1
|
Boone M, Zappa F. Signaling plasticity in the integrated stress response. Front Cell Dev Biol 2023; 11:1271141. [PMID: 38143923 PMCID: PMC10740175 DOI: 10.3389/fcell.2023.1271141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/29/2023] [Indexed: 12/26/2023] Open
Abstract
The Integrated Stress Response (ISR) is an essential homeostatic signaling network that controls the cell's biosynthetic capacity. Four ISR sensor kinases detect multiple stressors and relay this information to downstream effectors by phosphorylating a common node: the alpha subunit of the eukaryotic initiation factor eIF2. As a result, general protein synthesis is repressed while select transcripts are preferentially translated, thus remodeling the proteome and transcriptome. Mounting evidence supports a view of the ISR as a dynamic signaling network with multiple modulators and feedback regulatory features that vary across cell and tissue types. Here, we discuss updated views on ISR sensor kinase mechanisms, how the subcellular localization of ISR components impacts signaling, and highlight ISR signaling differences across cells and tissues. Finally, we consider crosstalk between the ISR and other signaling pathways as a determinant of cell health.
Collapse
|
2
|
Wöhner M, Pinter T, Bönelt P, Hagelkruys A, Kostanova-Poliakova D, Stadlmann J, Konieczny SF, Fischer M, Jaritz M, Busslinger M. The Xbp1-regulated transcription factor Mist1 restricts antibody secretion by restraining Blimp1 expression in plasma cells. Front Immunol 2022; 13:859598. [PMID: 36618345 PMCID: PMC9811352 DOI: 10.3389/fimmu.2022.859598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022] Open
Abstract
Antibody secretion by plasma cells provides acute and long-term protection against pathogens. The high secretion potential of plasma cells depends on the unfolded protein response, which is controlled by the transcription factor Xbp1. Here, we analyzed the Xbp1-dependent gene expression program of plasma cells and identified Bhlha15 (Mist1) as the most strongly activated Xbp1 target gene. As Mist1 plays an important role in other secretory cell types, we analyzed in detail the phenotype of Mist1-deficient plasma cells in Cd23-Cre Bhlha15 fl/fl mice under steady-state condition or upon NP-KLH immunization. Under both conditions, Mist1-deficient plasma cells were 1.4-fold reduced in number and exhibited increased IgM production and antibody secretion compared to control plasma cells. At the molecular level, Mist1 regulated a largely different set of target genes compared with Xbp1. Notably, expression of the Blimp1 protein, which is known to activate immunoglobulin gene expression and to contribute to antibody secretion, was 1.3-fold upregulated in Mist1-deficient plasma cells, which led to a moderate downregulation of most Blimp1-repressed target genes in the absence of Mist1. Importantly, a 2-fold reduction of Blimp1 (Prdm1) expression was sufficient to restore the cell number and antibody expression of plasma cells in Prdm1 Gfp/+ Cd23-Cre Bhlha15 fl/fl mice to the same level seen in control mice. Together, these data indicate that Mist1 restricts antibody secretion by restraining Blimp1 expression, which likely contributes to the viability of plasma cells.
Collapse
Affiliation(s)
- Miriam Wöhner
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Theresa Pinter
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Peter Bönelt
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Astrid Hagelkruys
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| | | | - Johannes Stadlmann
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| | - Stephen F. Konieczny
- Department of Biological Science, Purdue University, West Lafayette, IN, United States
| | - Maria Fischer
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Markus Jaritz
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Meinrad Busslinger
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria,*Correspondence: Meinrad Busslinger,
| |
Collapse
|
3
|
McLaughlin T, Medina A, Perkins J, Yera M, Wang JJ, Zhang SX. Cellular stress signaling and the unfolded protein response in retinal degeneration: mechanisms and therapeutic implications. Mol Neurodegener 2022; 17:25. [PMID: 35346303 PMCID: PMC8962104 DOI: 10.1186/s13024-022-00528-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 03/04/2022] [Indexed: 12/22/2022] Open
Abstract
Background The retina, as part of the central nervous system (CNS) with limited capacity for self-reparation and regeneration in mammals, is under cumulative environmental stress due to high-energy demands and rapid protein turnover. These stressors disrupt the cellular protein and metabolic homeostasis, which, if not alleviated, can lead to dysfunction and cell death of retinal neurons. One primary cellular stress response is the highly conserved unfolded protein response (UPR). The UPR acts through three main signaling pathways in an attempt to restore the protein homeostasis in the endoplasmic reticulum (ER) by various means, including but not limited to, reducing protein translation, increasing protein-folding capacity, and promoting misfolded protein degradation. Moreover, recent work has identified a novel function of the UPR in regulation of cellular metabolism and mitochondrial function, disturbance of which contributes to neuronal degeneration and dysfunction. The role of the UPR in retinal neurons during aging and under disease conditions in age-related macular degeneration (AMD), retinitis pigmentosa (RP), glaucoma, and diabetic retinopathy (DR) has been explored over the past two decades. Each of the disease conditions and their corresponding animal models provide distinct challenges and unique opportunities to gain a better understanding of the role of the UPR in the maintenance of retinal health and function. Method We performed an extensive literature search on PubMed and Google Scholar using the following keywords: unfolded protein response, metabolism, ER stress, retinal degeneration, aging, age-related macular degeneration, retinitis pigmentosa, glaucoma, diabetic retinopathy. Results and conclusion We summarize recent advances in understanding cellular stress response, in particular the UPR, in retinal diseases, highlighting the potential roles of UPR pathways in regulation of cellular metabolism and mitochondrial function in retinal neurons. Further, we provide perspective on the promise and challenges for targeting the UPR pathways as a new therapeutic approach in age- and disease-related retinal degeneration.
Collapse
Affiliation(s)
- Todd McLaughlin
- Department of Ophthalmology and Ira G. Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 955 Main Street, Buffalo, NY, 14203, USA
| | - Andy Medina
- Department of Ophthalmology and Ira G. Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 955 Main Street, Buffalo, NY, 14203, USA
| | - Jacob Perkins
- Department of Ophthalmology and Ira G. Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 955 Main Street, Buffalo, NY, 14203, USA
| | - Maria Yera
- Department of Ophthalmology and Ira G. Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 955 Main Street, Buffalo, NY, 14203, USA.,Neuroscience Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Joshua J Wang
- Department of Ophthalmology and Ira G. Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 955 Main Street, Buffalo, NY, 14203, USA.,Neuroscience Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Sarah X Zhang
- Department of Ophthalmology and Ira G. Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 955 Main Street, Buffalo, NY, 14203, USA. .,Neuroscience Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA. .,Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA.
| |
Collapse
|
4
|
Abstract
Cells respond to viral infections through sensors that detect non-self-molecules, and through effectors, which can have direct antiviral activities or adapt cell physiology to limit viral infection and propagation. Eukaryotic translation initiation factor 2 alpha kinase 2, better known as PKR, acts as both a sensor and an effector in the response to viral infections. After sensing double-stranded RNA molecules in infected cells, PKR self-activates and majorly exerts its antiviral function by blocking the translation machinery and inducing apoptosis. The antiviral potency of PKR is emphasized by the number of strategies developed by viruses to antagonize the PKR pathway. In this review, we present an update on the diversity of such strategies, which range from preventing double-stranded RNA recognition upstream from PKR activation, to activating eIF2B downstream from PKR targets.
Collapse
Affiliation(s)
- Teresa Cesaro
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Thomas Michiels
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
5
|
Dual topology of co-chaperones at the membrane of the endoplasmic reticulum. Cell Death Discov 2021; 7:203. [PMID: 34354047 PMCID: PMC8342575 DOI: 10.1038/s41420-021-00594-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/08/2021] [Accepted: 07/22/2021] [Indexed: 11/08/2022] Open
Abstract
Dual topologies of proteins at the ER membrane are known for a variety of proteins allowing the same protein to exert different functions according to the topology adopted. A dual topology of the co-chaperone ERdj4, which resides in the endoplasmic reticulum (ER), was proposed recently, a thesis that we found to align all published data and existing controversies into one whole picture. The aim of this review is to reassess all primary data available in the literature on ER-resident Hsp40 co-chaperones with respect to their topology. After careful and critical analyses of all experimental data published so far, we identified, next to ERdj4, two other co-chaperones, ERdj3 and ERdj6, that also display features of a dual topology at the ER membrane. We assume that during cellular stress subpools of some ER-resident J protein can alter their topology so that these proteins can exert different functions in order to adapt to cellular stress.
Collapse
|
6
|
Girardin SE, Cuziol C, Philpott DJ, Arnoult D. The eIF2α kinase HRI in innate immunity, proteostasis, and mitochondrial stress. FEBS J 2020; 288:3094-3107. [DOI: 10.1111/febs.15553] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/09/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Stephen E. Girardin
- Department of Laboratory Medicine and Pathobiology University of Toronto ON Canada
| | - Camille Cuziol
- INSERM UMR_S 1197 Hôpital Paul Brousse Villejuif France
- Université Paris‐Saclay France
| | | | - Damien Arnoult
- INSERM UMR_S 1197 Hôpital Paul Brousse Villejuif France
- Université Paris‐Saclay France
| |
Collapse
|
7
|
Johnston BP, McCormick C. Herpesviruses and the Unfolded Protein Response. Viruses 2019; 12:E17. [PMID: 31877732 PMCID: PMC7019427 DOI: 10.3390/v12010017] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/19/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023] Open
Abstract
Herpesviruses usurp cellular stress responses to promote viral replication and avoid immune surveillance. The unfolded protein response (UPR) is a conserved stress response that is activated when the protein load in the ER exceeds folding capacity and misfolded proteins accumulate. The UPR aims to restore protein homeostasis through translational and transcriptional reprogramming; if homeostasis cannot be restored, the UPR switches from "helper" to "executioner", triggering apoptosis. It is thought that the burst of herpesvirus glycoprotein synthesis during lytic replication causes ER stress, and that these viruses may have evolved mechanisms to manage UPR signaling to create an optimal niche for replication. The past decade has seen considerable progress in understanding how herpesviruses reprogram the UPR. Here we provide an overview of the molecular events of UPR activation, signaling and transcriptional outputs, and highlight key evidence that herpesviruses hijack the UPR to aid infection.
