1
|
Yao X, Humphries J, Johnson KL, Chen J, Ma Y. Function of WAKs in Regulating Cell Wall Development and Responses to Abiotic Stress. PLANTS (BASEL, SWITZERLAND) 2025; 14:343. [PMID: 39942905 PMCID: PMC11820136 DOI: 10.3390/plants14030343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/21/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025]
Abstract
Receptor-like kinases (RLKs) are instrumental in regulating plant cell surface sensing and vascular tissue differentiation. Wall-associated kinases (WAKs) are a unique group of RLKs that have been identified as key cell wall integrity (CWI) sensors. WAK signaling is suggested to be activated during growth in response to cell expansion or when the cell wall is damaged, for example, during pathogen attack. WAKs are proposed to interact with pectins or pectin fragments that are enriched in primary walls. Secondary walls have low levels of pectins, yet recent studies have shown important functions of WAKs during secondary wall development. Several wak mutants show defects in secondary wall thickening of the xylem vessels and fibers or the development of vascular bundles. This review will discuss the recent advances in our understanding of WAK functions during plant development and responses to abiotic stresses and the regulation of vascular tissue secondary wall development.
Collapse
Affiliation(s)
- Xiaocui Yao
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, International Joint Laboratory on Forest Genetics and Germplasm Innovation, Nanjing Forestry University, Nanjing 210037, China; (X.Y.); (J.C.)
| | - John Humphries
- La Trobe Institute for Sustainable Agriculture & Food, Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia;
| | - Kim L. Johnson
- La Trobe Institute for Sustainable Agriculture & Food, Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia;
| | - Jinhui Chen
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, International Joint Laboratory on Forest Genetics and Germplasm Innovation, Nanjing Forestry University, Nanjing 210037, China; (X.Y.); (J.C.)
| | - Yingxuan Ma
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, International Joint Laboratory on Forest Genetics and Germplasm Innovation, Nanjing Forestry University, Nanjing 210037, China; (X.Y.); (J.C.)
| |
Collapse
|
2
|
Herold L, Ordon J, Hua C, Kohorn BD, Nürnberger T, DeFalco TA, Zipfel C. Arabidopsis WALL-ASSOCIATED KINASES are not required for oligogalacturonide-induced signaling and immunity. THE PLANT CELL 2024; 37:koae317. [PMID: 39665686 DOI: 10.1093/plcell/koae317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 10/25/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024]
Abstract
Carbohydrate-based cell wall signaling impacts plant growth, development, and stress responses; however, how cell wall signals are perceived and transduced remains poorly understood. Several cell wall breakdown products have been described as typical damage-associated molecular patterns that activate plant immunity, including pectin-derived oligogalacturonides (OGs). Receptor kinases of the WALL-ASSOCIATED KINASE (WAK) family bind pectin and OGs and were previously proposed as OG receptors. However, unambiguous genetic evidence for the role of WAKs in OG responses is lacking. Here, we investigated the role of Arabidopsis (Arabidopsis thaliana) WAKs in OG perception using a clustered regularly interspaced short palindromic repeats mutant in which all 5 WAK genes were deleted. Using a combination of immune assays for early and late pattern-triggered immunity, we show that WAKs are dispensable for OG-induced signaling and immunity, indicating that they are not bona fide OG receptors.
Collapse
Affiliation(s)
- Laura Herold
- Institute of Plant and Microbial Biology and Zürich-Basel Plant Science Center, University of Zürich, Zürich 8008, Switzerland
| | - Jana Ordon
- Institute of Plant and Microbial Biology and Zürich-Basel Plant Science Center, University of Zürich, Zürich 8008, Switzerland
| | - Chenlei Hua
- Center of Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen 72076, Germany
| | - Bruce D Kohorn
- Department of Biology, Bowdoin College, Brunswick, ME 04011, USA
| | - Thorsten Nürnberger
- Center of Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen 72076, Germany
| | - Thomas A DeFalco
- Institute of Plant and Microbial Biology and Zürich-Basel Plant Science Center, University of Zürich, Zürich 8008, Switzerland
| | - Cyril Zipfel
- Institute of Plant and Microbial Biology and Zürich-Basel Plant Science Center, University of Zürich, Zürich 8008, Switzerland
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
3
|
Blaschek L. Setting the record straight: Loss of wall-associated kinases does not affect plant perception of pectin fragments. THE PLANT CELL 2024; 37:koae318. [PMID: 39657745 PMCID: PMC11719031 DOI: 10.1093/plcell/koae318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 12/03/2024] [Indexed: 12/12/2024]
Affiliation(s)
- Leonard Blaschek
- Assistant Features Editor, The Plant Cell, American Society of Plant Biologists
- Department of Plant & Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| |
Collapse
|
4
|
Wu Q, Jiao X, Liu D, Sun M, Tong W, Ruan X, Wang L, Ding Y, Zhang Z, Wang W, Xia E. CsWAK12, a novel cell wall-associated receptor kinase gene from Camellia sinensis, promotes growth but reduces cold tolerance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2024; 15:1420431. [PMID: 39670271 PMCID: PMC11634587 DOI: 10.3389/fpls.2024.1420431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 10/31/2024] [Indexed: 12/14/2024]
Abstract
Cold significantly impacts the growth and development of tea plants, thereby affecting their economic value. Receptor-like kinases (RLKs) are thought to play a pivotal role in signaling the plant's response to cold and regulating cold tolerance. Among the RLK subfamilies, wall-associated receptor-like kinases (WAKs) have been investigated across various plant species and have been shown to regulate cell growth and stress responses. However, the function of WAK genes in response to cold stress in tea has yet to be studied. In a previous investigation, we identified the WAK gene family from Camellia sinensis and isolated a specific WAK gene, CsWAK12, which is induced by abiotic stresses. Here, we demonstrate that CsWAK12 is involved in the regulation of cold tolerance in tea plants. CsWAK12 was rapidly induced by cold, peaking at 3 hours after treatment at 4°C (10-fold increase). Heterologous overexpression of CsWAK12 (35S:CsWAK12) in Arabidopsis promoted plant growth by enhancing root length and seed size under normal conditions, although it reduced cold resistance compared to the wild type. Under cold stress, the transgenic plants exhibited a lower survival rate and significantly altered levels of superoxide dismutase (SOD) activity and malondialdehyde (MDA) content compared to the wild type (WT). Furthermore, the expression of C-repeat/dehydration-responsive element binding factor (CBF) genes was diminished in CsWAK12-overexpressing transgenic Arabidopsis plants following cold treatment. Transcriptome analysis revealed that genes associated with the CBF pathway, such as transcription factor genes (ERF53, ERF54, and DREB2A) were markedly reduced in the overexpression line. These data suggest that CsWAK12 acts as a negative regulator, reducing the cold tolerance of transgenic Arabidopsis by mediating the CBF pathway. Therefore, CsWAK12 may serve as a candidate gene for the molecular breeding of cold resistance in tea plants.
Collapse
Affiliation(s)
- Qiong Wu
- Tea Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Xiaoyu Jiao
- Tea Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Dandan Liu
- Tea Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Minghui Sun
- Tea Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Wei Tong
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Xu Ruan
- Tea Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Leigang Wang
- Tea Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Yong Ding
- Tea Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Zhengzhu Zhang
- Tea Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Wenjie Wang
- Tea Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Enhua Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| |
Collapse
|
5
|
Harvey A, van den Berg N, Swart V. Describing and characterizing the WAK/WAKL gene family across plant species: a systematic review. FRONTIERS IN PLANT SCIENCE 2024; 15:1467148. [PMID: 39600901 PMCID: PMC11588464 DOI: 10.3389/fpls.2024.1467148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024]
Abstract
Wall-associated kinases (WAKs) and WAK-likes (WAKLs) are transmembrane pectin receptors which have seen rising interest in recent years due to their roles in stress responses and developmental pathways. Consequently, the genes encoding these proteins are continuously identified, described and characterised across a wide variety of plant species. The primary goal of characterizing these genes is to classify, describe and infer cellular function, mostly through in silico methods. However, inconsistencies across characterizations have led to discrepancies in WAK/WAKL definitions resulting in sequences being classified as a WAK in one study but as a WAKL or not identified in another. The methods of characterization range widely with different combinations of analyses being conducted, to similar analyses but with varying inputs and parameters which are impacting the outputs. This review collates current knowledge about WAK/WAKL genes and the recent characterizations of this family and suggests a more robust strategy for increased consistency among the different gene members, as well as the characterizations thereof.
Collapse
Affiliation(s)
| | | | - Velushka Swart
- Hans Merensky Chair in Avocado Research, Forestry & Agricultural Biotechnology Institute (FABI), Department of Biochemistry, Genetics and Microbiology (BGM), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
6
|
Feng H, Mon W, Su X, Li Y, Zhang S, Zhang Z, Zheng K. Integrated Biological Experiments and Proteomic Analyses of Nicotiana tabacum Xylem Sap Revealed the Host Response to Tomato Spotted Wilt Orthotospovirus Infection. Int J Mol Sci 2024; 25:10907. [PMID: 39456688 PMCID: PMC11507450 DOI: 10.3390/ijms252010907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/03/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024] Open
Abstract
The plant vascular system is not only a transportation system for delivering nutrients but also a highway transport network for spreading viruses. Tomato spotted wilt orthotospovirus (TSWV) is among the most destructive viruses that cause serious losses in economically important crops worldwide. However, there is minimal information about the long-distance movements of TSWV in the host plant vascular system. In this this study, we confirm that TSWV virions are present in the xylem as observed by transmission electron microscopy (TEM). Further, a quantitative proteomic analysis based on label-free methods was conducted to reveal the uniqueness of protein expression in xylem sap during TSWV infection. Thus, this study identified and quantified 3305 proteins in two groups. Furthermore, TSWV infection induced three viral structural proteins, N, Gn and Gc, and 315 host proteins differentially expressed in xylem (163 up-regulated and 152 down-regulated). GO enrichment analysis showed up-regulated proteins significantly enriched in homeostasis, wounding, defense response, and DNA integration terms, while down-regulated proteins significantly enriched in cell wall biogenesis/xyloglucan metabolic process-related terms. KEGG enrichment analysis showed that the differentially expressed proteins (DEPs) were most strongly associated with plant-pathogen interaction, MAPK signaling pathway, and plant hormone signal transduction. Cluster analysis of DEPs function showed the DEPs can be categorized into cell wall metabolism-related proteins, antioxidant proteins, PCD-related proteins, host defense proteins such as receptor-like kinases (RLKs), salicylic acid binding protein (SABP), pathogenesis related proteins (PR), DNA methylation, and proteinase inhibitor (PI). Finally, parallel reaction monitoring (PRM) validated 20 DEPs, demonstrating that the protein abundances were consistent between label-free and PRM data. Finally, 11 genes were selected for RT-qPCR validation of the DEPs and label-free-based proteomic analysis concordant results. Our results contribute to existing knowledge on the complexity of host plant xylem system response to virus infection and provide a basis for further study of the mechanism underlying TSWV long-distance movement in host plant vascular system.
Collapse
Affiliation(s)
- Hongping Feng
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, 2238# Beijing Rd., Panlong District, Kunming 650205, China; (H.F.); (W.M.); (X.S.); (Y.L.); (S.Z.)
| | - Waiwai Mon
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, 2238# Beijing Rd., Panlong District, Kunming 650205, China; (H.F.); (W.M.); (X.S.); (Y.L.); (S.Z.)
- Deputy Director of Microbiology Laboratory, Department of Biotechnology Research, Ministry of Science and Technology, Tansoe Rd., Kyaukse 05151, Myanmar
| | - Xiaoxia Su
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, 2238# Beijing Rd., Panlong District, Kunming 650205, China; (H.F.); (W.M.); (X.S.); (Y.L.); (S.Z.)
| | - Yu Li
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, 2238# Beijing Rd., Panlong District, Kunming 650205, China; (H.F.); (W.M.); (X.S.); (Y.L.); (S.Z.)
| | - Shaozhi Zhang
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, 2238# Beijing Rd., Panlong District, Kunming 650205, China; (H.F.); (W.M.); (X.S.); (Y.L.); (S.Z.)
| | - Zhongkai Zhang
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, 2238# Beijing Rd., Panlong District, Kunming 650205, China; (H.F.); (W.M.); (X.S.); (Y.L.); (S.Z.)
| | - Kuanyu Zheng
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, 2238# Beijing Rd., Panlong District, Kunming 650205, China; (H.F.); (W.M.); (X.S.); (Y.L.); (S.Z.)
| |
Collapse
|
7
|
Yu Q, He H, Xian B, Zhang C, Zhong X, Liu Y, Zhang M, Li M, He Y, Chen S, Li Q. The wall-associated receptor-like kinase CsWAKL01, positively regulated by the transcription factor CsWRKY53, confers resistance to citrus bacterial canker via regulation of phytohormone signaling. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5805-5818. [PMID: 38820225 DOI: 10.1093/jxb/erae255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 05/30/2024] [Indexed: 06/02/2024]
Abstract
Citrus bacterial canker (CBC) is a disease that poses a major threat to global citrus production and is caused by infection with Xanthomonas citri subsp. citri (Xcc). Wall-associated receptor-like kinase (WAKL) proteins play an important role in shaping plant resistance to various bacterial and fungal pathogens. In a previous report, CsWAKL01 was identified as a candidate Xcc-inducible gene found to be up-regulated in CBC-resistant citrus plants. However, the functional role of CsWAKL01 and the mechanisms whereby it may influence resistance to CBC have yet to be clarified. Here, CsWAKL01 was found to localize to the plasma membrane, and the overexpression of the corresponding gene in transgenic sweet oranges resulted in pronounced enhancement of CBC resistance, whereas its knockdown had the opposite effect. Mechanistically, the effect of CsWAKL01 was linked to its ability to reprogram jasmonic acid, salicylic acid, and abscisic acid signaling activity. CsWRKY53 was further identified as a transcription factor capable of directly binding to the CsWAKL01 promoter and inducing its transcriptional up-regulation. CsWRKY53 silencing conferred greater CBC susceptibility to infected plants. Overall, these data support a model wherein CsWRKY53 functions as a positive regulator of CsWAKL01 to enhance resistance to CBC via the reprogramming of phytohormone signaling. Together these results offer new insights into the mechanisms whereby WAKLs shape phytopathogen resistance while underscoring the potential value of targeting the CsWRKY53-CsWAKL01 axis when seeking to breed CBC-resistant citrus plant varieties.
