1
|
Arceo XG, Koslover EF, Zid BM, Brown AI. Mitochondrial mRNA localization is governed by translation kinetics and spatial transport. PLoS Comput Biol 2022; 18:e1010413. [PMID: 35984860 PMCID: PMC9432724 DOI: 10.1371/journal.pcbi.1010413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/31/2022] [Accepted: 07/19/2022] [Indexed: 11/24/2022] Open
Abstract
For many nuclear-encoded mitochondrial genes, mRNA localizes to the mitochondrial surface co-translationally, aided by the association of a mitochondrial targeting sequence (MTS) on the nascent peptide with the mitochondrial import complex. For a subset of these co-translationally localized mRNAs, their localization is dependent on the metabolic state of the cell, while others are constitutively localized. To explore the differences between these two mRNA types we developed a stochastic, quantitative model for MTS-mediated mRNA localization to mitochondria in yeast cells. This model includes translation, applying gene-specific kinetics derived from experimental data; and diffusion in the cytosol. Even though both mRNA types are co-translationally localized we found that the steady state number, or density, of ribosomes along an mRNA was insufficient to differentiate the two mRNA types. Instead, conditionally-localized mRNAs have faster translation kinetics which modulate localization in combination with changes to diffusive search kinetics across metabolic states. Our model also suggests that the MTS requires a maturation time to become competent to bind mitochondria. Our work indicates that yeast cells can regulate mRNA localization to mitochondria by controlling mitochondrial volume fraction (influencing diffusive search times) and gene translation kinetics (adjusting mRNA binding competence) without the need for mRNA-specific binding proteins. These results shed light on both global and gene-specific mechanisms that enable cells to alter mRNA localization in response to changing metabolic conditions.
Collapse
Affiliation(s)
- Ximena G. Arceo
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California, United States of America
| | - Elena F. Koslover
- Department of Physics, University of California, San Diego, La Jolla, California, United States of America
| | - Brian M. Zid
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California, United States of America
| | - Aidan I. Brown
- Department of Physics, Ryerson University, Toronto, Canada
| |
Collapse
|
2
|
Chin RM, Panavas T, Brown JM, Johnson KK. Optimized Mitochondrial Targeting of Proteins Encoded by Modified mRNAs Rescues Cells Harboring Mutations in mtATP6. Cell Rep 2018. [DOI: 10.1016/j.celrep.2018.02.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
3
|
Towards the development of an enzyme replacement therapy for the metabolic disorder propionic acidemia. Mol Genet Metab Rep 2016; 8:51-60. [PMID: 27504265 PMCID: PMC4968140 DOI: 10.1016/j.ymgmr.2016.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/30/2016] [Accepted: 06/30/2016] [Indexed: 12/11/2022] Open
Abstract
Propionic acidemia (PA) is a life-threatening disease caused by the deficiency of a mitochondrial biotin-dependent enzyme known as propionyl coenzyme-A carboxylase (PCC). This enzyme is responsible for degrading the metabolic intermediate, propionyl coenzyme-A (PP-CoA), derived from multiple metabolic pathways. Currently, except for drastic surgical and dietary intervention that can only provide partial symptomatic relief, no other form of therapeutic option is available for this genetic disorder. Here, we examine a novel approach in protein delivery by specifically targeting and localizing our protein candidate of interest into the mitochondrial matrix of the cells. In order to test this concept of delivery, we have utilized cell penetrating peptides (CPPs) and mitochondria targeting sequences (MTS) to form specific fusion PCC protein, capable of translocating and localizing across cell membranes. In vitro delivery of our candidate fusion proteins, evaluated by confocal images and enzymatic activity assay, indicated effectiveness of this strategy. Therefore, it holds immense potential in creating a new paradigm in site-specific protein delivery and enzyme replacement therapeutic for PA.