Collapse
Affiliation(s)
- Benjamin P. Johnston
- Department of Microbiology & Immunology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada;
- Beatrice Hunter Cancer Research Institute, 5850 College Street, Halifax, NS B3H 4R2, Canada
| | - Craig McCormick
- Department of Microbiology & Immunology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada;
- Beatrice Hunter Cancer Research Institute, 5850 College Street, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
8
|
Abdel-Nour M, Carneiro LAM, Downey J, Tsalikis J, Outlioua A, Prescott D, Costa LSD, Hovingh ES, Farahvash A, Gaudet RG, Molinaro R, van Dalen R, Lau CCY, Azimi FC, Escalante NK, Trotman-Grant A, Lee JE, Gray-Owen SD, Divangahi M, Chen JJ, Philpott DJ, Arnoult D, Girardin SE. The heme-regulated inhibitor is a cytosolic sensor of protein misfolding that controls innate immune signaling. Science 2019; 365:eaaw4144. [PMID: 31273097 PMCID: PMC10433729 DOI: 10.1126/science.aaw4144] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/16/2019] [Accepted: 06/07/2019] [Indexed: 12/13/2022]
Abstract
Multiple cytosolic innate sensors form large signalosomes after activation, but this assembly needs to be tightly regulated to avoid accumulation of misfolded aggregates. We found that the eIF2α kinase heme-regulated inhibitor (HRI) controls NOD1 signalosome folding and activation through a process requiring eukaryotic initiation factor 2α (eIF2α), the transcription factor ATF4, and the heat shock protein HSPB8. The HRI/eIF2α signaling axis was also essential for signaling downstream of the innate immune mediators NOD2, MAVS, and TRIF but dispensable for pathways dependent on MyD88 or STING. Moreover, filament-forming α-synuclein activated HRI-dependent responses, which suggests that the HRI pathway may restrict toxic oligomer formation. We propose that HRI, eIF2α, and HSPB8 define a novel cytosolic unfolded protein response (cUPR) essential for optimal innate immune signaling by large molecular platforms, functionally homologous to the PERK/eIF2α/HSPA5 axis of the endoplasmic reticulum UPR.
Collapse
Affiliation(s)
- Mena Abdel-Nour
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Leticia A. M. Carneiro
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Jeffrey Downey
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Jessica Tsalikis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Ahmed Outlioua
- INSERM U1197, Hôpital Paul Brousse, Bâtiment Lavoisier, 94807 Villejuif Cedex, France
- Molecular Genetics and Immunophysiopathology Research Team, Health and Environment Laboratory, Aïn Chock Faculty of Sciences, Hassan II University of Casablanca, Casablanca, Morocco
| | - Dave Prescott
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | | | - Elise S. Hovingh
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Armin Farahvash
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Ryan G. Gaudet
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Raphael Molinaro
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Rob van Dalen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Charles C. Y. Lau
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Farshad C. Azimi
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | | | | | - Jeffrey E. Lee
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Scott D. Gray-Owen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Maziar Divangahi
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Jane-Jane Chen
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dana J. Philpott
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Damien Arnoult
- INSERM U1197, Hôpital Paul Brousse, Bâtiment Lavoisier, 94807 Villejuif Cedex, France
| | - Stephen E. Girardin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Lee YS, Kunkeaw N, Lee YS. Protein kinase R and its cellular regulators in cancer: An active player or a surveillant? WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 11:e1558. [PMID: 31231984 DOI: 10.1002/wrna.1558] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 12/12/2022]
Abstract
Protein kinase R (PKR), originally known as an antiviral protein, senses various stresses as well as pathogen-driven double-stranded RNAs. Thereby activated PKR provokes diverse downstream events, including eIF2α phosphorylation and nuclear factor kappa-light-chain-enhancer of activated B cells activation. Consequently, PKR induces apoptosis and inflammation, both of which are highly important in cancer as much as its original antiviral role. Therefore, cellular proteins and RNAs should tightly control PKR activity. PKR and its regulators are often dysregulated in cancer and it is undoubted that such dysregulation contributes to tumorigenesis. However, PKR's precise role in cancer is still in debate, due to incomprehensible and even contradictory data. In this review, we introduce important cellular PKR regulators and discuss about their roles in cancer. Among them, we pay particular attention to nc886, a PKR repressor noncoding RNA that has been identified relatively recently, because its expression pattern in cancer can explain interesting yet obscure oncologic aspects of PKR. Based on nc886 and its regulation of PKR, we have proposed a tumor surveillance model, which reconciles contradictory data about PKR in cancer. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Yong Sun Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Nawapol Kunkeaw
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Yeon-Su Lee
- Division of Clinical Research, Research Institute, National Cancer Center, Goyang, Korea
| |
Collapse
|
10
|
Smad7 knockdown activates protein kinase RNA-associated eIF2α pathway leading to colon cancer cell death. Cell Death Dis 2017; 8:e2681. [PMID: 28300830 PMCID: PMC5386514 DOI: 10.1038/cddis.2017.103] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/10/2017] [Accepted: 02/13/2017] [Indexed: 02/06/2023]
Abstract
Upregulation of Smad7, an inhibitor of transforming growth factor-β1 (TGF-β1), occurs in sporadic colorectal cancer (CRC) and knockdown of Smad7 inhibits CRC cell growth, a phenomenon that associates with decreased expression of cell division cycle 25 homolog A and arrest of cells in the S phase of the cell cycle. These findings occur in CRC cells unresponsive to TGF-β1, thus suggesting the existence of a Smad7-mediated TGF-β1-independent mechanism that controls CRC cell behavior. Here we show that Smad7 inhibition with a specific Smad7 antisense oligonucleotide upregulates eukaryotic translation initiation factor 2α (eIF2α) phosphorylation, a transcription factor involved in the regulation of cell cycle arrest and induction of cell death, and induces activating transcription factor 4 (ATF4) and CCAAT/enhancer binding protein homology protein (CHOP), two downstream targets of eIF2α. Among the upstream kinases that control eIF2α phosphorylation, the serine-threonine protein kinase RNA (PKR), but not general control non-derepressible 2 (GCN2) and protein kinase RNA-like endoplasmic reticulum kinase (PERK), is activated by Smad7 knockdown. PKR silencing abolishes Smad7 antisense-induced eIF2α phosphorylation and ATF4/CHOP induction, thereby preventing Smad7 antisense-driven cell death. Smad7 inhibition diminishes interaction of PKR with protein kinase inhibitor p58 (p58IPK), a cellular inhibitor of PKR, but does not change the expression and/or activity of other factors involved in the control of PKR activation. These findings delineate a novel mechanism by which Smad7 knockdown promotes CRC cell death.
Collapse
|
11
|
p58(IPK) suppresses NLRP3 inflammasome activation and IL-1β production via inhibition of PKR in macrophages. Sci Rep 2016; 6:25013. [PMID: 27113095 PMCID: PMC4845006 DOI: 10.1038/srep25013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/04/2016] [Indexed: 02/07/2023] Open
Abstract
The NLRP3 inflammasome activation is a key signaling event for activation and secretion of pro-inflammatory cytokines such as IL-1β from macrophages. p58IPK is a molecular chaperone that regulates protein homeostasis through inhibiting eIF-2α kinases including double-stranded RNA–dependent protein kinase (PKR), which has been recently implicated in inflammasome activation. Herein we investigate the role of p58IPK in TLR4 signaling and inflammasome activation in macrophages. Primary bone marrow-derived macrophages (BMDM) was isolated from p58IPK knockout (KO) and wildtype (WT) mice and treated with lipopolysaccharide (LPS) and ATP to activate TLR4 signaling and stimulate inflammasome activation. Compared to WT macrophages, p58IPK deficient cells demonstrated significantly stronger activation of PKR, NF-κB, and JNK and higher expression of pro-inflammatory genes TNF-α and IL-1β. Coincidently, p58IPK deletion intensified NLRP3-inflammasome activation indicated by enhanced caspase 1 cleavage and increased IL-1β maturation and secretion. Pretreatment with specific PKR inhibitor or overexpression of p58IPK largely abolished the changes in inflammasome activation and IL-1β secretion in p58IPK null macrophages. Furthermore, immunoprecipitation assay confirmed the binding of p58IPK with PKR, but not other TLR4 downstream signaling molecules. Collectively, these results suggest a novel and crucial role of p58IPK in regulation of inflammasome activation and IL-1β secretion in macrophages.
Collapse
|
12
|
Dickerman BK, White CL, Kessler PM, Sadler AJ, Williams BRG, Sen GC. The protein activator of protein kinase R, PACT/RAX, negatively regulates protein kinase R during mouse anterior pituitary development. FEBS J 2015; 282:4766-81. [PMID: 26414443 DOI: 10.1111/febs.13533] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/23/2015] [Accepted: 09/24/2015] [Indexed: 11/27/2022]
Abstract
The murine double-stranded RNA-binding protein termed protein kinase R (PKR)-associated protein X (RAX) and the human homolog, protein activator of PKR (PACT), were originally characterized as activators of PKR. Mice deficient in RAX show reproductive and developmental defects, including reduced body size, craniofacial defects and anterior pituitary hypoplasia. As these defects are not observed in PKR-deficient mice, the phenotype has been attributed to PKR-independent activities of RAX. Here we further investigated the involvement of PKR in the physiological function of RAX, by generating rax(-/-) mice deficient in PKR, or carrying a kinase-inactive mutant of PKR (K271R) or an unphosphorylatable mutant of the PKR substrate eukaryotic translation initiation factor 2 α subunit (eIF2α) (S51A). Ablating PKR expression rescued the developmental and reproductive deficiencies in rax(-/-) mice. Generating rax(-/-) mice with a kinase-inactive mutant of PKR resulted in similar rescue, confirming that the rax(-/-) defects are PKR dependent; specifically that the kinase activity of PKR was required for these defects. Moreover, generating rax(-/-) mice that were heterozygous for an unphosphorylatable mutant eIF2α provides partial rescue of the rax(-/-) defect, consistent with mutation of one copy of the Eif2s1 gene. These observations were further investigated in vitro by reducing RAX expression in anterior pituitary cells, resulting in increased PKR activity and induction of the PKR-regulated cyclin-dependent kinase inhibitor p21(WAF1/CIP1). These results demonstrate that PKR kinase activity is required for onset of the rax(-/-) phenotype, implying an unexpected function for RAX as a negative regulator of PKR in the context of postnatal anterior pituitary tissue, and identify a critical role for the regulation of PKR activity for normal development.
Collapse
Affiliation(s)
- Benjamin K Dickerman
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, OH, USA.,Graduate Program in Molecular Virology, Case Western Reserve University, Cleveland, OH, USA
| | - Christine L White
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, OH, USA
| | - Patricia M Kessler
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, OH, USA
| | - Anthony J Sadler
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Bryan R G Williams
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Ganes C Sen
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, OH, USA.,Graduate Program in Molecular Virology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
13
|
p58IPK is an inhibitor of the eIF2α kinase GCN2 and its localization and expression underpin protein synthesis and ER processing capacity. Biochem J 2015; 465:213-25. [PMID: 25329545 DOI: 10.1042/bj20140852] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
One of the key cellular responses to stress is the attenuation of mRNA translation and protein synthesis via the phosphorylation of eIF2α (eukaryotic translation initiation factor 2α). This is mediated by four eIF2α kinases and it has been suggested that each kinase is specific to the cellular stress imposed. In the present study, we show that both PERK (PKR-like endoplasmic reticulum kinase/eIF2α kinase 3) and GCN2 (general control non-derepressible 2/eIF2α kinase 4) are required for the stress responses associated with conditions encountered by cells overexpressing secreted recombinant protein. Importantly, whereas GCN2 is the kinase that is activated following cold-shock/hypothermic culturing of mammalian cells, PERK and GCN2 have overlapping functions since knockdown of one of these at the mRNA level is compensated for by the cell by up-regulating levels of the other. The protein p58IPK {also known as DnaJ3C [DnaJ heat-shock protein (hsp) 40 homologue, subfamily C, member 3]} is known to inhibit the eIF2α kinases PKR (dsRNA-dependent protein kinase/eIF2α kinase 2) and PERK and hence prevent or delay eIF2α phosphorylation and consequent inhibition of translation. However, we show that p58IPK is a general inhibitor of the eIF2α kinases in that it also interacts with GCN2. Thus forced overexpression of cytoplasmic p58 delays eIF2α phosphorylation, suppresses GCN2 phosphorylation and prolongs protein synthesis under endoplasmic reticulum (ER), hypothermic and prolonged culture stress conditions. Taken together, our data suggest that there is considerable cross talk between the eIF2α kinases to ensure that protein synthesis is tightly regulated. Their activation is controlled by p58 and the expression levels and localization of this protein are crucial in the capacity the cells to respond to cellular stress via control of protein synthesis rates and subsequent folding in the ER.
