aggresomes containing cytoplasmic PrP were 1-5-microm inclusion bodies and were filled with electron-dense particles. Cytoplasmic PrP aggregates induced mitochondrial clustering, reorganization of intermediate filaments, prevented the secretion of wild-type PrP molecules and diverted these molecules to the cytoplasm. Cytoplasmic PrP decreased the viability of neuronal and non-neuronal cells. We conclude that any event leading to accumulation of PrP in the cytoplasm is likely to result in cell death.
Collapse
Affiliation(s)
- Catherine Grenier
- Department of Biochemistry, University of Sherbrooke, Sherbrooke, Québec, Canada
| | - Cyntia Bissonnette
- Department of Biochemistry, University of Sherbrooke, Sherbrooke, Québec, Canada
| | - Leonid Volkov
- Service of Cytometry and Microscopy, Faculty of Medicine, University of Sherbrooke, Sherbrooke, Québec, Canada
| | - Xavier Roucou
- Department of Biochemistry, University of Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
30
|
Moore RA, Herzog C, Errett J, Kocisko DA, Arnold KM, Hayes SF, Priola SA. Octapeptide repeat insertions increase the rate of protease-resistant prion protein formation. Protein Sci 2006; 15:609-19. [PMID: 16452616 PMCID: PMC2249780 DOI: 10.1110/ps.051822606] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A central feature of transmissible spongiform encephalopathies (TSE or prion diseases) involves the conversion of a normal, protease-sensitive glycoprotein termed prion protein (PrP-sen) into a pro-tease-resistant form, termed PrP-res. The N terminus of PrP-sen has five copies of a repeating eight amino acid sequence (octapeptide repeat). The presence of one to nine extra copies of this motif is associated with a heritable form of Creutzfeld-Jakob disease (CJD) in humans. An increasing number of octapeptide repeats correlates with earlier CJD onset, suggesting that the rate at which PrP-sen misfolds into PrP-res may be influenced by these mutations. In order to determine if octapeptide repeat insertions influence the rate at which PrP-res is formed, we used a hamster PrP amyloid-forming peptide (residues 23-144) into which two to 10 extra octapeptide repeats were inserted. The spontaneous formation of protease-resistant PrP amyloid from these peptides was more rapid in response to an increased number of octapeptide repeats. Furthermore, experiments using full-length glycosylated hamster PrP-sen demonstrated that PrP-res formation also occurred more rapidly from PrP-sen molecules expressing 10 extra copies of the octapeptide repeat. The rate increase for PrP-res formation did not appear to be due to any influence of the octapeptide repeat region on PrP structure, but rather to more rapid binding between PrP molecules. Our data from both models support the hypothesis that extra octapeptide repeats in PrP increase the rate at which protease resistant PrP is formed which in turn may affect the rate of disease onset in familial forms of CJD.
Collapse
Affiliation(s)
- Roger A Moore
- The Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy & Infectious Diseases, National Institutes of Health, 903 S. 4th Street, Hamilton, Montana 59840, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Sabuncu E, Paquet S, Chapuis J, Moudjou M, Lai TL, Grassi J, Baron U, Laude H, Vilette D. Prion proteins from susceptible and resistant sheep exhibit some distinct cell biological features. Biochem Biophys Res Commun 2005; 337:791-8. [PMID: 16214113 DOI: 10.1016/j.bbrc.2005.09.114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Accepted: 09/05/2005] [Indexed: 11/26/2022]
Abstract
It is well established that natural polymorphisms in the coding sequence of the PrP protein can control the expression of prion disease. Studies with a cell model of sheep prion infection have shown that ovine PrP allele associated with resistance to sheep scrapie may confer resistance by impairing the multiplication of the infectious agent. To further explore the biochemical and cellular mechanisms underlying the genetic control of scrapie susceptibility, we established permissive cells expressing two different PrP variants. In this study, we show that PrP variants with opposite effects on prion multiplication exhibit distinct cell biological features. These findings indicate that cell biological properties of ovine PrP can vary with natural polymorphisms and raise the possibility that differential interactions of PrP variants with the cellular machinery may contribute to permissiveness or resistance to prion multiplication.