Collapse
Key Words
- CPPs, cell penetrating peptides
- CoA, coenzyme-A
- ERT, enzyme replacement therapy
- Enzyme replacement therapy
- His-tag, six histidines tag
- LAD, lipoamine dehydrogenase
- MPP, mitochondrial processing peptidase
- MTS, mitochondria targeting sequences
- Mitochondrial targeting sequences
- PA, propionic acidemia
- PCC, propionyl coenzyme-A carboxylase
- PCCA, PCCα subunit
- PCCB, PCCβ subunit
- PP-CoA, propionyl coenzyme-A
- Propionic acidemia
- Propionyl coenzyme-A carboxylase
- Protein transduction domains
- UPLC-MS/MS, ultra performance liquid chromatography tandem mass spectrometry
Collapse
|
4
|
Colcombet J, Lopez-Obando M, Heurtevin L, Bernard C, Martin K, Berthomé R, Lurin C. Systematic study of subcellular localization of Arabidopsis PPR proteins confirms a massive targeting to organelles. RNA Biol 2013; 10:1557-75. [PMID: 24037373 PMCID: PMC3858439 DOI: 10.4161/rna.26128] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Four hundred and fifty-eight genes coding for PentatricoPeptide Repeat (PPR) proteins are annotated in the Arabidopsis thaliana genome. Over the past 10 years, numerous reports have shown that many of these proteins function in organelles to target specific transcripts and are involved in post-transcriptional regulation. Therefore, they are thought to be important players in the coordination between nuclear and organelle genome expression. Only four of these proteins have been described to be addressed outside organelles, indicating that some PPRs could function in post-transcriptional regulations of nuclear genes. In this work, we updated and improved our current knowledge on the localization of PPR proteins of Arabidopsis within the plant cell. We particularly investigated the subcellular localization of 166 PPR proteins whose targeting predictions were ambiguous, using a combination of high-throughput cloning and microscopy. Through systematic localization experiments and data integration, we confirmed that PPR proteins are largely targeted to organelles and showed that dual targeting to both the mitochondria and plastid occurs more frequently than expected. These results allow us to speculate that dual-targeted PPR proteins could be important for the fine coordination of gene expressions in both organelles.
Collapse
Affiliation(s)
- Jean Colcombet
- Unité de Recherche en Génomique Végétale (URGV); UMR INRA/UEVE - ERL CNRS 91057; CP 5708; 91057 EVRY CEDEX, France
| | - Mauricio Lopez-Obando
- Unité de Recherche en Génomique Végétale (URGV); UMR INRA/UEVE - ERL CNRS 91057; CP 5708; 91057 EVRY CEDEX, France
| | - Laure Heurtevin
- Unité de Recherche en Génomique Végétale (URGV); UMR INRA/UEVE - ERL CNRS 91057; CP 5708; 91057 EVRY CEDEX, France
| | - Clément Bernard
- Unité de Recherche en Génomique Végétale (URGV); UMR INRA/UEVE - ERL CNRS 91057; CP 5708; 91057 EVRY CEDEX, France
| | - Karine Martin
- Unité de Recherche en Génomique Végétale (URGV); UMR INRA/UEVE - ERL CNRS 91057; CP 5708; 91057 EVRY CEDEX, France
| | - Richard Berthomé
- Unité de Recherche en Génomique Végétale (URGV); UMR INRA/UEVE - ERL CNRS 91057; CP 5708; 91057 EVRY CEDEX, France
| | - Claire Lurin
- Unité de Recherche en Génomique Végétale (URGV); UMR INRA/UEVE - ERL CNRS 91057; CP 5708; 91057 EVRY CEDEX, France
| |
Collapse
|
5
|
Doyle SR, Kasinadhuni NRP, Chan CK, Grant WN. Evidence of evolutionary constraints that influences the sequence composition and diversity of mitochondrial matrix targeting signals. PLoS One 2013; 8:e67938. [PMID: 23825690 PMCID: PMC3692466 DOI: 10.1371/journal.pone.0067938] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 05/23/2013] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial targeting signals (MTSs) are responsible for trafficking nuclear encoded proteins to their final destination within mitochondria. These sequences are diverse, sharing little amino acid homology and vary significantly in length, and although the formation of a positively-charged amphiphilic alpha helix within the MTS is considered to be necessary and sufficient to mediate import, such a feature does not explain their diversity, nor how such diversity influences target sequence function, nor how such dissimilar signals interact with a single, evolutionarily conserved import mechanism. An in silico analysis of 296 N-terminal, matrix destined MTSs from Homo sapiens, Mus musculus, Saccharomyces cerevisiae, Arabidopsis thaliana, and Oryza sativa was undertaken to investigate relationships between MTSs, and/or, relationships between an individual targeting signal sequence and the protein that it imports. We present evidence that suggests MTS diversity is influenced in part by physiochemical and N-terminal characteristics of their mature sequences, and that some of these correlated characteristics are evolutionarily maintained across a number of taxa. Importantly, some of these associations begin to explain the variation in MTS length and composition.