Collapse
Affiliation(s)
- Qiyuan Yu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Houzheng He
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Baohang Xian
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Chenxi Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Xin Zhong
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Yiqi Liu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Miao Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Man Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Yongrui He
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing 400712, China
- National Citrus Engineering Research Center, Chongqing 400712, China
- National Citrus Improvement Center, Southwest University, Chongqing 400712, China
| | - Shanchun Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing 400712, China
- National Citrus Engineering Research Center, Chongqing 400712, China
- National Citrus Improvement Center, Southwest University, Chongqing 400712, China
| | - Qiang Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing 400712, China
- National Citrus Engineering Research Center, Chongqing 400712, China
- National Citrus Improvement Center, Southwest University, Chongqing 400712, China
| |
Collapse
|
8
|
Ni J, Dong Z, Qiao F, Zhou W, Cao A, Xing L. Phylogenetic Analysis of Wall-Associated Kinase Genes in Triticum Species and Characterization of TaWAK7 Involved in Wheat Powdery Mildew Resistance. PLANT DISEASE 2024; 108:1223-1235. [PMID: 37923976 DOI: 10.1094/pdis-06-23-1090-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
Wall-associated kinases (WAKs), a group of receptor-like kinases, have been found to play important roles in defending against pathogens and in various developmental processes. However, the importance of this family in wheat remains largely unknown. Wheat powdery mildew is caused by Blumeria graminis f. sp. tritici (Bgt), which initiates infection on the cell surface and forms haustoria inside the cell; therefore, the defense to Bgt involves extracellular and subsequently intracellular signals. In this study, WAKs were identified genome-wide and analyzed phylogenetically, and then a transmembrane WAK gene that putatively participated in pathogen-associated molecular pattern-triggered immunity and effector-triggered immunity to Bgt was functionally and evolutionarily investigated. In total, 1,193 WAKs were identified from wheat and its Gramineae relatives. Phylogenetic analysis indicated that WAKs expanded through tandem duplication or segment duplication. TaWAK7, from chromosome 2A, was identified as a Bgt-inducible gene both in susceptible and resistant materials, but it showed distinct responsive patterns. Functional analysis showed that TaWAK7 was involved in both the basal and resistance gene-mediated resistances. The specific gene structures and protein characteristics of TaWAK7, along with its orthologs, were characterized both in subgenomes of Triticum spp. and in the A genome of multiple wheat accessions, which revealed that TaWAK7 orthologs underwent complex evolution with frequent gene fusion and domain deletion. In addition, three cytoplasmic proteins interacting with TaWAK7 were indicated by yeast two-hybrid and bimolecular fluorescence complementation assays. Binding of TaWAK7 with these proteins could change its subcellular localization from the plasma membrane to the cytoplasm. This study provides a better understanding of the evolution of WAKs at the genomic level and TaWAK7 at the gene level and provides useful clues for further investigation of how WAKs transmit the extracellular signals to the cytoplasm to activate defense responses.
Collapse
Affiliation(s)
- Jiayao Ni
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China
| | - Zhenjie Dong
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China
| | - Fangyuan Qiao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China
| | - Weihao Zhou
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China
| | - Aizhong Cao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing 210014, China
| | - Liping Xing
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing 210014, China
| |
Collapse
|
9
|
Ma Y, Wang Z, Humphries J, Ratcliffe J, Bacic A, Johnson KL, Qu G. WALL-ASSOCIATED KINASE Like 14 regulates vascular tissue development in Arabidopsis and tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 341:112013. [PMID: 38309474 DOI: 10.1016/j.plantsci.2024.112013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024]
Abstract
Initiation of plant vascular tissue is regulated by transcriptional networks during development and in response to environmental stimuli. The WALL-ASSOCIATED KINASES (WAKs) and WAK-likes (WAKLs) are cell surface receptors involved in cell expansion and defence in cells with primary walls, yet their roles in regulation of vascular tissue development that contain secondary walls remains unclear. In this study, we showed tomato (Solanum lycopersicum) SlWAKL2 and the orthologous gene in Arabidopsis thaliana, AtWAKL14, were specifically expressed in vascular tissues. SlWAKL2-RNAi tomato plants displayed smaller fruit size with fewer seeds and vascular bundles compared to wild-type (WT) and over-expression (OE) lines. RNA-seq data showed that SlWAKL2-RNAi fruits down-regulated transcript levels of genes related to vascular tissue development compared to WT. Histological analysis showed T-DNA insertion mutant wakl14-1 had reduced plant stem length with fewer number of xylem vessels and interfascicular fibres compared to WT, with no significant differences in cellulose and lignin content. Mutant wakl14-1 also showed reduced number of vascular bundles in fruit. A proWAKL14::mCherry-WAKL14 fusion protein was able to complement wakl14-1 phenotypes and showed mCherry-WAKL14 associated with the plasma membrane. In vitro binding assays showed both SlWAKL2 and AtWAKL14 can interact with pectin and oligogalacturonides. Our results reveal novel roles of WAKLs in regulating vascular tissue development.
Collapse
Affiliation(s)
- Yingxuan Ma
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China; School of BioSciences, University of Melbourne, Parkville, VIC 3052, Australia; La Trobe Institute for Sustainable Agriculture & Food, Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
| | - Zhenghang Wang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - John Humphries
- La Trobe Institute for Sustainable Agriculture & Food, Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
| | - Julian Ratcliffe
- La Trobe Institute for Sustainable Agriculture & Food, Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
| | - Antony Bacic
- La Trobe Institute for Sustainable Agriculture & Food, Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia; Sino-Australia Plant Cell Wall Research Centre, College of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Lin'an, Hangzhou 311300, China
| | - Kim L Johnson
- La Trobe Institute for Sustainable Agriculture & Food, Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia; Sino-Australia Plant Cell Wall Research Centre, College of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Lin'an, Hangzhou 311300, China.
| | - Guiqin Qu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
10
|
Yang N, Ren J, Dai S, Wang K, Leung M, Lu Y, An Y, Burlingame A, Xu S, Wang Z, Yu W, Li N. The Quantitative Biotinylproteomics Studies Reveal a WInd-Related Kinase 1 (Raf-Like Kinase 36) Functioning as an Early Signaling Component in Wind-Induced Thigmomorphogenesis and Gravitropism. Mol Cell Proteomics 2024; 23:100738. [PMID: 38364992 PMCID: PMC10951710 DOI: 10.1016/j.mcpro.2024.100738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 02/18/2024] Open
Abstract
Wind is one of the most prevalent environmental forces entraining plants to develop various mechano-responses, collectively called thigmomorphogenesis. Largely unknown is how plants transduce these versatile wind force signals downstream to nuclear events and to the development of thigmomorphogenic phenotype or anemotropic response. To identify molecular components at the early steps of the wind force signaling, two mechanical signaling-related phosphoproteins, identified from our previous phosphoproteomic study of Arabidopsis touch response, mitogen-activated protein kinase kinase 1 (MKK1) and 2 (MKK2), were selected for performing in planta TurboID (ID)-based quantitative proximity-labeling (PL) proteomics. This quantitative biotinylproteomics was separately performed on MKK1-ID and MKK2-ID transgenic plants, respectively, using the genetically engineered TurboID biotin ligase expression transgenics as a universal control. This unique PTM proteomics successfully identified 11 and 71 MKK1 and MKK2 putative interactors, respectively. Biotin occupancy ratio (BOR) was found to be an alternative parameter to measure the extent of proximity and specificity between the proximal target proteins and the bait fusion protein. Bioinformatics analysis of these biotinylprotein data also found that TurboID biotin ligase favorably labels the loop region of target proteins. A WInd-Related Kinase 1 (WIRK1), previously known as rapidly accelerated fibrosarcoma (Raf)-like kinase 36 (RAF36), was found to be a putative common interactor for both MKK1 and MKK2 and preferentially interacts with MKK2. Further molecular biology studies of the Arabidopsis RAF36 kinase found that it plays a role in wind regulation of the touch-responsive TCH3 and CML38 gene expression and the phosphorylation of a touch-regulated PATL3 phosphoprotein. Measurement of leaf morphology and shoot gravitropic response of wirk1 (raf36) mutant revealed that the WIRK1 gene is involved in both wind-triggered rosette thigmomorphogenesis and gravitropism of Arabidopsis stems, suggesting that the WIRK1 (RAF36) protein probably functioning upstream of both MKK1 and MKK2 and that it may serve as the crosstalk point among multiple mechano-signal transduction pathways mediating both wind mechano-response and gravitropism.
Collapse
Affiliation(s)
- Nan Yang
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Jia Ren
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Shuaijian Dai
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Kai Wang
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Manhin Leung
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Yinglin Lu
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Yuxing An
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Al Burlingame
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Shouling Xu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA
| | - Zhiyong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA
| | - Weichuan Yu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
| | - Ning Li
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China; Shenzhen Research Institute, The Hong Kong University of Science and Technology, Shenzhen, Guangdong, China.
| |
Collapse
|
11
|
Gandhi A, Tseng YH, Oelmüller R. The damage-associated molecular pattern cellotriose alters the phosphorylation pattern of proteins involved in cellulose synthesis and trans-Golgi trafficking in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2023; 18:2184352. [PMID: 36913771 PMCID: PMC10026868 DOI: 10.1080/15592324.2023.2184352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We have recently demonstrated that the cellulose breakdown product cellotriose is a damage-associated molecular pattern (DAMP) which induces responses related to the integrity of the cell wall. Activation of downstream responses requires the Arabidopsis malectin domain-containing CELLOOLIGOMER RECEPTOR KINASE1 (CORK1)1. The cellotriose/CORK1 pathway induces immune responses, including NADPH oxidase-mediated reactive oxygen species production, mitogen-activated protein kinase 3/6 phosphorylation-dependent defense gene activation, and the biosynthesis of defense hormones. However, apoplastic accumulation of cell wall breakdown products should also activate cell wall repair mechanisms. We demonstrate that the phosphorylation pattern of numerous proteins involved in the accumulation of an active cellulose synthase complex in the plasma membrane and those for protein trafficking to and within the trans-Golgi network (TGN) are altered within minutes after cellotriose application to Arabidopsis roots. The phosphorylation pattern of enzymes involved in hemicellulose or pectin biosynthesis and the transcript levels for polysaccharide-synthesizing enzymes responded barely to cellotriose treatments. Our data show that the phosphorylation pattern of proteins involved in cellulose biosynthesis and trans-Golgi trafficking is an early target of the cellotriose/CORK1 pathway.
Collapse
Affiliation(s)
- Akanksha Gandhi
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, Jena, Germany
| | - Yu-Heng Tseng
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, Jena, Germany
| | - Ralf Oelmüller
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, Jena, Germany
- CONTACT Ralf Oelmüller Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, Jena, Germany
| |
Collapse
|
12
|
Lee HK, Santiago J. Structural insights of cell wall integrity signaling during development and immunity. CURRENT OPINION IN PLANT BIOLOGY 2023; 76:102455. [PMID: 37739866 DOI: 10.1016/j.pbi.2023.102455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/12/2023] [Accepted: 08/25/2023] [Indexed: 09/24/2023]
Abstract
A communication system between plant cells and their surrounding cell wall is required to coordinate development, immunity, and the integration of environmental cues. This communication network is facilitated by a large pool of membrane- and cell-wall-anchored proteins that can potentially interact with the matrix or its fragments, promoting cell wall patterning or eliciting cellular responses that may lead to changes in the architecture and chemistry of the wall. A mechanistic understanding of how these receptors and cell wall proteins recognize and interact with cell wall epitopes would be key to a better understanding of all plant processes that require cell wall remodeling such as expansion, morphogenesis, and defense responses. This review focuses on the latest developments in structurally and biochemically characterized receptors and protein complexes implicated in reading and regulating cell wall integrity and immunity.
Collapse
Affiliation(s)
- Hyun Kyung Lee
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Julia Santiago
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
13
|
Zhang B, Su T, Xin X, Li P, Wang J, Wang W, Yu Y, Zhao X, Zhang D, Li D, Zhang F, Yu S. Wall-associated kinase BrWAK1 confers resistance to downy mildew in Brassica rapa. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2125-2139. [PMID: 37402218 PMCID: PMC10502744 DOI: 10.1111/pbi.14118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 05/16/2023] [Accepted: 06/15/2023] [Indexed: 07/06/2023]
Abstract
The plant cell wall is the first line of defence against physical damage and pathogen attack. Wall-associated kinase (WAK) has the ability to perceive the changes in the cell wall matrix and transform signals into the cytoplasm, being involved in plant development and the defence response. Downy mildew, caused by Hyaloperonospora brassicae, can result in a massive loss in Chinese cabbage (Brassica rapa L. ssp. pekinensis) production. Herein, we identified a candidate resistant WAK gene, BrWAK1, in a major resistant quantitative trait locus, using a double haploid population derived from resistant inbred line T12-19 and the susceptible line 91-112. The expression of BrWAK1 could be induced by salicylic acid and pathogen inoculation. Expression of BrWAK1 in 91-112 could significantly enhance resistance to the pathogen, while truncating BrWAK1 in T12-19 increased disease susceptibility. Variation in the extracellular galacturonan binding (GUB) domain of BrWAK1 was found to mainly confer resistance to downy mildew in T12-19. Moreover, BrWAK1 was proved to interact with BrBAK1 (brassinosteroid insensitive 1 associated kinase), resulting in the activation of the downstream mitogen-activated protein kinase (MAPK) cascade to trigger the defence response. BrWAK1 is the first identified and thoroughly characterized WAK gene conferring disease resistance in Chinese cabbage, and the plant biomass is not significantly influenced by BrWAK1, which will greatly accelerate Chinese cabbage breeding for downy mildew resistance.
