1
|
Huang J, Guesthier MA, Burgos SA. AMP-activated protein kinase controls lipid and lactose synthesis in bovine mammary epithelial cells. J Dairy Sci 2019; 103:340-351. [PMID: 31733862 DOI: 10.3168/jds.2019-16343] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 09/19/2019] [Indexed: 11/19/2022]
Abstract
The synthesis of milk components in bovine mammary epithelial cells (BMEC) requires an adequate supply of energy. The AMP-activated protein kinase (AMPK) is a cellular energy gauge that controls anabolic and catabolic processes to maintain a balance between energy supply and demand. The objectives of this study were to assess the role of AMPK on de novo lipid and lactose synthesis, as well as its regulation by glucose and acetate availability in BMEC. We isolated primary BMEC from the mammary tissue of 3 lactating Holstein cows and differentiated them with lactogenic hormones for 4 d. We measured protein abundance, site-specific phosphorylation, and proteolytic processing by immunoblotting. We quantified the expression of genes involved in lipid and lactose synthesis using real-time quantitative PCR. We measured de novo lipid and lactose synthesis by incorporation of radioactive substrates. We analyzed data by ANOVA using a randomized complete block design with PROC MIXED in SAS. To assess the effect of AMPK activation on milk component synthesis, we treated BMEC with 100 μM A-769662 (A76; an allosteric activator of AMPK) or vehicle control for 16 h. Consistent with activation of AMPK, A76 increased phosphorylation of its downstream targets ACC Ser79 and TSC2 Ser1387 by 144% and 26%, respectively. Activation of AMPK decreased lipid synthesis by 19%. This effect was accompanied by increased expression of FABP3. Activation of AMPK reduced the proportion of mature SREBP-1c. In addition, AMPK activation reduced lactose synthesis by 24% and lowered the expression of SLC2A1, the gene encoding GLUT1. To assess the regulation of AMPK by energy substrate availability, we incubated BMEC in a control medium containing 4 mM D-glucose and 1 mM sodium acetate, or medium lacking glucose or acetate, for 4 h. Compared with the control medium, deprivation of glucose or acetate promoted AMPKα phosphorylation at Thr172 by 84% or 58%, respectively. Activation of AMPK was significantly increased in BMEC only when the medium was devoid of glucose for at least 4 h. We concluded that activation of AMPK inhibits de novo lipid and lactose synthesis in BMEC. Further studies are needed to assess the physiological relevance of AMPK activation for milk composition in vivo and to identify the mechanisms mediating its effects on milk component synthesis.
Collapse
Affiliation(s)
- J Huang
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, H9X 3V9 Canada
| | - M-A Guesthier
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, H9X 3V9 Canada
| | - S A Burgos
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, H9X 3V9 Canada.
| |
Collapse
|
2
|
Zhuang L, Li C, Chen Q, Jin Q, Wu L, Lu L, Yan X, Chen K. Fatty acid-binding protein 3 contributes to ischemic heart injury by regulating cardiac myocyte apoptosis and MAPK pathways. Am J Physiol Heart Circ Physiol 2019; 316:H971-H984. [PMID: 30735072 DOI: 10.1152/ajpheart.00360.2018] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Fatty acid-binding protein 3 (FABP3), a low-molecular-weight protein, participates in lipid transportation, storage, signaling transduction, oxidation, and transcription regulation. Here, we investigated the expression and function of FABP3 in ischemic heart diseases and explored the mechanisms by which FABP3 affected remodeling after myocardial infarction (MI). We showed that ischemic or hypoxic conditions upregulated FABP3 expression in vivo and in vitro. Notably, overexpression of FABP3 induced more myocyte apoptosis in the infarction and border areas and aggravated cardiac dysfunction, with lower left ventricular ejection fraction. Meanwhile, overexpression of FABP3 drastically promoted death and apoptosis of neonatal rat ventricular cardiomyocytes under hypoxia. Furthermore, deficiency of FABP3 exerted protective effects against ischemic heart injuries by decreasing cardiac myocyte apoptosis and heart remodeling after MI. We found that overexpression of FABP3 upregulated the phosphorylation of MAPK signaling pathway and decreased phosphorylated Akt levels, which may account for the augmentation of apoptosis and remodeling after MI. To the best of our knowledge, this is the first study to demonstrate that deficiency of FABP3 would protect cardiac myocytes from apoptosis and alleviate cardiac remodeling after MI, suggesting FABP3 as a potential target to preserve cardiac function after MI. NEW & NOTEWORTHY It is an undisputable fact that myocyte apoptosis plays a crucial role in cardiac remodeling and the development of heart failure after myocardial infarction. Here, fatty acid-binding protein 3 deficiency improved myocardial structural remodeling and function by decreasing cell apoptosis and regulating MAPK signaling pathways. We suppose that fatty acid-binding protein 3 may be regarded as a potential intervention approach to preserve cardiomyocytes during myocardial infarction.
Collapse
Affiliation(s)
- Lingfang Zhuang
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Chenni Li
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Qiujing Chen
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Qi Jin
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Liqun Wu
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Lin Lu
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Xiaoxiang Yan
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Kang Chen
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine , Shanghai , China
| |
Collapse
|
3
|
Kim H, Gil G, Lee S, Kwak A, Jo S, Kim E, Nguyen TT, Kim S, Jhun H, Kim S, Kim M, Lee Y, Kim S. Cytokine-like Activity of Liver Type Fatty Acid Binding Protein (L-FABP) Inducing Inflammatory Cytokine Interleukin-6. Immune Netw 2016; 16:296-304. [PMID: 27799875 PMCID: PMC5086454 DOI: 10.4110/in.2016.16.5.296] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/14/2016] [Accepted: 10/16/2016] [Indexed: 12/02/2022] Open
Abstract
It has been reported that fatty acid binding proteins (FABPs) do not act only as intracellular mediators of lipid responses but also have extracellular functions. This study aimed to investigate whether extracellular liver type (L)-FABP has a biological activity and to determined serum L-FABP levels in patients with end-stage renal disease (ESRD). We isolated L-FABP complementary deoxyribonucleic acid (cDNA) from the Huh7 human hepatocarcinoma cell line and expressed the recombinant L-FABP protein in Escherichia coli. A549 lung carcinoma and THP-1 monocytic cells were stimulated with the human recombinant L-FABP. Human whole blood cells were also treated with the human recombinant L-FABP or interleukin (IL)-1α. IL-6 levels were measured in cell culture supernatants using IL-6 enzyme-linked immunosorbent assay (ELISA). Human recombinant L-FABP induced IL-6 in a dose-dependent manner in A549, THP-1 cells, and whole blood cells. The blood samples of healthy volunteers and patients with ESRD were taken after an overnight fast. The serum levels of L-FABP in healthy volunteers and ESRD patients were quantified with L-FABP ELISA. The values of L-FABP in patients with ESRD were significantly lower than those in the control group. Our results demonstrated the biological activity of L-FABP in human cells suggesting L-FABP can be a mediator of inflammation.
Collapse
Affiliation(s)
- Hyunwoo Kim
- Division of Nephrology, Department of Internal Medicine, Jeju National University School of Medicine, Jeju 63243, Korea.; Department of Medicine, University of Colorado Denver, Aurora, Colorado 80045, USA
| | - Gaae Gil
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea
| | - Siyoung Lee
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.; YbdYbiotech research center, Seoul 08589, Korea
| | - Areum Kwak
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.; College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Seunghyun Jo
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.; College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Ensom Kim
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea
| | - Tam T Nguyen
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea
| | - Sinae Kim
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea
| | - Hyunjhung Jhun
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.; College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Somi Kim
- Division of Nephrology, Department of Internal Medicine, Jeju National University School of Medicine, Jeju 63243, Korea
| | - Miyeon Kim
- Division of Nephrology, Department of Internal Medicine, Jeju National University School of Medicine, Jeju 63243, Korea
| | - Youngmin Lee
- Department of Medicine, Pusan Paik Hospital, College of Medicine, Inje University, Busan 47392, Korea
| | - Soohyun Kim
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.; College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
4
|
Abstract
Intracellular and extracellular interactions with proteins enables the functional and mechanistic diversity of lipids. Fatty acid-binding proteins (FABPs) were originally described as intracellular proteins that can affect lipid fluxes, metabolism and signalling within cells. As the functions of this protein family have been further elucidated, it has become evident that they are critical mediators of metabolism and inflammatory processes, both locally and systemically, and therefore are potential therapeutic targets for immunometabolic diseases. In particular, genetic deficiency and small molecule-mediated inhibition of FABP4 (also known as aP2) and FABP5 can potently improve glucose homeostasis and reduce atherosclerosis in mouse models. Further research has shown that in addition to their intracellular roles, some FABPs are found outside the cells, and FABP4 undergoes regulated, vesicular secretion. The circulating form of FABP4 has crucial hormonal functions in systemic metabolism. In this Review we discuss the roles and regulation of both intracellular and extracellular FABP actions, highlighting new insights that might direct drug discovery efforts and opportunities for management of chronic metabolic diseases.