Collapse
|
14
|
Boriushkin E, Wang JJ, Li J, Jing G, Seigel GM, Zhang SX. Identification of p58IPK as a novel neuroprotective factor for retinal neurons. Invest Ophthalmol Vis Sci 2015; 56:1374-86. [PMID: 25655802 DOI: 10.1167/iovs.14-15196] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
PURPOSE Endoplasmic reticulum (ER)-resident chaperone protein p58(IPK) plays a vital role in regulation of protein folding and biosynthesis. The goal of this study was to examine the role of p58(IPK) in retinal neuronal cells under normal and stressed conditions. METHODS Retinal expression of p58(IPK), retinal morphology, apoptosis, ER stress, and apoptotic gene expression were examined in p58(IPK) knockout (KO) and/or wild-type (WT) mice with or without intravitreal injection of N-methyl-D-aspartic acid (NMDA). In in vitro experiments, differentiated R28 retinal neuronal cells transduced with adenovirus encoding p58(IPK) (Ad-p58(IPK)) or control virus (Ad-LacZ) were exposed to tunicamycin (TM) or hydrogen peroxide (H2O2). Levels of ER stress, apoptosis, and cell survival were evaluated. RESULTS Chaperone protein p58(IPK) is expressed predominantly in retinal ganglion cells (RGC), inner retinal neurons, and the photoreceptor inner segments. Mice lacking p58(IPK) exhibited increased CHOP expression and loss of RGCs with aging (8-10 months). Intravitreal injection of NMDA induced retinal ER stress and increased p58(IPK) expression in WT mice; this resulted in greater ER stress and enhanced RGC apoptosis in p58(IPK) KO mice. In cultured R28 cells, overexpression of p58(IPK) significantly reduced eIF2α phosphorylation, decreased CHOP expression, and alleviated the activation of caspase-3 and PARP. Overexpression of p58(IPK) also protected against oxidative and ER stress-induced cell apoptosis. Furthermore, p58(IPK) downregulated the proapoptotic gene Bax and upregulated the antiapoptotic gene Bcl-2 expression in stressed R28 cells. CONCLUSIONS Our study has demonstrated a protective role of p58(IPK) in retinal neurons, which may act in part through a mechanism involving modulation of ER homeostasis and apoptosis, particularly under conditions of cellular stresses.
Collapse
Affiliation(s)
- Evgenii Boriushkin
- Department of Ophthalmology and Biochemistry/Ross Eye Institute, University at Buffalo/SUNY, Buffalo, New York, United States SUNY Eye Institute, State University of New York, Buffalo, New York, United States
| | - Joshua J Wang
- Department of Ophthalmology and Biochemistry/Ross Eye Institute, University at Buffalo/SUNY, Buffalo, New York, United States
| | - Junhua Li
- Department of Ophthalmology and Biochemistry/Ross Eye Institute, University at Buffalo/SUNY, Buffalo, New York, United States SUNY Eye Institute, State University of New York, Buffalo, New York, United States
| | - Guangjun Jing
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Gail M Seigel
- SUNY Eye Institute, State University of New York, Buffalo, New York, United States Center for Hearing & Deafness, University at Buffalo, Buffalo/SUNY, New York, United States
| | - Sarah X Zhang
- Department of Ophthalmology and Biochemistry/Ross Eye Institute, University at Buffalo/SUNY, Buffalo, New York, United States
| |
Collapse
|
15
|
Arriens C, Mohan C. Systemic lupus erythematosus diagnostics in the 'omics' era. ACTA ACUST UNITED AC 2013; 8:671-687. [PMID: 24860621 DOI: 10.2217/ijr.13.59] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Systemic lupus erythematosus is a complex autoimmune disease affecting multiple organ systems. Currently, diagnosis relies upon meeting at least four out of eleven criteria outlined by the ACR. The scientific community actively pursues discovery of novel diagnostics in the hope of better identifying susceptible individuals in early stages of disease. Comprehensive studies have been conducted at multiple biological levels including: DNA (or genomics), mRNA (or transcriptomics), protein (or proteomics) and metabolites (or metabolomics). The 'omics' platforms allow us to re-examine systemic lupus erythematosus at a greater degree of molecular resolution. More importantly, one is hopeful that these 'omics' platforms may yield newer biomarkers for systemic lupus erythematosus that can help clinicians track the disease course with greater sensitivity and specificity.
Collapse
Affiliation(s)
- Cristina Arriens
- Rheumatic Diseases Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-8884, USA
| | - Chandra Mohan
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Blvd, Room 2018, Houston, TX 77204, USA
| |
Collapse
|
16
|
Jiang P, Wen J, Song H, Chen X, Sun Y, Huo X, Zhang D. Characterization of porcine P58IPK gene and its up-regulation after H1N1 or H3N2 influenza virus infection. J Clin Virol 2013; 58:120-6. [PMID: 23827789 DOI: 10.1016/j.jcv.2013.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/27/2013] [Accepted: 06/04/2013] [Indexed: 12/25/2022]
Abstract
BACKGROUND The 58-kDa inhibitor of the interferon-induced double-stranded RNA-activated protein kinase (P58IPK) is a cellular protein that is activated during influenza virus infection. Although the function of human P58IPK has been studied for a long time, porcine P58IPK (pP58IPK) has little been studied except for its cloning. OBJECTIVE In this study, we aimed to investigate the characteristics of the pP58IPK gene, determine its subcellular localization, and find its expression change during H1N1 or H3N2 infection. STUDY DESIGN First, the sequence and structure of pP58IPK were analyzed. Second, pP58IPK gene was cloned into pEGFP-N1 and pEGFP-C1 vectors, respectively, which were transfected into cells to determine its subcellular localization. Third, Lung tissues of piglets from H1N1 infected, H3N2 infected and control groups were analyzed using histopathology, real-time PCR, and immunohistochemistry. RESULTS The sequence and structure of pP58IPK was highly similar to the counterpart of human. pP58IPK protein distributed only in the cytoplasm. Lung tissues of piglets infected by H1N1 or H3N2 appeared obvious pathological changes, and the expression of pP58IPK in both mRNA and protein level was up-regulated by approximate 1.5-fold in piglets infected by H1N1 or H3N2 comparing with control piglets. CONCLUSIONS We analyzed the characteristics of the pP58IPK gene, constructed a phylogenetic tree, determined its subcellular localization, and investigated its expression changes during H1N1 or H3N2 infection. The fundamental data accumulated in this study provides a potential medical model for investigating the function of P58IPK during influenza A viruses infection.
Collapse
Affiliation(s)
- Pengfei Jiang
- MOA Key Laboratory of Animal Biotechnology of National Ministry of Agriculture, Institute of Veterinary Immunology, Northwest A&F University, Yangling, 712100, Xi'an City, Shaanxi Province, PR China
| | | | | | | | | | | | | |
Collapse
|
17
|
Gao D, Bambang IF, Putti TC, Lee YK, Richardson DR, Zhang D. ERp29 induces breast cancer cell growth arrest and survival through modulation of activation of p38 and upregulation of ER stress protein p58IPK. J Transl Med 2012; 92:200-13. [PMID: 22064321 DOI: 10.1038/labinvest.2011.163] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Endoplasmic reticulum protein 29 (ERp29) is an ER luminal protein that has a role in protein unfolding and secretion, but its role in cancer is unclear. Recently, we reported that overexpression of ERp29 significantly inhibited cell proliferation and prevented tumorigenesis in highly proliferative MDA-MB-231 breast cancer cells. Here, we show that ERp29-induced cancer cell growth arrest is modulated by the interplay between the concomitant phosphorylation of p38 and upregulation of the inhibitor of the interferon-induced, double-stranded RNA-activated protein kinase, p58(IPK). In this cell model, ERp29 overexpression significantly downregulates modulators of cell proliferation, namely urokinase plasminogen activator receptor, β(1)-integrin and epidermal growth factor receptor. Furthermore, ERp29 significantly (P<0.001) increases phosphorylation of p38 (p-p38) and reduces matrix metalloproteinase-9 secretion. The role of ERp29 in upregulating cyclin-dependent kinase inhibitors (p15 and p21) and in downregulating cyclin D(2) is demonstrated in slowly proliferating ERp29-overexpressing MDA-MB-231 cells, whereas the opposite response was observed in ERp29-knockdown MCF-7 cells. Pharmacological inhibition of p-p38 downregulates p15 and p21 and inhibits eIF2α phosphorylation, indicating a role for p-p38 in this process. Furthermore, p58(IPK) expression was increased in ERp29-overexpressing MDA-MB-231 cells and highly decreased in ERp29-knockdown MCF-7 cells. This upregulation of p58(IPK) by ERp29 suppresses the activation of p-p38/p-PERK/p-eIF2α by repressing eIF2α phosphorylation. In fact, reduction of p58(IPK) expression by RNA interference stimulated eIF2α phosphorylation. The repression of eIF2α phosphorylation by p58(IPK) prevents ERp29-transfected cells from undergoing ER-dependent apoptosis driven by the activation of ATF4/CHOP/caspase-3. Hence, the interplay between p38 phosphorylation and p58(IPK) upregulation has key roles in modulating ERp29-induced cell-growth arrest and survival.