Collapse
Affiliation(s)
- Bin Zhang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences (BAAFS)BeijingChina
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of AgricultureBeijingChina
- Beijing Key Laboratory of Vegetable Germplasm ImprovementBeijingChina
- State Key Laboratory of Vegetable BiobreedingBeijingChina
| | - Tongbing Su
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences (BAAFS)BeijingChina
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of AgricultureBeijingChina
- Beijing Key Laboratory of Vegetable Germplasm ImprovementBeijingChina
- State Key Laboratory of Vegetable BiobreedingBeijingChina
| | - Xiaoyun Xin
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences (BAAFS)BeijingChina
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of AgricultureBeijingChina
- Beijing Key Laboratory of Vegetable Germplasm ImprovementBeijingChina
- State Key Laboratory of Vegetable BiobreedingBeijingChina
| | - Peirong Li
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences (BAAFS)BeijingChina
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of AgricultureBeijingChina
- Beijing Key Laboratory of Vegetable Germplasm ImprovementBeijingChina
- State Key Laboratory of Vegetable BiobreedingBeijingChina
| | - Jiao Wang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences (BAAFS)BeijingChina
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of AgricultureBeijingChina
- Beijing Key Laboratory of Vegetable Germplasm ImprovementBeijingChina
- State Key Laboratory of Vegetable BiobreedingBeijingChina
| | - Weihong Wang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences (BAAFS)BeijingChina
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of AgricultureBeijingChina
- Beijing Key Laboratory of Vegetable Germplasm ImprovementBeijingChina
- State Key Laboratory of Vegetable BiobreedingBeijingChina
| | - Yangjun Yu
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences (BAAFS)BeijingChina
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of AgricultureBeijingChina
- Beijing Key Laboratory of Vegetable Germplasm ImprovementBeijingChina
- State Key Laboratory of Vegetable BiobreedingBeijingChina
| | - Xiuyun Zhao
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences (BAAFS)BeijingChina
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of AgricultureBeijingChina
- Beijing Key Laboratory of Vegetable Germplasm ImprovementBeijingChina
- State Key Laboratory of Vegetable BiobreedingBeijingChina
| | - Deshuang Zhang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences (BAAFS)BeijingChina
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of AgricultureBeijingChina
- Beijing Key Laboratory of Vegetable Germplasm ImprovementBeijingChina
- State Key Laboratory of Vegetable BiobreedingBeijingChina
| | - Dayong Li
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences (BAAFS)BeijingChina
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of AgricultureBeijingChina
- Beijing Key Laboratory of Vegetable Germplasm ImprovementBeijingChina
- State Key Laboratory of Vegetable BiobreedingBeijingChina
| | - Fenglan Zhang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences (BAAFS)BeijingChina
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of AgricultureBeijingChina
- Beijing Key Laboratory of Vegetable Germplasm ImprovementBeijingChina
- State Key Laboratory of Vegetable BiobreedingBeijingChina
| | - Shuancang Yu
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences (BAAFS)BeijingChina
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of AgricultureBeijingChina
- Beijing Key Laboratory of Vegetable Germplasm ImprovementBeijingChina
- State Key Laboratory of Vegetable BiobreedingBeijingChina
| |
Collapse
|
14
|
Han GH, Huang RN, Hong LH, Xu JX, Hong YG, Wu YH, Chen WW. The transcription factor NAC102 confers cadmium tolerance by regulating WAKL11 expression and cell wall pectin metabolism in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:2262-2278. [PMID: 37565550 DOI: 10.1111/jipb.13557] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/10/2023] [Indexed: 08/12/2023]
Abstract
Cadmium (Cd) toxicity severely limits plant growth and development. Moreover, Cd accumulation in vegetables, fruits, and food crops poses health risks to animals and humans. Although the root cell wall has been implicated in Cd stress in plants, whether Cd binding by cell wall polysaccharides contributes to tolerance remains controversial, and the mechanism underlying transcriptional regulation of cell wall polysaccharide biosynthesis in response to Cd stress is unknown. Here, we functionally characterized an Arabidopsis thaliana NAC-type transcription factor, NAC102, revealing its role in Cd stress responses. Cd stress rapidly induced accumulation of NAC102.1, the major transcript encoding functional NAC102, especially in the root apex. Compared to wild type (WT) plants, a nac102 mutant exhibited enhanced Cd sensitivity, whereas NAC102.1-overexpressing plants displayed the opposite phenotype. Furthermore, NAC102 localizes to the nucleus, binds directly to the promoter of WALL-ASSOCIATED KINASE-LIKE PROTEIN11 (WAKL11), and induces transcription, thereby facilitating pectin degradation and decreasing Cd binding by pectin. Moreover, WAKL11 overexpression restored Cd tolerance in nac102 mutants to the WT levels, which was correlated with a lower pectin content and lower levels of pectin-bound Cd. Taken together, our work shows that the NAC102-WAKL11 module regulates cell wall pectin metabolism and Cd binding, thus conferring Cd tolerance in Arabidopsis.
Collapse
Affiliation(s)
- Guang Hao Han
- Research Center for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Ru Nan Huang
- Research Center for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Li Hong Hong
- Research Center for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Jia Xi Xu
- Research Center for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Yi Guo Hong
- Research Center for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
- Warwick-Hangzhou RNA Signaling Joint Laboratory, School of Life Sciences, University of Warwick, Warwick, CV4 7AL, United Kingdom
| | - Yu Huan Wu
- Research Center for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Wei Wei Chen
- Research Center for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
15
|
Gandhi A, Oelmüller R. Emerging Roles of Receptor-like Protein Kinases in Plant Response to Abiotic Stresses. Int J Mol Sci 2023; 24:14762. [PMID: 37834209 PMCID: PMC10573068 DOI: 10.3390/ijms241914762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
The productivity of plants is hindered by unfavorable conditions. To perceive stress signals and to transduce these signals to intracellular responses, plants rely on membrane-bound receptor-like kinases (RLKs). These play a pivotal role in signaling events governing growth, reproduction, hormone perception, and defense responses against biotic stresses; however, their involvement in abiotic stress responses is poorly documented. Plant RLKs harbor an N-terminal extracellular domain, a transmembrane domain, and a C-terminal intracellular kinase domain. The ectodomains of these RLKs are quite diverse, aiding their responses to various stimuli. We summarize here the sub-classes of RLKs based on their domain structure and discuss the available information on their specific role in abiotic stress adaptation. Furthermore, the current state of knowledge on RLKs and their significance in abiotic stress responses is highlighted in this review, shedding light on their role in influencing plant-environment interactions and opening up possibilities for novel approaches to engineer stress-tolerant crop varieties.
Collapse
Affiliation(s)
| | - Ralf Oelmüller
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, 07743 Jena, Germany;
| |
Collapse
|
16
|
Li X, Ou M, Li L, Li Y, Feng Y, Huang X, Baluška F, Shabala S, Yu M, Shi W, Wu F. The wall-associated kinase gene family in pea (Pisum sativum) and its function in response to B deficiency and Al toxicity. JOURNAL OF PLANT PHYSIOLOGY 2023; 287:154045. [PMID: 37356321 DOI: 10.1016/j.jplph.2023.154045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/18/2023] [Accepted: 06/18/2023] [Indexed: 06/27/2023]
Abstract
Plant cell walls are embedded in a pectin matrix which is physically linked with the wall-associated kinases (WAKs), a subfamily of receptor-like kinases that participate in the cell wall integrity (CWI) sensing. Since cell walls are also the main binding sites for boron (B) and aluminum (Al), WAK may be potentially associated with the regulation of plant responses to Al toxicity and B deficiency. Using pea as a model species, we have identified a total of 28 WAK genes in the genome and named them according to its chromosomal location. All the PsWAKs were phylogenetically grouped into three clades. Phylogenetic relationship and synteny analysis showed that the PsWAKs in pea and Glycine max or Medicago truncatula shared a relatively conserved evolutionary history. Protein domain, motif, and transmembrane analysis indicated that all PsWAK proteins were predicted to be localized to the plasma membrane, and most PsWAKs shared a similar structure to their homologs. The RNA-seq data showed that the expression pattern of WAK genes in response to B deficiency was similar to that of Al toxicity, with most of PsWAKs being up-regulated. The qRT-PCR results further confirmed that PsWAK5, PsWAK9 and PsWAK14 were more specific for both B-deficiency and Al toxicity, and the expression levels of PsWAK5, PsWAK9 and PsWAK14 were significantly higher in the Al-sensitive cultivar Hyogo than in the Al-resistant cultivar Alaska under Al toxicity. This study provided an important basis for the functional and evolutionary analysis of PsWAKs and linked them to responses to cell wall damage induced by B-deficiency and Al toxicity, suggesting that PsWAKs may play a key role in the perception of cell wall integrity under Al toxicity or B-deficiency, as well as in the regulation of Al tolerance in pea.
Collapse
Affiliation(s)
- Xuewen Li
- International Research Centre for Environmental Membrane Biology& Department of Horticulture, Foshan University, 528000, China
| | - Meiyin Ou
- International Research Centre for Environmental Membrane Biology& Department of Horticulture, Foshan University, 528000, China
| | - Li Li
- International Research Centre for Environmental Membrane Biology& Department of Horticulture, Foshan University, 528000, China
| | - Yalin Li
- International Research Centre for Environmental Membrane Biology& Department of Horticulture, Foshan University, 528000, China
| | - Yingming Feng
- International Research Centre for Environmental Membrane Biology& Department of Horticulture, Foshan University, 528000, China
| | - Xin Huang
- International Research Centre for Environmental Membrane Biology& Department of Horticulture, Foshan University, 528000, China
| | - František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115, Bonn, Germany
| | - Sergey Shabala
- International Research Centre for Environmental Membrane Biology& Department of Horticulture, Foshan University, 528000, China; School of Biological Science, University of Western Australia, Crawley, WA 6009, Australia
| | - Min Yu
- International Research Centre for Environmental Membrane Biology& Department of Horticulture, Foshan University, 528000, China
| | - Weiming Shi
- International Research Centre for Environmental Membrane Biology& Department of Horticulture, Foshan University, 528000, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Feihua Wu
- International Research Centre for Environmental Membrane Biology& Department of Horticulture, Foshan University, 528000, China.
| |
Collapse
|
17
|
Huerta AI, Sancho-Andrés G, Montesinos JC, Silva-Navas J, Bassard S, Pau-Roblot C, Kesten C, Schlechter R, Dora S, Ayupov T, Pelloux J, Santiago J, Sánchez-Rodríguez C. The WAK-like protein RFO1 acts as a sensor of the pectin methylation status in Arabidopsis cell walls to modulate root growth and defense. MOLECULAR PLANT 2023; 16:865-881. [PMID: 37002606 PMCID: PMC10168605 DOI: 10.1016/j.molp.2023.03.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 12/20/2022] [Accepted: 03/28/2023] [Indexed: 05/04/2023]
Abstract
Most organisms adjust their development according to the environmental conditions. For the majority, this implies the sensing of alterations to cell walls caused by different cues. Despite the relevance of this process, few molecular players involved in cell wall sensing are known and characterized. Here, we show that the wall-associated kinase-like protein RESISTANCE TO FUSARIUM OXYSPORUM 1 (RFO1) is required for plant growth and early defense against Fusarium oxysporum and functions by sensing changes in the pectin methylation levels in the cell wall. The RFO1 dwell time at the plasma membrane is affected by the pectin methylation status at the cell wall, regulating MITOGEN-ACTIVATED PROTEIN KINASE and gene expression. We show that the extracellular domain of RFO1 binds de-methylated pectin in vitro, whose distribution in the cell wall is altered during F. oxysporum infection. Further analyses also indicate that RFO1 is required for the BR-dependent plant growth alteration in response to inhibition of pectin de-methyl-esterase activity at the cell wall. Collectively, our work demonstrates that RFO1 is a sensor of the pectin methylation status that plays a unique dual role in plant growth and defense against vascular pathogens.