Collapse
Affiliation(s)
- Gökhan S Hotamisligil
- Department of Genetics and Complex Diseases and Sabri Ülker Center, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA
| | - David A Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 321 Church Street SE, Minneapolis, MN 55455, USA
| |
Collapse
|
5
|
Lanier JS, Corl BA. Challenges in enriching milk fat with polyunsaturated fatty acids. J Anim Sci Biotechnol 2015; 6:26. [PMID: 26110055 PMCID: PMC4479322 DOI: 10.1186/s40104-015-0025-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 06/02/2015] [Indexed: 01/14/2023] Open
Abstract
Milk fatty acid composition is determined by several factors including diet. The milk fatty acid profile of dairy cows is low in polyunsaturated fatty acids, especially those of the n-3 series. Efforts to change and influence fatty acid profile with longer chain polyunsaturated fatty acids have proven challenging. Several barriers prevent easy transfer of dietary polyunsaturated fatty acids to milk fat including rumen biohydrogenation and fatty acid esterification. The potential for cellular uptake and differences in fatty acid incorporation into milk fat might also have an effect, though this has received less research effort. Given physiological impediments to enriching milk fat with polyunsaturated fatty acids, manipulating the genome of the cow might provide a greater increase than diet alone, but this too may be challenged by the physiology of the cow.
Collapse
Affiliation(s)
| | - Benjamin A Corl
- Department of Dairy Science, Virginia Tech, Blacksburg, VA 24061-0315 USA
| |
Collapse
|
6
|
Nafikov RA, Schoonmaker JP, Korn KT, Noack K, Garrick DJ, Koehler KJ, Minick-Bormann J, Reecy JM, Spurlock DE, Beitz DC. Association of polymorphisms in solute carrier family 27, isoform A6 (SLC27A6) and fatty acid-binding protein-3 and fatty acid-binding protein-4 (FABP3 and FABP4) with fatty acid composition of bovine milk. J Dairy Sci 2013; 96:6007-21. [PMID: 23831098 DOI: 10.3168/jds.2013-6703] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Accepted: 05/21/2013] [Indexed: 12/26/2022]
Abstract
The main goal of this study was to develop tools for genetic selection of animals producing milk with a lower concentration of saturated fatty acids (SFA) and a higher concentration of unsaturated fatty acids (UFA). The reasons for changing milk fatty acid (FA) composition were to improve milk technological properties, such as for production of more spreadable butter, and milk nutritional value with respect to the potentially adverse effects of SFA on human health. We hypothesized that genetic polymorphisms in solute carrier family 27, isoform A6 (SLC27A6) fatty acid transport protein gene and fatty acid binding protein (FABP)-3 and FABP-4 (FABP3 and FABP4) would affect the selectivity of FA uptake into, and FA redistribution inside, mammary epithelial cells, resulting in altered FA composition of bovine milk. The objectives of our study were to discover genetic polymorphisms in SLC27A6, FABP3, and FABP4, and to test those polymorphisms for associations with milk FA composition. The results showed that after pairwise comparisons between SLC27A6 haplotypes for significantly associated traits, haplotype H3 was significantly associated with 1.37 weight percentage (wt%) lower SFA concentration, 0.091 lower SFA:UFA ratio, and 0.17 wt% lower lauric acid (12:0) concentration, but 1.37 wt% higher UFA and 1.24 wt% higher monounsaturated fatty acid (MUFA) concentrations compared with haplotype H1 during the first 3 mo of lactation. Pairwise comparisons between FABP4 haplotypes for significantly associated traits showed that haplotype H3 was significantly associated with 1.04 wt% lower SFA concentration, 0.079 lower SFA:UFA ratio, 0.15 wt% lower lauric acid (12:0), and 0.27 wt% lower myristic acid (14:0) concentrations, but 1.04 wt% higher UFA and 0.91 wt% higher MUFA concentrations compared with haplotype H1 during the first 3 mo of lactation. Percentages of genetic variance explained by H3 versus H1 haplotype substitutions for SLC27A6 and FABP4 ranged from 2.50 to 4.86% and from 4.91 to 7.22%, respectively. Tag single nucleotide polymorphisms were identified to distinguish haplotypes H3 of SLC27A6 and FABP4 from others encompassing each gene. We found no significant associations between FABP3 haplotypes and milk FA composition. In conclusion, polymorphisms in FABP4 and SLC27A6 can be used to select for cattle producing milk with lower concentrations of SFA and higher concentrations of UFA.
Collapse
Affiliation(s)
- R A Nafikov
- Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Brand TM, Iida M, Wheeler DL. Molecular mechanisms of resistance to the EGFR monoclonal antibody cetuximab. Cancer Biol Ther 2011; 11:777-92. [PMID: 21293176 DOI: 10.4161/cbt.11.9.15050] [Citation(s) in RCA: 186] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase belonging to the HER family of receptor tyrosine kinases. Receptor activation upon ligand binding leads to down stream activation of the PI3K/AKT, RAS/RAF/MEK/ERK and PLCγ/PKC pathways that influence cell proliferation, survival and the metastatic potential of tumor cells. Increased activation by gene amplification, protein overexpression or mutations of the EGFR has been identified as an etiological factor in a number of human epithelial cancers (e.g., NSCLC, CRC, glioblastoma and breast cancer). Therefore, targeting the EGFR has been intensely pursued as a cancer treatment strategy over the last two decades. To date, five EGFR inhibitors, including three small molecule tyrosine kinase inhibitors (TKIs) and two monoclonal antibodies have gained FDA approval for use in oncology. Both approaches to targeting the EGFR have shown clinical promise and the anti-EGFR antibody cetuximab is used to treat HNSCC and CRC. Despite clinical gains arising from use of cetuximab, both intrinsic resistance and the development of acquired resistance are now well recognized. In this review we focus on the biology of the EGFR, the role of EGFR in human cancer, the development of antibody-based anti-EGFR therapies and a summary of their clinical successes. Further, we provide an in depth discussion of described molecular mechanisms of resistance to cetuximab and potential strategies to circumvent this resistance.
Collapse
Affiliation(s)
- Toni M Brand
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | | |
Collapse
|
8
|
Storch J, Corsico B. The emerging functions and mechanisms of mammalian fatty acid-binding proteins. Annu Rev Nutr 2008; 28:73-95. [PMID: 18435590 DOI: 10.1146/annurev.nutr.27.061406.093710] [Citation(s) in RCA: 323] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fatty acid-binding proteins (FABPs) are abundant intracellular proteins that bind long-chain fatty acids with high affinity. Nine separate mammalian FABPs have been identified, and their tertiary structures are highly conserved. The FABPs have unique tissue-specific distributions that have long suggested functional differences among them. In the last decade, considerable progress has been made in understanding the specific functions of the FABPs and, in some cases, their mechanisms of action at the molecular level. The FABPs appear to be involved in the extranuclear compartments of the cell by trafficking their ligands within the cytosol via interactions with organelle membranes and specific proteins. Several members of the FABP family have been shown to function directly in the regulation of cognate nuclear transcription factor activity via ligand-dependent translocation to the nucleus. This review will focus on these emerging functions and mechanisms of the FABPs, highlighting the unique functional properties of each as well as the similarities among them.
Collapse
Affiliation(s)
- Judith Storch
- Department of Nutritional Sciences and the Rutgers Center for Lipid Research, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey 08901, USA.
| | | |
Collapse
|
9
|
Furuhashi M, Hotamisligil GS. Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets. Nat Rev Drug Discov 2008; 7:489-503. [PMID: 18511927 DOI: 10.1038/nrd2589] [Citation(s) in RCA: 1269] [Impact Index Per Article: 74.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lipids are vital components of many biological processes and crucial in the pathogenesis of numerous common diseases, but the specific mechanisms coupling intracellular lipids to biological targets and signalling pathways are not well understood. This is particularly the case for cells burdened with high lipid storage, trafficking and signalling capacity such as adipocytes and macrophages. Here, we discuss the central role of lipid chaperones--the fatty acid-binding proteins (FABPs)--in lipid-mediated biological processes and systemic metabolic homeostasis through the regulation of diverse lipid signals, and highlight their therapeutic significance. Pharmacological agents that modify FABP function may provide tissue-specific or cell-type-specific control of lipid signalling pathways, inflammatory responses and metabolic regulation, potentially providing a new class of drugs for diseases such as obesity, diabetes and atherosclerosis.