Collapse
Affiliation(s)
- Stephen R Doyle
- La Trobe Institute for Molecular Sciences, La Trobe University, Bundoora, Australia.
| | | | | | | |
Collapse
|
6
|
Mukhopadhyay A, Wei B, Weiner H. Mitochondrial NAD dependent aldehyde dehydrogenase either from yeast or human replaces yeast cytoplasmic NADP dependent aldehyde dehydrogenase for the aerobic growth of yeast on ethanol. Biochim Biophys Acta Gen Subj 2013; 1830:3391-8. [PMID: 23454351 DOI: 10.1016/j.bbagen.2013.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 02/08/2013] [Accepted: 02/12/2013] [Indexed: 11/19/2022]
Abstract
BACKGROUND In a previous study, we deleted three aldehyde dehydrogenase (ALDH) genes, involved in ethanol metabolism, from yeast Saccharomyces cerevisiae and found that the triple deleted yeast strain did not grow on ethanol as sole carbon source. The ALDHs were NADP dependent cytosolic ALDH1, NAD dependent mitochondrial ALDH2 and NAD/NADP dependent mitochondrial ALDH5. Double deleted strain ΔALDH2+ΔALDH5 or ΔALDH1+ΔALDH5 could grow on ethanol. However, the double deleted strain ΔALDH1+ΔALDH2 did not grow in ethanol. METHODS Triple deleted yeast strain was used. Mitochondrial NAD dependent ALDH from yeast or human was placed in yeast cytosol. RESULTS In the present study we found that a mutant form of cytoplasmic ALDH1 with very low activity barely supported the growth of the triple deleted strain (ΔALDH1+ΔALDH2+ΔALDH5) on ethanol. Finding the importance of NADP dependent ALDH1 on the growth of the strain on ethanol we examined if NAD dependent mitochondrial ALDH2 either from yeast or human would be able to support the growth of the triple deleted strain on ethanol if the mitochondrial form was placed in cytosol. We found that the NAD dependent mitochondrial ALDH2 from yeast or human was active in cytosol and supported the growth of the triple deleted strain on ethanol. CONCLUSION This study showed that coenzyme preference of ALDH is not critical in cytosol of yeast for the growth on ethanol. GENERAL SIGNIFICANCE The present study provides a basis to understand the coenzyme preference of ALDH in ethanol metabolism in yeast.
Collapse
|
7
|
Smirnov A, Comte C, Mager-Heckel AM, Addis V, Krasheninnikov IA, Martin RP, Entelis N, Tarassov I. Mitochondrial enzyme rhodanese is essential for 5 S ribosomal RNA import into human mitochondria. J Biol Chem 2010; 285:30792-803. [PMID: 20663881 DOI: 10.1074/jbc.m110.151183] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
5 S rRNA is an essential component of ribosomes. In eukaryotic cells, it is distinguished by particularly complex intracellular traffic, including nuclear export and re-import. The finding that in mammalian cells 5 S rRNA can eventually escape its usual circuit toward nascent ribosomes to get imported into mitochondria has made the scheme more complex, and it has raised questions about both the mechanism of 5 S rRNA mitochondrial targeting and its function inside the organelle. Previously, we showed that import of 5 S rRNA into mitochondria requires unknown cytosolic proteins. Here, one of them was identified as mitochondrial thiosulfate sulfurtransferase, rhodanese. Rhodanese in its misfolded form was found to possess a strong and specific 5 S rRNA binding activity, exploiting sites found earlier to function as signals of 5 S rRNA mitochondrial localization. The interaction with 5 S rRNA occurs cotranslationally and results in formation of a stable complex in which rhodanese is preserved in a compact enzymatically inactive conformation. Human 5 S rRNA in a branched Mg(2+)-free form, upon its interaction with misfolded rhodanese, demonstrates characteristic functional traits of Hsp40 cochaperones implicated in mitochondrial precursor protein targeting, suggesting that it may use this mechanism to ensure its own mitochondrial localization. Finally, silencing of the rhodanese gene caused not only a proportional decrease of 5 S rRNA import but also a general inhibition of mitochondrial translation, indicating the functional importance of the imported 5 S rRNA inside the organelle.
Collapse
Affiliation(s)
- Alexandre Smirnov
- Department of Molecular and Cellular Genetics, UMR 7156, CNRS-University of Strasbourg, Strasbourg 67084, France
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Shokolenko IN, Alexeyev MF, LeDoux SP, Wilson GL. The approaches for manipulating mitochondrial proteome. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:451-461. [PMID: 20544885 PMCID: PMC3249350 DOI: 10.1002/em.20570] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Over the past decade a large volume of research data has accumulated which has established a fundamental role for mitochondria in normal cellular functioning, as well as in various pathologies. Mitochondria play a pivotal role in metabolism and energy production, and are one of the key players involved in programmed cell death. On the other hand, mitochondrial dysfunction is implicated, directly or indirectly in numerous pathological conditions including inherited mitochondrial disorders, diabetes, cardiovascular and neurodegenerative diseases, and a variety of malignancies. The ability to modulate mitochondrial function by altering the diverse protein component of this organelle may be of great value for developing future therapeutic interventions. This review will discuss approaches used to introduce proteins into mitochondria. One group of methods utilizes strategies aimed at expressing proteins from genes in the nucleus. These include overexpression of nuclear-encoded mitochondrial proteins, allotopic expression, which is the re-coding and relocation of mitochondrial genes to the nucleus for expression and subsequent delivery of their gene products to mitochondria, and xenotopic expression, which is the nuclear expression of genes coding electron transport chain components from distant species, for delivery of their products to mammalian mitochondria. Additionally, antigenomic and progenomic strategies which focus on expression of mitochondrially targeted nuclear proteins involved in the maintenance of mtDNA will be discussed. The second group of methods considered will focus on attempts to use purified proteins for mitochondrial delivery. Special consideration has been given to the complexities involved in targeting exogenous proteins to mitochondria.