Collapse
Affiliation(s)
- Apolonio I Huerta
- ETH Zurich, Institute of Molecular Plant Biology (D-BIOL), Zurich, Switzerland
| | | | | | - Javier Silva-Navas
- University of Lausanne, Department of Plant Molecular Biology, Lausanne, Switzerland
| | - Solène Bassard
- UMRT INRAE 1158 BioEcoAgro - BIOPI Biologie des Plantes et Innovation, Université de Picardie, 33 Rue St Leu, 80039 Amiens, France
| | - Corinne Pau-Roblot
- UMRT INRAE 1158 BioEcoAgro - BIOPI Biologie des Plantes et Innovation, Université de Picardie, 33 Rue St Leu, 80039 Amiens, France
| | - Christopher Kesten
- ETH Zurich, Institute of Molecular Plant Biology (D-BIOL), Zurich, Switzerland
| | - Rudolf Schlechter
- ETH Zurich, Institute of Molecular Plant Biology (D-BIOL), Zurich, Switzerland
| | - Susanne Dora
- ETH Zurich, Institute of Molecular Plant Biology (D-BIOL), Zurich, Switzerland
| | - Temurkhan Ayupov
- ETH Zurich, Institute of Molecular Plant Biology (D-BIOL), Zurich, Switzerland
| | - Jérôme Pelloux
- UMRT INRAE 1158 BioEcoAgro - BIOPI Biologie des Plantes et Innovation, Université de Picardie, 33 Rue St Leu, 80039 Amiens, France
| | - Julia Santiago
- University of Lausanne, Department of Plant Molecular Biology, Lausanne, Switzerland
| | | |
Collapse
|
18
|
A receptor-like kinase controls the amplitude of secondary cell wall synthesis in rice. Curr Biol 2023; 33:498-506.e6. [PMID: 36638797 DOI: 10.1016/j.cub.2022.12.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/06/2022] [Accepted: 12/13/2022] [Indexed: 01/14/2023]
Abstract
Cell wall expansion is a key element in determining plant morphology and growth, and cell wall integrity changes are relayed to the cell to fine-tune growth responses. Here, we show that variations in the ectodomain of a cell wall-associated receptor-like kinase, WAK10, in temperate Oryza japonica accessions differentially amplify fluctuations in cell wall integrity to control rice stem height. Mutation in the WAK10 gene exhibited increased cell wall thickening in stem sclerenchyma and reduced cell expansion in the stem. Two WAK10 ectodomain variants bound pectic oligosaccharides with different affinities. The pectic oligosaccharide binding regulated WAK10 phosphorylation activity, the amplitude of secondary wall deposition, and ultimately, stem height. Rice population analyses revealed active enrichment of the short-stem WAK10 ectodomain alleles in japonica subspecies during domestication. Our study outlines not only a mechanism for how variations in ligand affinities of a receptor kinase control cell wall biosynthesis and plant growth, but it also provides breeding targets for new semi-dwarf rice cultivars.
Collapse
|
19
|
Oota M, Toyoda S, Kotake T, Wada N, Hashiguchi M, Akashi R, Ishikawa H, Favery B, Tsai AYL, Sawa S. Rhamnogalacturonan-I as a nematode chemoattractant from Lotus corniculatus L. super-growing root culture. FRONTIERS IN PLANT SCIENCE 2023; 13:1008725. [PMID: 36777533 PMCID: PMC9908596 DOI: 10.3389/fpls.2022.1008725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/29/2022] [Indexed: 06/18/2023]
Abstract
INTRODUCTION The soil houses a tremendous amount of micro-organisms, many of which are plant parasites and pathogens by feeding off plant roots for sustenance. Such root pathogens and parasites often rely on plant-secreted signaling molecules in the rhizosphere as host guidance cues. Here we describe the isolation and characterization of a chemoattractant of plant-parasitic root-knot nematodes (Meloidogyne incognita, RKN). METHODS The Super-growing Root (SR) culture, consisting of excised roots from the legume species Lotus corniculatus L., was found to strongly attract infective RKN juveniles and actively secrete chemoattractants into the liquid culture media. The chemo-attractant in the culture media supernatant was purified using hydrophobicity and anion exchange chromatography, and found to be enriched in carbohydrates. RESULTS Monosaccharide analyses suggest the chemo-attractant contains a wide array of sugars, but is enriched in arabinose, galactose and galacturonic acid. This purified chemoattractant was shown to contain pectin, specifically anti-rhamnogalacturonan-I and anti-arabinogalactan protein epitopes but not anti-homogalacturonan epitopes. More importantly, the arabinose and galactose sidechain groups were found to be essential for RKN-attracting activities. This chemo-attractant appears to be specific to M. incognita, as it wasn't effective in attracting other Meloidogyne species nor Caenorhabditis elegans. DISCUSSION This is the first report to identify the nematode attractant purified from root exudate of L corniculatus L. Our findings re-enforce pectic carbohydrates as important chemicals mediating micro-organism chemotaxis in the soil, and also highlight the unexpected utilities of the SR culture system in root pathogen research.
Collapse
Affiliation(s)
- Morihiro Oota
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Syuuto Toyoda
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Toshihisa Kotake
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Naoki Wada
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | | | - Ryo Akashi
- Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Hayato Ishikawa
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Bruno Favery
- Institut national de recherche pour l'agriculture, l'alimentation et l’environnement (INRAE), Université Côte d’Azur, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, Sophia Antipolis, France
- International Research Organization for Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Allen Yi-Lun Tsai
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
- International Research Center for Agricultural and Environmental Biology, Kumamoto University, Kumamoto, Japan
| | - Shinichiro Sawa
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
- International Research Center for Agricultural and Environmental Biology, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
20
|
GmWAK1, Novel Wall-Associated Protein Kinase, Positively Regulates Response of Soybean to Phytophthora sojae Infection. Int J Mol Sci 2023; 24:ijms24010798. [PMID: 36614246 PMCID: PMC9821614 DOI: 10.3390/ijms24010798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Phytophthora root rot is a destructive soybean disease worldwide, which is caused by the oomycete pathogen Phytophthora sojae (P. sojae). Wall-associated protein kinase (WAK) genes, a family of the receptor-like protein kinase (RLK) genes, play important roles in the plant signaling pathways that regulate stress responses and pathogen resistance. In our study, we found a putative Glycine max wall-associated protein kinase, GmWAK1, which we identified by soybean GmLHP1 RNA-sequencing. The expression of GmWAK1 was significantly increased by P. sojae and salicylic acid (SA). Overexpression of GmWAK1 in soybean significantly improved resistance to P. sojae, and the levels of phenylalanine ammonia-lyase (PAL), SA, and SA-biosynthesis-related genes were markedly higher than in the wild-type (WT) soybean. The activities of enzymatic superoxide dismutase (SOD) and peroxidase (POD) antioxidants in GmWAK1-overexpressing (OE) plants were significantly higher than those in in WT plants treated with P. sojae; reactive oxygen species (ROS) and hydrogen peroxide (H2O2) accumulation was considerably lower in GmWAK1-OE after P. sojae infection. GmWAK1 interacted with annexin-like protein RJ, GmANNRJ4, which improved resistance to P. sojae and increased intracellular free-calcium accumulation. In GmANNRJ4-OE transgenic soybean, the calmodulin-dependent kinase gene GmMPK6 and several pathogenesis-related (PR) genes were constitutively activated. Collectively, these results indicated that GmWAK1 interacts with GmANNRJ4, and GmWAK1 plays a positive role in soybean resistance to P. sojae via a process that might be dependent on SA and involved in alleviating damage caused by oxidative stress.
Collapse
|
21
|
Wang D, Qin L, Wu M, Zou W, Zang S, Zhao Z, Lin P, Guo J, Wang H, Que Y. Identification and characterization of WAK gene family in Saccharum and the negative roles of ScWAK1 under the pathogen stress. Int J Biol Macromol 2022; 224:1-19. [PMID: 36481328 DOI: 10.1016/j.ijbiomac.2022.11.300] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
Wall-associated kinase (WAK) is widely involved in signal transduction, reproductive growth, responses to pathogen infection and metal ion stress in plants. In this study, 19, 12, and 37 SsWAK genes were identified in Saccharum spontaneum, Saccharum hybrid and Sorghum bicolor, respectively. Phylogenetic tree showed that they could be divided into three groups. These WAK genes contained multiple cis-acting elements related to stress, growth and hormone response. RNA-seq analysis demonstrated that SsWAK genes were constitutively expressed in different sugarcane tissues and involved in response to smut pathogen (Sporisorium scitamineum) stress. Additionally, ScWAK1 (GenBank Accession No. OP479864), was then isolated from sugarcane cultivar ROC22. It was highly expressed in leaves and roots and its expression could be induced under SA and MeJA stress. Besides, ScWAK1 was significantly downregulated in both smut-resistant and susceptible sugarcane cultivars in response to S. scitamineum infection. ScWAK1 was a membrane protein without self-activating activity. Furthermore, transient expression of ScWAK1 in Nicotiana benthamiana enhanced the susceptibility of tobacco to the inoculation of Ralstonia solanacearum and Fusarium solani var. coeruleum, suggesting its negative role in disease resistance. The present study reveals the origin, distribution and evolution of WAK gene family and provides potential gene resources for sugarcane molecular breeding.
Collapse
Affiliation(s)
- Dongjiao Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Liqian Qin
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Mingxing Wu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Wenhui Zou
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Shoujian Zang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Zhennan Zhao
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Peixia Lin
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Jinlong Guo
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Hengbo Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China.
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China.
| |
Collapse
|
22
|
Huang LZ, Zhou M, Ding YF, Zhu C. Gene Networks Involved in Plant Heat Stress Response and Tolerance. Int J Mol Sci 2022; 23:ijms231911970. [PMID: 36233272 PMCID: PMC9569452 DOI: 10.3390/ijms231911970] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 12/03/2022] Open
Abstract
Global warming is an environmental problem that cannot be ignored. High temperatures seriously affect the normal growth and development of plants, and threaten the development of agriculture and the distribution and survival of species at risk. Plants have evolved complex but efficient mechanisms for sensing and responding to high temperatures, which involve the activation of numerous functional proteins, regulatory proteins, and non-coding RNAs. These mechanisms consist of large regulatory networks that regulate protein and RNA structure and stability, induce Ca2+ and hormone signal transduction, mediate sucrose and water transport, activate antioxidant defense, and maintain other normal metabolic pathways. This article reviews recent research results on the molecular mechanisms of plant response to high temperatures, highlighting future directions or strategies for promoting plant heat tolerance, thereby helping to identify the regulatory mechanisms of heat stress responses in plants.
Collapse
Affiliation(s)
| | | | - Yan-Fei Ding
- Correspondence: (Y.-F.D.); (C.Z.); Tel.: +86-571-8683-6090 (C.Z.)
| | - Cheng Zhu
- Correspondence: (Y.-F.D.); (C.Z.); Tel.: +86-571-8683-6090 (C.Z.)
| |
Collapse
|
23
|
McCombe CL, Greenwood JR, Solomon PS, Williams SJ. Molecular plant immunity against biotrophic, hemibiotrophic, and necrotrophic fungi. Essays Biochem 2022; 66:581-593. [PMID: 35587147 PMCID: PMC9528087 DOI: 10.1042/ebc20210073] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/04/2022] [Accepted: 05/03/2022] [Indexed: 11/17/2022]
Abstract
Pathogenic fungi use diverse infection strategies to obtain nutrients from plants. Biotrophic fungi feed only on living plant tissue, whereas necrotrophic fungi kill host cells to extract nutrients. To prevent disease, plants need to distinguish between pathogens with different life cycles, as a successful defense against a biotroph, which often involves programmed cell-death around the site of infection, is not an appropriate response to some necrotrophs. Plants utilize a vast collection of extracellular and intracellular receptors to detect the signatures of pathogen attack. In turn, pathogens are under strong selection to mask or avoid certain receptor responses while enhancing or manipulating other receptor responses to promote virulence. In this review, we focus on the plant receptors involved in resistance responses to fungal pathogens and highlight, with examples, how the infection strategy of fungal pathogens can determine if recognition responses are effective at preventing disease.
Collapse
Affiliation(s)
- Carl L McCombe
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Julian R Greenwood
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Peter S Solomon
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Simon J Williams
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
24
|
Tseng YH, Scholz SS, Fliegmann J, Krüger T, Gandhi A, Furch ACU, Kniemeyer O, Brakhage AA, Oelmüller R. CORK1, A LRR-Malectin Receptor Kinase, Is Required for Cellooligomer-Induced Responses in Arabidopsis thaliana. Cells 2022; 11:cells11192960. [PMID: 36230919 PMCID: PMC9563578 DOI: 10.3390/cells11192960] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Cell wall integrity (CWI) maintenance is central for plant cells. Mechanical and chemical distortions, pH changes, and breakdown products of cell wall polysaccharides activate plasma membrane-localized receptors and induce appropriate downstream responses. Microbial interactions alter or destroy the structure of the plant cell wall, connecting CWI maintenance to immune responses. Cellulose is the major polysaccharide in the primary and secondary cell wall. Its breakdown generates short-chain cellooligomers that induce Ca2+-dependent CWI responses. We show that these responses require the malectin domain-containing CELLOOLIGOMER-RECEPTOR KINASE 1 (CORK1) in Arabidopsis and are preferentially activated by cellotriose (CT). CORK1 is required for cellooligomer-induced cytoplasmic Ca2+ elevation, reactive oxygen species (ROS) production, mitogen-associated protein kinase (MAPK) activation, cellulose synthase phosphorylation, and the regulation of CWI-related genes, including those involved in biosynthesis of cell wall material, secondary metabolites and tryptophan. Phosphoproteome analyses identified early targets involved in signaling, cellulose synthesis, the endoplasmic reticulum/Golgi secretory pathway, cell wall repair and immune responses. Two conserved phenylalanine residues in the malectin domain are crucial for CORK1 function. We propose that CORK1 is required for CWI and immune responses activated by cellulose breakdown products.