Collapse
Affiliation(s)
- Masato Furuhashi
- Department of Genetics and Complex Diseases, Harvard School of Public Health, 665 Huntington Avenue, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
10
|
Bernard L, Leroux C, Chilliard Y. Expression and nutritional regulation of lipogenic genes in the ruminant lactating mammary gland. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 606:67-108. [PMID: 18183925 DOI: 10.1007/978-0-387-74087-4_2] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The effect of nutrition on milk fat yield and composition has largely been investigated in cows and goats, with some differences for fatty acid (FA) composition responses and marked species differences in milk fat yield response. Recently, the characterization of lipogenic genes in ruminant species allowed in vivo studies focused on the effect of nutrition on mammary expression of these genes, in cows (mainly fed milk fat-depressing diets) and goats (fed lipid-supplemented diets). These few studies demonstrated some similarities in the regulation of gene expression between the two species, although the responses were not always in agreement with milk FA secretion responses. A central role for trans-10 C18:1 and trans-10, cis-12 CLA as regulators of milk fat synthesis has been proposed. However, trans-10 C18:1 does not directly control milk fat synthesis in cows, despite the fact that it largely responds to dietary factors, with its concentration being negatively correlated with milk fat yield response in cows and, to a lesser extent, in goats. Milk trans-10, cis-12 CLA is often correlated with milk fat depression in cows but not in goats and, when postruminally infused, acts as an inhibitor of the expression of key lipogenic genes in cows. Recent evidence has also proven the inhibitory effect of the trans-9, cis-11 CLA isomer. The molecular mechanisms by which nutrients regulate lipogenic gene expression have yet to be well identified, but a central role for SREBP-1 has been outlined as mediator of FA effects, whereas the roles of PPARs and STAT5 need to be determined. It is expected that the development of in vitro functional systems for lipid synthesis and secretion will allow future progress toward (1) the identification of the inhibitors and activators of fat synthesis, (2) the knowledge of cellular mechanisms, and (3) the understanding of differences between ruminant species.
Collapse
Affiliation(s)
- L Bernard
- Adipose Tissue and Milk Lipid Laboratory, Herbivore Research Unit, INRA-Theix, 63 122 St Genès-Champanelle, France.
| | | | | |
Collapse
|
11
|
Mukesh M, Mishra BP, Kataria RS, Ahlawat SPS, Sobti RC. Isolation and sequence characterization of mammary derived growth inhibitor gene of riverine buffalo (Bubalus bubalis). Anim Biotechnol 2008; 18:123-30. [PMID: 17453652 DOI: 10.1080/10495390600859397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In this study, attempts have been made to identify and characterize water buffalo (Bubalus bubalis) mammary derived growth inhibitor (MDGI) gene, isolated from a mammary gland cDNA library of lactating buffalo. The complete MDGI cDNA was of 698 nucleotides, consisting 61 nucleotides in 5' UTR, coding region of 402 nucleotides, and 235 nucleotides representing the 3' UTR. Comparison of nucleotide and deduced amino acid sequence data with that of MDGI/fatty acid binding protein (FABP) of other species shows three buffalo specific nucleotide changes while seven nucleotide changes were common to cattle and buffalo. Buffalo and cattle MDGI had 100% amino acid sequence similarity, which also shared three amino acid changes: 34 (Ala-Gly), 109 (Leu-Met), and 132 (Glu-Gln) as compared to other species. Comparison with FABPs reported from other cattle tissues revealed highest amino acid sequence similarity with FABP-heart (100%) and least with FABP-liver (20.5%). Phylogenetic analysis revealed cattle MDGI to be closest to buffalo, while mouse MDGI was distantly placed, whereas different tissue derived FABPs of cattle showed FABP-heart closest and FABP-epidermis most distantly placed from buffalo MDGI. This report also differs from the earlier findings that MDGI is intermediate of FABP-heart and adipose.
Collapse
Affiliation(s)
- M Mukesh
- National Bureau of Animal Genetic Resources, Karnal, India
| | | | | | | | | |
Collapse
|
12
|
Liu RZ, Saxena V, Sharma MK, Thisse C, Thisse B, Denovan-Wright EM, Wright JM. The fabp4 gene of zebrafish (Danio rerio)--genomic homology with the mammalian FABP4 and divergence from the zebrafish fabp3 in developmental expression. FEBS J 2007; 274:1621-33. [PMID: 17480210 DOI: 10.1111/j.1742-4658.2007.05711.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Teleost fishes differ from mammals in their fat deposition and distribution. The gene for adipocyte-type fatty acid-binding protein (A-FABP or FABP4) has not been identified thus far in fishes. We have determined the cDNA sequence and defined the structure of a fatty acid-binding protein gene (designated fabp4) from the zebrafish genome. The polypeptide sequence encoded by zebrafish fabp4 showed highest identity to the H(ad)-FABP or H6-FABP from Antarctic fishes and the putative orthologs from other teleost fishes (83-88%). Phylogenetic analysis clustered the zebrafish FABP4 with all Antarctic fish H6-FABPs and putative FABP4s from other fishes in a single clade, and then with the mammalian FABP4s in an extended clade. Zebrafish fabp4 was assigned to linkage group 19 at a distinct locus from fabp3. A number of closely linked syntenic genes surrounding the zebrafish fabp4 locus were found to be conserved with human FABP4. The zebrafish fabp4 transcripts showed sequential distribution in the developing eye, diencephalon and brain vascular system, from the middle somitogenesis stage to 48 h postfertilization, whereas fabp3 mRNA was located widely in the embryonic and/or larval central nervous system, retina, myotomes, pancreas and liver from middle somitogenesis to 5 days postfertilization. Differentiation in developmental regulation of zebrafish fabp4 and fabp3 gene transcription suggests distinct functions for these two paralogous genes in vertebrate development.
Collapse
Affiliation(s)
- Rong-Zong Liu
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | | | | | |
Collapse
|
13
|
Michal JJ, Zhang ZW, Gaskins CT, Jiang Z. The bovine fatty acid binding protein 4 gene is significantly associated with marbling and subcutaneous fat depth in Wagyu x Limousin F2 crosses. Anim Genet 2006; 37:400-2. [PMID: 16879357 DOI: 10.1111/j.1365-2052.2006.01464.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fatty acid binding protein 4 (FABP4), which is expressed in adipose tissue, interacts with peroxisome proliferator-activated receptors and binds to hormone-sensitive lipase and therefore, plays an important role in lipid metabolism and homeostasis in adipocytes. The objective of this study was to investigate associations of the bovine FABP4 gene with fat deposition. Both cDNA and genomic DNA sequences of the bovine gene were retrieved from the public databases and aligned to determine its genomic organization. Primers targeting two regions of the FABP4 gene were designed: from nucleotides 5433-6106 and from nucleotides 7417-7868 (AAFC01136716). Direct sequencing of polymerase chain reaction (PCR) products on two DNA pools from high- and low-marbling animals revealed two single nucleotide polymorphisms (SNPs): AAFC01136716.1:g.7516G>C and g.7713G>C. The former SNP, detected by PCR-restriction fragment length polymorphism using restriction enzyme MspA1I, was genotyped on 246 F2 animals in a Waygu x Limousin F2 reference population. Statistical analysis showed that the FABP4 genotype significantly affected marbling score (P = 0.0398) and subcutaneous fat depth (P = 0.0246). The FABP4 gene falls into a suggestive/significant quantitative trait loci interval for beef marbling that was previously reported on bovine chromosome 14 in three other populations.
Collapse
Affiliation(s)
- J J Michal
- Department of Animal Sciences, Washington State University, Pullman, WA 99164-6351, USA
| | | | | | | |
Collapse
|
14
|
Bronsky J, Karpísek M, Bronská E, Pechová M, Jancíková B, Kotolová H, Stejskal D, Prusa R, Nevoral J. Adiponectin, Adipocyte Fatty Acid Binding Protein, and Epidermal Fatty Acid Binding Protein: Proteins Newly Identified in Human Breast Milk. Clin Chem 2006; 52:1763-70. [PMID: 16873294 DOI: 10.1373/clinchem.2005.063032] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Abstract
Background: Breastfeeding may protect children from developing metabolic syndrome and other diseases later in life. We investigated novel proteins in human breast milk that might play a role in this process.
Methods: We used ELISA to measure adiponectin, adipocyte and epidermal fatty acid binding proteins (AFABP, EFABP), and leptin concentrations in human breast milk obtained from 59 mothers 48 h after initiation of lactation. Using a questionnaire and medical records, we collected information about the mothers and newborns.