Collapse
Affiliation(s)
- Elifsu Sabuncu
- Unité de Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, 78350 Jouy-en-Josas, France
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Scott MD. Inactivation of prion proteins via covalent grafting with methoxypoly(ethylene glycol). Med Hypotheses 2005; 66:387-93. [PMID: 16242248 DOI: 10.1016/j.mehy.2005.08.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Accepted: 08/30/2005] [Indexed: 10/25/2022]
Abstract
Transmissible spongiform encephalopathies (TSE) such as bovine spongiform encephalitis (BSE), Creutzfeld-Jakob disease (CJD) as well as other proteinaceous infectious particles (prions) mediated diseases have emerged as a significant concern in transfusion medicine. This concern is derived from both the disease causing potential of prion contaminated blood products but also due to tremendous impact of the active deferral of current and potential blood donors due to their extended stays in BSE prevalent countries (e.g., the United Kingdom). To date, there are no effective means by which infectious prion proteins can be inactivated in cellular and acellular blood products. Based on current work on the covalent grafting of methoxypoly(ethylene glycol) [mPEG] to proteins, viruses, and anuclear, and nucleated cells, it is hypothesized that the conversion of the normal PrP protein to its mutant conformation can be prevented by the covalent grafting of mPEG to the mutant protein. Inactivation of infective protein particles (prions) in both cellular blood products as well as cell free solutions (e.g., clotting factors) could be of medical/commercial value. It is hypothesized that consequent to the covalent modification of donor-derived prions with mPEG the requisite nucleation of the normal and mutant PrP proteins is inhibited due to the increased solubility of the modified mutant PrP and that the conformational conversion arising from the mutant PrP is prevented due to obscuration of protein charge by the heavily hydrated and neutral mPEG polymers, as well as by direct steric hindrance of the interaction due to the highly mobile polymer graft.
Collapse
Affiliation(s)
- Mark D Scott
- Canadian Blood Services, Department of Pathology and Laboratory Medicine, University of British Columbia, Centre for Blood Research, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3.
| |
Collapse
|
33
|
Abstract
Several lines of evidence suggest that PrP(C), the non-infectious form of the prion protein, may function to protect neurons and other cells from stress or toxicity. In this paper, we report on the use of the yeast Saccharomyces cerevisiae as a model system to assay the cytoprotective activity of PrP(C). The mammalian pro-apoptotic protein, Bax, confers a lethal phenotype when expressed in yeast. Since overexpression of PrP(C) has been found to prevent Bax-mediated cell death in cultured human neurons, we explored whether PrP could also suppress Bax-induced cell death in yeast. We utilized a form of mouse PrP containing a modified signal peptide that we had previously shown is efficiently targeted to the secretory pathway in yeast. We found that this PrP potently suppressed the death of yeast cells expressing mammalian Bax under control of a galactose-inducible promoter. In contrast, cytosolic PrP-(23-231) failed to rescue growth of Bax-expressing yeast, indicating that protective activity requires targeting of PrP to the secretory pathway. Deletion of the octapeptide repeat region did not affect the rescuing activity of PrP, but deletion of a charged region encompassing residues 23-31 partially eliminated activity. We also tested several PrP mutants associated with human familial prion diseases and found that only a mutant containing nine extra octapeptide repeats failed to suppress Bax-induced cell death. These findings establish a simple and genetically tractable system for assaying a putative biological activity of PrP(C).