Collapse
Affiliation(s)
- Danmei Gao
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
18
|
Sharma K, Tripathi S, Ranjan P, Kumar P, Garten R, Deyde V, Katz JM, Cox NJ, Lal RB, Sambhara S, Lal SK. Influenza A virus nucleoprotein exploits Hsp40 to inhibit PKR activation. PLoS One 2011; 6:e20215. [PMID: 21698289 PMCID: PMC3115951 DOI: 10.1371/journal.pone.0020215] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 04/15/2011] [Indexed: 02/08/2023] Open
Abstract
Background Double-stranded RNA dependent protein kinase (PKR) is a key regulator of the anti-viral innate immune response in mammalian cells. PKR activity is regulated by a 58 kilo Dalton cellular inhibitor (P58IPK), which is present in inactive state as a complex with Hsp40 under normal conditions. In case of influenza A virus (IAV) infection, P58IPK is known to dissociate from Hsp40 and inhibit PKR activation. However the influenza virus component responsible for PKR inhibition through P58IPK activation was hitherto unknown. Principal Findings Human heat shock 40 protein (Hsp40) was identified as an interacting partner of Influenza A virus nucleoprotein (IAV NP) using a yeast two-hybrid screen. This interaction was confirmed by co-immunoprecipitation studies from mammalian cells transfected with IAV NP expressing plasmid. Further, the IAV NP-Hsp40 interaction was validated in mammalian cells infected with various seasonal and pandemic strains of influenza viruses. Cellular localization studies showed that NP and Hsp40 co-localize primarily in the nucleus. During IAV infection in mammalian cells, expression of NP coincided with the dissociation of P58IPK from Hsp40 and decrease PKR phosphorylation. We observed that, plasmid based expression of NP in mammalian cells leads to decrease in PKR phosphorylation. Furthermore, inhibition of NP expression during influenza virus replication led to PKR activation and concomitant increase in eIF2α phosphorylation. Inhibition of NP expression also led to reduced IRF3 phosphorylation, enhanced IFN β production and concomitant reduction of virus replication. Taken together our data suggest that NP is the viral factor responsible for P58IPK activation and subsequent inhibition of PKR-mediated host response during IAV infection. Significance Our findings demonstrate a novel role of IAV NP in inhibiting PKR-mediated anti-viral host response and help us understand P58IPK mediated inhibition of PKR activity during IAV infection.
Collapse
Affiliation(s)
- Kulbhushan Sharma
- Virology Group, International Centre for Genetic Engineering & Biotechnology, New Delhi, India
| | - Shashank Tripathi
- Virology Group, International Centre for Genetic Engineering & Biotechnology, New Delhi, India
| | - Priya Ranjan
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Purnima Kumar
- Virology Group, International Centre for Genetic Engineering & Biotechnology, New Delhi, India
| | - Rebecca Garten
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Varough Deyde
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jacqueline M. Katz
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Nancy J. Cox
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Renu B. Lal
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Suryaprakash Sambhara
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Sunil K. Lal
- Virology Group, International Centre for Genetic Engineering & Biotechnology, New Delhi, India
- * E-mail:
| |
Collapse
|
19
|
Tong L, Heim RA, Wu S. Nitric oxide: a regulator of eukaryotic initiation factor 2 kinases. Free Radic Biol Med 2011; 50:1717-25. [PMID: 21463677 PMCID: PMC3096732 DOI: 10.1016/j.freeradbiomed.2011.03.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 03/24/2011] [Accepted: 03/26/2011] [Indexed: 12/18/2022]
Abstract
Generation of nitric oxide (NO(•)) can upstream induce and downstream mediate the kinases that phosphorylate the α subunit of eukaryotic initiation factor 2 (eIF2α), which plays a critical role in regulating gene expression. There are four known eIF2α kinases (EIF2AKs), and NO(•) affects each one uniquely. Whereas NO(•) directly activates EIF2AK1 (HRI), it indirectly activates EIF2AK3 (PERK). EIF2AK4 (GCN2) is activated by depletion of l-arginine, which is used by nitric oxide synthase (NOS) during the production of NO(•). Finally EIF2AK2 (PKR), which can mediate inducible NOS expression and therefore NO(•) production, can also be activated by NO(•). The production of NO(•) and activation of EIF2AKs coordinately regulate physiological and pathological events such as innate immune response and cell apoptosis.
Collapse
Affiliation(s)
| | | | - Shiyong Wu
- Address correspondence to: Dr. Shiyong Wu, Edison Biotechnology Institute, 101 Konneker Laboratories, The Ridges, Building 25, Athens, OH 45701, Tel. (740) 597-1318, Fax (740) 593-4795;
| |
Collapse
|
20
|
Cruz JLG, Sola I, Becares M, Alberca B, Plana J, Enjuanes L, Zuñiga S. Coronavirus gene 7 counteracts host defenses and modulates virus virulence. PLoS Pathog 2011; 7:e1002090. [PMID: 21695242 PMCID: PMC3111541 DOI: 10.1371/journal.ppat.1002090] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 04/12/2011] [Indexed: 12/14/2022] Open
Abstract
Transmissible gastroenteritis virus (TGEV) genome contains three accessory genes: 3a, 3b and 7. Gene 7 is only present in members of coronavirus genus a1, and encodes a hydrophobic protein of 78 aa. To study gene 7 function, a recombinant TGEV virus lacking gene 7 was engineered (rTGEV-Δ7). Both the mutant and the parental (rTGEV-wt) viruses showed the same growth and viral RNA accumulation kinetics in tissue cultures. Nevertheless, cells infected with rTGEV-Δ7 virus showed an increased cytopathic effect caused by an enhanced apoptosis mediated by caspase activation. Macromolecular synthesis analysis showed that rTGEV-Δ7 virus infection led to host translational shut-off and increased cellular RNA degradation compared with rTGEV-wt infection. An increase of eukaryotic translation initiation factor 2 (eIF2α) phosphorylation and an enhanced nuclease, most likely RNase L, activity were observed in rTGEV-Δ7 virus infected cells. These results suggested that the removal of gene 7 promoted an intensified dsRNA-activated host antiviral response. In protein 7 a conserved sequence motif that potentially mediates binding to protein phosphatase 1 catalytic subunit (PP1c), a key regulator of the cell antiviral defenses, was identified. We postulated that TGEV protein 7 may counteract host antiviral response by its association with PP1c. In fact, pull-down assays demonstrated the interaction between TGEV protein 7, but not a protein 7 mutant lacking PP1c binding motif, with PP1. Moreover, the interaction between protein 7 and PP1 was required, during the infection, for eIF2α dephosphorylation and inhibition of cell RNA degradation. Inoculation of newborn piglets with rTGEV-Δ7 and rTGEV-wt viruses showed that rTGEV-Δ7 virus presented accelerated growth kinetics and pathology compared with the parental virus. Overall, the results indicated that gene 7 counteracted host cell defenses, and modified TGEV persistence increasing TGEV survival. Therefore, the acquisition of gene 7 by the TGEV genome most likely has provided a selective advantage to the virus.
Collapse
Affiliation(s)
- Jazmina L. G. Cruz
- Centro Nacional de Biotecnología, CNB, CSIC, Department of Molecular and Cell Biology, Darwin 3, Campus Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Isabel Sola
- Centro Nacional de Biotecnología, CNB, CSIC, Department of Molecular and Cell Biology, Darwin 3, Campus Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Martina Becares
- Centro Nacional de Biotecnología, CNB, CSIC, Department of Molecular and Cell Biology, Darwin 3, Campus Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | | | | | - Luis Enjuanes
- Centro Nacional de Biotecnología, CNB, CSIC, Department of Molecular and Cell Biology, Darwin 3, Campus Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
- * E-mail:
| | - Sonia Zuñiga
- Centro Nacional de Biotecnología, CNB, CSIC, Department of Molecular and Cell Biology, Darwin 3, Campus Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| |
Collapse
|
21
|
Abstract
Transmissible gastroenteritis virus (TGEV) genome contains three accessory genes: 3a, 3b and 7. Gene 7 is only present in members of coronavirus genus a1, and encodes a hydrophobic protein of 78 aa. To study gene 7 function, a recombinant TGEV virus lacking gene 7 was engineered (rTGEV-Δ7). Both the mutant and the parental (rTGEV-wt) viruses showed the same growth and viral RNA accumulation kinetics in tissue cultures. Nevertheless, cells infected with rTGEV-Δ7 virus showed an increased cytopathic effect caused by an enhanced apoptosis mediated by caspase activation. Macromolecular synthesis analysis showed that rTGEV-Δ7 virus infection led to host translational shut-off and increased cellular RNA degradation compared with rTGEV-wt infection. An increase of eukaryotic translation initiation factor 2 (eIF2α) phosphorylation and an enhanced nuclease, most likely RNase L, activity were observed in rTGEV-Δ7 virus infected cells. These results suggested that the removal of gene 7 promoted an intensified dsRNA-activated host antiviral response. In protein 7 a conserved sequence motif that potentially mediates binding to protein phosphatase 1 catalytic subunit (PP1c), a key regulator of the cell antiviral defenses, was identified. We postulated that TGEV protein 7 may counteract host antiviral response by its association with PP1c. In fact, pull-down assays demonstrated the interaction between TGEV protein 7, but not a protein 7 mutant lacking PP1c binding motif, with PP1. Moreover, the interaction between protein 7 and PP1 was required, during the infection, for eIF2α dephosphorylation and inhibition of cell RNA degradation. Inoculation of newborn piglets with rTGEV-Δ7 and rTGEV-wt viruses showed that rTGEV-Δ7 virus presented accelerated growth kinetics and pathology compared with the parental virus. Overall, the results indicated that gene 7 counteracted host cell defenses, and modified TGEV persistence increasing TGEV survival. Therefore, the acquisition of gene 7 by the TGEV genome most likely has provided a selective advantage to the virus.
Collapse
|
22
|
Tao J, Sha B. Structural insight into the protective role of P58(IPK) during unfolded protein response. Methods Enzymol 2011; 490:259-70. [PMID: 21266255 DOI: 10.1016/b978-0-12-385114-7.00015-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
P58(IPK) has been identified as an ER molecular chaperone to maintain protein-folding homeostasis. P58(IPK) expression can be significantly upregulated during unfolded protein responses (UPR), and it may play important roles in suppressing the ER protein aggregations. To investigate the mechanism how P58(IPK) functions to promote protein folding within ER, we have determined the crystal structure of P58(IPK) TPR domain at 2.5Å resolution. P58(IPK) contains nine TPR motifs and a C-terminal J domain within its primary sequence. The crystal structure of P58(IPK) revealed three subdomains (I, II, and III) with similar folds and each domain contains three TPR motifs. Our data also showed that P58(IPK) acts as a molecular chaperone by interacting with the unfolded proteins such as luciferase, rhodanese, and insulin. The P58(IPK) structure reveals a conserved hydrophobic patch located in subdomain I that may be involved in binding the misfolded polypeptides. We have proposed a working model for P58(IPK) to act together with Bip to prevent protein aggregations and promote protein foldings within ER.
Collapse
Affiliation(s)
- Jiahui Tao
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | |
Collapse
|
23
|
Yángüez E, Nieto A. So similar, yet so different: selective translation of capped and polyadenylated viral mRNAs in the influenza virus infected cell. Virus Res 2010; 156:1-12. [PMID: 21195735 DOI: 10.1016/j.virusres.2010.12.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 12/22/2010] [Accepted: 12/22/2010] [Indexed: 02/05/2023]
Abstract
Influenza virus is included among the Orthomyxoviridae family and it is a major public health problem causing annual mortality worldwide. Viral mRNAs bear short capped oligonucleotide sequences at their 5'-ends, acquired from host cell pre-mRNAs during viral transcription, and are polyadenylated at their 3'-end. Therefore, viral and cellular mRNAs are undistinguishable from a structural point of view. However, selective translation of viral proteins occurs upon infection, while initiation and elongation steps of cellular mRNA translation are efficiently inhibited. Viruses do not possess the complex machinery required to translate their mRNAs and are then obliged to compete for host-cell factors and manipulate the translation apparatus to their own benefit. Thus, the understanding of the processes that govern viral translation could facilitate the finding of possible targets for anti viral interventions. In the present review, we will point out the mechanisms by which influenza virus takes control of the host-cell protein synthesis machinery to ensure the production of new viral particles. First, we will discuss the mechanisms by which the virus counteracts the anti viral translation repression induced in the infected cell. Next, we will focus on the shut-off of cellular protein synthesis and the specific requirements for the eIF4F complex on influenza mRNA translation. Finally, we will discuss the role of different cellular and viral proteins in the selective translation of viral messengers in the infected cell and we will summarize the proposed mechanisms for the recruitment of cellular translational machinery to the viral mRNAs.