Results: Mean (SE) adiponectin concentrations in breast milk were 13.7 (0.8), range 3.9–30.4 μg/L; AFABP concentrations 26.7 (4.4), range 1.2–137.0 μg/L; EFABP concentrations 18.1 (1.4), range 0.8–47.0 μg/L; and leptin concentrations 0.50 (0.05), range 0–1.37 μg/L. We found a significant correlation between AFABP and EFABP concentrations (r = 0.593, P <0.0001). Maternal EFABP concentrations were significantly higher in mothers who delivered boys than in those who delivered girls [21.7 (2.3) vs 15.4 (1.7) μg/L, P = 0.028] and correlated with newborn birth weight (r = 0.266, P = 0.045). Maternal leptin correlated with body weight before pregnancy (r = 0.272, P = 0.043) and at delivery (r = 0.370, P = 0.005), body mass index before pregnancy (r = 0.397, P = 0.003) and at delivery (r = 0.498, P <0.0001), body weight gain during pregnancy (r = 0.267, P = 0.047), and newborn gestational age (r = 0.266, P = 0.048). Leptin was significantly lower in mothers who delivered preterm vs term babies [0.30 (0.09) vs 0.60 (0.05) ug/L, P = 0.026].
Conclusions: Concentrations of adiponectin, AFABP, and EFABP in human breast milk are related to nutritional variables of mothers and newborns and thus may play a role in the protective effects of breastfeeding.
Collapse
Affiliation(s)
- Jirí Bronsky
- Pediatric Gastroenterology Unit, Pediatric Clinic, 2nd Medical Faculty, Charles University and University Hospital Motol, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Hashimoto T, Kusakabe T, Sugino T, Fukuda T, Watanabe K, Sato Y, Nashimoto A, Honma K, Kimura H, Fujii H, Suzuki T. Expression of heart-type fatty acid-binding protein in human gastric carcinoma and its association with tumor aggressiveness, metastasis and poor prognosis. Pathobiology 2005; 71:267-73. [PMID: 15459486 DOI: 10.1159/000080061] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2004] [Accepted: 03/19/2004] [Indexed: 02/03/2023] Open
Abstract
OBJECTIVE Fatty acid-binding proteins (FABPs) are involved in lipid metabolism by intracellular transport of long-chain fatty acids. Heart-type (H-) FABP has been reported to inhibit cell growth and induce cell differentiation, but to our knowledge the significance of H-FABP expression in human gastric carcinoma has not been elucidated. The aim of the current study was to examine the expression of H-FABP and its relation to clinicopathologic parameters and fatty acid synthase (FAS) status of gastric carcinoma, since gastric cancer shows increased expression of FAS. METHODS Immunohistochemistry with anti-H-FABP antibody was performed in 669 gastric carcinomas and 60 tubular adenomas of the stomach. H-FABP-positive and H-FABP-negative carcinomas were analyzed for their clinicopathologic characteristics and FAS status. RESULTS None of the adenomas expressed H-FABP, whereas 127 of 669 carcinomas (19.0%) were positive for the protein. H-FABP positivity was associated with the depth of invasion (p <0.0001), vascular invasion (p <0.0001), lymph node metastasis (p <0.0001), hepatic metastasis (p=0.0011), stage of the carcinoma (p <0.0001) and FAS status of the carcinoma (p=0.0476). A higher survival rate was noted in H-FABP-negative cases compared with H-FABP-positive cases (p=0.0004). CONCLUSIONS A subset of human gastric carcinoma expresses H-FABP and its expression is associated with FAS status, disease progression, tumor aggressiveness and poor patient survival.
Collapse
Affiliation(s)
- Takeaki Hashimoto
- Department of Pathology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Morroni M, Giordano A, Zingaretti MC, Boiani R, De Matteis R, Kahn BB, Nisoli E, Tonello C, Pisoschi C, Luchetti MM, Marelli M, Cinti S. Reversible transdifferentiation of secretory epithelial cells into adipocytes in the mammary gland. Proc Natl Acad Sci U S A 2004; 101:16801-6. [PMID: 15556998 PMCID: PMC534744 DOI: 10.1073/pnas.0407647101] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mammalian breast adipose tissue is replaced by a milk-secreting gland during pregnancy; the reverse process takes place upon interruption of lactation. Morphological and bromodeoxyuridine studies provide indirect evidence that mouse mammary adipocytes transform into secretory epithelial cells during pregnancy and revert to adipocytes after lactation. By using the Cre-loxP recombination system we show that the mammary gland of whey acidic protein (WAP)-Cre/R26R mice, in which secretory epithelial cells express the lacZ gene during pregnancy, contains labeled adipocytes during involution. Conversely, adipocyte P2-Cre/R26R mice, in which adipocytes are labeled before pregnancy, contain labeled secretory epithelial cells during pregnancy. We conclude that reversible adipocyte-to-epithelium and epithelium-to-adipocyte transdifferentiation occurs in the mammary gland of adult mice during pregnancy and lactation.
Collapse
Affiliation(s)
- Manrico Morroni
- Institute of Anatomy, School of Medicine, University of Ancona, Via Tronto 10/A, 60020 Ancona, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Hashimoto T, Kusakabe T, Watanabe K, Sugino T, Fukuda T, Nashimoto A, Honma KI, Sato Y, Kimura H, Fujii H, Suzuki T. Liver-type fatty acid-binding protein is highly expressed in intestinal metaplasia and in a subset of carcinomas of the stomach without association with the fatty acid synthase status in the carcinoma. Pathobiology 2004; 71:115-22. [PMID: 15051923 DOI: 10.1159/000076465] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2003] [Accepted: 06/10/2003] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE To investigate the relation of liver-type fatty-acid-binding protein (L-FABP) expression to the clinicopathological characteristics or the fatty acid synthase status of gastric cancers. METHODS L-FABP expression was examined immunohistochemically in 667 gastric cancers, 60 gastric adenomas, and non-neoplastic epithelium contiguous with cancer tissue including normal foveolae, intestinal metaplasia, regenerative epithelium, and gastric glands. RESULTS L-FABP was positive in 38% (high in 9% and low in 29%) of gastric cancers. It occurred preferentially in papillary carcinomas, female cases, and in patients under 50 years. In gastric cancers, L-FABP expression had no intimate correlation with the FAS status, and it showed no relationship with prognosis and cancer progression as indicated by venous and lymphatic permeation, and nodal or hepatic metastasis. Gastric tubular adenomas mainly revealed low (22%) expression of L-FABP while intestinal metaplasia showed the most frequent (>95%) and intense L-FABP expression. Normal foveolae and gastric glands showed no or less L-FABP expression. CONCLUSIONS L-FABP is highly and intensely expressed in metaplasia and in a subset of gastric adenocarcinomas, without association with progression, prognosis and fatty acid synthase status of the carcinoma.
Collapse
Affiliation(s)
- Takeaki Hashimoto
- Department of Pathology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Fatty acid-binding proteins (FABPs) belong to the conserved multigene family of the intracellular lipid-binding proteins (iLBPs). These proteins are ubiquitously expressed in vertebrate tissues, with distinct expression patterns for the individual FABPs. Various functions have been proposed for these proteins, including the promotion of cellular uptake and transport of fatty acids, the targeting of fatty acids to specific metabolic pathways, and the participation in the regulation of gene expression and cell growth. Novel genetic tools that have become available in recent years, such as transgenic cell lines, animals, and knock-out mice, have provided the opportunity to test these concepts in physiological settings. Such studies have helped to define essential cellular functions of individual FABP-types or of combinations of several different FABPs. The deletion of particular FABP genes, however, has not led to gross phenotypical changes, most likely because of compensatory overexpression of other members of the iLBP gene family, or even of unrelated fatty acid transport proteins. This review summarizes the properties of the various FABPs expressed in mammalian tissues, and discusses the transgenic and ablation studies carried out to date in a functional context.