Collapse
Affiliation(s)
- Aimin Li
- Department of Cell Biology and Physiology Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
34
|
Abstract
The transmissible spongiform encephalopathies have presented a challenge to physicians and scientists attempting to develop immunologically-based treatments. Self-tolerance has been one of the major obstacles to successfully raising antibodies against the prion protein (PrP), the host-encoded protein whose misfolded form (PrPSc) is linked to the protein-only infectious agent responsible for these disorders. Recently, it has been shown that antibodies directed against the normal cellular isoform of PrP (PrPC) can reduce or eliminate PrP isoform conversion in both in vitro and in vivo model systems. Similar studies with a PrPSc-specific epitope target are in progress. There is now rational hope that this devastating group of diseases may soon be amenable to immunotherapy and immunoprophylaxis.
Collapse
Affiliation(s)
- Jennifer K Griffin
- University of Toronto, Centre for Research in Neurodegenerative Diseases, 6 Queen's Park Crescent West, Toronto, ON M5S3H2, Canada.
| | | |
Collapse
|
35
|
Fioriti L, Dossena S, Stewart LR, Stewart RS, Harris DA, Forloni G, Chiesa R. Cytosolic prion protein (PrP) is not toxic in N2a cells and primary neurons expressing pathogenic PrP mutations. J Biol Chem 2005; 280:11320-8. [PMID: 15632159 DOI: 10.1074/jbc.m412441200] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inherited prion diseases are linked to mutations in the prion protein (PrP) gene, which favor conversion of PrP into a conformationally altered, pathogenic isoform. The cellular mechanism by which this process causes neurological dysfunction is unknown. It has been proposed that neuronal death can be triggered by accumulation of PrP in the cytosol because of impairment of proteasomal degradation of misfolded PrP molecules retrotranslocated from the endoplasmic reticulum (Ma, J., Wollmann, R., and Lindquist, S. (2002) Science 298, 1781-1785). To test whether this neurotoxic mechanism is operative in inherited prion diseases, we evaluated the effect of proteasome inhibitors on the viability of transfected N2a cells and primary neurons expressing mouse PrP homologues of the D178N and nine octapeptide mutations. We found that the inhibitors caused accumulation of an unglycosylated, aggregated form of PrP exclusively in transfected N2a expressing PrP from the cytomegalovirus promoter. This form contained an uncleaved signal peptide, indicating that it represented polypeptide chains that had failed to translocate into the ER lumen during synthesis, rather than retrogradely translocated PrP. Quantification of N2a viability in the presence of proteasome inhibitors demonstrated that accumulation of this form was not toxic. No evidence of cytosolic PrP was found in cerebellar granule neurons from transgenic mice expressing wild-type or mutant PrPs from the endogenous promoter, nor were these neurons more susceptible to proteasome inhibitor toxicity than neurons from PrP knock-out mice. Our analysis fails to confirm the previous observation that mislocation of PrP in the cytosol is neurotoxic, and argues against the hypothesis that perturbation of PrP metabolism through the proteasomal pathway plays a pathogenic role in prion diseases.
Collapse
Affiliation(s)
- Luana Fioriti
- Dulbecco Telethon Institute (DTI) and Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri, Milano 20157, Italy
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
In certain cell types, endosomal multivesicular bodies may fuse with the cell surface in an exocytic manner. During this process, the small 50-90-nm-diameter vesicles contained in their lumen are released into the extracellular environment. The released vesicles are called exosomes. Exosome secretion can be used by cells to eject molecules targeted to intraluminal vesicles of multivesicular bodies, but particular cell types exploit exosomes as intercellular communication devices for transfer of proteins and lipids between cells. The molecular composition of exosomes is determined by sorting events within endosomes that occur concomitantly with the generation of intraluminal vesicles. As other raft-associated components, the glycosylphosphatidylinositol-linked prion protein transits through multivesicular bodies. Recent findings in non-neuronal cell models indicate prion protein association with secreted exosomes. Thus, exosomes could constitute vehicles for transmission of the infectious prion protein, bypassing cell-cell contact in the dissemination of prions.