Collapse
|
9
|
Song W, Zou Z, Xu F, Gu X, Xu X, Zhao Q. Molecular cloning and expression of a second zebrafish aldehyde dehydrogenase 2 gene (aldh2b). ACTA ACUST UNITED AC 2007; 17:262-9. [PMID: 17312945 DOI: 10.1080/10425170600885609] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Aldehyde dehydrogenase 2 (ALDH2) is primarily responsible for detoxification of short-chain aldehydes in vivo. Previously it was reported that zebrafish has an aldh2 gene. Here we report the presence of a second aldh2 gene (aldh2b) in zebrafish. Zebrafish aldh2b locates adjacently to aldh2 on Chromosome 5 and the two genes share the same genomic organizations. aldh2b was predicted to encode a protein comprising 516 amino acids. The protein exhibits 95% amino acid identity with zebrafish ALDH2 and more than 76% identity with other vertebrate ALDH2s, respectively. Employing RT-PCR analysis, we demonstrated that both aldh2 and aldh2b mRNAs were present in embryos at cleavage stage (2 hpf: hour post fertilization) throughout protruding-mouth stage (72 hpf) and in different adult tissues of zebrafish. Taken together, our results reveal that zebrafish has two orthologues of aldh2 gene and the two genes share similar expression patterns during early development and in adult tissues.
Collapse
Affiliation(s)
- Wei Song
- Model Animal Research Center, State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Nanjing University, Nanjing 210093, People's Republic of China
| | | | | | | | | | | |
Collapse
|
10
|
Mukhopadhyay A, Ni L, Weiner H. A co-translational model to explain the in vivo import of proteins into HeLa cell mitochondria. Biochem J 2005; 382:385-92. [PMID: 15153070 PMCID: PMC1133951 DOI: 10.1042/bj20040065] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2004] [Revised: 05/18/2004] [Accepted: 05/21/2004] [Indexed: 11/17/2022]
Abstract
The dual signal approach, i.e. a mitochondrial signal at the N-terminus and an ER (endoplasmic reticulum) or a peroxisomal signal at the C-terminus of EGFP (enhanced green fluorescent protein), was employed in transfected HeLa cells to test for a co-translational import model. The signal peptide from OTC (ornithine transcarbamylase) or arginase II was fused to the N-terminus of EGFP, and an ER or peroxisomal signal was fused to its C-terminus. The rationale was that if the free preprotein remained in the cytosol, it could be distributed between the two organelles by using a post-translational pathway. The resulting fusion proteins were imported exclusively into mitochondria, suggesting that co-translational import occurred. Native preALDH (precursor of rat liver mitochondrial aldehyde dehydrogenase), preOTC and rhodanese, each with the addition of a C-terminal ER or peroxisomal signal, were also translocated only to the mitochondria, again showing that a co-translational import pathway exists for these native proteins. Import of preALDH(sp)-DHFR, a fusion protein consisting of the leader sequence (signal peptide) of preALDH fused to DHFR (dihydrofolate reductase), was studied in the presence of methotrexate, a substrate analogue for DHFR. It was found that 70% of the preALDH(sp)-DHFR was imported into mitochondria in the presence of methotrexate, implying that 70% of the protein utilized the co-translational import pathway and 30% used the post-translational import pathway. Thus it appears that co-translational import is a major pathway for mitochondrial protein import. A model is proposed to explain how competition between binding factors could influence whether or not a cytosolic carrier protein, such as DHFR, uses the co- or post-translational import pathway.
