1
|
Sherif R, Nassef E, El-Kassas S, Bakr A, Hegazi E, El-Sawy H. Synergistic impact of Chlorella vulgaris, zinc oxide- and/or selenium nanoparticles dietary supplementation on broiler's growth performance, antioxidant and blood biochemistry. Trop Anim Health Prod 2024; 56:246. [PMID: 39212817 PMCID: PMC11364791 DOI: 10.1007/s11250-024-04098-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 07/18/2024] [Indexed: 09/04/2024]
Abstract
The current study explored the influence of dietary supplementation of Chlorella vulgaris dried powder (CV) with zinc-oxide-nanoparticles (ZnO-NPs), and/or selenium-nanoparticles (Se-NPs) on broilers' growth, antioxidant capacity, immune status, histological responses, and gene expression of some related genes. Several 200 one-day-old Cobb-500 male chicks were distributed into 5 groups with four replicates each. In the 1st group, birds were fed the basal diet (BD). In the 2nd, 3rd, 4th, and 5th groups, birds received the BD supplemented with CV only, CV + ZnO-NPs, CV + Se-NPs, and CV + ZnO-NPs + Se-NPs, respectively. The CV dried powder, ZnO-NPs, and Se-NPs were added to the BD at a rate of 1 g, 40 mg, and 0.3 mg/kg diet, respectively. After 6 weeks of feeding, increases in final body weights (P < 0.05), body weight gain (P < 0.05), and feed intake (P < 0.05) were linked with improvements in FCR (P < 0.05) and intestinal morphometric indices (P < 0.05), and marked up-regulations of MYOS (P < 0.05), GHR (P < 0.05), and IGF (P < 0.05) genes were established. Additionally, distinct increases in antioxidant enzyme activities of SOD (P < 0.05), and GPX (P < 0.05) with increases in the mRNA copies of their genes were measured. Moreover, slight improvement in immunity indices, WBCs count (P > 0.05), and phagocytic and lysozyme activities (P > 0.05) were found. However, distinct increases in phagocytic index (P < 0.05) and up-regulations of IL-1β and TNF, and down-regulation of IL-10 mRNA levels were reported (P < 0.05). These findings were prominent in the case of the separate supplementation of CV with ZnO-NPs or Se-NPs confirming the synergistic mechanisms of CV with ZnO-NPs or Se-NPs. Thus, the synergetic supplementation of CV with ZnO-NPs, or Se-NPs in the broiler's diet could augment their growth and antioxidant response.
Collapse
Affiliation(s)
- Rawda Sherif
- Nutrition and Clinical Nutrition Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Eldsokey Nassef
- Nutrition and Clinical Nutrition Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Seham El-Kassas
- Animal, Poultry, and Fish Breeding and Production, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt.
| | - Abdulnasser Bakr
- Nutrition and Clinical Nutrition Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Elsayed Hegazi
- Nutrition and Clinical Nutrition Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Hanan El-Sawy
- Nutrition and Clinical Nutrition Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| |
Collapse
|
2
|
Qiu N, Pechalrieu D, Abegg D, Adibekian A. Chemoproteomic Profiling Maps Zinc-Dependent Cysteine Reactivity. Chem Res Toxicol 2024; 37:620-632. [PMID: 38484110 DOI: 10.1021/acs.chemrestox.3c00416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
As a vital micronutrient, zinc is integral to the structure, function, and signaling networks of diverse proteins. Dysregulated zinc levels, due to either excess intake or deficiency, are associated with a spectrum of health disorders. In this context, understanding zinc-regulated biological processes at the molecular level holds significant relevance to public health and clinical practice. Identifying and characterizing zinc-regulated proteins in their diverse proteoforms, however, remain a difficult task in advancing zinc biology. Herein, we address this challenge by developing a quantitative chemical proteomics platform that globally profiles the reactivities of proteinaceous cysteines upon cellular zinc depletion. Exploiting a protein-conjugated resin for the selective removal of Zn2+ from culture media, we identify an array of zinc-sensitive cysteines on proteins with diverse functions based on their increased reactivity upon zinc depletion. Notably, we find that zinc regulates the enzymatic activities, post-translational modifications, and subcellular distributions of selected target proteins such as peroxiredoxin 6 (PRDX6), platelet-activating factor acetylhydrolase IB subunit alpha1 (PAFAH1B3), and phosphoglycerate kinase (PGK1).