Collapse
Affiliation(s)
- Benoît Février
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 144, Institut Curie, 75005 Paris, France
| | | | | | | |
Collapse
|
37
|
Kikuchi Y, Kakeya T, Sakai A, Takatori K, Nakamura N, Matsuda H, Yamazaki T, Tanamoto KI, Sawada JI. Propagation of a protease-resistant form of prion protein in long-term cultured human glioblastoma cell line T98G. J Gen Virol 2004; 85:3449-3457. [PMID: 15483263 DOI: 10.1099/vir.0.80043-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Human prion diseases, such as Creutzfeldt–Jakob disease (CJD), a lethal, neurodegenerative condition, occur in sporadic, genetic and transmitted forms. CJD is associated with the conversion of normal cellular prion protein (PrPC) into a protease-resistant isoform (PrPres). The mechanism of the conversion has not been studied in human cell cultures, due to the lack of a model system. In this study, such a system has been developed by culturing cell lines. Human glioblastoma cell line T98G had no coding-region mutations of the prion protein gene, which was of the 129 M/V genotype, and expressed endogenous PrPC constitutively. T98G cells produced a form of proteinase K (PK)-resistant prion protein fragment following long-term culture and high passage number; its deglycosylated form was approximately 18 kDa. The PK-treated PrPres was detected by immunoblotting with the mAb 6H4, which recognizes residues 144–152, and a polyclonal anti-C-terminal antibody, but not by the mAb 3F4, which recognizes residues 109–112, or the anti-N-terminal mAb HUC2-13. These results suggest that PrPC was converted into a proteinase-resistant form of PrPres in T98G cells.
Collapse
Affiliation(s)
- Yutaka Kikuchi
- Division of Microbiology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Tomoshi Kakeya
- Division of Microbiology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Ayako Sakai
- Division of Microbiology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Kosuke Takatori
- Division of Microbiology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Naoto Nakamura
- Laboratory of Immunobiology, Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-hiroshima, Hiroshima 739-8528, Japan
| | - Haruo Matsuda
- Laboratory of Immunobiology, Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-hiroshima, Hiroshima 739-8528, Japan
| | - Takeshi Yamazaki
- Division of Food Additives, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Ken-Ichi Tanamoto
- Division of Food Additives, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Jun-Ichi Sawada
- Division of Biochemistry and Immunochemistry, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| |
Collapse
|
38
|
Lehmann S, Milhavet O. [Cellular and scrapie prion proteins: which is the more toxic isoform?]. Med Sci (Paris) 2004; 20:514-5. [PMID: 15190466 DOI: 10.1051/medsci/2004205514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
39
|
Paquet S, Sabuncu E, Delaunay JL, Laude H, Vilette D. Prion infection of epithelial Rov cells is a polarized event. J Virol 2004; 78:7148-52. [PMID: 15194791 PMCID: PMC421691 DOI: 10.1128/jvi.78.13.7148-7152.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
During prion infections, the cellular glycosylphosphatidylinositol-anchored glycoprotein PrP is converted into a conformational isoform. This abnormal conformer is thought to recruit and convert the normal cellular PrP into a likeness of itself and is proposed to be the infectious agent. We investigated the distribution of the PrP protein on the surface of Rov cells, an epithelial cell line highly permissive to prion multiplication, and we found that PrP is primarily expressed on the apical side. We further show that prion transmission to Rov cells is much more efficient if infectivity contacts the apical side, indicating that the apical and basolateral sides of Rov cells are not equally competent for prion infection and adding prions to the list of the conventional infectious agents (viruses and bacteria) that infect epithelial cells in a polarized manner. These data raise the possibility that apically expressed PrP may be involved in this polarized process of infection. This would add further support for a crucial role of PrP at the cell surface in prion infection of target cells.