Collapse
Affiliation(s)
- Abhijit Mukhopadhyay
- Department of Biochemistry, Purdue University, 175 S. University Street, West Lafayette, IN 47907-2063, U.S.A
| | - Li Ni
- Department of Biochemistry, Purdue University, 175 S. University Street, West Lafayette, IN 47907-2063, U.S.A
| | - Henry Weiner
- To whom correspondence should be addressed (email )
| |
Collapse
|
11
|
Zullo SJ, Parks WT, Chloupkova M, Wei B, Weiner H, Fenton WA, Eisenstadt JM, Merril CR. Stable Transformation of CHO Cells and Human NARP Cybrids Confers Oligomycin Resistance (olir) Following Transfer of a Mitochondrial DNA–Encoded olirATPase6 Gene to the Nuclear Genome: A Model System for mtDNA Gene Therapy. Rejuvenation Res 2005; 8:18-28. [PMID: 15798371 DOI: 10.1089/rej.2005.8.18] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Point and deletion mutations and a general depletion of mammalian mitochondrial DNA (mtDNA) give rise to a wide variety of medical syndromes that are refractory to treatment, possibly including aging itself. While gene therapy directed at correcting such deficits in the mitochondrial genome may offer some therapeutic benefits, there are inherent problems associated with a direct approach. These problems are primarily due to the high mitochondrial genome copy number in each cell and the mitochondrial genome being "protected" inside the double-membrane mitochondrial organelle. In an alternative approach there is evidence that genes normally present in the mitochondrial genome can be incorporated into the nuclear genome. To extend such studies, we modified the Chinese Hamster Ovary (CHO) mtDNA-located ATPase6 gene (possessing a mutation which confers oligomycin resistance- oli(r)) by altering the mtDNA code to the universal code (U-code) to permit the correct translation of its mRNA in the cytoplasm. The U-code construct was inserted into the nuclear genome (nucDNA) of a wild type CHO cell. The expressed transgene products enabled the transformed CHO cell lines to grow in up to 1000 ng mL(-1) oligomycin, while untransformed sensitive CHO cells were eliminated in 1 ng mL(-1) oligomycin. This approach, termed allotopic expression, provides a model that may make possible the transfer of all 13 mtDNA mammalian protein-encoding genes to the nucDNA, for treatments of mtDNA disorders. The CHO mtATPase6 protein is 85% identical to both the mouse and human mtATPase6 protein; these proteins are highly conserved in the region of the oligomycin resistance mutation. They are also well conserved in the regions of the oligomycin resistance mutation of the mouse, and in the region of a mutation found in Leigh's syndrome (T8993G), also called NARP (neurogenic weakness, ataxia, retinitis pigmentosum). It is likely that the CHO oli(r) mtATPase6 Ucode construct could impart oligomycin-resistance in human and mouse cells, as well as function in place of the mutant ATPase subunit in a NARP cell line. Preliminary experiments on human cybrids homoplasmic for the NARP mutation (kindly supplied by D.C. Wallace), transformed with our construct, display an increased oligomycin resistance that supports these suppositions.
Collapse
Affiliation(s)
- S J Zullo
- Laboratory of Biochemical Genetics, NIMH, NIH, Bethesda, Maryland, USA.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Mukhopadhyay A, Heard TS, Wen X, Hammen PK, Weiner H. Location of the actual signal in the negatively charged leader sequence involved in the import into the mitochondrial matrix space. J Biol Chem 2003; 278:13712-8. [PMID: 12551941 DOI: 10.1074/jbc.m212743200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Proteins destined for the mitochondrial matrix space have leader sequences that are typically present at the most N-terminal end of the nuclear-encoded precursor protein. The leaders are rich in positive charges and usually deficient of negative charges. This observation led to the acid-chain hypothesis to explain how the leader sequences interact with negatively charged receptor proteins. Here we show using both chimeric leaders and one from isopropyl malate synthase that possesses a negative charge that the leader need not be at the very N terminus of the precursor. Experiments were performed with modified non-functioning leader sequences fused to either the native or a non-functioning leader of aldehyde dehydrogenase so that an internal leader sequence could exist. The internal leader is sufficient for the import of the modified precursor protein. It appears that this leader still needs to form an amphipathic helix just like the normal N-terminal leaders do. This internal leader could function even if the most N-terminal portion contained negative charges in the first 7-11 residues. If the first 11 residues were deleted from isopropyl malate synthase, the resulting protein was imported more successfully than the native protein. It appears that precursors that carry negatively charged leaders use an internal signal sequence to compensate for the non-functional segment at the most N-terminal portion of the protein.
Collapse
Affiliation(s)
- Abhijit Mukhopadhyay
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907-2063, USA
| | | | | | | | | |
Collapse
|
13
|
Emanuelsson O, von Heijne G, Schneider G. Analysis and prediction of mitochondrial targeting peptides. Methods Cell Biol 2002; 65:175-87. [PMID: 11381593 DOI: 10.1016/s0091-679x(01)65011-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- O Emanuelsson
- Stockholm Bioinformatics Center, Stockholm University, S-10691 Stockholm, Sweden
| | | | | |
Collapse
|
14
|
Lister R, Chew O, Rudhe C, Lee MN, Whelan J. Arabidopsis thaliana ferrochelatase-I and -II are not imported into Arabidopsis mitochondria. FEBS Lett 2001; 506:291-5. [PMID: 11602264 DOI: 10.1016/s0014-5793(01)02925-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Using in vitro import assays into purified mitochondria and chloroplasts we found that Arabidopsis ferrochelatase-I and ferrochelatase-II were not imported into mitochondria purified from Arabidopsis (or several other plants) but were imported into pea leaf chloroplasts. Other dual targeted proteins could be imported into purified mitochondria from Arabidopsis. As only two ferrochelatase genes are present in the completed Arabidopsis genome, the presence of ferrochelatase activity in plant mitochondria needs to be re-evaluated. Previous reports of Arabidopsis ferrochelatase-I import into pea mitochondria are due to the fact that pea leaf (and root) mitochondria appear to import a variety, but not all chloroplast proteins. Thus pea mitochondria are not a suitable system to either study dual targeting, or to distinguish between isozymes present in mitochondria and chloroplasts.