Collapse
Affiliation(s)
- Norbert H Haunerland
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6.
| | | |
Collapse
|
19
|
Roy R, Calvo JH, Hayes H, Rodellar C, Eggen A. Fine mapping of the bovine heart fatty acid-binding protein gene (FABP3 ) to BTA2q45 by fluorescence in situ hybridization and radiation hybrid mapping. Anim Genet 2004; 34:466-7. [PMID: 14687081 DOI: 10.1046/j.0268-9146.2003.01052.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- R Roy
- Laboratoire de Génétique Biochimique et de Cytogénétique, INRA, Jouy-en-Josas, France.
| | | | | | | | | |
Collapse
|
20
|
Wang M, Liu YE, Goldberg ID, Shi YE. Induction of mammary gland differentiation in transgenic mice by the fatty acid-binding protein MRG. J Biol Chem 2003; 278:47319-25. [PMID: 12975368 DOI: 10.1074/jbc.m308131200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A mammary-derived growth inhibitor-related gene (MRG) was previously identified and characterized. MRG induces differentiation of mammary epithelial cells in vitro and its expression is associated with mammary differentiation. To further define the role of MRG on mammary gland differentiation, a MRG transgenic mice model under the control of mouse mammary tumor virus promoter was established and the effect of MRG on mammary gland differentiation was investigated at histological and molecular levels. Expression of endogenous mouse MRG gene was significantly increased from the non-differentiated gland of control virgin mice to the functionally differentiated gland of pregnant control mice. Whole mount analyses demonstrated that ductal development was not affected by MRG transgene expression. While there was no lobuloalveolar structure in control virgin mice, expression of MRG transgene in the mammary gland resulted in the development of lobuloalveolar-like structure, which mimics the gland from early pregnancy. Consistent with the morphological change, expression of MRG also increased milk protein beta-casein expression in the gland. To study the mechanism of MRG-induced mammary differentiation, we investigated the Stat5 activation in the glands from the transgenic mouse versus virgin control mouse. While activated Stat5 was expressed at the minimal level in the non-differentiated control virgin gland, a significant Stat5 phosphorylation was observed in the virgin transgenic gland. Our data indicate that MRG is a mediator of the differentiating effects of pregnancy on breast epithelium, and overexpression of MRG in young nulliparous mice can induce differentiation.
Collapse
Affiliation(s)
- Mingsheng Wang
- Department of Radiation Oncology, Long Island Jewish Medical Center, The Long Island Campus for The Albert Einstein College of Medicine, New Hyde Park, NY 11040, USA
| | | | | | | |
Collapse
|
21
|
Haunerland NH, Spener F. Properties and physiological significance of fatty acid binding proteins. LIPOBIOLOGY 2003. [DOI: 10.1016/s1569-2558(03)33007-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
22
|
Liou HL, Kahn PC, Storch J. Role of the helical domain in fatty acid transfer from adipocyte and heart fatty acid-binding proteins to membranes: analysis of chimeric proteins. J Biol Chem 2002; 277:1806-15. [PMID: 11675390 DOI: 10.1074/jbc.m107987200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The adipocyte and heart fatty acid-binding proteins (A- and HFABP) are members of a lipid-binding protein family with a beta-barrel body capped by a small helix-turn-helix motif. Both proteins are hypothesized to transport fatty acid (FA) to phospholipid membranes through a collisional process. Previously, we suggested that the helical domain is particularly important for the electrostatic interactions involved in this transfer mechanism (Herr, F. M., Aronson, J., and Storch, J. (1996) Biochemistry 35, 1296-1303; and Liou, H.-L., and Storch, J. (2001) Biochemistry 40, 6475-6485). Despite their using qualitatively similar FA transfer mechanisms, differences in absolute transfer rates as well as regulation of transfer from AFABP versus HFABP, prompted us to consider the structural determinants that underlie these functional disparities. To determine the specific elements underlying the functional differences between AFABP and HFABP in FA transfer, two pairs of chimeric proteins were generated. The first and second pairs had the entire helical domain and the first alpha-helix exchanged between A- and HFABP, respectively. The transfer rates of anthroyloxy-labeled fatty acid from proteins to small unilamellar vesicles were compared with the wild type AFABP and HFABP. The results suggest that the alphaII-helix is important in determining the absolute FA transfer rates. Furthermore, the alphaI-helix appears to be particularly important in regulating protein sensitivity to the negative charge of membranes. The alphaI-helix of HFABP and the alphaII-helix of AFABP increased the sensitivity to anionic vesicles; the alphaI-helix of AFABP and alphaII-helix of HFABP decreased the sensitivity. The differential sensitivities to negative charge, as well as differential absolute rates of FA transfer, may help these two proteins to function uniquely in their respective cell types.
Collapse
Affiliation(s)
- Heng-Ling Liou
- Department of Nutritional Sciences, and the Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey 08901-8525, USA
| | | | | |
Collapse
|
23
|
Guan Y, Zhang Y, Schneider A, Davis L, Breyer RM, Breyer MD. Peroxisome proliferator-activated receptor-gamma activity is associated with renal microvasculature. Am J Physiol Renal Physiol 2001; 281:F1036-46. [PMID: 11704554 DOI: 10.1152/ajprenal.0025.2001] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Peroxisome proliferator-activated receptor-gamma (PPAR gamma) is a nuclear transcription factor and the pharmacological target for antidiabetic thiazolidinediones (TZDs). TZDs ameliorate diabetic nephropathy and have direct effects on cultured mesangial cells (MCs); however, in situ hybridization failed to detect expression of PPAR gamma in glomeruli in vivo. The purpose of this study was to determine whether PPAR gamma is expressed in renal glomeruli. Two rabbit PPAR gamma isoforms were cloned. Nuclease protection assays demonstrate that both PPAR gamma isoforms are expressed in freshly isolated glomeruli. Treatment of rabbits with the TZD troglitazone selectively induced expression of an endogenous PPAR gamma target gene, adipocyte fatty acid-binding protein (A-FABP), in renal glomerular cells and renal medullary microvascular endothelial cells, demonstrated by both in situ hybridization and immunostain. Troglitazone also dramatically increased A-FABP expression in cultured MCs. Constitutive PPAR gamma expression was detected in cultured rabbit MCs. Endogenous MC PPAR gamma can also drive PPAR gamma reporter. Troglitazone and 15-deoxy-Delta 12,14 prostaglandin J(2) at low concentrations reduced mesangial cell [(3)H]thymidine incorporation without affecting viability. These data suggest that constitutive PPAR gamma activity exists in renal glomeruli in vivo and could provide a pharmacological target to directly modulate glomerular injury.
Collapse
Affiliation(s)
- Y Guan
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37212, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Veerkamp JH, Zimmerman AW. Fatty acid-binding proteins of nervous tissue. J Mol Neurosci 2001; 16:133-42; discussion 151-7. [PMID: 11478368 DOI: 10.1385/jmn:16:2-3:133] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2000] [Accepted: 11/01/2000] [Indexed: 12/16/2022]
Abstract
Fatty acid-binding proteins (FABPs) are cytosolic 14-15 kDa proteins, which are supposed to be involved in fatty acid (FA) uptake, transport, and targeting. They may modulate FA concentration and in this way influence function of enzymes, membranes, ion channels and receptors, and gene expression and cellular growth and differentiation. Nine FABP types can be discerned with a specific tissue distribution. In spite of 30-70% amino acid sequence identity, they have a similar tertiary, beta-clam structure in which the FA is bound. Nervous tissue contains four FABP types with a distinct spatio-temporal distribution. Myelin (M)-FABP is only present in the peripheral nerves, brain (B)-FABP and epidermal (E)-FABP mainly in glial cells and neurons, respectively of pre- and perinatal brain, and heart (H)-FABP in adult brain. Possible functions of FABPs in the nervous system are discussed. Binding studies with a range of physiological FA showed no large differences between recombinant proteins of the four human FABP types in binding specificity and affinity, also not for polyunsaturated FA (PUFA). The transfer of FA from fixed liposomes to mitochondria was similarly promoted by the four types. A marked difference in conformational stability was observed with H-FABP > B-FABP > M-FABP > E-FABP. Surface epitopes of H-FABP showed reaction with anti-B-FABP antibodies, but no other cross-reactivity of FABP type and heterologous antibodies was observed. The functional significance of the distinct spatio-temporal pattern of the four FABP types remains to be elucidated.
Collapse
Affiliation(s)
- J H Veerkamp
- Department of Biochemistry, University Medical Center St. Radboud, Nijmegen, The Netherlands.
| | | |
Collapse
|
25
|
Clark AJ, Neil C, Gusterson B, McWhir J, Binas B. Deletion of the gene encoding H-FABP/MDGI has no overt effects in the mammary gland. Transgenic Res 2000; 9:439-44. [PMID: 11206972 DOI: 10.1023/a:1026552629493] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Heart fatty acid binding protein (H-FABP) is expressed abundantly in the mammary gland. A number of in vitro studies have shown that H-FABP is functionally indistinguishable from a factor isolated from this organ, termed mammary derived growth inhibitor (MDGI), which specifically inhibits the proliferation of mammary tissue. We have previously shown that over-expression of H-FABP/MDGI in the mammary gland of transgenic mice has no discernable effects on cell proliferation or differentiation. In this report we describe knockout mouse in which the H-FABP/MDGI gene has been specifically disrupted. The mice exhibit no overt phenotype in the mammary gland, and we conclude that this gene does not play a specific role in regulating the normal development or function of this tissue.