Collapse
Affiliation(s)
- Sophie Paquet
- Unité de Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, 78350 Jouy-en-Josas, France
| | | | | | | | | |
Collapse
|
40
|
Li A, Dong J, Harris DA. Cell Surface Expression of the Prion Protein in Yeast Does Not Alter Copper Utilization Phenotypes. J Biol Chem 2004; 279:29469-77. [PMID: 15090539 DOI: 10.1074/jbc.m402517200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Prion diseases are fatal neurodegenerative disorders that result from conversion of a normal, cell surface glycoprotein (PrP(C)) into a conformationally altered isoform (PrP(Sc)) that is thought to be infectious. Although a great deal is known about the role of PrP(Sc) in the disease process, the physiological function of PrP(C) has remained enigmatic. In this report, we have used the yeast Saccharomyces cerevisiae to test one hypothesized function of PrP(C), as a receptor for the uptake or efflux of copper ions. We first modified the PrP signal peptide by replacing its hydrophobic core with the signal sequence from the yeast protein dipeptidyl aminopeptidase B, so that the resulting protein was targeted cotranslationally to the secretory pathway when synthesized in yeast. PrP molecules with the modified signal peptide were efficiently glycosylated, glycolipid-anchored, and localized to the plasma membrane. We then tested whether PrP expression altered the growth deficiency phenotypes of yeast strains harboring deletions in genes that encode key components of copper utilization pathways, including transporters, chaperones, pumps, reductases, and cuproenzymes. We found that PrP did not rescue any of these mutant phenotypes, arguing against a direct role for the protein in copper utilization. Our results provide further clarification of the physiological function of PrP(C), and lay the groundwork for using PrP-expressing yeast to study other aspects of prion biology.
Collapse
Affiliation(s)
- Aimin Li
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | | | |
Collapse
|
41
|
Sarnataro D, Campana V, Paladino S, Stornaiuolo M, Nitsch L, Zurzolo C. PrP(C) association with lipid rafts in the early secretory pathway stabilizes its cellular conformation. Mol Biol Cell 2004; 15:4031-42. [PMID: 15229281 PMCID: PMC515338 DOI: 10.1091/mbc.e03-05-0271] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The pathological conversion of cellular prion protein (PrP(C)) into the scrapie prion protein (PrP(Sc)) isoform appears to have a central role in the pathogenesis of transmissible spongiform encephalopathies. However, the identity of the intracellular compartment where this conversion occurs is unknown. Several lines of evidence indicate that detergent-resistant membrane domains (DRMs or rafts) could be involved in this process. We have characterized the association of PrP(C) to rafts during its biosynthesis. We found that PrP(C) associates with rafts already as an immature precursor in the endoplasmic reticulum. Interestingly, compared with the mature protein, the immature diglycosylated form has a different susceptibility to cholesterol depletion vs. sphingolipid depletion, suggesting that the two forms associate with different lipid domains. We also found that cholesterol depletion, which affects raft-association of the immature protein, slows down protein maturation and leads to protein misfolding. On the contrary, sphingolipid depletion does not have any effect on the kinetics of protein maturation or on the conformation of the protein. These data indicate that the early association of PrP(C) with cholesterol-enriched rafts facilitates its correct folding and reinforce the hypothesis that cholesterol and sphingolipids have different roles in PrP metabolism.
Collapse
Affiliation(s)
- Daniela Sarnataro
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Centro di Endocrinologia ed Oncologia Sperimentale del Consiglio Nazionale delle Ricerche, Università degli Studi di Napoli Federico II, 80131 Napoli, Italy
| | | | | | | | | | | |
Collapse
|
42
|
Solforosi L, Criado JR, McGavern DB, Wirz S, Sánchez-Alavez M, Sugama S, DeGiorgio LA, Volpe BT, Wiseman E, Abalos G, Masliah E, Gilden D, Oldstone MB, Conti B, Williamson RA. Cross-Linking Cellular Prion Protein Triggers Neuronal Apoptosis in Vivo. Science 2004; 303:1514-6. [PMID: 14752167 DOI: 10.1126/science.1094273] [Citation(s) in RCA: 263] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Neuronal death is a prominent, but poorly understood, pathological hallmark of prion disease. Notably, in the absence of the cellular prion protein (PrPC), the disease-associated isoform, PrPSc, appears not to be intrinsically neurotoxic, suggesting that PrPC itself may participate directly in the prion neurodegenerative cascade. Here, cross-linking PrPC in vivo with specific monoclonal antibodies was found to trigger rapid and extensive apoptosis in hippocampal and cerebellar neurons. These findings suggest that PrPC functions in the control of neuronal survival and provides a model to explore whether cross-linking of PrPC by oligomeric PrPSc can promote neuronal loss during prion infection.