Collapse
Affiliation(s)
- Nan Qiu
- Department of Chemistry, University of Illinois Chicago, 845 W Taylor St., Chicago, Illinois 60607, United States
- Skaggs Doctoral Program in the Chemical and Biological Sciences, Scripps Research, 10550 N Torrey Pines Rd, La Jolla, California 92037, United States
| | - Dany Pechalrieu
- Department of Chemistry, University of Illinois Chicago, 845 W Taylor St., Chicago, Illinois 60607, United States
| | - Daniel Abegg
- Department of Chemistry, University of Illinois Chicago, 845 W Taylor St., Chicago, Illinois 60607, United States
| | - Alexander Adibekian
- Department of Chemistry, University of Illinois Chicago, 845 W Taylor St., Chicago, Illinois 60607, United States
- Department of Pharmaceutical Sciences, University of Illinois Chicago, 833 S Wood St., Chicago, Illinois 60612, United States
- Department of Biochemistry and Molecular Genetics, University of Illinois Chicago, 900 S Ashland Ave., Chicago, Illinois 60607, United States
| |
Collapse
|
3
|
Kambale EK, Domingues I, Zhang W, Marotti V, Chen C, Hughes K, Quetin-Leclercq J, Memvanga PB, Beloqui A. "Green" synthesized versus chemically synthesized zinc oxide nanoparticles: In vivo antihyperglycemic activity and pharmacokinetics. Int J Pharm 2024; 650:123701. [PMID: 38081556 DOI: 10.1016/j.ijpharm.2023.123701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/30/2023] [Accepted: 12/09/2023] [Indexed: 01/08/2024]
Abstract
Zinc is one of the most studied trace elements, commonly used as supplement in diabetes treatment. By its involvement in the synthesis, secretion of insulin, promotion of insulin sensitivity and its multiple enzymatic functions it is known to contribute to reduce hyperglycemia. Researchers have shown that zinc administered under the form of zinc oxide nanoparticles (ZnONPs) is more effective than under its ionic form. Studies evaluating the antihyperglycemic activity of these nanocarriers include both ZnONPs synthesised using plants (i.e. green synthesized) or chemically synthesized. The present work aims to compare green synthesized ZnONPs with the marketed chemically synthesized ones. Green ZnONPs were synthesized using the aqueous extract of the stem bark of the medicinal plant Panda oleosa and zinc nitrate hexahydrate. Both nanocarriers were compared in terms of optical properties, morphology, composition, chemical functions, resistance to oxidation, in vivo antihyperglycemic activity via oral glucose tolerance test (OGTT) and pharmacokinetics in relation to zinc in C57BL/6J mice. A UV absorption peak was observed at 354 nm and 374 nm for the green and marketed ZnONPs, respectively. The shape and hydrodynamic diameters were anisotropic and of 228.8 ± 3.0 nm for the green ZnONPs and spherical and of 225.6 ± 0.9 nm for the marketed ZnONPs. Phenolic compounds accounted for 2.58 ± 0.04% of the green ZnONPs and allowed them to be more stable and unaffected by an oxidizing agent during the experiment, while the marketed chemically synthesized ZnONPs aggregated with or without contact with an oxidizing agent. No significant differences were observed on the amounts of zinc absorbed when comparing green ZnONPs, chemically synthesized ZnONPs and zinc sulfate in a pharmacokinetics study in normoglycemic mice. When evaluating the in vivo hypoglycemic activity of the nanocarriers in obese/diabetic mice, green synthesized ZnONPs displayed a significant hypoglycemic effect compared with the chemically synthesized nanoparticles following an OGTT. Altogether, these data indicate that phytocompounds, as catechin derivatives and polyphenols, attached to the green synthesized ZnONPs' surface, could contribute to their hypoglycemic activity. The comparison thus demonstrated that green synthesized ZnONPs are significantly more efficient than chemically ones at reducing hyperglycemia regardless of their absorption.