Collapse
Affiliation(s)
- A J Clark
- Department of Gene Expression and Development, Roslin Institute, Midlothian, Scotland, UK.
| | | | | | | | | |
Collapse
|
26
|
Zhang L, Cilley RE, Chinoy MR. Suppression subtractive hybridization to identify gene expressions in variant and classic small cell lung cancer cell lines. J Surg Res 2000; 93:108-19. [PMID: 10945951 DOI: 10.1006/jsre.2000.5957] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Small Cell Lung Cancer (SCLC), a clinically aggressive cancer, accounts for approximately 25% of primary lung cancers. We carried out suppression subtractive hybridization (SSH), a PCR-based method for cDNA subtraction, between the human classic, NCI-H69 and variant, more aggressive NCI-N417 SCLC cell lines to isolate and characterize variable expression of genes, which may be responsible for differential degree of tumorigenicity of SCLC. Using NCI-N417 as a tester, we obtained 28 differentially expressed cDNA clones from a total of 60 arbitrarily picked clones. Among the 28 cDNA clones, 4 were unknown genes, 2 were fatty acid binding protein (FABP) with specific identification of mRNA for mammary-derived growth inhibitor (MDGI), 1 was human alpha-enolase, 4 were ribosomal proteins, 2 were structural genes, vimentin and moesin (membrane-organizing extension spike protein), and 9 were homologous with murine leukemia viruses, whereas 2 others had enhanced expression in NCI-H69 and A549 cell lines, and 4 were cell surface proteins and murine type C retrovirus. Expression of FABP/MDGI was significantly high in NCI-H417, which may influence mitosis and cell growth as implicated in other tissues, contrary to the conclusion drawn for the role of MDGI in human breast cancer. Higher expression of ribosomal proteins in NCI-N417 compared to NCI-H69 may have a role in differential tumorigenicity and metastatic ability. Further, we obtained 14 differentially expressed cDNA clones by reversing the tester and driver, using NCI-H69 as a tester. Of these 14 differential cDNAs, 5 were unknown genes, 2 were specific for keratins, others had similarities with protease inhibitor, human BAC clone, Alu RNA binding protein, and tumor expression-enhanced gene. Characterization of these differentially expressed cDNA clones will provide useful information in understanding of the genes responsible for differential tumorigenicity of SCLC.
Collapse
Affiliation(s)
- L Zhang
- Lung Development Research Program, The Pennsylvania State University, Hershey, Pennsylvania 17033, USA
| | | | | |
Collapse
|
27
|
Storch J, Thumser AE. The fatty acid transport function of fatty acid-binding proteins. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1486:28-44. [PMID: 10856711 DOI: 10.1016/s1388-1981(00)00046-9] [Citation(s) in RCA: 341] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The intracellular fatty acid-binding proteins (FABPs) comprise a family of 14-15 kDa proteins which bind long-chain fatty acids. A role for FABPs in fatty acid transport has been hypothesized for several decades, and the accumulated indirect and correlative evidence is largely supportive of this proposed function. In recent years, a number of experimental approaches which more directly examine the transport function of FABPs have been taken. These include molecular level in vitro modeling of fatty acid transfer mechanisms, whole cell studies of fatty acid uptake and intracellular transfer following genetic manipulation of FABP type and amount, and an examination of cells and tissues from animals engineered to lack expression of specific FABPs. Collectively, data from these studies have provided strong support for defining the FABPs as fatty acid transport proteins. Further studies are necessary to elucidate the fundamental mechanisms by which cellular fatty acid trafficking is modulated by the FABPs.
Collapse
Affiliation(s)
- J Storch
- Department of Nutritional Sciences, Cook College, Rutgers University, New Brunswick, NJ 08901-8525,USA.
| | | |
Collapse
|
28
|
Bourhis XL, Toillon RA, Boilly B, Hondermarck H. Autocrine and paracrine growth inhibitors of breast cancer cells. Breast Cancer Res Treat 2000; 60:251-8. [PMID: 10930113 DOI: 10.1023/a:1006461621905] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Breast epithelial cells produce both mitogens and growth inhibitors which are involved in the control of mammary gland development through autocrine and paracrine pathways. While the mechanisms of action of several growth factors have been well established and related strategies proposed for breast cancer therapy, little is known concerning growth inhibitors. In this review, we present an overview of current information about major autocrine and paracrine growth inhibitors of breast epithelial cells, and we discuss their potential functions in the control of breast cancer development.
Collapse
Affiliation(s)
- X L Bourhis
- Laboratoire de Biologie du Développement , Université des Sciences et Technologies de Lille, Villeneuve d' Ascq, France.
| | | | | | | |
Collapse
|
29
|
Abstract
The characteristics and possible functions of the most abundant proteins associated with the bovine milk-fat globule membrane are reviewed. Under the auspices of the Milk Protein Nomenclature Committee of the ADSA, a revised nomenclature for the major membrane proteins is proposed and discussed in relation to earlier schemes. We recommend that proteins be assigned specific names as they are identified by molecular cloning and sequencing techniques. The practice of identifying proteins according to their Mr, electrophoretic mobility, or staining characteristics should be discontinued, except for uncharacterized proteins. The properties and amino acid sequences of the following proteins are discussed in detail: MUC1, xanthine dehydrogenase/oxidase, CD36, butyrophilin, adipophilin, periodic acid Schiff 6/7 (PAS 6/7), and fatty acid binding protein. In addition, a compilation of less abundant proteins associated with the bovine milk-fat globule membrane is presented.
Collapse
Affiliation(s)
- I H Mather
- Department of Animal and Avian Sciences, University of Maryland, College Park 20742, USA.
| |
Collapse
|
30
|
Buhlmann C, Börchers T, Pollak M, Spener F. Fatty acid metabolism in human breast cancer cells (MCF7) transfected with heart-type fatty acid binding protein. Mol Cell Biochem 1999; 199:41-8. [PMID: 10544950 DOI: 10.1023/a:1006986629206] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The human breast cancer cell line MCF7 does not express heart-type fatty acid binding protein (H-FABP), a marker protein for differentiated mammary gland. MCF7 cells transfected with the bovine H-FABP cDNA expressed the corresponding protein and were characterized by growth inhibition and lower tumorgenicity in nude mice [22]. By enzyme linked immunoassay we now determined the amount of bovine H-FABP in these cells as 638 +/- 80 ng/mg protein and used the transfected cells to study the role of H-FABP in fatty acid metabolism. Compared to control cells the uptake of radioactively labelled palmitic acid and oleic acid into MCF7 cells after 30 or 60 min was increased by 67% in H-FABP expressing transfectants, demonstrating a stimulatory role for this FABP-type in fatty acid metabolism. However, preferential targeting of [14C]oleic acid into neutral or phospholipid classes was not observed by the criterion of high performance thin layer chromatography followed by autoradiography. A reason for the modest increase of fatty acid uptake in H-FABP transfected MCF7 cells may be the basal expression of epidermal-type FABP, which was detected for the first time in these cells. It appears that the small amount of E-FABP expressed in MCF7 cells fulfils the need of the cells for a cytosolic fatty acid carrier under culture conditions and that even high concentrations of another FABP do only slightly increase the uptake due to limitations of fatty acid transport through the plasma membrane or of metabolism.
Collapse
Affiliation(s)
- C Buhlmann
- Department of Biochemistry, University of Münster, Germany
| | | | | | | |
Collapse
|
31
|
Pu L, Annan RS, Carr SA, Frolov A, Wood WG, Spener F, Schroeder F. Isolation and identification of a mouse brain protein recognized by antisera to heart fatty acid-binding protein. Lipids 1999; 34:363-73. [PMID: 10443969 DOI: 10.1007/s11745-999-0374-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although a novel brain-specific fatty acid-binding protein (B-FABP) was recently cloned, the identity of a second fatty acid-binding protein detected with antibodies to the heart (H-FABP) has not been clearly resolved. The present investigation, using matrix-assisted laser desorption mass spectrometry, showed that this protein was a form of H-FABP whose N-terminal amino acid was neither methionine nor was it acetylated. Furthermore, isoelectric focusing revealed two major isoforms, a major band pl 7.4 and a minor band pl 6.4, in a distribution pattern opposite to that observed for H-FABP in the heart. Tryptic peptide mass maps of the in-gel digested SDS polyacrylamide gel electrophoresis protein bands showed that the two isoforms differed only in a single peptide corresponding to residues 97-106 of the heart H-FABP sequence. This peptide had an [M + H]+ ion of either 1205.62 (pl 7.4) or 1206.53 (pl 6.4), consistent with a single amino acid substitution, Asp98 or Asn98. Whereas it is well established that both H-FABP and B-FABP interact with polyunsaturated fatty acids, we showed that they also significantly alter plasma membrane cholesterol dynamics in a manner opposite to that of another brain lipid-binding protein, sterol carrier protein-2. In summary, the data demonstrated for the first time that the H-FABP from brain, while nearly identical to H-FABP from heart, differed significantly in isoform distribution and in amino terminal structure from heart H-FABP. This suggests that the brain and heart H-FABP may not necessarily function identically in these tissues.