Collapse
Affiliation(s)
- Emilio Yángüez
- Centro Nacional de Biotecnología, C.S.I.C., Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | | |
Collapse
|
24
|
Wu S. Localization and function of a eukaryotic-initiation-factor-2-associated 67-kDa glycoprotein. World J Biol Chem 2010; 1:313-20. [PMID: 21537465 PMCID: PMC3083933 DOI: 10.4331/wjbc.v1.i10.313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 08/19/2010] [Accepted: 08/26/2010] [Indexed: 02/05/2023] Open
Abstract
AIM: To study the localization and function of a eukaryotic initiation factor 2 (eIF2α)-associated 67-kDa glycoprotein (p67).
METHODS: Immunofluorescence staining, 35S-Met/Cys metabolic labeling, Western blotting analysis, sucrose gradient centrifugation and high speed centrifugation were used to determine the localization of proteins in transiently transfected COS-1 cells. Transient co-transfection followed by co-immunoprecipitation was used to study the interaction between p67 and double-stranded RNA (dsRNA)-dependent protein kinase (PKR). Wheat germ agglutinin agarose beads were used to absorb glycosylated proteins. In vivo32P-labeling followed by immunoprecipitation and Western blotting were used to measure PKR autophosphorylation, eIF2α phosphorylation, and p67 expression in normal and breast cancer cells.
RESULTS: The image from immunofluorescence staining showed that p67 was overexpressed in the cytosol but not in the nucleus. In a sucrose gradient, approximately 30% of the overexpressed p67 was bound with ribosomes. p67 interacted with the kinase domain, but not the dsRNA-binding domains of PKR. Only the glycosylated p67 was associated with the ribosome, and p67 did not compete with PKR for ribosome binding. In breast cancer cells, there was increased autophosphorylation of PKR but no phosphorylation of eIF2α, compared with normal breast cells.α The ratio of glycosylated/deglycosylated p67 was altered in breast cancer cells.
CONCLUSION: Glycosylation of p67 is required for its ribosomal association and can potentially inhibit PKR via interaction with the kinase domain of PKR.
Collapse
Affiliation(s)
- Shiyong Wu
- Shiyong Wu, Edison Biotechnology Institute, Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, United States
| |
Collapse
|
25
|
Luig C, Köther K, Dudek SE, Gaestel M, Hiscott J, Wixler V, Ludwig S. MAP kinase-activated protein kinases 2 and 3 are required for influenza A virus propagation and act via inhibition of PKR. FASEB J 2010; 24:4068-77. [PMID: 20484669 DOI: 10.1096/fj.10-158766] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Influenza viruses have to overcome the type I interferon induced antiviral response to successfully propagate in target cells. A major antiviral factor induced by interferons is the protein kinase R (PKR) that is further activated by dsRNA and phosphorylates the eukaryotic initiation factor 2 (eIF2α). This results in inhibition of protein translation thereby limiting viral replication. Here we describe a novel mechanism by which influenza A viruses escape the antiviral action of PKR. We demonstrate that the mitogen-activated protein kinase-activated protein kinases (MAPKAPKs) MK2 and MK3 are activated on virus infection and, in their active form, directly interact with the repressor of the inhibitor of PKR p88(rIPK). This leads to recruitment of a tetrameric protein complex consisting of p88(rIPK), the inhibitor of PKR p58(IPK) and PKR itself, and finally results in inhibition of the kinase. The importance of MKs for influenza virus propagation was further underscored by demonstrating reduced viral progeny in cells genetically deficient in MK2 or MK3 genes as well as in highly proliferating tumor cells, in which expression of MKs was diminished by specific small interfering RNA. Accordingly, knockdown of MKs resulted in enhanced phosphorylation of PKR and its substrate eIF2α.
Collapse
Affiliation(s)
- Christina Luig
- Institute of Molecular Virology, Westfälische-Wilhelms-University, D-48149 Münster, Germany
| | | | | | | | | | | | | |
Collapse
|
26
|
Kim TI, Cho PY, Song KJ, Li S, Hong SJ, Park SW, Chai JY, Shin EH. Gene expression of Clonorchis sinensis metacercaria induced by gamma irradiation. Parasitol Res 2008; 102:1143-50. [PMID: 18224473 DOI: 10.1007/s00436-008-0882-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Accepted: 01/09/2008] [Indexed: 01/01/2023]
Abstract
Gamma-rays are a form of ionizing radiation and produce serious cellular damage to nuclei and organelles. Gamma irradiation induces the expressions of genes involved in DNA repair. Clonorchis sinensis resides in and provokes pathophysiologic changes in the bile ducts of mammals. The C. sinensis metacercariae are unsusceptible or resistant to gamma irradiation with LD50 of 16.5 Gy. Using the annealing control primer-based polymerase chain reaction (PCR) method, 19 genes were found to be up-regulated in C. sinensis metacercariae exposed to gamma rays. Contigs of up-regulated genes (URGs) were retrieved in a C. sinensis expressed sequence tag pool and extended by DNA-walking. Of the 13 URGs annotated putatively as functional genes, five URGs were associated with energy metabolism, six with protein processing, and the other two with DNA repair protein RAD23 and inhibitor of apoptosis protein. Four URGs were confirmed up-regulated by gamma irradiation by quantitative real-time PCR. One unknown gene, which was up-regulated to the greatest extent, might contribute to early recovery from gamma-irradiation-induced damage. The up-regulations of genes encoding DNA repair, protein processing, and energy metabolism proteins suggests that increases in gene products orchestrate DNA lesion repair and recover cellular functions in gamma-irradiated C. sinensis metacercariae.
Collapse
Affiliation(s)
- Tae Im Kim
- Department of Parasitology, Chung-Ang University College of Medicine, Tongjak-gu, Seoul 156-756, Korea
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Feng Z, Cerveny M, Yan Z, He B. The VP35 protein of Ebola virus inhibits the antiviral effect mediated by double-stranded RNA-dependent protein kinase PKR. J Virol 2006; 81:182-92. [PMID: 17065211 PMCID: PMC1797262 DOI: 10.1128/jvi.01006-06] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The VP35 protein of Ebola virus is a viral antagonist of interferon. It acts to block virus or double-stranded RNA-mediated activation of interferon regulatory factor 3, a transcription factor that facilitates the expression of interferon and interferon-stimulated genes. In this report, we show that the VP35 protein is also able to inhibit the antiviral response induced by alpha interferon. This depends on the VP35 function that interferes with the pathway regulated by double-stranded RNA-dependent protein kinase PKR. When expressed in a heterologous system, the VP35 protein enhanced viral polypeptide synthesis and growth in Vero cells pretreated with alpha/beta interferon, displaying an interferon-resistant phenotype. In correlation, phosphorylation of PKR and eIF-2alpha was suppressed in cells expressing the VP35 protein. This activity of the VP35 protein was required for efficient viral replication in PKR+/+ but not PKR-/- mouse embryo fibroblasts. Furthermore, VP35 appears to be a RNA binding protein. Notably, a deletion of amino acids 1 to 200, but not R312A substitution in the RNA binding motif, abolished the ability of the VP35 protein to confer viral resistance to interferon. However, the R312A substitution rendered the VP35 protein unable to inhibit the induction of the beta interferon promoter mediated by virus infection. Together, these results show that the VP35 protein targets multiple pathways of the interferon system.
Collapse
Affiliation(s)
- Zongdi Feng
- Department of Microbiology and Immunology (M/C 790), College of Medicine, The University of Illinois at Chicago, 835 South Wolcott Avenue, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
28
|
Kash JC, Goodman AG, Korth MJ, Katze MG. Hijacking of the host-cell response and translational control during influenza virus infection. Virus Res 2006; 119:111-20. [PMID: 16630668 DOI: 10.1016/j.virusres.2005.10.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Revised: 09/23/2005] [Accepted: 10/20/2005] [Indexed: 11/17/2022]
Abstract
Influenza virus is a major public health problem with annual deaths in the US of 36,000 with pandemic outbreaks, such as in 1918, resulting in deaths exceeding 20 million worldwide. Recently, there is much concern over the introduction of highly pathogenic avian influenza H5N1 viruses into the human population. Influenza virus has evolved complex translational control strategies that utilize cap-dependent translation initiation mechanisms and involve the recruitment of both viral and host-cell proteins to preferentially synthesize viral proteins and prevent activation of antiviral responses. Influenza virus is a member of the Orthomyxoviridae family of negative-stranded, segmented RNA viruses and represents a particularly attractive model system as viral replication strategies are closely intertwined with normal cellular processes including the host defense and stress pathways. In this chapter, we review the parallels between translational control in influenza virus infected cells and in stressed cells with a focus on selective translation of viral mRNAs and the antagonism of the dsRNA and host antiviral responses. Moreover, we will discuss how the use of genomic technologies such as DNA microarrays and high through-put proteomics can be used to gain new insights into the control of protein synthesis during viral infection and provide a near comprehensive view of virus-host interactions.
Collapse
Affiliation(s)
- John C Kash
- Department of Microbiology, University of Washington School of Medicine, Box 358070, Seattle, WA 98195-8070, USA.
| | | | | | | |
Collapse
|
29
|
Abstract
Viral infection induces endoplasmic reticulum (ER) stress and interferon responses. While viral double-stranded RNA intermediates trigger interferon responses, viral polypeptides synthesized during infection stimulate ER stress. Among the interferon-regulated gene products, the double-stranded RNA-dependent protein kinase (PKR) plays a key role in limiting viral replication. Thus, to establish productive infection, viruses have evolved mechanisms to overcome the deleterious effects of PKR. It has become clear that ER stress causes translational attenuation and transcriptional upregulation of genes encoding proteins that facilitate folding or degradation of proteins. Notably, prolonged ER stress triggers apoptosis. Therefore, viruses are confronted with the consequences of ER stress. Emerging evidence suggests that viruses not only interfere with the interferon system involving PKR but also manipulate the programs emanating from the ER in a complex way, which may facilitate viral replication or pathogenesis. This review highlights recent progress in these areas.