Collapse
Affiliation(s)
- Espoir K Kambale
- Advanced Drug Delivery and Biomaterials Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium; Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, B.P. 212, Kinshasa XI, Democratic Republic of the Congo
| | - Inês Domingues
- Advanced Drug Delivery and Biomaterials Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium
| | - Wunan Zhang
- Advanced Drug Delivery and Biomaterials Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium
| | - Valentina Marotti
- Advanced Drug Delivery and Biomaterials Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium
| | - Cheng Chen
- Advanced Drug Delivery and Biomaterials Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium
| | - Kristelle Hughes
- Pharmacognosy Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Avenue Mounier 72, B1.72.03, 1200 Brussels, Belgium
| | - Joëlle Quetin-Leclercq
- Pharmacognosy Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Avenue Mounier 72, B1.72.03, 1200 Brussels, Belgium
| | - Patrick B Memvanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, B.P. 212, Kinshasa XI, Democratic Republic of the Congo; Centre de Recherche et d'Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, B.P. 212, Kinshasa XI, Democratic Republic of the Congo
| | - Ana Beloqui
- Advanced Drug Delivery and Biomaterials Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium; WEL Research Institute, Avenue Pasteur 6, 1300 Wavre, Belgium.
| |
Collapse
|
4
|
Newberry C, Kumar S. Dietary and nutrition considerations in caring for patients with nonalcoholic fatty liver disease: Updates for the practicing clinician. Nutr Clin Pract 2023; 38:70-79. [PMID: 36183354 DOI: 10.1002/ncp.10917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/10/2022] [Accepted: 09/02/2022] [Indexed: 01/11/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease worldwide, affecting up to one-third of the global population. The disease is defined by excess fat deposition in the liver and has a strong correlation with metabolic syndrome, which, in turn, is also a risk factor for disease progression, including the development of steatohepatitis, advanced fibrosis, cirrhosis, and hepatocellular carcinoma. Although a number of medications are being explored for disease mitigation, nothing is currently approved, and the mainstay of therapy remains dietary and lifestyle intervention that promotes weight loss as well as management of comorbid conditions. The landscape that guides care for patients with NAFLD continues to evolve. Clinicians caring for these patients need to consider underlying disease state and nutrition risk in addition to concurrent related diagnoses, such as insulin resistance and hyperlipidemia, when formulating treatment plans. The following is a comprehensive review of the current dietary and nutrition considerations in the management of patients with NAFLD, with a special emphasis on implications for the practicing clinician.
Collapse
Affiliation(s)
- Carolyn Newberry
- Division of Gastroenterology, Innovative Center for Health and Nutrition in Gastroenterology (ICHANGE), Weill Cornell Medical Center, New York, New York, USA
| | - Sonal Kumar
- Division of Gastroenterology, Innovative Center for Health and Nutrition in Gastroenterology (ICHANGE), Weill Cornell Medical Center, New York, New York, USA
| |
Collapse
|
5
|
Yang J, Wang T, Lin G, Li M, Zhang Y, Mai K. The Assessment of Dietary Organic Zinc on Zinc Homeostasis, Antioxidant Capacity, Immune Response, Glycolysis and Intestinal Microbiota in White Shrimp ( Litopenaeus vannamei Boone, 1931). Antioxidants (Basel) 2022; 11:1492. [PMID: 36009211 PMCID: PMC9405169 DOI: 10.3390/antiox11081492] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 02/04/2023] Open
Abstract
This study aimed to assess dietary organic zinc on zinc homeostasis, antioxidant capacity, immune response, glycolysis and intestinal microbiota in white shrimp (Litopenaeus vannamei Boone, 1931). Six experimental diets were formulated: Control, zinc free; S120, 120 mg·kg-1 zinc from ZnSO4·7H2O added into control diet; O30, O60, O90 and O120, 30, 60, 90 and 120 mg·kg-1 zinc from Zn-proteinate added into control diet, respectively. The results showed that organic zinc significantly promoted zinc content and gene expression of ZnT1, ZIP11 and MT in the hepatopancreas and enhanced antioxidant capacity and immunity (in terms of increased activities of T-SOD, Cu/Zn SOD, PO, LZM, decreased content of MDA, upregulated expressions of GST, G6PDH, ProPO, LZM and Hemo, and increased resistance to Vibrio parahaemolyticus). Organic zinc significantly upregulated GluT1 expression in the intestine, increased glucose content of plasma and GCK, PFK and PDH activities of hepatopancreas, and decreased pyruvate content of hepatopancreas. Organic zinc improved intestinal microbiota communities, increased the abundance of potentially beneficial bacteria and decreased the abundance of potential pathogens. Inorganic zinc (S120) also had positive effects, but organic zinc (as low as O60) could achieve better effects. Overall, organic zinc had a higher bioavailability and was a more beneficial zinc resource than inorganic zinc in shrimp feeds.