Collapse
Affiliation(s)
- R Lister
- Department of Biochemistry, University of Western Australia, Crawley, Australia
| | | | | | | | | |
Collapse
|
15
|
Zhou J, Weiner H. The N-terminal portion of mature aldehyde dehydrogenase affects protein folding and assembly. Protein Sci 2001; 10:1490-7. [PMID: 11468345 PMCID: PMC2374079 DOI: 10.1110/ps.5301] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2001] [Revised: 04/19/2001] [Accepted: 04/26/2001] [Indexed: 10/16/2022]
Abstract
Human liver cytosolic (ALDH1) and mitochondrial (ALDH2) aldehyde dehydrogenases are both encoded in the nucleus and synthesized in the cytosol. ALDH1 must fold in the cytosol, but ALDH2 is first synthesized as a precursor and must remain unfolded during import into mitochondria. The two mature forms share high identity (68%) at the protein sequence level except for the first 21 residues (14%); their tertiary structures were found to be essentially identical. ALDH1 folded faster in vitro than ALDH2 and could assemble to tetramers while ALDH2 remained as monomers. Import assay was used as a tool to study the folding status of ALDH1 and ALDH2. pALDH1 was made by fusing the presequence of precursor ALDH2 to the N-terminal end of ALDH1. Its import was reduced about 10-fold compared to the precursor ALDH2. The exchange of the N-terminal 21 residues from the mature portion altered import, folding, and assembly of precursor ALDH1 and precursor ALDH2. More of chimeric ALDH1 precursor was imported into mitochondria compared to its parent precursor ALDH1. The import of chimeric ALDH2 precursor, the counterpart of chimeric ALDH1 precursor, was reduced compared to its parent precursor ALDH2. Mature ALDH1 proved to be more stable against urea denaturation than ALDH2. Urea unfolding improved the import of precursor ALDH1 and the chimeric precursors but not precursor ALDH2, consistent with ALDH1 and the chimeric ALDHs being more stable than ALDH2. The N-terminal segment of the mature protein, and not the presequence, makes a major contribution to the folding, assembly, and stability of the precursor and may play a role in folding and hence the translocation of the precursor into mitochondria.
Collapse
Affiliation(s)
- J Zhou
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907-1153, USA
| | | |
Collapse
|
16
|
Donate F, Yañez AJ, Iriarte A, Martinez-Carrion M. Interaction of the precursor to mitochondrial aspartate aminotransferase and its presequence peptide with model membranes. J Biol Chem 2000; 275:34147-56. [PMID: 10938277 DOI: 10.1074/jbc.m004494200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The possible contribution of the mature portion of a mitochondrial precursor protein to its interaction with membrane lipids is unclear. To address this issue, we examined the interaction of the precursor to mitochondrial aspartate aminotransferase (pmAAT) and of a synthetic peptide corresponding to the 29-residue presequence peptide (mAAT-pp) with anionic phospholipid vesicles. The affinity of mAAT-pp and pmAAT for anionic vesicles is nearly identical. Results obtained by analyzing the effect of mAAT-pp or full-length pmAAT on either the permeability or microviscosity of the phospholipid vesicles are consistent with only a shallow insertion of the presequence peptide in the bilayer. Analysis of the quenching of Trp-17 fluorescence by brominated phospholipids reveals that this presequence residue inserts to a depth of approximately 9 A from the center of the bilayer. Furthermore, in membrane-bound pmAAT or mAAT-pp, both Arg-8 and Arg-28 are accessible to the solvent. These results suggest that the presequence segment lies close to the surface of the membrane and that the mature portion of the precursor protein has little effect on the affinity or mode of binding of the presequence to model membranes. In the presence of vesicles, mAAT-pp adopts considerable alpha-helical structure. Hydrolysis by trypsin after Arg-8 results in the dissociation of the remaining 21-residue C-terminal peptide fragment from the membrane bilayer, suggesting that the N-terminal portion of the presequence is essential for membrane binding. Based on these results, we propose that the presequence peptide may contain dual recognition elements for both the lipid and import receptor components of the mitochondrial membrane.