Collapse
Affiliation(s)
- B He
- Department of Microbiology and Immunology, College of Medicine, The University of Illinois at Chicago, 835 South Wolcott Avenue, Chicago, IL 60612, USA.
| |
Collapse
|
30
|
Baltzis D, Qu LK, Papadopoulou S, Blais JD, Bell JC, Sonenberg N, Koromilas AE. Resistance to vesicular stomatitis virus infection requires a functional cross talk between the eukaryotic translation initiation factor 2alpha kinases PERK and PKR. J Virol 2004; 78:12747-61. [PMID: 15542627 PMCID: PMC524969 DOI: 10.1128/jvi.78.23.12747-12761.2004] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Phosphorylation of the alpha (alpha) subunit of the eukaryotic translation initiation factor 2 (eIF2) leads to the inhibition of protein synthesis in response to diverse stress conditions, including viral infection. The eIF2alpha kinase PKR has been shown to play an essential role against vesicular stomatitis virus (VSV) infection. We demonstrate here that another eIF2alpha kinase, the endoplasmic reticulum-resident protein kinase PERK, contributes to cellular resistance to VSV infection. We demonstrate that mouse embryonic fibroblasts (MEFs) from PERK(-/-) mice are more susceptible to VSV-mediated apoptosis than PERK(+/+) MEFs. The higher replication capacity of VSV in PERK(-/-) MEFs results from their inability to attenuate viral protein synthesis due to an impaired eIF2alpha phosphorylation. We also show that VSV-infected PERK(-/-) MEFs are unable to fully activate PKR, suggesting a cross talk between the two eIF2alpha kinases in virus-infected cells. These findings further implicate PERK in virus infection, and provide evidence that the antiviral and antiapoptotic roles of PERK are mediated, at least in part, via the activation of PKR.
Collapse
Affiliation(s)
- Dionissios Baltzis
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Côte-Ste-Catherine St., Montreal, Quebec H3T 1E2, Canada
| | | | | | | | | | | | | |
Collapse
|
31
|
Hii SI, Hardy L, Crough T, Payne EJ, Grimmett K, Gill D, McMillan NAJ. Loss of PKR activity in chronic lymphocytic leukemia. Int J Cancer 2004; 109:329-35. [PMID: 14961569 DOI: 10.1002/ijc.11714] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
There are a number of observations that suggest the dsRNA-activated protein kinase, PKR, may play an active role in formation and maintenance of leukemia, including nonrandom chromosomal deletions in acute leukemia as well as truncations and deletions of the PKR gene in some leukemia cell lines. However, there is little direct evidence from patient material that this is so. Here we show that full-length PKR is present but not active in 21 of 28 patient samples from B-cell chronic lymphocytic leukemia (B-CLL). PKR from these patients was unable to auto-activate or phosphorylate substrates but was able to bind dsRNA. Furthermore, the lack of PKR activation was not due to differing levels of the PKR activator, PACT nor of the PKR inhibitor, p58(IPK). We compared PKR status with clinical parameters and disease staging. No differences were found between the 2 groups in terms of staging (modified Rai or Binet), age, CD38 status, p53 status, 11q23 deletion status or CEP12 deletion status. However, there was a significant correlation between deletion in 13q14.3 and lack of PKR activity. We show that B-CLL cells appear to contain a soluble inhibitor of PKR, as lysates from cells lacking PKR activity were able to inhibit exogenous PKR in mixing experiments. Finally, we show suppression of PKR activity was still present following ultrafilitration through a 10,000 Da cutoff filter but was lost upon extraction with phenol/chloroform or by high salt washing. This data suggests loss of PKR activity may contribute to the formation and/or maintenance of CLL.
Collapse
MESH Headings
- ADP-ribosyl Cyclase/metabolism
- ADP-ribosyl Cyclase 1
- Aged
- Antigens, CD/metabolism
- Chromosomes, Human, Pair 11/genetics
- Chromosomes, Human, Pair 13/genetics
- Down-Regulation
- Enzyme Activation/drug effects
- Female
- Gene Deletion
- HSP40 Heat-Shock Proteins
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/enzymology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Male
- Membrane Glycoproteins
- Phosphorylation/drug effects
- Poly I-C
- RNA, Double-Stranded/metabolism
- RNA-Binding Proteins/pharmacology
- Repressor Proteins/pharmacology
- Tumor Cells, Cultured
- Tumor Suppressor Protein p53/metabolism
- eIF-2 Kinase/antagonists & inhibitors
- eIF-2 Kinase/genetics
- eIF-2 Kinase/metabolism
Collapse
Affiliation(s)
- Su Ing Hii
- Cancer Biology Programme, Centre for Immunology and Cancer Research, University of Queensland, Brisbane, Australia
| | | | | | | | | | | | | |
Collapse
|
32
|
Burgui I, Aragón T, Ortín J, Nieto A. PABP1 and eIF4GI associate with influenza virus NS1 protein in viral mRNA translation initiation complexes. J Gen Virol 2004; 84:3263-3274. [PMID: 14645908 DOI: 10.1099/vir.0.19487-0] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
It has previously been shown that influenza virus NS1 protein enhances the translation of viral but not cellular mRNAs. This enhancement occurs by increasing the rate of translation initiation and requires the 5'UTR sequence, common to all viral mRNAs. In agreement with these findings, we show here that viral mRNAs, but not cellular mRNAs, are associated with NS1 during virus infection. We have previously reported that NS1 interacts with the translation initiation factor eIF4GI, next to its poly(A)-binding protein 1 (PABP1)-interacting domain and that NS1 and eIF4GI are associated in influenza virus-infected cells. Here we show that NS1, although capable of binding poly(A), does not compete with PABP1 for association with eIF4GI and, furthermore, that NS1 and PABP1 interact both in vivo and in vitro in an RNA-independent manner. The interaction maps between residues 365 and 535 in PABP1 and between residues 1 and 81 in NS1. These mapping studies, together with those previously reported for NS1-eIF4GI and PABP1-eIF4GI interactions, imply that the binding of all three proteins would be compatible. Collectively, these and previously published data suggest that NS1 interactions with eIF4GI and PABP1, as well as with viral mRNAs, could promote the specific recruitment of 43S complexes to the viral mRNAs.
Collapse
Affiliation(s)
- Idoia Burgui
- Centro Nacional de Biotecnología (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | - Tomás Aragón
- Centro Nacional de Biotecnología (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | - Juan Ortín
- Centro Nacional de Biotecnología (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | - Amelia Nieto
- Centro Nacional de Biotecnología (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
33
|
N/A, 成 军, 刘 妍, 洪 源, 王 建, 党 晓, 张 树. N/A. Shijie Huaren Xiaohua Zazhi 2004; 12:149-151. [DOI: 10.11569/wcjd.v12.i1.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
|
34
|
Abstract
The action of interferons (IFNs) on virus-infected cells and surrounding tissues elicits an antiviral state that is characterized by the expression and antiviral activity of IFN-stimulated genes. In turn, viruses encode mechanisms to counteract the host response and support efficient viral replication, thereby minimizing the therapeutic antiviral power of IFNs. In this review, we discuss the interplay between the IFN system and four medically important and challenging viruses -- influenza, hepatitis C, herpes simplex and vaccinia -- to highlight the diversity of viral strategies. Understanding the complex network of cellular antiviral processes and virus-host interactions should aid in identifying new and common targets for the therapeutic intervention of virus infection. This effort must take advantage of the recent developments in functional genomics, bioinformatics and other emerging technologies.
Collapse
Affiliation(s)
- Michael G Katze
- Department of Microbiology, University of Washington, Seattle, Washington 98195-8070, USA.
| | | | | |
Collapse
|
35
|
Yan W, Gale MJ, Tan SL, Katze MG. Inactivation of the PKR protein kinase and stimulation of mRNA translation by the cellular co-chaperone P58(IPK) does not require J domain function. Biochemistry 2002; 41:4938-45. [PMID: 11939789 DOI: 10.1021/bi0121499] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
P58(IPK) was discovered as an inhibitor of the interferon-induced, protein kinase, PKR. Upon virus infection, PKR can, as part of the host defense system, inhibit mRNA translation by phosphorylating the alpha subunit of protein synthesis eukaryotic initiation factor 2 (eIF-2alpha). We previously found that influenza virus recruits the cellular P58(IPK) co-chaperone to inhibit PKR activity and thus facilitate viral protein synthesis. P58(IPK) contains nine tetratricopeptide repeat (TPR) motifs in addition to the highly conserved J domain found in all DnaJ chaperone family members. To define the role of molecular chaperones in regulating cell growth in addition to PKR regulation, we performed a detailed analysis of the P58(IPK) J domain. Using growth rescue assays, we found that the P58(IPK) J domain substituted for the J domains of other DnaJ proteins, including DnaJ in Escherichia coli and Ydj1 in Saccharomyces cerevisiae. This is the first time a cellular J domain from a mammalian DnaJ family member was shown to be functional in both prokaryotic DnaJ and eukaryotic Ydj1 constructs. Furthermore, point mutations within the conserved HPD residue cluster of the P58(IPK) J domain disrupted P58(IPK) J function including stimulation of ATPase activity of Hsp70. However, the P58(IPK) HPD mutants still inhibited PKR activity and thus supported cell growth in a yeast rescue assay. Overexpression of the HPD mutants of P58(IPK), similar to their wild-type counterpart, also stimulated mRNA translation in a mammalian cell system. Taken together, our data necessitate a model of P58(IPK) inhibition of PKR kinase activity and stimulation of mRNA translation, which does not require classical J domain function found in the DnaJ molecular chaperone family.
Collapse
Affiliation(s)
- Wei Yan
- Department of Microbiology and Washington Regional Primate Research Center, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
36
|
Saunders LR, Perkins DJ, Balachandran S, Michaels R, Ford R, Mayeda A, Barber GN. Characterization of two evolutionarily conserved, alternatively spliced nuclear phosphoproteins, NFAR-1 and -2, that function in mRNA processing and interact with the double-stranded RNA-dependent protein kinase, PKR. J Biol Chem 2001; 276:32300-12. [PMID: 11438536 DOI: 10.1074/jbc.m104207200] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report here the isolation and characterization of two proteins, NFAR-1 and -2, which were isolated through their ability to interact with the dsRNA-dependent protein kinase, PKR. The NFAR proteins, of 90 and 110 kDa, are derived from a single gene through alternative splicing and are evolutionarily conserved nuclear phosphoproteins that interact with double-stranded RNA. Both NFAR-1 and -2 are phosphorylated by PKR, reciprocally co-immunoprecipitate with PKR, and colocalize with the kinase in a diffuse nuclear pattern within the cell. Transfection studies indicate that the NFARs regulate gene expression at the level of transcription, probably during the processing of pre-mRNAs, an activity that was increased in fibroblasts lacking PKR. Subsequent functional analyses indicated that amino acids important for NFAR's activity were localized to the C terminus of the protein, a region that was found to specifically interact with FUS and SMN, proteins also known as regulators of RNA processing. Accordingly, both NFARs were found to associate with both pre-mRNAs and spliced mRNAs in post-transcriptional studies, similar to the known splicing factor ASF/SF-2. Collectively, our data indicate that the NFARs may facilitate double-stranded RNA-regulated gene expression at the level of post-transcription and possibly contribute to host defense-related mechanisms in the cell.