Collapse
Affiliation(s)
- Yu-Heng Tseng
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Sandra S. Scholz
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Judith Fliegmann
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72074 Tübingen, Germany
| | - Thomas Krüger
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), 07745 Jena, Germany
| | - Akanksha Gandhi
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Alexandra C. U. Furch
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), 07745 Jena, Germany
- Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University, 07743 Jena, Germany
| | - Axel A. Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), 07745 Jena, Germany
| | - Ralf Oelmüller
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University Jena, 07743 Jena, Germany
- Correspondence:
| |
Collapse
|
25
|
Ma Y, Stafford L, Ratcliffe J, Bacic A, Johnson KL. WAKL8 Regulates Arabidopsis Stem Secondary Wall Development. PLANTS (BASEL, SWITZERLAND) 2022; 11:2297. [PMID: 36079678 PMCID: PMC9460275 DOI: 10.3390/plants11172297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Wall-associated kinases/kinase-likes (WAKs/WAKLs) are plant cell surface sensors. A variety of studies have revealed the important functions of WAKs/WAKLs in regulating cell expansion and defense in cells with primary cell walls. Less is known about their roles during the development of the secondary cell walls (SCWs) that are present in xylem vessel (XV) and interfascicular fiber (IF) cells. In this study, we used RNA-seq data to screen Arabidopsis thaliana WAKs/WAKLs members that may be involved in SCW development and identified WAKL8 as a candidate. We obtained T-DNA insertion mutants wakl8-1 (inserted at the promoter region) and wakl8-2 (inserted at the first exon) and compared the phenotypes to wild-type (WT) plants. Decreased WAKL8 transcript levels in stems were found in the wakl8-2 mutant plants, and the phenotypes observed included reduced stem length and thinner walls in XV and IFs compared with those in the WT plants. Cell wall analysis showed no significant changes in the crystalline cellulose or lignin content in mutant stems compared with those in the WT. We found that WAKL8 had alternative spliced versions predicted to have only extracellular regions, which may interfere with the function of the full-length version of WAKL8. Our results suggest WAKL8 can regulate SCW thickening in Arabidopsis stems.
Collapse
Affiliation(s)
- Yingxuan Ma
- School of BioSciences, University of Melbourne, Parkville, VIC 3052, Australia
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
| | - Luke Stafford
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
| | - Julian Ratcliffe
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
| | - Antony Bacic
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
- Sino-Australia Plant Cell Wall Research Centre, College of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Lin’an, Hangzhou 311300, China
| | - Kim L. Johnson
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
- Sino-Australia Plant Cell Wall Research Centre, College of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Lin’an, Hangzhou 311300, China
| |
Collapse
|
26
|
Invernizzi M, Hanemian M, Keller J, Libourel C, Roby D. PERKing up our understanding of the proline-rich extensin-like receptor kinases, a forgotten plant receptor kinase family. THE NEW PHYTOLOGIST 2022; 235:875-884. [PMID: 35451507 DOI: 10.1111/nph.18166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
Proline-rich extensin-like receptor kinases (PERKs) are an important class of receptor-like kinases (RLKs) containing an extracellular proline-rich domain. While they are thought to be putative sensors of the cell wall integrity, there are very few reports on their biological functions in the plant, as compared with other RLKs. Several studies support a role for PERKs in plant growth and development, but their effect on the cell wall composition to regulate cell expansion is still lacking. Gene expression data suggest that they may intervene in response to environmental changes, in agreement with their subcellular localization. And there is growing evidence for PERKs as novel sensors of environmental stresses such as insects and viruses. However, little is known about their precise role in plant immunity and in the extracellular network of RLKs, as no PERK-interacting RLK or any coreceptor has been identified as yet. Similarly, their signaling activities and downstream signaling components are just beginning to be deciphered, including Ca2+ fluxes, reactive oxygen species accumulation and phosphorylation events. Here we outline emerging roles for PERKs as novel sensors of environmental stresses, and we discuss how to better understand this overlooked class of receptor kinases via several avenues of research.
Collapse
Affiliation(s)
- Marie Invernizzi
- Laboratoire des Interactions Plantes-Microbes-Environnement, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, CNRS, Université de Toulouse, 31326, Castanet-Tolosan, France
| | - Mathieu Hanemian
- Laboratoire des Interactions Plantes-Microbes-Environnement, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, CNRS, Université de Toulouse, 31326, Castanet-Tolosan, France
| | - Jean Keller
- Laboratoire de Recherche en Sciences Végétales (LRSV), CNRS, UPS, INP Toulouse, Université de Toulouse, 31326, Castanet-Tolosan, France
| | - Cyril Libourel
- Laboratoire de Recherche en Sciences Végétales (LRSV), CNRS, UPS, INP Toulouse, Université de Toulouse, 31326, Castanet-Tolosan, France
| | - Dominique Roby
- Laboratoire des Interactions Plantes-Microbes-Environnement, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, CNRS, Université de Toulouse, 31326, Castanet-Tolosan, France
| |
Collapse
|
27
|
Abstract
Plant architecture fundamentally differs from that of other multicellular organisms in that individual cells serve as osmotic bricks, defined by the equilibrium between the internal turgor pressure and the mechanical resistance of the surrounding cell wall, which constitutes the interface between plant cells and their environment. The state and integrity of the cell wall are constantly monitored by cell wall surveillance pathways, which relay information to the cell interior. A recent surge of discoveries has led to significant advances in both mechanistic and conceptual insights into a multitude of cell wall response pathways that play diverse roles in the development, defense, stress response, and maintenance of structural integrity of the cell. However, these advances have also revealed the complexity of cell wall sensing, and many more questions remain to be answered, for example, regarding the mechanisms of cell wall perception, the molecular players in this process, and how cell wall-related signals are transduced and integrated into cellular behavior. This review provides an overview of the mechanistic and conceptual insights obtained so far and highlights areas for future discoveries in this exciting area of plant biology.
Collapse
Affiliation(s)
- Sebastian Wolf
- Department of Plant Biochemistry, Center for Plant Molecular Biology (ZMBP), Eberhard-Karls University, Tübingen, Germany;
| |
Collapse
|
28
|
Liao HS, Chung YH, Hsieh MH. Glutamate: A multifunctional amino acid in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 318:111238. [PMID: 35351313 DOI: 10.1016/j.plantsci.2022.111238] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Glutamate (Glu) is a versatile metabolite and a signaling molecule in plants. Glu biosynthesis is associated with the primary nitrogen assimilation pathway. The conversion between Glu and 2-oxoglutarate connects Glu metabolism to the tricarboxylic acid cycle, carbon metabolism, and energy production. Glu is the predominant amino donor for transamination reactions in the cell. In addition to protein synthesis, Glu is a building block for tetrapyrroles, glutathione, and folate. Glu is the precursor of γ-aminobutyric acid that plays an important role in balancing carbon/nitrogen metabolism and various cellular processes. Glu can conjugate to the major auxin indole 3-acetic acid (IAA), and IAA-Glu is destined for oxidative degradation. Glu also conjugates with isochorismate for the production of salicylic acid. Accumulating evidence indicates that Glu functions as a signaling molecule to regulate plant growth, development, and defense responses. The ligand-gated Glu receptor-like proteins (GLRs) mediate some of these responses. However, many of the Glu signaling events are GLR-independent. The receptor perceiving extracellular Glu as a danger signal is still unknown. In addition to GLRs, Glu may act on receptor-like kinases or receptor-like proteins to trigger immune responses. Glu metabolism and Glu signaling may entwine to regulate growth, development, and defense responses in plants.
Collapse
Affiliation(s)
- Hong-Sheng Liao
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Hsin Chung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ming-Hsiun Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan; Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan.
| |
Collapse
|
29
|
Burian M, Podgórska A, Ostaszewska-Bugajska M, Szal B. Respiratory Burst Oxidase Homolog D as a Modulating Component of Oxidative Response under Ammonium Toxicity. Antioxidants (Basel) 2022; 11:antiox11040703. [PMID: 35453389 PMCID: PMC9031508 DOI: 10.3390/antiox11040703] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 12/25/2022] Open
Abstract
Delayed growth, a visible phenotypic component of the so-called ammonium syndrome, occurs when ammonium is the sole inorganic nitrogen source. Previously, we have shown that modification of apoplastic reactive oxygen species (apROS) metabolism is a key factor contributing to plant growth retardation under ammonium nutrition. Here, we further analyzed the changes in apROS metabolism in transgenic plants with disruption of the D isoform of the respiratory burst oxidase homolog (RBOH) that is responsible for apROS production. Ammonium-grown Arabidopsisrbohd plants are characterized by up to 50% lower contents of apoplastic superoxide and hydrogen peroxide. apROS sensing markers such as OZF1 and AIR12 were downregulated, and the ROS-responsive signaling pathway, including MPK3, was also downregulated in rbohd plants cultivated using ammonium as the sole nitrogen source. Additionally, the expression of the cell-wall-integrity marker FER and peroxidases 33 and 34 was decreased. These modifications may contribute to phenomenon wherein ammonium inhibited the growth of transgenic plants to a greater extent than that of wild-type plants. Overall, this study indicated that due to disruption of apROS metabolism, rbohd plants cannot adjust to ammonium toxicity and are more sensitive to these conditions.
Collapse
|
30
|
Panahabadi R, Ahmadikhah A, McKee LS, Ingvarsson PK, Farrokhi N. Genome-wide association study for lignocellulosic compounds and fermentable sugar in rice straw. THE PLANT GENOME 2022; 15:e20174. [PMID: 34806838 DOI: 10.1002/tpg2.20174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Cellulose and lignin are the two main components of secondary plant cell walls with substantial impact on stalk in the field and on straw during industrial processing. The amount of fermentable sugar that can be accessed is another important parameter affecting various industrial applications. In the present study, genetic variability of rice (Oryza sativa L.) genotypes for cellulose, lignin, and fermentable sugars contents was analyzed in rice straw. A genome-wide association study of 33,484 single nucleotide polymorphisms (SNPs) with a minor allele frequency (MAF) >0.05 was performed. The genome-wide association study identified seven, three, and three genomic regions to be significantly associated with cellulose, lignin, and fermentable sugar contents, respectively. Candidate genes in the associated genomic regions were enzymes mainly involved in cell wall metabolism. Novel SNP markers associated with cellulose were tagged to GH16, peroxidase, GT6, GT8, and CSLD2. For lignin content, Villin protein, OsWAK1/50/52/53, and GH16 were identified. For fermentable sugar content, UTP-glucose-1-phosphate uridylyltransferase, BRASSINOSTEROID INSENSITIVE 1, and receptor-like protein kinase 5 were found. The results of this study should improve our understanding of the genetic basis of the factors that might be involved in biosynthesis, turnover, and modification of major cell wall components and saccharides in rice straw.
Collapse
Affiliation(s)
- Rahele Panahabadi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti Univ., Tehran, Iran
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm, 106 91, Sweden
| | | | - Lauren S McKee
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm, 106 91, Sweden
- Wallenberg Wood Science Centre, Teknikringen 56-58, Stockholm, 100 44, Sweden
| | - Pär K Ingvarsson
- Linnean Centre for Plant Biology, Dep. of Plant Biology, Swedish Univ. of Agricultural Sciences, Uppsala, Sweden
| | - Naser Farrokhi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti Univ., Tehran, Iran
| |
Collapse
|
31
|
Lin W, Tang W, Pan X, Huang A, Gao X, Anderson CT, Yang Z. Arabidopsis pavement cell morphogenesis requires FERONIA binding to pectin for activation of ROP GTPase signaling. Curr Biol 2021; 32:497-507.e4. [PMID: 34875229 DOI: 10.1016/j.cub.2021.11.030] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 09/28/2021] [Accepted: 11/11/2021] [Indexed: 01/02/2023]
Abstract
Sensing and signaling of cell wall status and dynamics regulate many processes in plants, such as cell growth and morphogenesis, but the underpinning mechanisms remain largely unknown. Here, we demonstrate that the CrRLK1L receptor kinase FERONIA (FER) binds the cell wall pectin, directly leading to the activation of the ROP6 guanosine triphosphatase (GTPase) signaling pathway that regulates the formation of the puzzle piece shape of pavement cells in Arabidopsis. The extracellular malectin domain of FER binds demethylesterified pectin in vivo and in vitro. Both loss-of-FER mutations and defects in pectin demethylesterification caused similar changes in pavement cell shape and ROP6 GTPase signaling. FER is required for the activation of ROP6 by demethylesterified pectin and physically and genetically interacts with the ROP6 activator, RopGEF14. Thus, our findings elucidate a signaling pathway that directly connects the cell wall pectin to cellular morphogenesis via the cell surface receptor FER.
Collapse
Affiliation(s)
- Wenwei Lin
- Institute of Integrative Genome Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Wenxin Tang
- Institute of Integrative Genome Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA; FAFU-UCR Joint Center for Horticultural Biology and Metabolomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xue Pan
- Institute of Integrative Genome Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Aobo Huang
- Institute of Integrative Genome Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA; FAFU-UCR Joint Center for Horticultural Biology and Metabolomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xiuqin Gao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Charles T Anderson
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Zhenbiao Yang
- Institute of Integrative Genome Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA; FAFU-UCR Joint Center for Horticultural Biology and Metabolomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
| |
Collapse
|
32
|
Behnami S, Bonetta D. With an Ear Up against the Wall: An Update on Mechanoperception in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2021; 10:1587. [PMID: 34451632 PMCID: PMC8398075 DOI: 10.3390/plants10081587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022]
Abstract
Cells interpret mechanical signals and adjust their physiology or development appropriately. In plants, the interface with the outside world is the cell wall, a structure that forms a continuum with the plasma membrane and the cytoskeleton. Mechanical stress from cell wall damage or deformation is interpreted to elicit compensatory responses, hormone signalling, or immune responses. Our understanding of how this is achieved is still evolving; however, we can refer to examples from animals and yeast where more of the details have been worked out. Here, we provide an update on this changing story with a focus on candidate mechanosensitive channels and plasma membrane-localized receptors.