Collapse
Affiliation(s)
- Laura Solforosi
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Drisaldi B, Stewart RS, Adles C, Stewart LR, Quaglio E, Biasini E, Fioriti L, Chiesa R, Harris DA. Mutant PrP is delayed in its exit from the endoplasmic reticulum, but neither wild-type nor mutant PrP undergoes retrotranslocation prior to proteasomal degradation. J Biol Chem 2003; 278:21732-43. [PMID: 12663673 DOI: 10.1074/jbc.m213247200] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cellular mechanisms by which prions cause neurological dysfunction are poorly understood. To address this issue, we have been using cultured cells to analyze the localization, biosynthesis, and metabolism of PrP molecules carrying mutations associated with familial prion diseases. We report here that mutant PrP molecules are delayed in their maturation to an endoglycosidase H-resistant form after biosynthetic labeling, suggesting that they are impaired in their exit from the endoplasmic reticulum (ER). However, we find that proteasome inhibitors have no effect on the maturation or turnover of either mutant or wild-type PrP molecules. Thus, in contrast to recent studies from other laboratories, our work indicates that PrP is not subject to retrotranslocation from the ER into the cytoplasm prior to degradation by the proteasome. We find that in transfected cells, but not in cultured neurons, proteasome inhibitors cause accumulation of an unglycosylated, signal peptide-bearing form of PrP on the cytoplasmic face of the ER membrane. Thus, under conditions of elevated expression, a small fraction of PrP chains is not translocated into the ER lumen during synthesis, and is rapidly degraded in the cytoplasm by the proteasome. Finally, we report a previously unappreciated artifact caused by treatment of cells with proteasome inhibitors: an increase in PrP mRNA level and synthetic rate when the protein is expressed from a vector containing a viral promoter. We suggest that this phenomenon may explain some of the dramatic effects of proteasome inhibitors observed in other studies. Our results clarify the role of the proteasome in the cell biology of PrP, and suggest reasonable hypotheses for the molecular pathology of inherited prion diseases.
Collapse
Affiliation(s)
- Bettina Drisaldi
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Rachidi W, Mangé A, Senator A, Guiraud P, Riondel J, Benboubetra M, Favier A, Lehmann S. Prion infection impairs copper binding of cultured cells. J Biol Chem 2003; 278:14595-8. [PMID: 12637548 DOI: 10.1074/jbc.c300092200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The molecular mechanism of neurodegeneration in transmissible spongiform encephalopathies (TSEs) remains unclear. Using radioactive copper ((64)Cu) at physiological concentration, we showed that prion infected cells display a marked reduction in copper binding. The level of full-length prion protein known to bind the metal ion was not modified in infected cells, but a fraction of this protein was not releasable from the membrane by phosphatidylinositol-specific phospholipase C. Our results suggest that prion infection modulates copper content at a cellular level and that modification of copper homeostasis plays a determinant role in the neuropathology of TSE.