Collapse
Affiliation(s)
- Jinzhu Yang
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China; (J.Y.); (T.W.); (K.M.)
| | - Tiantian Wang
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China; (J.Y.); (T.W.); (K.M.)
| | - Gang Lin
- Institute of Quality Standards and Testing Technology for Agricultural Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Mingzhu Li
- College of Agriculture, Ludong University, Yantai 264025, China;
| | - Yanjiao Zhang
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China; (J.Y.); (T.W.); (K.M.)
| | - Kangsen Mai
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China; (J.Y.); (T.W.); (K.M.)
| |
Collapse
|
6
|
Cuajungco MP, Ramirez MS, Tolmasky ME. Zinc: Multidimensional Effects on Living Organisms. Biomedicines 2021; 9:biomedicines9020208. [PMID: 33671781 PMCID: PMC7926802 DOI: 10.3390/biomedicines9020208] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 12/28/2022] Open
Abstract
Zinc is a redox-inert trace element that is second only to iron in abundance in biological systems. In cells, zinc is typically buffered and bound to metalloproteins, but it may also exist in a labile or chelatable (free ion) form. Zinc plays a critical role in prokaryotes and eukaryotes, ranging from structural to catalytic to replication to demise. This review discusses the influential properties of zinc on various mechanisms of bacterial proliferation and synergistic action as an antimicrobial element. We also touch upon the significance of zinc among eukaryotic cells and how it may modulate their survival and death through its inhibitory or modulatory effect on certain receptors, enzymes, and signaling proteins. A brief discussion on zinc chelators is also presented, and chelating agents may be used with or against zinc to affect therapeutics against human diseases. Overall, the multidimensional effects of zinc in cells attest to the growing number of scientific research that reveal the consequential prominence of this remarkable transition metal in human health and disease.
Collapse
|
7
|
Virgen-Ortiz A, Apolinar-Iribe A, Díaz-Reval I, Parra-Delgado H, Limón-Miranda S, Sánchez-Pastor EA, Castro-Sánchez L, Jesús Castillo S, Dagnino-Acosta A, Bonales-Alatorre E, Rodríguez-Hernández A. Zinc Oxide Nanoparticles Induce an Adverse Effect on Blood Glucose Levels Depending On the Dose and Route of Administration in Healthy and Diabetic Rats. NANOMATERIALS 2020; 10:nano10102005. [PMID: 33053624 PMCID: PMC7599450 DOI: 10.3390/nano10102005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 12/12/2022]
Abstract
Different studies in experimental diabetes models suggest that zinc oxide nanoparticles (ZnONPs) are useful as antidiabetic agents. However, this evidence was performed and measured in long-term treatments and with repeated doses of ZnONPs. This work aimed to evaluate the ZnONPs acute effects on glycemia during the next six h after an oral or intraperitoneal administration of the treatment in healthy and diabetic rats. In this study, the streptozotocin-nicotinamide intraperitoneal administration in male Wistar rats were used as a diabetes model. 10 mg/kg ZnONPs did not modify the baseline glucose in any group. Nevertheless, the ZnONPs short-term administration (100 mg/kg) induced a hyperglycemic response in a dose and route-dependent administration in healthy (130 ± 2 and 165 ± 10 mg/dL with oral and intraperitoneal, respectively) and diabetic rats (155 ± 2 and 240 ± 20 mg/dL with oral, and intraperitoneal, respectively). The diabetic rats were 1.5 fold more sensitive to ZnONPs effect by the intraperitoneal route. In conclusion, this study provides new information about the acute response of ZnONPs on fasting glycemia in diabetic and healthy rat models; these data are essential for possible future clinical approaches.
Collapse
Affiliation(s)
- Adolfo Virgen-Ortiz
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima C.P. 28045, Mexico; (I.D.-R.); (E.A.S.-P.); (E.B.-A.)