Collapse
Affiliation(s)
| | - Dario Bonetta
- Faculty of Science, Ontario Tech University, 2000 Simcoe St N, Oshawa, ON L1G 0C5, Canada;
| |
Collapse
|
33
|
Yang J, Xie M, Wang X, Wang G, Zhang Y, Li Z, Ma Z. Identification of cell wall-associated kinases as important regulators involved in Gossypium hirsutum resistance to Verticillium dahliae. BMC PLANT BIOLOGY 2021; 21:220. [PMID: 33992078 PMCID: PMC8122570 DOI: 10.1186/s12870-021-02992-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/27/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND Verticillium wilt, caused by the soil borne fungus Verticillium dahliae, is a major threat to cotton production worldwide. An increasing number of findings indicate that WAK genes participate in plant-pathogen interactions, but their roles in cotton resistance to V. dahliae remain largely unclear. RESULTS Here, we carried out a genome-wide analysis of WAK gene family in Gossypium hirsutum that resulted in the identification of 81 putative GhWAKs, which were all predicated to be localized on plasma membrane. In which, GhWAK77 as a representative was further located in tobacco epidermal cells using transient expression of fluorescent fusion proteins. All GhWAKs could be classified into seven groups according to their diverse protein domains, indicating that they might sense different outside signals to trigger intracellular signaling pathways that were response to various environmental stresses. A lot of cis-regulatory elements were predicted in the upstream region of GhWAKs and classified into four main groups including hormones, biotic, abiotic and light. As many as 28 GhWAKs, playing a potential role in the interaction between cotton and V. dahliae, were screened out by RNA-seq and qRT-PCR. To further study the function of GhWAKs in cotton resistance to V. dahliae, VIGS technology was used to silence GhWAKs. At 20 dpi, VIGSed plants exhibited more chlorosis and wilting than the control plants. The disease indices of VIGSed plants were also significantly higher than those of the control. Furthermore, silencing of GhWAKs significantly affected the expression of JA- and SA-related marker genes, increased the spread of V. dahliae in the cotton stems, dramatically compromised V. dahliae-induced accumulation of lignin, H2O2 and NO, but enhanced POD activity. CONCLUSION Our study presents a comprehensive analysis on cotton WAK gene family for the first time. Expression analysis and VIGS assay provided direct evidences on GhWAKs participation in the cotton resistance to V. dahliae.
Collapse
Affiliation(s)
- Jun Yang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Meixia Xie
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Xingfen Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Guoning Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Yan Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Zhikun Li
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Zhiying Ma
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
34
|
Liu J, Zhang W, Long S, Zhao C. Maintenance of Cell Wall Integrity under High Salinity. Int J Mol Sci 2021; 22:3260. [PMID: 33806816 PMCID: PMC8004791 DOI: 10.3390/ijms22063260] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022] Open
Abstract
Cell wall biosynthesis is a complex biological process in plants. In the rapidly growing cells or in the plants that encounter a variety of environmental stresses, the compositions and the structure of cell wall can be dynamically changed. To constantly monitor cell wall status, plants have evolved cell wall integrity (CWI) maintenance system, which allows rapid cell growth and improved adaptation of plants to adverse environmental conditions without the perturbation of cell wall organization. Salt stress is one of the abiotic stresses that can severely disrupt CWI, and studies have shown that the ability of plants to sense and maintain CWI is important for salt tolerance. In this review, we highlight the roles of CWI in salt tolerance and the mechanisms underlying the maintenance of CWI under salt stress. The unsolved questions regarding the association between the CWI and salt tolerance are discussed.
Collapse
Affiliation(s)
- Jianwei Liu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; (J.L.); (W.Z.); (S.L.)
| | - Wei Zhang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; (J.L.); (W.Z.); (S.L.)
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shujie Long
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; (J.L.); (W.Z.); (S.L.)
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Chunzhao Zhao
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; (J.L.); (W.Z.); (S.L.)
| |
Collapse
|
35
|
del Hierro I, Mélida H, Broyart C, Santiago J, Molina A. Computational prediction method to decipher receptor-glycoligand interactions in plant immunity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1710-1726. [PMID: 33316845 PMCID: PMC8048873 DOI: 10.1111/tpj.15133] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/30/2020] [Accepted: 12/08/2020] [Indexed: 05/22/2023]
Abstract
Microbial and plant cell walls have been selected by the plant immune system as a source of microbe- and plant damage-associated molecular patterns (MAMPs/DAMPs) that are perceived by extracellular ectodomains (ECDs) of plant pattern recognition receptors (PRRs) triggering immune responses. From the vast number of ligands that PRRs can bind, those composed of carbohydrate moieties are poorly studied, and only a handful of PRR/glycan pairs have been determined. Here we present a computational screening method, based on the first step of molecular dynamics simulation, that is able to predict putative ECD-PRR/glycan interactions. This method has been developed and optimized with Arabidopsis LysM-PRR members CERK1 and LYK4, which are involved in the perception of fungal MAMPs, chitohexaose (1,4-β-d-(GlcNAc)6 ) and laminarihexaose (1,3-β-d-(Glc)6 ). Our in silico results predicted CERK1 interactions with 1,4-β-d-(GlcNAc)6 whilst discarding its direct binding by LYK4. In contrast, no direct interaction between CERK1/laminarihexaose was predicted by the model despite CERK1 being required for laminarihexaose immune activation, suggesting that CERK1 may act as a co-receptor for its recognition. These in silico results were validated by isothermal titration calorimetry binding assays between these MAMPs and recombinant ECDs-LysM-PRRs. The robustness of the developed computational screening method was further validated by predicting that CERK1 does not bind the DAMP 1,4-β-d-(Glc)6 (cellohexaose), and then probing that immune responses triggered by this DAMP were not impaired in the Arabidopsis cerk1 mutant. The computational predictive glycan/PRR binding method developed here might accelerate the discovery of protein-glycan interactions and provide information on immune responses activated by glycoligands.
Collapse
Affiliation(s)
- Irene del Hierro
- Centro de Biotecnología y Genómica de Plantas (CBGP)Universidad Politécnica de Madrid (UPM)Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)Campus de Montegancedo‐UPM28223Pozuelo de Alarcón, MadridSpain
- Departamento de Biotecnología‐Biología VegetalEscuela Técnica Superior de Ingeniería AgronómicaAlimentaria y de BiosistemasUniversidad Politécnica de Madrid (UPM)28040MadridSpain
| | - Hugo Mélida
- Centro de Biotecnología y Genómica de Plantas (CBGP)Universidad Politécnica de Madrid (UPM)Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)Campus de Montegancedo‐UPM28223Pozuelo de Alarcón, MadridSpain
- Present address:
Área de Fisiología VegetalDepartamento de Ingeniería y Ciencias AgrariasUniversidad de León24071LeónSpain
| | - Caroline Broyart
- Département de Biologie Moléculaire Végétale (DBMV)University of Lausanne (UNIL)Biophore Building, UNIL SorgeCH‐1015LausanneSwitzerland
| | - Julia Santiago
- Département de Biologie Moléculaire Végétale (DBMV)University of Lausanne (UNIL)Biophore Building, UNIL SorgeCH‐1015LausanneSwitzerland
| | - Antonio Molina
- Centro de Biotecnología y Genómica de Plantas (CBGP)Universidad Politécnica de Madrid (UPM)Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)Campus de Montegancedo‐UPM28223Pozuelo de Alarcón, MadridSpain
- Departamento de Biotecnología‐Biología VegetalEscuela Técnica Superior de Ingeniería AgronómicaAlimentaria y de BiosistemasUniversidad Politécnica de Madrid (UPM)28040MadridSpain
| |
Collapse
|
36
|
Turek I, Irving H. Moonlighting Proteins Shine New Light on Molecular Signaling Niches. Int J Mol Sci 2021; 22:1367. [PMID: 33573037 PMCID: PMC7866414 DOI: 10.3390/ijms22031367] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
Plants as sessile organisms face daily environmental challenges and have developed highly nuanced signaling systems to enable suitable growth, development, defense, or stalling responses. Moonlighting proteins have multiple tasks and contribute to cellular signaling cascades where they produce additional variables adding to the complexity or fuzziness of biological systems. Here we examine roles of moonlighting kinases that also generate 3',5'-cyclic guanosine monophosphate (cGMP) in plants. These proteins include receptor like kinases and lipid kinases. Their guanylate cyclase activity potentiates the development of localized cGMP-enriched nanodomains or niches surrounding the kinase and its interactome. These nanodomains contribute to allosteric regulation of kinase and other molecules in the immediate complex directly or indirectly modulating signal cascades. Effects include downregulation of kinase activity, modulation of other members of the protein complexes such as cyclic nucleotide gated channels and potential triggering of cGMP-dependent degradation cascades terminating signaling. The additional layers of information provided by the moonlighting kinases are discussed in terms of how they may be used to provide a layer of fuzziness to effectively modulate cellular signaling cascades.
Collapse
Affiliation(s)
| | - Helen Irving
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC 3550, Australia;
| |
Collapse
|
37
|
Dou L, Li Z, Shen Q, Shi H, Li H, Wang W, Zou C, Shang H, Li H, Xiao G. Genome-wide characterization of the WAK gene family and expression analysis under plant hormone treatment in cotton. BMC Genomics 2021; 22:85. [PMID: 33509085 PMCID: PMC7842020 DOI: 10.1186/s12864-021-07378-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/08/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Wall-associated kinases (WAK), one of the receptor-like kinases (RLK), function directly in the connection and communication between the plant cell wall and the cytoplasm. WAK genes are highly conserved and have been identified in plants, such as rice, but there is little research on the WAK gene family in cotton. RESULTS In the present study, we identified 29 GhWAK genes in Gossypium hirsutum. Phylogenetic analysis showed that cotton WAK proteins can be divided into five clades. The results of synteny and Ka/Ks analysis showed that the GhWAK genes mainly originated from whole genome duplication (WGD) and were then mainly under purifying selection. Transcriptome data and real-time PCR showed that 97% of GhWAK genes highly expressed in cotton fibers and ovules. β-glucuronidase (GUS) staining assays showed that GhWAK5 and GhWAK16 expressed in Arabidopsis leaf trichomes. Fourteen GhWAK genes were found to possess putative gibberellin (GA) response elements in the promoter regions, 13 of which were significantly induced by GA treatment. Ten GhWAK genes contained auxin (IAA) response elements and the expression level of nine GhWAKs significantly increased under auxin treatment. CONCLUSIONS We provide a preliminary analysis of the WAK gene family in G. hirsutum, which sheds light on the potantial roles of GhWAK genes in cotton fiber cell development. Our data also provides a useful resource for future studies on the functional roles of GhWAK genes.
Collapse
Affiliation(s)
- Lingling Dou
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang, 712000, Shaanxi, China
| | - Zhifang Li
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, Henan, China
| | - Qian Shen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Huiran Shi
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Huaizhu Li
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang, 712000, Shaanxi, China
| | - Wenbo Wang
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang, 712000, Shaanxi, China
| | - Changsong Zou
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, Henan, China
| | - Haihong Shang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Hongbin Li
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi, 832003, China
| | - Guanghui Xiao
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
38
|
Han Y, Zhao Y, Wang H, Zhang Y, Ding Q, Ma L. Identification of ceRNA and candidate genes related to fertility conversion of TCMS line YS3038 in wheat. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 158:190-207. [PMID: 33214039 DOI: 10.1016/j.plaphy.2020.10.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/28/2020] [Indexed: 06/11/2023]
Abstract
Previous studies have indicated that noncoding RNAs are important factors in gene functions. To explore the mechanism of male sterility of YS3038, the sterile genes were mapped, and based on previous work, the expression of long noncoding RNAs (lncRNAs), circular RNAs (circRNAs), and their target genes was studied. Weighted gene coexpression network analysis (WGCNA) and competitive endogenous RNA (ceRNA) analysis were further performed for differentially expressed noncoding RNAs and target genes. At last, the candidate genes were silenced by barley stripe mosaic virus-induced gene silencing (BSMV-VIGS) to prove their function. The sterile genes were mapped on chromosomes 1B and 6B based on chip mix pool analysis, and one major effect QTL (27.3190% variation) was found based on SSR primers. The WGCNA analysis revealed that the dark turquoise and steel blue modules were highly correlated with anther development and fertility conversion, respectively. The ceRNA analysis showed that a total of 184 RNAs interacted with each other, including 115 mRNAs, 55 microRNAs (miRNAs), eight circRNAs, and six lncRNAs. Finally, the seed setting rate of the plant was significantly decreased after fatty acyl-CoA reductase 5 silencing. This study provides breeders with a new option for the development of thermosensitive cytoplasmic male-sterile (TCMS) wheat lines, which will favor the sustainable development of two-line hybrid wheat.