Collapse
Affiliation(s)
- F Donate
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri, Kansas City, Missouri 64110, USA
| | | | | | | |
Collapse
|
17
|
Emanuelsson O, Nielsen H, Brunak S, von Heijne G. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 2000; 300:1005-16. [PMID: 10891285 DOI: 10.1006/jmbi.2000.3903] [Citation(s) in RCA: 3098] [Impact Index Per Article: 123.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A neural network-based tool, TargetP, for large-scale subcellular location prediction of newly identified proteins has been developed. Using N-terminal sequence information only, it discriminates between proteins destined for the mitochondrion, the chloroplast, the secretory pathway, and "other" localizations with a success rate of 85% (plant) or 90% (non-plant) on redundancy-reduced test sets. From a TargetP analysis of the recently sequenced Arabidopsis thaliana chromosomes 2 and 4 and the Ensembl Homo sapiens protein set, we estimate that 10% of all plant proteins are mitochondrial and 14% chloroplastic, and that the abundance of secretory proteins, in both Arabidopsis and Homo, is around 10%. TargetP also predicts cleavage sites with levels of correctly predicted sites ranging from approximately 40% to 50% (chloroplastic and mitochondrial presequences) to above 70% (secretory signal peptides). TargetP is available as a web-server at http://www.cbs.dtu.dk/services/TargetP/.
Collapse
Affiliation(s)
- O Emanuelsson
- Stockholm Bioinformatics Center, Department of Biochemistry, Stockholm University, Stockholm, S-106 91, Sweden
| | | | | | | |
Collapse
|
18
|
Lumb MJ, Drake AF, Danpure CJ. Effect of N-terminal alpha-helix formation on the dimerization and intracellular targeting of alanine:glyoxylate aminotransferase. J Biol Chem 1999; 274:20587-96. [PMID: 10400689 DOI: 10.1074/jbc.274.29.20587] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The unparalleled peroxisome-to-mitochondrion mistargeting of alanine:glyoxylate aminotransferase (AGT) in the hereditary disease primary hyperoxaluria type 1 is caused by the combined presence of a common Pro11 --> Leu polymorphism and a disease-specific Gly170 --> Arg mutation. The Pro11 --> Leu replacement generates a functionally weak N-terminal mitochondrial targeting sequence (MTS), the efficiency of which is increased by the additional presence of the Gly170 --> Arg replacement. AGT dimerization is inhibited in the combined presence of both replacements but not when each is present separately. In this paper we have attempted to identify the structural determinants of AGT dimerization and mitochondrial mistargeting. Unlike most MTSs, the polymorphic MTS of AGT has little tendency to adopt an alpha-helical conformation in vitro. Nevertheless, it is able to target efficiently a monomeric green fluorescent (GFP) fusion protein, but not dimeric AGT, to mitochondria in transfected COS-1 cells. Increasing the propensity of this MTS to fold into an alpha-helix, by making a double Pro11 --> Leu + Pro10 --> Leu replacement, enabled it to target both GFP and AGT efficiently to mitochondria. The double Pro11 --> Leu + Pro10 --> Leu replacement retarded AGT dimerization in vitro as did the disease-causing double Pro11 --> Leu + Gly170 --> Arg replacement. These data suggest that N-terminal alpha-helix formation is more important for maintaining AGT in a conformation (i. e. monomeric) compatible with mitochondrial import than it is for the provision of mitochondrial targeting information. The parallel effects of the Pro10 --> Leu and Gly170 --> Arg replacements on the dimerization and intracellular targeting of polymorphic AGT (containing the Pro11 --> Leu replacement) raise the possibility that they might achieve their effects by the same mechanism.