- Correspondence:
| | - Alejandro Apolinar-Iribe
- Departamento de Física, Universidad de Sonora, A.P. 1626, Hermosillo, Sonora C.P. 83000, Mexico;
| | - Irene Díaz-Reval
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima C.P. 28045, Mexico; (I.D.-R.); (E.A.S.-P.); (E.B.-A.)
| | - Hortensia Parra-Delgado
- Facultad de Ciencias Químicas, Universidad de Colima, Coquimatlán, Colima C.P. 28400, Mexico;
| | - Saraí Limón-Miranda
- Departamento de Ciencias Químico Biológicas y Agropecuarias, URS, Universidad de Sonora, Navojoa, Sonora C.P. 85880, Mexico;
| | - Enrique Alejandro Sánchez-Pastor
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima C.P. 28045, Mexico; (I.D.-R.); (E.A.S.-P.); (E.B.-A.)
| | - Luis Castro-Sánchez
- Centro Universitario de Investigaciones Biomédicas, CONACYT-Universidad de Colima, Universidad de Colima, Colima C.P. 28045, Mexico; (L.C.-S.); (A.D.-A.)
| | - Santos Jesús Castillo
- Departamento de Investigación en Física, A.P. 5-088, Hermosillo, Sonora C.P. 83000, Mexico;
| | - Adan Dagnino-Acosta
- Centro Universitario de Investigaciones Biomédicas, CONACYT-Universidad de Colima, Universidad de Colima, Colima C.P. 28045, Mexico; (L.C.-S.); (A.D.-A.)
| | - Edgar Bonales-Alatorre
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima C.P. 28045, Mexico; (I.D.-R.); (E.A.S.-P.); (E.B.-A.)
| | | |
Collapse
|
8
|
Shi C, Wang P, Airen S, Brown C, Liu Z, Townsend JH, Wang J, Jiang H. Nutritional and medical food therapies for diabetic retinopathy. EYE AND VISION (LONDON, ENGLAND) 2020; 7:33. [PMID: 32582807 PMCID: PMC7310218 DOI: 10.1186/s40662-020-00199-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 05/28/2020] [Indexed: 02/07/2023]
Abstract
Diabetic retinopathy (DR) is a form of microangiopathy. Reducing oxidative stress in the mitochondria and cell membranes decreases ischemic injury and end-organ damage to the retina. New approaches are needed, which reduce the risk and improve the outcomes of DR while complementing current therapeutic approaches. Homocysteine (Hcy) elevation and oxidative stress are potential therapeutic targets in DR. Common genetic polymorphisms such as those of methylenetetrahydrofolate reductase (MTHFR), increase Hcy and DR risk and severity. Patients with DR have high incidences of deficiencies of crucial vitamins, minerals, and related compounds, which also lead to elevation of Hcy and oxidative stress. Addressing the effects of the MTHFR polymorphism and addressing comorbid deficiencies and insufficiencies reduce the impact and severity of the disease. This approach provides safe and simple strategies that support conventional care and improve outcomes. Suboptimal vitamin co-factor availability also impairs the release of neurotrophic and neuroprotective growth factors. Collectively, this accounts for variability in presentation and response of DR to conventional therapy. Fortunately, there are straightforward recommendations for addressing these issues and supporting traditional treatment plans. We have reviewed the literature for nutritional interventions that support conventional therapies to reduce disease risk and severity. Optimal combinations of vitamins B1, B2, B6, L-methylfolate, methylcobalamin (B12), C, D, natural vitamin E complex, lutein, zeaxanthin, alpha-lipoic acid, and n-acetylcysteine are identified for protecting the retina and choroid. Certain medical foods have been successfully used as therapy for retinopathy. Recommendations based on this review and our clinical experience are developed for clinicians to use to support conventional therapy for DR. DR from both type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) have similar retinal findings and responses to nutritional therapies.