Collapse
Affiliation(s)
- Walid Rachidi
- Laboratoire Biologie Stress Oxydant, Faculté de Pharmacie, Domaine de La Merci, 38706 La Tronche-Grenoble, France
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Harris DA, Chiesa R, Drisaldi B, Quaglio E, Migheli A, Piccardo P, Ghetti B. A murine model of a familial prion disease. Clin Lab Med 2003; 23:175-86. [PMID: 12733431 DOI: 10.1016/s0272-2712(02)00069-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have produced a mouse model of a familial prion disorder by introduction of a transgene that encodes the moPrP homolog of a nine-octapeptide insertional mutant associated with an inherited form of CJD in humans. These mice develop progressive neurologic symptoms, display neuropathologic changes, and accumulate a form of mutant PrP in their brains and peripheral tissues that displays some of the biochemical properties of PrPSc. These mice have been extremely valuable for analyzing the cellular and biochemical mechanisms involved in inherited prion disorders and correlating the appearance of the PrPSc-like form with clinical and neuropathologic findings. Because the mutant protein in the mice is highly neurotoxic but appears to lack infectivity, further analysis of its properties promises to shed new light on the molecular distinction between pathogenic and infectious forms of PrP.
Collapse
Affiliation(s)
- David A Harris
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Ave., St. Louis, MO 63110, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Bossers A, Rigter A, de Vries R, Smits MA. In vitro conversion of normal prion protein into pathologic isoforms. Clin Lab Med 2003; 23:227-47. [PMID: 12733434 DOI: 10.1016/s0272-2712(02)00063-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The in vitro conversion techniques in cell-free and cell culture systems have provided tools to adequately study the underlying mechanism of TSEs, namely PrP conversion. These systems also have provided tools that make it easier to study the interspecies and intraspecies transmissibilities of TSEs. Finally, these systems also may assist in the discovery of TSE therapeutic strategies and in the development of extremely sensitive TSE detection techniques. In vivo TSE transmission studies are limited to (transgenic) animals (mostly mice). Although the cell culture systems also are restricted in their species-range (mostly mouse), the currently used cell-free systems. Allow studying almost all possible species barriers (including the potential transmission of various TSEs to humans). One advantage of the cell culture systems, however, is that they generate do novo TSE infectivity. Studies using cell cultures also take into account several cofactors in addition to PrP that might be involved in replication the TSE agent. Although the in vitro systems provide accurate tools to study TSE agent parameters, they mainly or only focus on the molecular processes of PrP conversion. Other factors (i.e., host genetic factors [99]) that, for example, determine the differential uptake of the TSE agent from the environment, might play an additional role in determining the susceptibility of hosts for TSEs and on the transmission of the disease among individuals.
Collapse
Affiliation(s)
- Alex Bossers
- Central Institute for Animal Disease Control (CIDC-Lelystad), P.O. Box 2004, 8203 AA Lelystad, The Netherlands.
| | | | | | | |
Collapse
|
47
|
Gu Y, Hinnerwisch J, Fredricks R, Kalepu S, Mishra RS, Singh N. Identification of cryptic nuclear localization signals in the prion protein. Neurobiol Dis 2003; 12:133-49. [PMID: 12667468 DOI: 10.1016/s0969-9961(02)00014-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Abnormal transport of C-terminally truncated prion protein (PrP) to the nucleus has been reported in cell models of familial prion disorders associated with a stop codon mutation at residues 145 or 160 of the PrP. In both cases, PrP is translocated to the nucleus in an energy-dependent fashion, implying the presence of cryptic nuclear localization signal(s) in this region of PrP. In this report, we describe the presence of two independent nuclear localization signals (NLS) in the N-terminal domain of PrP that differ in the efficiency of nuclear targeting. When acting independently, each NLS sequence mediates the transport of tagged bovine serum albumin into the nucleus of permeabilized cells. When acting together, the two NLS sequences complement each other in transporting the N-terminal fragment of PrP to the nucleus of transfected cells, where it accumulates at steady state. Interestingly, nuclear translocation of PrP is blocked completely if the N-terminal fragment is extended to include one or two N-glycans. The glycosylated PrP fragment, instead, accumulates in the endoplasmic reticulum. Extension of the N-terminal fragment to include both N-glycans and the glycosyl phosphatidylinositol anchor, as expected, directs PrP to the plasma membrane. These observations hold implications for the pathogenesis of familial prion disorders, where truncated and abnormally glycosylated mutant PrP forms may accumulate in the nucleus and initiate neurotoxicity through novel mechanisms.