Collapse
Affiliation(s)
- Yucui Han
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yue Zhao
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hairong Wang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yiyang Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qin Ding
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Lingjian Ma
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
39
|
Feng H, Li C, Zhou J, Yuan Y, Feng Z, Shi Y, Zhao L, Zhang Y, Wei F, Zhu H. A cotton WAKL protein interacted with a DnaJ protein and was involved in defense against Verticillium dahliae. Int J Biol Macromol 2020; 167:633-643. [PMID: 33275973 DOI: 10.1016/j.ijbiomac.2020.11.191] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/18/2020] [Accepted: 11/27/2020] [Indexed: 12/13/2022]
Abstract
Accumulating evidence indicates that plant cell wall-associated receptor-like kinases (WAKs) involve in defense against pathogen attack, but their related signaling processes and regulatory mechanism remain largely unknown. We identified a WAK-like kinase (GhWAKL) from upland cotton (Gossypium hirsutum) and characterized its functional mechanism. Expression of GhWAKL in cotton plants was induced by Verticillium dahliae infection and responded to the application of salicylic acid (SA). Knockdown of GhWAKL expression results in the reduction of SA content and suppresses the SA-mediated defense response, enhancing cotton plants susceptibility to V. dahliae. And, ecotopic overexpression of GhWAKL in Arabidopsis thaliana conferred plant resistance to the pathogen. Further analysis demonstrated that GhWAKL interacted with a cotton DnaJ protein (GhDNAJ1) on the cell membrane. Silencing GhDNAJ1 also enhanced cotton susceptibility to V. dahliae. Moreover, the mutation of GhWAKL at site Ser628 with the phosphorylation decreased the interaction with GhDNAJ1 and compromised the plant resistance to V. dahliae. We propose that GhWAKL is a potential molecular target for improving resistance to Verticillium wilt in cotton.
Collapse
Affiliation(s)
- Hongjie Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, Henan 450001, China; School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Cheng Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Jinglong Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Yuan Yuan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Zili Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Yongqiang Shi
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Lihong Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Yalin Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Feng Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, Henan 450001, China; School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Heqin Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, Henan 450001, China; School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
40
|
Wu X, Bacic A, Johnson KL, Humphries J. The Role of Brachypodium distachyon Wall-Associated Kinases (WAKs) in Cell Expansion and Stress Responses. Cells 2020; 9:E2478. [PMID: 33202612 PMCID: PMC7698158 DOI: 10.3390/cells9112478] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022] Open
Abstract
The plant cell wall plays a critical role in signaling responses to environmental and developmental cues, acting as both the sensing interface and regulator of plant cell integrity. Wall-associated kinases (WAKs) are plant receptor-like kinases located at the wall-plasma membrane-cytoplasmic interface and implicated in cell wall integrity sensing. WAKs in Arabidopsis thaliana have been shown to bind pectins in different forms under various conditions, such as oligogalacturonides (OG)s in stress response, and native pectin during cell expansion. The mechanism(s) WAKs use for sensing in grasses, which contain relatively low amounts of pectin, remains unclear. WAK genes from the model monocot plant, Brachypodium distachyon were identified. Expression profiling during early seedling development and in response to sodium salicylate and salt treatment was undertaken to identify WAKs involved in cell expansion and response to external stimuli. The BdWAK2 gene displayed increased expression during cell expansion and stress response, in addition to playing a potential role in the hypersensitive response. In vitro binding assays with various forms of commercial polysaccharides (pectins, xylans, and mixed-linkage glucans) and wall-extracted fractions (pectic/hemicellulosic/cellulosic) from both Arabidopsis and Brachypodium leaf tissues provided new insights into the binding properties of BdWAK2 and other candidate BdWAKs in grasses. The BdWAKs displayed a specificity for the acidic pectins with similar binding characteristics to the AtWAKs.
Collapse
Affiliation(s)
- Xingwen Wu
- School of BioSciences, University of Melbourne, Parkville 3010, Victoria, Australia
| | - Antony Bacic
- La Trobe Institute for Agriculture and Food, La Trobe University, Bundoora 3086, Victoria, Australia; (A.B.); (K.L.J.)
- Sino-Australia Plant Cell Wall Research Centre, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Kim L. Johnson
- La Trobe Institute for Agriculture and Food, La Trobe University, Bundoora 3086, Victoria, Australia; (A.B.); (K.L.J.)
- Sino-Australia Plant Cell Wall Research Centre, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - John Humphries
- School of BioSciences, University of Melbourne, Parkville 3010, Victoria, Australia
- La Trobe Institute for Agriculture and Food, La Trobe University, Bundoora 3086, Victoria, Australia; (A.B.); (K.L.J.)
| |
Collapse
|
41
|
Lin W, Yang Z. Unlocking the mechanisms behind the formation of interlocking pavement cells. CURRENT OPINION IN PLANT BIOLOGY 2020; 57:142-154. [PMID: 33128897 DOI: 10.1016/j.pbi.2020.09.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/30/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
The leaf epidermal pavement cells with the puzzle-piece shape offer an attractive system for studying the mechanisms underpinning cell morphogenesis in a plant tissue. The formation of the interdigitated lobes and indentations in these interlocking cells relies on the integration of chemical and mechanical signals and cell-to-cell signals to establish interdigitated polar sites defining lobes and indentations. Recent computational and experimental studies have suggested new roles of cell walls, their interplay with mechanical signals, cell polarity signaling regulated by auxin and brassinosteriods, and the cytoskeleton in the regulation of pavement cell morphogenesis. This review summarizes the current state of knowledge on these regulatory mechanisms behind pavement cell morphogenesis in plants and discusses how they could be integrated spatiotemporally to generate the interdigitated polarity patterns and the interlocking shape in pavement cells.
Collapse
Affiliation(s)
- Wenwei Lin
- Institute for Integrative Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Zhenbiao Yang
- Institute for Integrative Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA, USA.
| |
Collapse
|
42
|
Tripathi RK, Aguirre JA, Singh J. Genome-wide analysis of wall associated kinase (WAK) gene family in barley. Genomics 2020; 113:523-530. [PMID: 32987151 DOI: 10.1016/j.ygeno.2020.09.045] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 09/08/2020] [Accepted: 09/21/2020] [Indexed: 11/15/2022]
Abstract
In plants, wall associated kinases (WAKs) form a unique subfamily of receptor like-kinases (RLKs). In Arabidopsis thaliana, WAK-RLKs are known to regulate biotic stress, cell expansion, and metal tolerance, but their detailed characterization in barley is lacking. In this study, we identified a total of 91 WAK genes in the barley genome and classified them into five groups. Evolutionary analysis of HvWAKs with AtWAKs revealed their species-specific expansion. The maximum number (19 to 20) of WAK genes were located on chromosomes 3, 5 and 6. WAK proteins exhibited similar types of motif distribution in their group. Characterization of a Ds transposon insertion mutant of the wak1 revealed differences in the root length. Further, HvSPL23 transcription factor was identified as a positive co-expressing gene with HvWAK1, suggesting its possible upstream regulator. Taken together, our study provides a base for the functional characterization of WAK family members in the future.
Collapse
Affiliation(s)
- Rajiv K Tripathi
- Plant Science Department, McGill University, 21111 Rue Lakeshore, Quebec H9X 3V9, Canada
| | - John A Aguirre
- Plant Science Department, McGill University, 21111 Rue Lakeshore, Quebec H9X 3V9, Canada
| | - Jaswinder Singh
- Plant Science Department, McGill University, 21111 Rue Lakeshore, Quebec H9X 3V9, Canada.
| |
Collapse
|
43
|
Li S, Zhang Y, Xin X, Ding C, Lv F, Mo W, Xia Y, Wang S, Cai J, Sun L, Du M, Dong C, Gao X, Dai X, Zhang J, Sun J. The Osmotin-Like Protein Gene PdOLP1 Is Involved in Secondary Cell Wall Biosynthesis during Wood Formation in Poplar. Int J Mol Sci 2020; 21:E3993. [PMID: 32498411 PMCID: PMC7312728 DOI: 10.3390/ijms21113993] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 05/13/2020] [Accepted: 05/28/2020] [Indexed: 12/26/2022] Open
Abstract
Osmotin-like proteins (OLPs) mediate defenses against abiotic and biotic stresses and fungal pathogens in plants. However, no OLPs have been functionally elucidated in poplar. Here, we report an osmotin-like protein designated PdOLP1 from Populus deltoides (Marsh.). Expression analysis showed that PdOLP1 transcripts were mainly present in immature xylem and immature phloem during vascular tissue development in P. deltoides. We conducted phenotypic, anatomical, and molecular analyses of PdOLP1-overexpressing lines and the PdOLP1-downregulated hybrid poplar 84K (Populus alba × Populus glandulosa) (Hybrid poplar 84K PagOLP1, PagOLP2, PagOLP3 and PagOLP4 are highly homologous to PdOLP1, and are downregulated in PdOLP1-downregulated hybrid poplar 84K). The overexpression of PdOLP1 led to a reduction in the radial width and cell layer number in the xylem and phloem zones, in expression of genes involved in lignin biosynthesis, and in the fibers and vessels of xylem cell walls in the overexpressing lines. Additionally, the xylem vessels and fibers of PdOLP1-downregulated poplar exhibited increased secondary cell wall thickness. Elevated expression of secondary wall biosynthetic genes was accompanied by increases in lignin content, dry weight biomass, and carbon storage in PdOLP1-downregulated lines. A PdOLP1 coexpression network was constructed and showed that PdOLP1 was coexpressed with a large number of genes involved in secondary cell wall biosynthesis and wood development in poplar. Moreover, based on transcriptional activation assays, PtobZIP5 and PtobHLH7 activated the PdOLP1 promoter, whereas PtoBLH8 and PtoWRKY40 repressed it. A yeast one-hybrid (Y1H) assay confirmed interaction of PtoBLH8, PtoMYB3, and PtoWRKY40 with the PdOLP1 promoter in vivo. Together, our results suggest that PdOLP1 is a negative regulator of secondary wall biosynthesis and may be valuable for manipulating secondary cell wall deposition to improve carbon fixation efficiency in tree species.
Collapse
Affiliation(s)
- Shaofeng Li
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 100023, China; (S.L.); (Y.Z.); (X.X.); (F.L.); (W.M.); (Y.X.); (S.W.); (J.C.); (L.S.); (M.D.); (C.D.); (X.G.); (X.D.)
| | - Yaoxiang Zhang
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 100023, China; (S.L.); (Y.Z.); (X.X.); (F.L.); (W.M.); (Y.X.); (S.W.); (J.C.); (L.S.); (M.D.); (C.D.); (X.G.); (X.D.)
| | - Xuebing Xin
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 100023, China; (S.L.); (Y.Z.); (X.X.); (F.L.); (W.M.); (Y.X.); (S.W.); (J.C.); (L.S.); (M.D.); (C.D.); (X.G.); (X.D.)
| | - Changjun Ding
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Beijing 100091, China;
| | - Fuling Lv
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 100023, China; (S.L.); (Y.Z.); (X.X.); (F.L.); (W.M.); (Y.X.); (S.W.); (J.C.); (L.S.); (M.D.); (C.D.); (X.G.); (X.D.)
| | - Wenjuan Mo
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 100023, China; (S.L.); (Y.Z.); (X.X.); (F.L.); (W.M.); (Y.X.); (S.W.); (J.C.); (L.S.); (M.D.); (C.D.); (X.G.); (X.D.)
| | - Yongxiu Xia
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 100023, China; (S.L.); (Y.Z.); (X.X.); (F.L.); (W.M.); (Y.X.); (S.W.); (J.C.); (L.S.); (M.D.); (C.D.); (X.G.); (X.D.)
| | - Shaoli Wang
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 100023, China; (S.L.); (Y.Z.); (X.X.); (F.L.); (W.M.); (Y.X.); (S.W.); (J.C.); (L.S.); (M.D.); (C.D.); (X.G.); (X.D.)
| | - Jingyan Cai
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 100023, China; (S.L.); (Y.Z.); (X.X.); (F.L.); (W.M.); (Y.X.); (S.W.); (J.C.); (L.S.); (M.D.); (C.D.); (X.G.); (X.D.)
| | - Lifang Sun
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 100023, China; (S.L.); (Y.Z.); (X.X.); (F.L.); (W.M.); (Y.X.); (S.W.); (J.C.); (L.S.); (M.D.); (C.D.); (X.G.); (X.D.)
| | - Manyi Du
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 100023, China; (S.L.); (Y.Z.); (X.X.); (F.L.); (W.M.); (Y.X.); (S.W.); (J.C.); (L.S.); (M.D.); (C.D.); (X.G.); (X.D.)
| | - Chenxi Dong
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 100023, China; (S.L.); (Y.Z.); (X.X.); (F.L.); (W.M.); (Y.X.); (S.W.); (J.C.); (L.S.); (M.D.); (C.D.); (X.G.); (X.D.)
| | - Xu Gao
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 100023, China; (S.L.); (Y.Z.); (X.X.); (F.L.); (W.M.); (Y.X.); (S.W.); (J.C.); (L.S.); (M.D.); (C.D.); (X.G.); (X.D.)
| | - Xinlu Dai
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 100023, China; (S.L.); (Y.Z.); (X.X.); (F.L.); (W.M.); (Y.X.); (S.W.); (J.C.); (L.S.); (M.D.); (C.D.); (X.G.); (X.D.)
| | - Jianhui Zhang
- Department of Pharmaceutical Science, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| | - Jinshuang Sun
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 100023, China; (S.L.); (Y.Z.); (X.X.); (F.L.); (W.M.); (Y.X.); (S.W.); (J.C.); (L.S.); (M.D.); (C.D.); (X.G.); (X.D.)
| |
Collapse
|
44
|
Dievart A, Gottin C, Périn C, Ranwez V, Chantret N. Origin and Diversity of Plant Receptor-Like Kinases. ANNUAL REVIEW OF PLANT BIOLOGY 2020; 71:131-156. [PMID: 32186895 DOI: 10.1146/annurev-arplant-073019-025927] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Because of their high level of diversity and complex evolutionary histories, most studies on plant receptor-like kinase subfamilies have focused on their kinase domains. With the large amount of genome sequence data available today, particularly on basal land plants and Charophyta, more attention should be paid to primary events that shaped the diversity of the RLK gene family. We thus focus on the motifs and domains found in association with kinase domains to illustrate their origin, organization, and evolutionary dynamics. We discuss when these different domain associations first occurred and how they evolved, based on a literature review complemented by some of our unpublished results.