Collapse
Affiliation(s)
- Ce Shi
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10th Avenue, McKnight Building - Room 202A, Miami, FL 33136 USA
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Peng Wang
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10th Avenue, McKnight Building - Room 202A, Miami, FL 33136 USA
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shriya Airen
- College of Arts and Sciences, University of Miami, Miami, FL USA
| | - Craig Brown
- Department of Ophthalmology, College of Medicine, the University of Arkansas for Medical Sciences, Fayetteville, AR USA
| | - Zhiping Liu
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10th Avenue, McKnight Building - Room 202A, Miami, FL 33136 USA
- Ophthalmic Center, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong China
| | - Justin H. Townsend
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10th Avenue, McKnight Building - Room 202A, Miami, FL 33136 USA
| | - Jianhua Wang
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10th Avenue, McKnight Building - Room 202A, Miami, FL 33136 USA
| | - Hong Jiang
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10th Avenue, McKnight Building - Room 202A, Miami, FL 33136 USA
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL USA
| |
Collapse
|
9
|
Pickett-Blakely O, Young K, Carr RM. Micronutrients in Nonalcoholic Fatty Liver Disease Pathogenesis. Cell Mol Gastroenterol Hepatol 2018; 6:451-462. [PMID: 30294653 PMCID: PMC6170520 DOI: 10.1016/j.jcmgh.2018.07.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/19/2018] [Indexed: 02/06/2023]
Abstract
Micronutrients include electrolytes, minerals, vitamins, and carotenoids, and are required in microgram or milligram quantities for cellular metabolism. The liver plays an important role in micronutrient metabolism and this metabolism often is altered in chronic liver diseases. Here, we review how the liver contributes to micronutrient metabolism; how impaired micronutrient metabolism may be involved in the pathogenesis of nonalcoholic fatty liver disease (NAFLD), a systemic disorder of energy, glucose, and lipid homeostasis; and how insights gained from micronutrient biology have informed NAFLD therapeutics. Finally, we highlight some of the challenges and opportunities that remain with investigating the contribution of micronutrients to NAFLD pathology and suggest strategies to incorporate our understanding into the care of NAFLD patients.
Collapse
Affiliation(s)
| | | | - Rotonya M. Carr
- Division of Gastroenterology and Hepatology, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
10
|
Giallourou N, Medlock GL, Bolick DT, Medeiros PHQS, Ledwaba SE, Kolling GL, Tung K, Guerry P, Swann JR, Guerrant RL. A novel mouse model of Campylobacter jejuni enteropathy and diarrhea. PLoS Pathog 2018; 14:e1007083. [PMID: 29791507 PMCID: PMC5988333 DOI: 10.1371/journal.ppat.1007083] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/05/2018] [Accepted: 05/09/2018] [Indexed: 01/31/2023] Open
Abstract
Campylobacter infections are among the leading bacterial causes of diarrhea and of 'environmental enteropathy' (EE) and growth failure worldwide. However, the lack of an inexpensive small animal model of enteric disease with Campylobacter has been a major limitation for understanding its pathogenesis, interventions or vaccine development. We describe a robust standard mouse model that can exhibit reproducible bloody diarrhea or growth failure, depending on the zinc or protein deficient diet and on antibiotic alteration of normal microbiota prior to infection. Zinc deficiency and the use of antibiotics create a niche for Campylobacter infection to establish by narrowing the metabolic flexibility of these mice for pathogen clearance and by promoting intestinal and systemic inflammation. Several biomarkers and intestinal pathology in this model also mimic those seen in human disease. This model provides a novel tool to test specific hypotheses regarding disease pathogenesis as well as vaccine development that is currently in progress.
Collapse
Affiliation(s)
- Natasa Giallourou
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College, London, United Kingdom
| | - Gregory L. Medlock
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - David T. Bolick
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - Pedro HQS Medeiros
- Institute of Biomedicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Solanka E. Ledwaba
- Department of Microbiology, University of Venda, Thohoyandou, Limpopo, South Africa
| | - Glynis L. Kolling
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - Kenneth Tung
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - Patricia Guerry
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Jonathan R. Swann
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College, London, United Kingdom
| | - Richard L. Guerrant
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| |
Collapse
|
11
|
Aydemir TB, Cousins RJ. The Multiple Faces of the Metal Transporter ZIP14 (SLC39A14). J Nutr 2018; 148:174-184. [PMID: 29490098 PMCID: PMC6251594 DOI: 10.1093/jn/nxx041] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/07/2017] [Indexed: 12/14/2022] Open
Abstract
The SLC39A family of metal transporters was identified through homologies with the Zrt- and Irt-like (ZIP) proteins from yeast and plants. Of all the ZIP transporters, ZIP14 is arguably the most robustly characterized in terms of function at the integrative level. Mice with a global knockout of Zip14 are viable, thus providing the opportunity to conduct physiologic experiments. In mice, Zip14 expression is highly tissue specific, with the greatest abundance in the jejunum > liver > heart > kidney > white adipose tissue > skeletal muscle > spleen > pancreas. A unique feature of Zip14 is its upregulation by proinflammatory conditions, particularly increased interleukin 6 (IL-6) and nitric oxide. The transcription factors AP-1, ATF4, and ATF6α are involved in Zip14 regulation. ZIP14 does not appear to be zinc-regulated. The Zip14 knockout phenotype shows multiple sites of ZIP14 function, including the liver, adipose tissue, brain, pancreas, and bone. A prominent feature of the Zip14 ablation is a reduction in intestinal barrier function and onset of metabolic endotoxemia. Many aspects of the phenotype are accentuated with age and accompany increased circulating IL-6. Studies with 65Zn, 59Fe [nontransferrin-bound iron (NTBI)] and 54Mn show that ZIP14 transports these metals. At a steady state, the plasma concentrations of zinc, NTBI, and manganese are such that zinc ions are the major substrate available for ZIP14 at the cell surface. Upregulation of ZIP14 accounts for the hypozincemia and hepatic zinc accumulation associated with acute inflammation and sepsis and is required for liver regeneration and resistance to endoplasmic reticulum (ER) stress. Zip14 ablation in mice produces a defect in manganese excretion that leads to excess manganese accumulation in the brain that produces characteristics of Parkinsonism.