Collapse
Affiliation(s)
- L Pu
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station 77843-4466, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Zangani D, Darcy KM, Shoemaker S, Ip MM. Adipocyte-epithelial interactions regulate the in vitro development of normal mammary epithelial cells. Exp Cell Res 1999; 247:399-409. [PMID: 10066368 DOI: 10.1006/excr.1998.4373] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mammary epithelial organoids (MEO), isolated from pubescent rats, were cultured within a reconstituted basement membrane in transwell inserts, in the presence or absence of mature mammary adipocytes in the lower well. This system allowed for free medium exchange between the two compartments, without direct cell-to-cell contact. When cultured in serum-free medium supplemented with insulin, prolactin, hydrocortisone, progesterone, and various epidermal growth factor (EGF) concentrations, mammary adipocytes did not affect epithelial cell growth, but enhanced epithelial differentiation. Casein and lipid accumulations were monitored as indicators of functional differentiation of MEO. Mammary adipocytes significantly enhanced casein and lipid accumulation within the MEO, independently of EGF concentration. Furthermore, adipocytes induced MEO to preferentially undergo alveolar morphogenesis, inhibited squamous outgrowth, and increased lumen size. These findings demonstrate that morphological and functional differentiation of mammary epithelial cells is profoundly enhanced by the adipose stroma and that these effects are mediated by diffusible paracrine factors. This new model can be exploited in future studies to define the mechanisms whereby hormones and growth factors regulate mammary gland development and carcinogenesis. Moreover, it could complement in vivo reconstitution/transplantation studies, which are currently employed to evaluate the role of specific gene deletions in the regulation of mammary development.
Collapse
Affiliation(s)
- D Zangani
- Grace Cancer Drug Center, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, New York, 14263, USA
| | | | | | | |
Collapse
|
33
|
Brandt R, Ebert AD. Growth inhibitors for mammary epithelial cells. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 1999; 20:197-248. [PMID: 9928532 DOI: 10.1007/978-3-642-72149-6_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- R Brandt
- Novartis Pharma Inc., Basel, Switzerland
| | | |
Collapse
|
34
|
Foucaud L, Grillasca J, Niot I, Domingo N, Lafont H, Planells R, Besnard P. Output of liver fatty acid-binding protein (L-FABP) in bile. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1436:593-9. [PMID: 9989289 DOI: 10.1016/s0005-2760(98)00171-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Liver fatty acid-binding protein (L-FABP) is a small cytoplasmic molecule highly expressed in the liver. Since L-FABP exhibits affinities for several biliary components, its presence in bile was explored by Western blotting and competitive ELISA in various mammalian species. A L-FABP-like immunoreactivity was consistently found in both hepatic and gallbladder bile. A close molecular identity between this 14 kDa biliary protein and the purified L-FABP was assessed by immunological analyses and high performance capillary electrophoresis. Pharmacological induction of hepatic L-FABP biosynthesis led to a similar increase in biliary L-FABP levels showing a close relationships between the cytosolic and biliary contents of this protein. Finally, a correlation between the presence of L-FABP in bile and both bile flow and bile acid release was found. These data suggest an output of L-FABP in bile in normal conditions which might be coupled with the physiological release of biliary components.
Collapse
Affiliation(s)
- L Foucaud
- Laboratoire de Physiologie de la Nutrition, Ecole Nationale Supérieure de Biologie Appliquée à la Nutrition et à l'Alimentation (ENSBANA), Dijon, France
| | | | | | | | | | | | | |
Collapse
|
35
|
Zimmerman AW, Veerkamp JH. Members of the fatty acid-binding protein family inhibit cell-free protein synthesis. FEBS Lett 1998; 437:183-6. [PMID: 9824286 DOI: 10.1016/s0014-5793(98)01224-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Fatty acid-binding proteins (FABPs) are 15-kDa cytosolic proteins which are involved in the intracellular binding and targeting of fatty acids. Some members have been implicated in the regulation of cell growth and differentiation. In this study we investigated the effect of a series of FABPs and heart FABP (H-FABP) mutants on cell-free protein synthesis. Human myelin, intestinal, heart and brain FABP showed a dose-dependent inhibition of in vitro mRNA translation. Adipocyte, liver and epidermal types had no effect. The inhibition was not influenced by delipidation and for H-FABP mutants not related to their affinity for fatty acids. Our results indicate that some FABPs may modulate cell growth and/or differentiation by inhibition of protein synthesis.
Collapse
Affiliation(s)
- A W Zimmerman
- Department of Biochemistry, University of Nijmegen, The Netherlands
| | | |
Collapse
|
36
|
Abstract
Long-chain fatty acids are important fuel molecules for the heart, their oxidation in mitochondria providing the bulk of energy required for cardiac functioning. The low solubility of fatty acids in aqueous solutions impairs their cellular transport. However, cardiac tissue contains several proteins capable of binding fatty acids non-covalently. These fatty acid-binding proteins (FABPs) are thought to facilitate both cellular uptake and intracellular transport of fatty acids. The majority of fatty acids taken up by the heart seems to pass the sarcolemma through a carrier-mediated translocation mechanism consisting of one or more membrane-associated FABPs. Intracellular transport of fatty acids towards sites of metabolic conversion is most likely accomplished by cytoplasmic FABPs. In this review, the roles of membrane-associated and cytoplasmic FABPs in cardiac fatty acid metabolism under (patho)physiological circumstances are discussed.
Collapse
Affiliation(s)
- F G Schaap
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands
| | | | | |
Collapse
|
37
|
Coe NR, Bernlohr DA. Physiological properties and functions of intracellular fatty acid-binding proteins. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1391:287-306. [PMID: 9555061 DOI: 10.1016/s0005-2760(97)00205-1] [Citation(s) in RCA: 236] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- N R Coe
- Department of Biochemistry, University of Minnesota, 1479 Gorter Ave, St. Paul, MN 55108, USA
| | | |
Collapse
|
38
|
Kingma PB, Bok D, Ong DE. Bovine epidermal fatty acid-binding protein: determination of ligand specificity and cellular localization in retina and testis. Biochemistry 1998; 37:3250-7. [PMID: 9521644 DOI: 10.1021/bi972520l] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The fatty acid-binding protein (FABP) family consists of small, cytosolic proteins believed to be involved in the uptake, transport, and solubilization of their hydrophobic ligands. Members of this family have highly conserved sequences and tertiary structures. Using an antibody against testis lipid-binding protein, a member of the FABP family, a protein was identified from bovine retina and testis that coeluted with exogenously added docosahexaenoic acid during purification. Amino acid sequencing and subsequent isolation of its cDNA revealed it to be nearly identical to a bovine protein expressed in the differentiating lens and to be the likely bovine homologue of the human epidermal fatty acid-binding protein (E-FABP). From quantitative Western blot analysis, it was estimated that bovine E-FABP comprised 0.9%, 0.1%, and 2.4% of retina, testis, and lens cytosolic proteins, respectively. Binding studies using the fluorescent probe ADIFAB indicated that this protein bound fatty acids of differing levels of saturation with relatively high affinities. Kd values ranged from 27 to 97 nM. In addition, the protein was immunolocalized to the Müller cells in the retina as well as to Sertoli cells in the testis. The location of bovine E-FABP in cells known to be supportive to other cell types in their tissues and the ability of E-FABP to bind a variety of fatty acids with similar affinities indicate that it may be involved in the uptake and transport of fatty acids essential for the nourishment of the surrounding cell types.