Collapse
Affiliation(s)
- Anne Dievart
- CIRAD, UMR AGAP, F-34398 Montpellier, France;
- AGAP, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, F-34060 Montpellier, France
| | - Céline Gottin
- CIRAD, UMR AGAP, F-34398 Montpellier, France;
- AGAP, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, F-34060 Montpellier, France
| | - Christophe Périn
- CIRAD, UMR AGAP, F-34398 Montpellier, France;
- AGAP, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, F-34060 Montpellier, France
| | - Vincent Ranwez
- AGAP, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, F-34060 Montpellier, France
| | - Nathalie Chantret
- AGAP, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, F-34060 Montpellier, France
| |
Collapse
|
45
|
Li Q, Hu A, Qi J, Dou W, Qin X, Zou X, Xu L, Chen S, He Y. CsWAKL08, a pathogen-induced wall-associated receptor-like kinase in sweet orange, confers resistance to citrus bacterial canker via ROS control and JA signaling. HORTICULTURE RESEARCH 2020; 7:42. [PMID: 32257228 PMCID: PMC7109087 DOI: 10.1038/s41438-020-0263-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/20/2020] [Accepted: 01/29/2020] [Indexed: 05/18/2023]
Abstract
Citrus bacterial canker (CBC) is a disease resulting from Xanthomonas citri subsp. citri (Xcc) infection and poses a grave threat to citrus production worldwide. Wall-associated receptor-like kinases (WAKLs) are proteins with a central role in resisting a range of fungal and bacterial diseases. The roles of WAKLs in the context of CBC resistance, however, remain unclear. Here, we explored the role of CsWAKL08, which confers resistance to CBC, and we additionally analyzed the molecular mechanisms of CsWAKL08-mediated CBC resistance. Based on systematic annotation and induced expression analysis of the CsWAKL family in Citrus sinensis, CsWAKL08 was identified as a candidate that can be upregulated by Xcc infection in the CBC-resistant variety. CsWAKL08 can also be induced by the phytohormones salicylic acid (SA) and methyl jasmonic acid (MeJA) and spans the plasma membrane. Overexpression of CsWAKL08 resulted in strong CBC resistance in transgenic sweet oranges, whereas silencing of CsWAKL08 resulted in susceptibility to CBC. The peroxidase (POD) and superoxide dismutase (SOD) activities were significantly enhanced in the CsWAKL08-overexpressing plants compared to the control plants, thereby mediating reactive oxygen species (ROS) homeostasis in the transgenic plants. Moreover, the JA levels and the expression of JA biosynthesis and JA responsive genes were substantially elevated in the CsWAKL08 overexpression plants relative to the controls upon Xcc infection. Based on these findings, we conclude that the wall-associated receptor-like kinase CsWAKL08 positively regulates CBC resistance through a mechanism involving ROS control and JA signaling. These results further highlight the importance of this kinase family in plant pathogen resistance.
Collapse
Affiliation(s)
- Qiang Li
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, 400712 China
| | - Anhua Hu
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, 400712 China
| | - Jingjing Qi
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, 400712 China
| | - Wanfu Dou
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, 400712 China
| | - Xiujuan Qin
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, 400712 China
| | - Xiuping Zou
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, 400712 China
| | - Lanzhen Xu
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, 400712 China
| | - Shanchun Chen
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, 400712 China
| | - Yongrui He
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, 400712 China
| |
Collapse
|
46
|
Rui Y, Dinneny JR. A wall with integrity: surveillance and maintenance of the plant cell wall under stress. THE NEW PHYTOLOGIST 2020; 225:1428-1439. [PMID: 31486535 DOI: 10.1111/nph.16166] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/16/2019] [Indexed: 05/21/2023]
Abstract
The structural and functional integrity of the cell wall needs to be constantly monitored and fine-tuned to allow for growth while preventing mechanical failure. Many studies have advanced our understanding of the pathways that contribute to cell wall biosynthesis and how these pathways are regulated by external and internal cues. Recent evidence also supports a model in which certain aspects of the wall itself may act as growth-regulating signals. Molecular components of the signaling pathways that sense and maintain cell wall integrity have begun to be revealed, including signals arising in the wall, sensors that detect changes at the cell surface, and downstream signal transduction modules. Abiotic and biotic stress conditions provide new contexts for the study of cell wall integrity, but the nature and consequences of wall disruptions due to various stressors require further investigation. A deeper understanding of cell wall signaling will provide insights into the growth regulatory mechanisms that allow plants to survive in changing environments.
Collapse
Affiliation(s)
- Yue Rui
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA, 94305, USA
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA, 94305, USA
| | - José R Dinneny
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA, 94305, USA
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA, 94305, USA
| |
Collapse
|
47
|
Hurst CH, Wright KM, Turnbull D, Leslie K, Jones S, Hemsley PA. Juxta-membrane S-acylation of plant receptor-like kinases is likely fortuitous and does not necessarily impact upon function. Sci Rep 2019; 9:12818. [PMID: 31492958 PMCID: PMC6731221 DOI: 10.1038/s41598-019-49302-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 08/22/2019] [Indexed: 01/24/2023] Open
Abstract
S-acylation is a common post-translational modification of membrane protein cysteine residues with many regulatory roles. S-acylation adjacent to transmembrane domains has been described in the literature as affecting diverse protein properties including turnover, trafficking and microdomain partitioning. However, all of these data are derived from mammalian and yeast systems. Here we examine the role of S-acylation adjacent to the transmembrane domain of the plant pathogen perceiving receptor-like kinase FLS2. Surprisingly, S-acylation of FLS2 adjacent to the transmembrane domain is not required for either FLS2 trafficking or signalling function. Expanding this analysis to the wider plant receptor-like kinase family we find that S-acylation adjacent to receptor-like kinase domains is common, affecting ~25% of Arabidopsis receptor-like kinases, but poorly conserved between orthologues through evolution. This suggests that S-acylation of receptor-like kinases at this site is likely the result of chance mutation leading to cysteine occurrence. As transmembrane domains followed by cysteine residues are common motifs for S-acylation to occur, and many S-acyl transferases appear to have lax substrate specificity, we propose that many receptor-like kinases are fortuitously S-acylated once chance mutation has introduced a cysteine at this site. Interestingly some receptor-like kinases show conservation of S-acylation sites between orthologues suggesting that S-acylation has come to play a role and has been positively selected for during evolution. The most notable example of this is in the ERECTA-like family where S-acylation of ERECTA adjacent to the transmembrane domain occurs in all ERECTA orthologues but not in the parental ERECTA-like clade. This suggests that ERECTA S-acylation occurred when ERECTA emerged during the evolution of angiosperms and may have contributed to the neo-functionalisation of ERECTA from ERECTA-like proteins.
Collapse
Affiliation(s)
- Charlotte H Hurst
- Division of Plant Science, School of Life Science, University of Dundee (at JHI), Invergowrie, Dundee, DD2 5DA, UK.,Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Kathryn M Wright
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Dionne Turnbull
- Division of Plant Science, School of Life Science, University of Dundee (at JHI), Invergowrie, Dundee, DD2 5DA, UK
| | - Kerry Leslie
- Division of Plant Science, School of Life Science, University of Dundee (at JHI), Invergowrie, Dundee, DD2 5DA, UK.,Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK.,Biomedical Sciences Research Complex, University of St Andrews, St Andrews, KY16 9ST, UK
| | - Susan Jones
- Information and Computer Sciences, James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Piers A Hemsley
- Division of Plant Science, School of Life Science, University of Dundee (at JHI), Invergowrie, Dundee, DD2 5DA, UK. .,Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK.
| |
Collapse
|
48
|
Lorang J. Necrotrophic Exploitation and Subversion of Plant Defense: A Lifestyle or Just a Phase, and Implications in Breeding Resistance. PHYTOPATHOLOGY 2019; 109:332-346. [PMID: 30451636 DOI: 10.1094/phyto-09-18-0334-ia] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Breeding disease-resistant plants is a critical, environmentally friendly component of any strategy to sustainably feed and clothe the 9.8 billion people expected to live on Earth by 2050. Here, I review current literature detailing plant defense responses as they relate to diverse biological outcomes; disease resistance, susceptibility, and establishment of mutualistic plant-microbial relationships. Of particular interest is the degree to which these outcomes are a function of plant-associated microorganisms' lifestyles; biotrophic, hemibiotrophic, necrotrophic, or mutualistic. For the sake of brevity, necrotrophic pathogens and the necrotrophic phase of pathogenicity are emphasized in this review, with special attention given to the host-specific pathogens that exploit defense. Defense responses related to generalist necrotrophs and mutualists are discussed in the context of excellent reviews by others. In addition, host evolutionary trade-offs of disease resistance with other desirable traits are considered in the context of breeding for durable disease resistance.
Collapse
Affiliation(s)
- Jennifer Lorang
- Department of Botany, 2082 Cordley Hall, Oregon State University, Corvallis 97331
| |
Collapse
|
49
|
Thor K. Calcium-Nutrient and Messenger. FRONTIERS IN PLANT SCIENCE 2019; 10:440. [PMID: 31073302 PMCID: PMC6495005 DOI: 10.3389/fpls.2019.00440] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/22/2019] [Indexed: 05/19/2023]
Abstract
Calcium is an essential element needed for growth and development of plants under both non-stressed and stress conditions. It thereby fulfills a dual function, being not only an important factor for cell wall and membrane stability, but also serving as a second messenger in many developmental and physiological processes, including the response of plants to biotic stress. The perception of non-self hereby induces an influx of calcium ions (Ca2+) into the cytosol, which is decoded into downstream responses ultimately leading to defense. Maintaining intracellular Ca2+ homeostasis is crucial for the ability to generate this signal. This review will describe the current knowledge of the mechanisms involved in uptake and transport of calcium as well as cellular homeostasis and signal generation, describing known genes involved and discussing possible implications the plant's nutritional status with regard to calcium might have on immunity.
Collapse
|
50
|
Héloir MC, Adrian M, Brulé D, Claverie J, Cordelier S, Daire X, Dorey S, Gauthier A, Lemaître-Guillier C, Negrel J, Trdá L, Trouvelot S, Vandelle E, Poinssot B. Recognition of Elicitors in Grapevine: From MAMP and DAMP Perception to Induced Resistance. FRONTIERS IN PLANT SCIENCE 2019; 10:1117. [PMID: 31620151 PMCID: PMC6760519 DOI: 10.3389/fpls.2019.01117] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 08/14/2019] [Indexed: 05/21/2023]
Abstract
In a context of a sustainable viticulture, the implementation of innovative eco-friendly strategies, such as elicitor-triggered immunity, requires a deep knowledge of the molecular mechanisms underlying grapevine defense activation, from pathogen perception to resistance induction. During plant-pathogen interaction, the first step of plant defense activation is ensured by the recognition of microbe-associated molecular patterns, which are elicitors directly derived from pathogenic or beneficial microbes. Vitis vinifera, like other plants, can perceive elicitors of different nature, including proteins, amphiphilic glycolipid, and lipopeptide molecules as well as polysaccharides, thanks to their cognate pattern recognition receptors, the discovery of which recently began in this plant species. Furthermore, damage-associated molecular patterns are another class of elicitors perceived by V. vinifera as an invader's hallmark. They are mainly polysaccharides derived from the plant cell wall and are generally released through the activity of cell wall-degrading enzymes secreted by microbes. Elicitor perception and subsequent activation of grapevine immunity end in some cases in efficient grapevine resistance against pathogens. Using complementary approaches, several molecular markers have been identified as hallmarks of this induced resistance stage. This review thus focuses on the recognition of elicitors by Vitis vinifera describing the molecular mechanisms triggered from the elicitor perception to the activation of immune responses. Finally, we discuss the fact that the link between elicitation and induced resistance is not so obvious and that the formulation of resistance inducers remains a key step before their application in vineyards.
Collapse
Affiliation(s)
- Marie-Claire Héloir
- Agroécologie, Agrosup Dijon, CNRS, INRA, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Marielle Adrian
- Agroécologie, Agrosup Dijon, CNRS, INRA, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Daphnée Brulé
- Agroécologie, Agrosup Dijon, CNRS, INRA, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Justine Claverie
- Agroécologie, Agrosup Dijon, CNRS, INRA, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Sylvain Cordelier
- Unité RIBP EA 4707, SFR Condorcet FR CNRS 3417, University of Reims Champagne-Ardenne, Reims, France
| | - Xavier Daire
- Agroécologie, Agrosup Dijon, CNRS, INRA, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Stéphan Dorey
- Unité RIBP EA 4707, SFR Condorcet FR CNRS 3417, University of Reims Champagne-Ardenne, Reims, France
| | - Adrien Gauthier
- Agroécologie, Agrosup Dijon, CNRS, INRA, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
- UniLaSalle, AGHYLE Research Unit UP 2018.C101, Rouen, France
| | | | - Jonathan Negrel
- Agroécologie, Agrosup Dijon, CNRS, INRA, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Lucie Trdá
- Agroécologie, Agrosup Dijon, CNRS, INRA, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
- Laboratory of Pathological Plant Physiology, Institute of Experimental Botany, the Czech Academy of Sciences, Prague, Czechia
| | - Sophie Trouvelot
- Agroécologie, Agrosup Dijon, CNRS, INRA, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Elodie Vandelle
- Agroécologie, Agrosup Dijon, CNRS, INRA, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
- Laboratory of Plant Pathology, Department of Biotechnology, University of Verona, Verona, Italy
| | - Benoit Poinssot
- Agroécologie, Agrosup Dijon, CNRS, INRA, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
- *Correspondence: Benoit Poinssot,
| |
Collapse
|