Collapse
Affiliation(s)
- Tolunay B Aydemir
- Food Science and Human Nutrition Department and Center for Nutritional
Sciences, College of Agricultural and Life Sciences, University of Florida, Gainesville,
FL,Address correspondence to TBA (e-mail: )
| | - Robert J Cousins
- Food Science and Human Nutrition Department and Center for Nutritional
Sciences, College of Agricultural and Life Sciences, University of Florida, Gainesville,
FL
| |
Collapse
|
12
|
A calcium channel blocker nifedipine distorts the effects of nano-zinc oxide on metal metabolism in the marsh frog Pelophylax ridibundus. Saudi J Biol Sci 2017; 26:481-489. [PMID: 30899162 PMCID: PMC6408723 DOI: 10.1016/j.sjbs.2017.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 10/01/2017] [Accepted: 10/02/2017] [Indexed: 01/04/2023] Open
Abstract
Global decline of amphibian populations causes particular concern about their vulnerability to novel environmental pollutants, including engineering nanomaterials and pharmaceutical products. We evaluated the bioavailability of nanoform of zinc oxide (n-ZnO) in frog Pelophylax ridibundus and determined whether co-exposure to a common pharmaceutical, a calcium-channel blocker nifedipine (Nfd) can affect this bioavailability. Male frogs were exposed for 14 days to the tap water (Control) and n-ZnO (3.1 μM), Zn2+ (3.1 μM, as a positive control for n-ZnO exposures), Nfd (10 μM), and combination of n-ZnO and Nfd (n-ZnO + Nfd) in environmentally-relevant concentration. Exposure to Zn2+ or n-ZnO led to up-regulation of metal-binding proteins, metallothioneins (MTs) in the liver and Zn-carrying vitellogenin-like proteins in the blood plasma. Notably, upregulation of MTs by Zn2+ or n-ZnO exposures combined with increased binding of Zn and Cu to MTs. This was associated with the more reducing conditions in the liver tissue indicated by elevated lactate to pyruvate ratio. Nfd suppressed the binding of Zn and Cu to MTs and led to a decrease in Lactate/Pyruvate ratio and elevated protein carbonylation indicating pro-oxidant conditions. Redox status parameters were not directly related to DNA fragmentation, nuclear abnormalities or suppression of cholinesterase activity indicating that factors other than oxidative stress are involved in cytotoxicity of different pollutants and their combinations. Furthermore, activity of Phase I biotransformation enzyme (CYP450 oxidase measured as EROD) was elevated in Nfd-containing exposures and in Zn2+ exposed frogs. Tyrosinase-like activity in the frog liver was strongly stimulated by Zn2+ but suppressed by n-ZnO, Nfd and n-ZnO + Nfd. These findings show that Nfd modulates homeostasis of essential metals in amphibians and emphasize that physiological consequences of combined n-ZnO and Nfd exposures are difficult to predict based on the mechanisms of single stressors.