Collapse
Affiliation(s)
- P B Kingma
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | | | |
Collapse
|
39
|
Abstract
Although structural aspects of cytosolic fatty acid binding proteins (FABPs) in mammalian tissues are now well understood, significant advances regarding the physiological function(s) of these proteins have been slow in forthcoming. Part of the difficulty lies in the complexity of the multigene FABP family with nearly twenty identified members. Furthermore, isoelectric focusing and ion exchange chromatography operationally resolve many of the mammalian native FABPs into putative isoforms. However, a more classical biochemical definition of an isoform, i.e. proteins differing by a single amino acid, suggests that the operational definition is too broad. Because at least one putative heart H-FABP isoform, the mammary derived growth inhibitor, was an artifact (Specht et al. (1996) J. Biol. Chem. 271: 1943-49), the ensuing skepticism and confusion cast doubt on the existence of FABP isoforms in general. Yet, increasing data suggest that several FABPs, e.g. human intestinal I-FABP, bovine and mouse heart H-FABP, rabbit myelin P2 protein and bovine liver L-FABP may exist as true isoforms. In contrast, the rat liver L-FABP putative isoforms may actually be due either to bound ligand, post-translational S-thiolation and/or structural conformers. In any case, almost nothing is known regarding possible functions of either the true or putative isoforms in vitro or in vivo. The objective of this article is to critically evaluate which FABPs form biochemically defined or true isoforms versus FABPs that form additional forms, operationally defined as isoforms. In addition, recent developments in the molecular basis for FABP true isoform formation, the processes leading to additional operationally defined putative isoforms and insights into potential function(s) of this unusual aspect of FABP heterogeneity will be examined.
Collapse
Affiliation(s)
- F Schroeder
- Department of Physiology and Pharmacology, Texas A & M University, TVMC, College Station 77843-4466, USA.
| | | | | | | |
Collapse
|
40
|
Prinsen CF, Veerkamp JH. Transfection of L6 myoblasts with adipocyte fatty acid-binding protein cDNA does not affect fatty acid uptake but disturbs lipid metabolism and fusion. Biochem J 1998; 329 ( Pt 2):265-73. [PMID: 9425108 PMCID: PMC1219040 DOI: 10.1042/bj3290265] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We studied the involvement of fatty acid-binding protein (FABP) in growth, differentiation and fatty acid metabolism of muscle cells by lipofection of rat L6 myoblasts with rat heart (H) FABP cDNA or with rat adipocyte (A) FABP cDNA in a eukaryotic expression vector which contained a puromycin acetyltransferase cassette. Stable transfectants showed integration into the genome for all constructs and type-specific overexpression at the mRNA and protein level for the clones with H-FABP and A-FABP cDNA constructs. The rate of proliferation of myoblasts transfected with rat A-FABP cDNA was 2-fold higher compared with all other transfected cells. In addition, these myoblasts showed disturbed fusion and differentiation, as assessed by morphological examination and creatine kinase activity. Uptake rates of palmitate were equal for all clone types, in spite of different FABP content and composition. Palmitate oxidation over a 3 h period was similar in all clones from growth medium. After being cultured in differentiation medium, mock- and H-FABP-cDNA-transfected cells showed a lower fatty acid-oxidation rate, in contrast with A-FABP-cDNA-transfected clones. The ratio of [14C]palmitic acid incorporation into phosphatidylcholine and phosphatidylethanolamine of A-FABP-cDNA-transfected clones changed in the opposite direction in differentiation medium from that of mock- and H-FABP-cDNA-transfected clones. In conclusion, transfection of L6 myoblasts with A-FABP cDNA does not affect H-FABP content and fatty acid uptake, but changes fatty acid metabolism. The latter changes may be related to the observed fusion defect.
Collapse
Affiliation(s)
- C F Prinsen
- Department of Biochemistry, University of Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | | |
Collapse
|
41
|
Bisgrove DA, Monckton EA, Godbout R. Involvement of AP-2 in regulation of the R-FABP gene in the developing chick retina. Mol Cell Biol 1997; 17:5935-45. [PMID: 9315651 PMCID: PMC232441 DOI: 10.1128/mcb.17.10.5935] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Little is known regarding the molecular pathways that underlie the retinal maturation process. We are studying the regulation of the retinal fatty-acid-binding protein (R-FABP) gene, highly expressed in retinal precursor cells, to identify DNA regulatory elements and transcriptional factors involved in retinal development. Although the upstream sequence of the R-FABP gene is extremely GC rich, CpG methylation in this region is not implicated in the regulation of this gene because the 5' flanking DNA remains unmethylated with tissue differentiation when there is a dramatic decrease in R-FABP transcript levels. Using a combination of DNase I hypersensitivity experiments, gel shift assays, and DNase I footprinting, we have found three sites of DNA-protein interaction within 205 bp of 5' flanking DNA in the undifferentiated retina and four sites in the differentiated retina. DNA transfection analysis indicates that the first two footprints located within 150 bp of 5' flanking DNA are required for high levels of transcription in primary undifferentiated retinal cultures. The first footprint includes a putative TATA box and Spl binding sites while the second footprint contains a consensus AP-2 DNA binding site. Supershift experiments using antibodies to AP-2 and methylation interference experiments indicate that an AP-2-like transcription factor present in both late-proliferative-stage retina and differentiated retina binds to the upstream region of the R-FABP gene. A combination of data including the expression profile of AP-2 during retinal development and DNA transfection analysis using constructs mutated at critical residues within the AP-2 binding site suggests that AP-2 is a repressor of R-FABP transcription.
Collapse
Affiliation(s)
- D A Bisgrove
- Department of Oncology, Cross Cancer Institute and University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
42
|
Barber MC, Clegg RA, Travers MT, Vernon RG. Lipid metabolism in the lactating mammary gland. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1347:101-26. [PMID: 9295156 DOI: 10.1016/s0005-2760(97)00079-9] [Citation(s) in RCA: 188] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
43
|
Börchers T, Hohoff C, Buhlmann C, Spener F. Heart-type fatty acid binding protein - involvement in growth inhibition and differentiation. Prostaglandins Leukot Essent Fatty Acids 1997; 57:77-84. [PMID: 9250612 DOI: 10.1016/s0952-3278(97)90496-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Fatty acid binding proteins (FABPs) comprise a well-established family of cytoplasmic hydrophobic ligand binding proteins and are thought to be involved in lipid metabolism by binding and intracellular transport of long-chain fatty acids. However, from other studies role for FABPs in cell signalling, growth inhibition and differentiation has also been implied. In particular, the heart-type (H-FABP) is abundantly expressed in differentiated mammary gland and its relationship with a very homologous (95%) mammary derived growth inhibitor (MDGI) was disputed. Here we give a survey on the experimental evidence for the existence of such protein with growth inhibitory function. After cloning of the bovine adipocyte-type (A-)FABP cDNA from mammary gland we conclude that the reported MDGI sequence actually represents a mixture of bovine H- and A-FABP and that the MDGI function is exerted by H-FABP. We also monitored the H-FABP level during differentiation of C2C12 muscle cells from myoblasts to multiply nucleated myotubes. H-FABP expression is clearly detected after that of the transcription factor myogenin which is upregulated immediately upon onset of differentiation and after that of the typical muscle enzyme creatine kinase. This argues against an active role of H-FABP in muscle development unlike the situation in the mammary gland.
Collapse
Affiliation(s)
- T Börchers
- Department of Biochemistry, University of Münster, Germany
| | | | | | | |
Collapse
|
44
|
Gerbens F, Rettenberger G, Lenstra JA, Veerkamp JH, te Pas MF. Characterization, chromosomal localization, and genetic variation of the porcine heart fatty acid-binding protein gene. Mamm Genome 1997; 8:328-32. [PMID: 9107676 DOI: 10.1007/s003359900433] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The purpose of this study was to detect genetic variation in the porcine H-FABP gene, a candidate gene for meat quality traits in pigs. Lambda phages containing the porcine H-FABP gene were isolated by plaque hybridization with human H-FABP cDNA. The coding and flanking intronic sequences of the porcine H-FABP gene were determined as well as 1.6 kb of the 5' upstream region. The various potential regulatory sequences in this region are in accordance with the function and expression of the protein in muscle and mammary tissue. Furthermore, comparison with the homolog region of the mouse identified a highly conserved 13-bp element (CTTCCT [A/C] TTTCGG) that may be involved in regulation of expression. The porcine H-FABP gene was localized on Chromosome (Chr) 6 by porcine sequence-specific PCR on DNA from a pig/rodent cell hybrid panel. In addition, part of the H-FABP gene was screened for genetic variation by PCR-RFLP analysis. Three PCR-RFLPs were detected, one in the upstream region (HinfI) and two in the second intron (HaeIII and MspI). In most pig breeds the corresponding alleles have a variable distribution, possibly a consequence of selective breeding. This genetic variation will enable us to investigate the role of the H-FABP locus in porcine production and meat quality traits.
Collapse
Affiliation(s)
- F Gerbens
- DLO-Institute for Animal Science and Health (ID-DLO), P.O. Box 65, 8200 AB Lelystad, The Netherlands
| | | | | | | | | |
Collapse
|