Collapse
Affiliation(s)
- M J Lumb
- MRC Laboratory for Molecular Cell Biology and the Department of Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | | | | |
Collapse
|
19
|
Trevino RJ, Gliubich F, Berni R, Cianci M, Chirgwin JM, Zanotti G, Horowitz PM. NH2-terminal sequence truncation decreases the stability of bovine rhodanese, minimally perturbs its crystal structure, and enhances interaction with GroEL under native conditions. J Biol Chem 1999; 274:13938-47. [PMID: 10318804 DOI: 10.1074/jbc.274.20.13938] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The NH2-terminal sequence of rhodanese influences many of its properties, ranging from mitochondrial import to folding. Rhodanese truncated by >9 residues is degraded in Escherichia coli. Mutant enzymes with lesser truncations are recoverable and active, but they show altered active site reactivities (Trevino, R. J., Tsalkova, T., Dramer, G., Hardesty, B., Chirgwin, J. M., and Horowitz, P. M. (1998) J. Biol. Chem. 273, 27841-27847), suggesting that the NH2-terminal sequence stabilizes the overall structure. We tested aspects of the conformations of these shortened species. Intrinsic and probe fluorescence showed that truncation decreased stability and increased hydrophobic exposure, while near UV CD suggested altered tertiary structure. Under native conditions, truncated rhodanese bound to GroEL and was released and reactivated by adding ATP and GroES, suggesting equilibrium between native and non-native conformers. Furthermore, GroEL assisted folding of denatured mutants to the same extent as wild type, although at a reduced rate. X-ray crystallography showed that Delta1-7 crystallized isomorphously with wild type in polyethyleneglycol, and the structure was highly conserved. Thus, the missing NH2-terminal residues that contribute to global stability of the native structure in solution do not significantly alter contacts at the atomic level of the crystallized protein. The two-domain structure of rhodanese was not significantly altered by drastically different crystallization conditions or crystal packing suggesting rigidity of the native rhodanese domains and the stabilization of the interdomain interactions by the crystal environment. The results support a model in which loss of interactions near the rhodanese NH2 terminus does not distort the folded native structure but does facilitate the transition in solution to a molten globule state, which among other things, can interact with molecular chaperones.
Collapse
Affiliation(s)
- R J Trevino
- Department of Biochemistry, the University of Texas Health Science Center, San Antonio, Texas 78284, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Tanudji M, Sjöling S, Glaser E, Whelan J. Signals required for the import and processing of the alternative oxidase into mitochondria. J Biol Chem 1999; 274:1286-93. [PMID: 9880497 DOI: 10.1074/jbc.274.3.1286] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The critical residues involved in targeting and processing of the soybean alternative oxidase to plant and animal mitochondria was investigated. Import of various site-directed mutants into soybean mitochondria indicated that positive residues throughout the length of the presequence were important for import, not just those in the predicted region of amphiphilicity. The position of the positive residues in the C-terminal end of the presequence was also important for import. Processing assays of the various constructs with purified spinach mitochondrial processing peptidase showed that all the -2-position mutants had a drastic effect on processing. In contrast to the import assay, the position of the positive residue could be changed for processing. Deletion mutants confirmed the site-directed mutagenesis data in that an amphiphilic alpha-helix was not the only determinant of mitochondrial import in this homologous plant system. Import of these constructs into rat liver mitochondria indicated that the degree of inhibition differed and that the predicted region of amphiphilic alpha-helix was more important with rat liver mitochondria. Processing with a rat liver matrix fraction showed little inhibition. These results are discussed with respect to targeting specificity in plant cells and highlight the need to carry out homologous studies and define the targeting requirements to plant mitochondria.
Collapse
Affiliation(s)
- M Tanudji
- Department of Biochemistry, University of Western Australia, Nedlands 6907, Western Australia, Australia
| | | | | | | |
Collapse
|
21
|
Trevino RJ, Tsalkova T, Kramer G, Hardesty B, Chirgwin JM, Horowitz PM. Truncations at the NH2 terminus of rhodanese destabilize the enzyme and decrease its heterologous expression. J Biol Chem 1998; 273:27841-7. [PMID: 9774394 DOI: 10.1074/jbc.273.43.27841] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rhodanese mutants containing sequential NH2-terminal deletions were constructed to test the distinct contributions of this region of the protein to expression, folding, and stability. The results indicate that the first 11 residues are nonessential for folding to the active conformation, but they are necessary for attaining an active, stable structure when expressed in Escherichia coli. Rhodanese species with up to 9 residues deleted were expressed and purified. Kinetic parameters for the mutants were similar to those of the full-length enzyme. Compared with shorter truncations, mutants missing 7 or 9 residues were (a) increasingly inactivated by urea denaturation, (b) more susceptible to inactivation by dithiothreitol, (c) less able to be reactivated, and (d) less rapidly inactivated by incubation at 37 degreesC. Immunoprecipitation showed that mutants lacking 10-23 NH2-terminal amino acids were expressed as inactive species of the expected size but were rapidly eliminated. Cell-free transcription/translation at 37 degreesC showed mutants deleted through residue 9 were enzymatically active, but they were inactive when deleted further, just as in vivo. However, at 30 degreesC in vitro, both Delta1-10 and Delta1-11 showed considerable activity. Truncations in the NH2 terminus affect the chemical stability of the distantly located active site. Residues Ser-11 through Gly-22, which form the NH2-proximal alpha-helix, contribute to folding to an active conformation, to resisting degradation during heterologous expression, and to chemical stability in vitro.
Collapse
Affiliation(s)
- R J Trevino
- Department of Biochemistry, the University of Texas Health Science Center, San Antonio, Texas 78284, USA
| | | | | | | | | | | |
Collapse
|