Collapse
Affiliation(s)
- Yaping Gu
- The Institute of Pathology, Case Western Reserve University, 2085 Adelbert Road, Cleveland, OH 44106, USA
| | | | | | | | | | | |
Collapse
|
48
|
Cohen E, Taraboulos A. Scrapie-like prion protein accumulates in aggresomes of cyclosporin A-treated cells. EMBO J 2003; 22:404-17. [PMID: 12554642 PMCID: PMC140730 DOI: 10.1093/emboj/cdg045] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Prion diseases are infectious, sporadic and inherited fatal neurodegenerations that are propagated by an abnormal refolding of the cellular prion protein PrP(C). Which chaperones assist the normal folding of PrP(C) is unknown. The linkage of familial Gerstmann- Sträussler-Scheinker (GSS) syndrome with proline substitutions in PrP raised the prospect that peptidylprolyl cis-trans isomerases (PPIases) may play a role in normal PrP metabolism. Here we used cyclo sporin A (CsA), an immunosuppressant, to inhibit the cyclophilin family of PPIases in cultured cells. CsA-treated cells accumulated proteasome-resistant, 'prion-like' PrP species, which deposited in long-lived aggresomes. PrP aggresomes also formed with disease-linked proline mutants when proteasomes were inhibited. These results suggest mechanisms whereby abnormally folded cytosolic PrP may in some cases participate in the development of spontaneous and inherited prion diseases.
Collapse
Affiliation(s)
| | - Albert Taraboulos
- Department of Molecular Biology, The Hebrew University–Hadassah Medical School, PO Box 12272, Jerusalem 91120, Israel
Corresponding author e-mail:
| |
Collapse
|
49
|
Abstract
Cell biological studies of PrP have contributed enormously to our understanding of prion diseases. Like other membrane proteins, PrP(C) is post-translationally processed in the endoplasmic reticulum and Golgi on its way to the cell surface after synthesis. Cell surface PrP(C) constitutively cycles between the plasma membrane and early endosomes via a clathrin-dependent mechanism, a pathway consistent with a suggested role for PrP(C) in cellular trafficking of copper ions. PrP molecules carrying mutations linked to inherited prion diseases display several abnormalities in their biochemical properties, maturation, and localisation that may explain their pathogenicity. Recent results have clarified the role of the proteasome in degradation of PrP, and the properties of a transmembrane form of PrP which may play a neurotoxic role in prion diseases.
Collapse
Affiliation(s)
- David A Harris
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| |
Collapse
|
50
|
Liu T, Li R, Pan T, Liu D, Petersen RB, Wong BS, Gambetti P, Sy MS. Intercellular transfer of the cellular prion protein. J Biol Chem 2002; 277:47671-8. [PMID: 12359724 DOI: 10.1074/jbc.m207458200] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cellular prion protein (PrP(C)) is a glycosylphosphatidylinositol (GPI)-anchored protein. We investigated whether PrP(C) can move from one cell to another cell in a cell model. Little PrP(C) transfer was detected when a PrP(C) expressing human neuroblastoma cell line was cultured with the human erythroleukemia cells IA lacking PrP(C). Efficient transfer of PrP(C) was detected with the presence of phorbol 12-myristate 13-acetate, an activator of protein kinase C. Maximum PrP(C) transfer was observed when both donor and recipient cells were activated. Furthermore, PrP(C) transfer required the GPI anchor and direct cell to cell contact. However, intercellular protein transfer is not limited to PrP(C), another GPI-anchored protein, CD90, also transfers from the donor cells to acceptor cells after cellular activation. Therefore, this transfer process is GPI-anchor and cellular activation dependent. These findings suggest that the intercellular transfer of GPI-anchored proteins is a regulated process, and may have implications for the pathogenesis of prion disease.
Collapse
Affiliation(s)
- Tong Liu
- Division of Neuropathology, Institute of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | |
Collapse
|