Collapse
Affiliation(s)
- L R Saunders
- Department of Microbiology and Immunology and Sylvester Comprehensive Cancer Center, University of Miami School of Medicine, Miami, Florida 33136, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
García-Sastre A. Inhibition of interferon-mediated antiviral responses by influenza A viruses and other negative-strand RNA viruses. Virology 2001; 279:375-84. [PMID: 11162793 DOI: 10.1006/viro.2000.0756] [Citation(s) in RCA: 244] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- A García-Sastre
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York 10029, USA.
| |
Collapse
|
38
|
Aragón T, de la Luna S, Novoa I, Carrasco L, Ortín J, Nieto A. Eukaryotic translation initiation factor 4GI is a cellular target for NS1 protein, a translational activator of influenza virus. Mol Cell Biol 2000; 20:6259-68. [PMID: 10938102 PMCID: PMC86100 DOI: 10.1128/mcb.20.17.6259-6268.2000] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Influenza virus NS1 protein is an RNA-binding protein whose expression alters several posttranscriptional regulatory processes, like polyadenylation, splicing, and nucleocytoplasmic transport of cellular mRNAs. In addition, NS1 protein enhances the translational rate of viral, but not cellular, mRNAs. To characterize this effect, we looked for targets of NS1 influenza virus protein among cellular translation factors. We found that NS1 coimmunoprecipitates with eukaryotic initiation factor 4GI (eIF4GI), the large subunit of the cap-binding complex eIF4F, either in influenza virus-infected cells or in cells transfected with NS1 cDNA. Affinity chromatography studies using a purified His-NS1 protein-containing matrix showed that the fusion protein pulls down endogenous eIF4GI from COS-1 cells and labeled eIF4GI translated in vitro, but not the eIF4E subunit of the eIF4F factor. Similar in vitro binding experiments with eIF4GI deletion mutants indicated that the NS1-binding domain of eIF4GI is located between residues 157 and 550, in a region where no other component of the translational machinery is known to interact. Moreover, using overlay assays and pull-down experiments, we showed that NS1 and eIF4GI proteins interact directly, in an RNA-independent manner. Mapping of the eIF4GI-binding domain in the NS1 protein indicated that the first 113 N-terminal amino acids of the protein, but not the first 81, are sufficient to bind eIF4GI. The first of these mutants has been previously shown to act as a translational enhancer, while the second is defective in this activity. Collectively, these and previously published data suggest a model where NS1 recruits eIF4GI specifically to the 5' untranslated region (5' UTR) of the viral mRNA, allowing for the preferential translation of the influenza virus messengers.
Collapse
Affiliation(s)
- T Aragón
- Centro Nacional de Biotecnología (CSIC), Universidad Autonoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
39
|
Kim SH, Forman AP, Mathews MB, Gunnery S. Human breast cancer cells contain elevated levels and activity of the protein kinase, PKR. Oncogene 2000; 19:3086-94. [PMID: 10871861 DOI: 10.1038/sj.onc.1203632] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/1999] [Revised: 03/31/2000] [Accepted: 04/18/2000] [Indexed: 11/09/2022]
Abstract
PKR is a double-stranded (ds) RNA activated protein kinase whose expression is induced by interferon. Activated PKR phosphorylates its cellular substrate, eIF2, an essential initiation factor of translation. Prior evidence from a murine model system suggested that PKR may act as a tumor suppressor, but the evidence from human tumors is equivocal. To study PKR function in human breast cancer, PKR activity was measured in mammary carcinoma cell lines and nontransformed mammary epithelial cell lines. If PKR functioned as a tumor suppressor in this system, its activity would be higher in nontransformed cells than in carcinoma cells. On the contrary, PKR autophosphorylation and the phosphorylation of its substrate, the alpha-subunit of eIF2, is 7 - 40-fold higher in lysates prepared from breast carcinoma cell lines than in those from nontransformed epithelial cell lines. Correspondingly, a larger proportion of eIF2alpha is present in a phosphorylated state in carcinoma cell lines than in nontransformed cell lines. Protein synthesis is not inhibited by the high eIF2alpha phosphorylation in carcinoma cells, probably because they contain higher levels of eIF2B, the initiation factor that is inhibited by eIF2alpha phosphorylation. The dramatically lower PKR activity in nontransformed cell lines is partially due to lower PKR protein levels (2 - 4-fold) as well as to the presence of a PKR inhibitor. The nontransformed cells contain P58, a known cellular inhibitor of PKR that physically interacts with PKR and may be responsible for the low PKR activity in these cells. Taken together, these observations call into question the role of PKR as a tumor suppressor and suggest a positive regulatory role of PKR in growth control of breast cancer cells.
Collapse
Affiliation(s)
- S H Kim
- Department of Biochemistry and Molecular Biology, New Jersey Medical School, UMDNJ, 185, South Orange Avenue, Newark, NJ 07103, USA
| | | | | | | |
Collapse
|
40
|
Abstract
As obligate intracellular parasites, viruses rely exclusively on the translational machinery of the host cell for the synthesis of viral proteins. This relationship has imposed numerous challenges on both the infecting virus and the host cell. Importantly, viruses must compete with the endogenous transcripts of the host cell for the translation of viral mRNA. Eukaryotic viruses have thus evolved diverse mechanisms to ensure translational efficiency of viral mRNA above and beyond that of cellular mRNA. Mechanisms that facilitate the efficient and selective translation of viral mRNA may be inherent in the structure of the viral nucleic acid itself and can involve the recruitment and/or modification of specific host factors. These processes serve to redirect the translation apparatus to favor viral transcripts, and they often come at the expense of the host cell. Accordingly, eukaryotic cells have developed antiviral countermeasures to target the translational machinery and disrupt protein synthesis during the course of virus infection. Not to be outdone, many viruses have answered these countermeasures with their own mechanisms to disrupt cellular antiviral pathways, thereby ensuring the uncompromised translation of virion proteins. Here we review the varied and complex translational programs employed by eukaryotic viruses. We discuss how these translational strategies have been incorporated into the virus life cycle and examine how such programming contributes to the pathogenesis of the host cell.
Collapse
Affiliation(s)
- M Gale
- University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| | | | | |
Collapse
|
41
|
Coolidge CJ, Patton JG. A new double-stranded RNA-binding protein that interacts with PKR. Nucleic Acids Res 2000; 28:1407-17. [PMID: 10684936 PMCID: PMC111047 DOI: 10.1093/nar/28.6.1407] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/1999] [Revised: 01/26/2000] [Accepted: 01/26/2000] [Indexed: 11/13/2022] Open
Abstract
We have identified a 74 kDa double-stranded (ds)RNA-binding protein that shares extensive homology with the mouse spermatid perinuclear RNA-binding (Spnr) protein. p74 contains two dsRNA-binding motifs (dsRBMs) that are essential for preferential binding to dsRNA. Previously, dsRNA-binding proteins were shown to undergo homo- and heterodimerization, raising the possibility that regulation of activity could be controlled by interactions between different family members. Homodimerization is required to activate the dsRNA-dependent protein kinase PKR, whereas hetero-dimerization between PKR and other dsRNA-binding proteins can inhibit kinase activity. We have found that p74 also interacts with PKR, both the wild-type enzyme and a catalytically defective mutant (K296R). While co-expression of p74 and wild-type PKR in the yeast Saccharomyces cerevisiae did not alter PKR activity, co-expression of p74 and the catalytically defective K296R mutant surprisingly resulted in abnormal morphology and cell death in transformants that maintained a high level of p74 expression. These transformants could be rescued by overexpression of the alpha-subunit of wild-type eukaryotic translation initiation factor 2 (eIF2alpha), one of the known substrates for PKR. We hypothesize that competing heterodimers between p74-K296R PKR and eIF2alpha-K296R PKR may control cell growth such that stabilization of the p74-K296R PKR heterodimer induces abnormal morphology and cell death.
Collapse
Affiliation(s)
- C J Coolidge
- Department of Molecular Biology, Box 1820, Station B, Vanderbilt University, Nashville, TN 37235, USA
| | | |
Collapse
|
42
|
Cai R, Carpick B, Chun RF, Jeang KT, Williams BR. HIV-I TAT inhibits PKR activity by both RNA-dependent and RNA-independent mechanisms. Arch Biochem Biophys 2000; 373:361-7. [PMID: 10620360 DOI: 10.1006/abbi.1999.1583] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Replication of the human immunodeficiency virus type 1 (HIV-1) is inhibited by interferons (IFNs), in part through activity of the IFN-inducible protein kinase PKR. To escape this antiviral effect, HIV-1 has developed strategies for blocking PKR function. We have previously shown that the HIV-1 Tat protein can associate with PKR in vitro and in vivo and inhibit PKR activity. Here we present evidence that Tat can inhibit PKR activity by both RNA-dependent and RNA-independent mechanisms. Tat inhibited PKR activation by the non-RNA activator heparin, and also suppressed PKR basal level autophosphorylation in the absence of RNA. However, when Tat and dsRNA were preincubated, the amount of Tat required to inhibit PKR activation by dsRNA depended on the dsRNA concentration. In addition to its function in vitro, Tat can also reverse translation inhibition mediated by PKR in COS cells. The Tat amino acid sequence required for interaction with PKR was mapped to residues 40-58, overlapping the hydrophobic core and basic region of HIV-1 Tat. Alignment of amino acid sequences of Tat and eIF-2alpha indicates similarity between the Tat-PKR binding region and the residues around the eIF-2alpha phosphorylation site, suggesting that Tat and eIF-2alpha may bind to the same site on PKR.
Collapse
Affiliation(s)
- R Cai
- Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
| | | | | | | | | |
Collapse
|
43
|
Korth MJ, Katze MG. Evading the interferon response: hepatitis C virus and the interferon-induced protein kinase, PKR. Curr Top Microbiol Immunol 1999; 242:197-224. [PMID: 10592662 DOI: 10.1007/978-3-642-59605-6_10] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- M J Korth
- Regional Primate Research Center, University of Washington, Seattle 98195, USA
| | | |
Collapse
|
44
|
Ludwig S, Pleschka S, Wolff T. A fatal relationship--influenza virus interactions with the host cell. Viral Immunol 1999; 12:175-96. [PMID: 10532647 DOI: 10.1089/vim.1999.12.175] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Influenza A viruses are important worldwide pathogens for humans and different animal species. The infectious agent is the prototype of the orthomyxoviridae which are characterized by a segmented negative strand RNA genome that is replicated in the nucleus of the infected cell. The genome has a combined coding capacity of about 13 kb and contains the genetic information for ten viral proteins. Despite this relatively small coding capacity--large DNA viruses like herpes or poxviruses express about 150-200 gene products--influenza A viruses are able to successfully infect and multiply in a wide range of mammalian and avian species. It is therefore not surprising that influenza A viruses extensively use and manipulate host cell functions. This includes multiple interactions of viral proteins with cellular proteins. In recent years an increasing amount of information about the identity of the cellular factors that are involved in viral transcription and replication, intracellular trafficking of viral components and assembly of the virus particle has accumulated. This article aims to review recent developments in this field with a focus on cellular factors and processes which are activated by the virus to either support viral replication or to counteract host-cell defense mechanisms.
Collapse
Affiliation(s)
- S Ludwig
- Institut für Medizinische Strahlenkunde und Zellforschung, Julius-Maximilians Universität, Würzburg, Germany.
| | | | | |
Collapse
|
45
|
Dhib-Jalbut S, Xia J, Rangaviggula H, Fang YY, Lee T. Failure of Measles Virus to Activate Nuclear Factor-κB in Neuronal Cells: Implications on the Immune Response to Viral Infections in the Central Nervous System. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.7.4024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Neurons are postmitotic cells that foster virus persistence. These cells lack the HLA class I molecules required for clearance of infected cells. Previously, we showed that HLA class I is induced by measles virus (MV) on glial cells, which is primarily mediated by IFN-β. In contrast, MV was unable to induce HLA class I or IFN-β in neuronal cells. This failure was associated with lack of NF-κB binding to the positive regulatory domain II element of the IFN-β promoter, which is essential for virus-induced IFN-β gene activity. In this study, we demonstrate that the failure to activate NF-κB in neuronal cells is due to the inability of MV to induce phosphorylation and degradation of IκB, the inhibitor of NF-κB. In contrast, TNF-α induced degradation of IκBα in the neuronal cells, suggesting that failure to induce IκBα degradation is likely due to a defect in virus-mediated signaling rather than to a defect involving neuronal IκBα. Like MV, mumps virus and dsRNA failed to induce IκBα degradation in the neuronal cells, suggesting that this defect may be specific to viruses. Autophosphorylation of the dsRNA-dependent protein kinase, a kinase possibly involved in virus-mediated IκBα phosphorylation, was intact in both cell types. The failure of virus to induce IκBα phosphorylation and consequently to activate NF-κB in neuronal cells could explain the repression of IFN-β and class I gene expression in virus-infected cells. These findings provide a potential mechanism for the ability of virus to persist in neurons and to escape immune surveillance.
Collapse
Affiliation(s)
- Suhayl Dhib-Jalbut
- Department of Neurology, University of Maryland at Baltimore, Baltimore, MD 21201; and Department of Veterans Affairs, Baltimore, MD 21201
| | - Jane Xia
- Department of Neurology, University of Maryland at Baltimore, Baltimore, MD 21201; and Department of Veterans Affairs, Baltimore, MD 21201
| | - Himabindu Rangaviggula
- Department of Neurology, University of Maryland at Baltimore, Baltimore, MD 21201; and Department of Veterans Affairs, Baltimore, MD 21201
| | - Yu-Yan Fang
- Department of Neurology, University of Maryland at Baltimore, Baltimore, MD 21201; and Department of Veterans Affairs, Baltimore, MD 21201
| | - Terry Lee
- Department of Neurology, University of Maryland at Baltimore, Baltimore, MD 21201; and Department of Veterans Affairs, Baltimore, MD 21201
| |
Collapse
|
46
|
Polyak SJ, Paschal DM, McArdle S, Gale MJ, Moradpour D, Gretch DR. Characterization of the effects of hepatitis C virus nonstructural 5A protein expression in human cell lines and on interferon-sensitive virus replication. Hepatology 1999; 29:1262-71. [PMID: 10094974 DOI: 10.1002/hep.510290438] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The hepatitis C virus (HCV) nonstructural 5A (NS5A) protein has been implicated in the inherent resistance of HCV to interferon (IFN) antiviral therapy in clinical studies. Biochemical studies have demonstrated that NS5A interacts in vitro with and inhibits the IFN-induced, RNA-dependent protein kinase, PKR, and that NS5A interacts with at least one other cellular kinase. The present study describes the establishment and characterization of various stable NS5A-expressing human cell lines, and the development of a cell culture-based assay for determining the inherent IFN resistance of clinical NS5A isolates. Human epithelioid (Hela) and osteosarcoma (U2-OS) cell lines were generated that express NS5A under tight regulation by the tetracycline-dependent promoter. Maximal expression of NS5A occurred at 48 hours following the removal of tetracycline from the culture medium. The half-life of NS5A in these cell lines was between 4 to 6 hours. NS5A protein expression was localized cytoplasmically, with a staining pattern consistent with the location of the Golgi apparatus and endoplasmic reticulum. In the majority of cell lines, no obvious phenotypic changes were observed. However, three genotype 1b NS5A-expressing osteosarcoma cell lines exhibited cytopathic effect and severely reduced proliferation as a result of high-level NS5A expression. Full-length NS5A protein isolated from a genotype 1b IFN-nonresponsive patient (NS5A-1b) was capable of rescuing encephalomyocardititis virus replication during IFN challenge up to 40-fold, whereas a full-length NS5A-1a and an interferon sensitivity determining region (ISDR) deletion mutant (NS5A-1a-triangle upISDR) isolated from a genotype 1a IFN-nonresponsive patient showed no rescue activity. The NS5A-1b and NS5A-1a proteins also rescued vesicular stomatitis virus replication during IFN treatment by two- to threefold. These data cummulatively suggest that NS5A expression alone can render cells partially resistant to the effects of IFN against IFN-sensitive viruses, and that in some systems, these effects may be independent of the putative ISDR. A scenario is discussed in which the NS5A protein may employ multiple strategies contributing to IFN resistance during HCV infection.
Collapse
Affiliation(s)
- S J Polyak
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Abraham N, Stojdl DF, Duncan PI, Méthot N, Ishii T, Dubé M, Vanderhyden BC, Atkins HL, Gray DA, McBurney MW, Koromilas AE, Brown EG, Sonenberg N, Bell JC. Characterization of transgenic mice with targeted disruption of the catalytic domain of the double-stranded RNA-dependent protein kinase, PKR. J Biol Chem 1999; 274:5953-62. [PMID: 10026221 DOI: 10.1074/jbc.274.9.5953] [Citation(s) in RCA: 184] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interferon-inducible, double-stranded RNA-dependent protein kinase PKR has been implicated in anti-viral, anti-tumor, and apoptotic responses. Others have attempted to examine the requirement of PKR in these roles by targeted disruption at the amino terminal-encoding region of the Pkr gene. By using a strategy that aims at disruption of the catalytic domain of PKR, we have generated mice that are genetically ablated for functional PKR. Similar to the other mouse model of Pkr disruption, we have observed no consequences of loss of PKR on tumor suppression. Anti-viral response to influenza and vaccinia also appeared to be normal in mice and in cells lacking PKR. Cytokine signaling in the type I interferon pathway is normal but may be compromised in the erythropoietin pathway in erythroid bone marrow precursors. Contrary to the amino-terminal targeted Pkr mouse, tumor necrosis factor alpha-induced apoptosis and the anti-viral apoptosis response to influenza is not impaired in catalytic domain-targeted Pkr-null cells. The observation of intact eukaryotic initiation factor-2alpha phosphorylation in these Pkr-null cells provides proof of rescue by another eukaryotic initiation factor-2alpha kinase(s).
Collapse
Affiliation(s)
- N Abraham
- Ottawa Regional Cancer Center Research Laboratories, Ottawa, Ontario K1H 8L6
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Zamanian-Daryoush M, Der SD, Williams BR. Cell cycle regulation of the double stranded RNA activated protein kinase, PKR. Oncogene 1999; 18:315-26. [PMID: 9927188 DOI: 10.1038/sj.onc.1202293] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The interferon (IFN)-induced, double stranded RNA (dsRNA)-activated serine/threonine kinase, PKR, is a potent negative regulator of cell growth when overexpressed in yeast or mammalian cells. To determine whether endogenous PKR plays a role in cell growth control, we have investigated the regulation of PKR levels and activity during the cell cycle in human glioblastoma T98G cells. The steady-state level of PKR mRNA in T98G cells was highest in growth arrested cells, dropped sharply within 3 h of serum stimulation then gradually increased as cells progressed through G1, reaching a plateau in early S phase. PKR protein level increased following serum stimulation reaching a peak at the G2+M boundary and declining thereafter. In contrast, PKR kinase activity exhibited two peaks, in early G1 and at the G1/S boundary, declining sharply in early S phase. Thus, the activity profile did not follow the protein profile indicating a tight regulation of PKR at the level of activity. In T98G cells expressing the catalytically inactive PKRK296R the dsRNA-induced activation of NF-kappaB and IRF-1 was suppressed and the mutant cells exhibited resistance to stress induced apoptosis. Cell cycle distribution analysis showed that the mutant expressing cells exhibited longer G1 phase and fewer cells engaged in S phase. Furthermore, early passage mouse embryo fibroblasts derived from PKR knockout mice grew more slowly compared with the control cells. Taken together these results suggest that PKR may play a role in cell cycle progression.
Collapse
Affiliation(s)
- M Zamanian-Daryoush
- Department of Cancer Biology, Lerner Research Institute, The Cleveland Clinic Foundation, Ohio 44195, USA
| | | | | |
Collapse
|
49
|
Abstract
The double-stranded (ds) RNA-regulated serine/threonine protein kinase, PKR, is an interferon-inducible enzyme of widespread occurrence in mammalian cells. PKR is activated by dsRNA via a mechanism involving autophosphorylation. Once activated, the enzyme phosphorylates the alpha-subunit of protein synthesis initiation factor eIF2, thereby inhibiting translation. Accumulating data suggest that PKR has additional substrates, and that the kinase may also regulate gene transcription and signal transduction pathways. Although PKR plays an important role in mediating the antiviral effects of interferons, PKR is also implicated in regulating cell proliferation in uninfected cells and may have a tumor suppressor function under normal conditions. Studies of human malignancies and tumor cell lines suggest that, in general, patients bearing tumors with a higher PKR content have a more favorable prognosis. However, in human breast carcinoma cells, dysregulation of PKR may be associated with the establishment or maintenance of the transformed state.
Collapse
Affiliation(s)
- R Jagus
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Baltimore, USA.
| | | | | |
Collapse
|
50
|
Kumar M, Carmichael GG. Antisense RNA: function and fate of duplex RNA in cells of higher eukaryotes. Microbiol Mol Biol Rev 1998; 62:1415-34. [PMID: 9841677 PMCID: PMC98951 DOI: 10.1128/mmbr.62.4.1415-1434.1998] [Citation(s) in RCA: 222] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
There is ample evidence that cells of higher eukaryotes express double-stranded RNA molecules (dsRNAs) either naturally or as the result of viral infection or aberrant, bidirectional transcriptional readthrough. These duplex molecules can exist in either the cytoplasmic or nuclear compartments. Cells have evolved distinct ways of responding to dsRNAs, depending on the nature and location of the duplexes. Since dsRNA molecules are not thought to exist naturally within the cytoplasm, dsRNA in this compartment is most often associated with viral infections. Cells have evolved defensive strategies against such molecules, primarily involving the interferon response pathway. Nuclear dsRNA, however, does not induce interferons and may play an important posttranscriptional regulatory role. Nuclear dsRNA appears to be the substrate for enzymes which deaminate adenosine residues to inosine residues within the polynucleotide structure, resulting in partial or full unwinding. Extensively modified RNAs are either rapidly degraded or retained within the nucleus, whereas transcripts with few modifications may be transported to the cytoplasm, where they serve to produce altered proteins. This review summarizes our current knowledge about the function and fate of dsRNA in cells of higher eukaryotes and its potential manipulation as a research and therapeutic tool.
Collapse
Affiliation(s)
- M Kumar
- Department of Microbiology, University of Connecticut Health Center, Farmington, Connecticut 06030-3205, USA.
| | | |
Collapse
|