Collapse
|
13
|
Hosseini-Esfahani F, Mirmiran P, Koochakpoor G, Daneshpour MS, Guity K, Azizi F. Some dietary factors can modulate the effect of the zinc transporters 8 polymorphism on the risk of metabolic syndrome. Sci Rep 2017; 7:1649. [PMID: 28490771 PMCID: PMC5431973 DOI: 10.1038/s41598-017-01762-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 02/16/2017] [Indexed: 01/09/2023] Open
Abstract
There are conflicting data on the impact of zinc transporter 8 (ZNT8) gene variations on the metabolic syndrome (MetS). Hence, the effects of the interaction between rs13266634 and dietary factors on the risk of MetS were investigated in this study. Subjects of this nested case-control study were selected from the participants in Tehran Lipid and Glucose Study. Each of the cases (n = 817) was individually matched with a control. Dietary patterns were determined using factor analysis. The ZNT8 rs13266634 were genotyped by the Tetra-refractory mutation system-polymerase chain reaction analysis. Two dietary patterns were extracted. There were no significant interactions between the ZNT8 SNP and the dietary patterns on the risk of MetS or its components. An interaction was observed between rs13266634 and the omega-3 fatty acid intakes on the risk of MetS in subjects with the CC genotype (P interaction < 0.01). Zinc modified the association of the ZNT8 variant with high fasting blood sugar (P interaction = 0.05) in CC genotype carriers. An interaction was also observed between rs13266634 and salty snacks at the risk of abdominal obesity (P interaction < 0.05). Our findings suggest an interaction between omega-3 fatty acids, zinc, salty snacks and rs13266634, which may affect the risk of MetS or its components.
Collapse
Affiliation(s)
- Firoozeh Hosseini-Esfahani
- Nutrition and Endocrine Research Centre, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- Nutrition and Endocrine Research Centre, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Maryam S Daneshpour
- Cellular Molecular and Endocrine Research Centre, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Kamran Guity
- Cellular Molecular and Endocrine Research Centre, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereidoun Azizi
- Endocrine Research Centre, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Mayneris-Perxachs J, Bolick DT, Leng J, Medlock GL, Kolling GL, Papin JA, Swann JR, Guerrant RL. Protein- and zinc-deficient diets modulate the murine microbiome and metabolic phenotype. Am J Clin Nutr 2016; 104:1253-1262. [PMID: 27733402 PMCID: PMC5081716 DOI: 10.3945/ajcn.116.131797] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 08/29/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Environmental enteropathy, which is linked to undernutrition and chronic infections, affects the physical and mental growth of children in developing areas worldwide. Key to understanding how these factors combine to shape developmental outcomes is to first understand the effects of nutritional deficiencies on the mammalian system including the effect on the gut microbiota. OBJECTIVE We dissected the nutritional components of environmental enteropathy by analyzing the specific metabolic and gut-microbiota changes that occur in weaned-mouse models of zinc or protein deficiency compared with well-nourished controls. DESIGN With the use of a 1H nuclear magnetic resonance spectroscopy-based metabolic profiling approach with matching 16S microbiota analyses, the metabolic consequences and specific effects on the fecal microbiota of protein and zinc deficiency were probed independently in a murine model. RESULTS We showed considerable shifts within the intestinal microbiota 14-24 d postweaning in mice that were maintained on a normal diet (including increases in Proteobacteria and striking decreases in Bacterioidetes). Although the zinc-deficient microbiota were comparable to the age-matched, well-nourished profile, the protein-restricted microbiota remained closer in composition to the weaned enterotype with retention of Bacteroidetes. Striking increases in Verrucomicrobia (predominantly Akkermansia muciniphila) were observed in both well-nourished and protein-deficient mice 14 d postweaning. We showed that protein malnutrition impaired growth and had major metabolic consequences (much more than with zinc deficiency) that included altered energy, polyamine, and purine and pyrimidine metabolism. Consistent with major changes in the gut microbiota, reductions in microbial proteolysis and increases in microbial dietary choline processing were observed. CONCLUSIONS These findings are consistent with metabolic alterations that we previously observed in malnourished children. The results show that we can model the metabolic consequences of malnutrition in the mouse to help dissect relevant pathways involved in the effects of undernutrition and their contribution to environmental enteric dysfunction.
Collapse
Affiliation(s)
- Jordi Mayneris-Perxachs
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | | | - Joy Leng
- School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
| | - Greg L Medlock
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA; and
| | | | - Jason A Papin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA; and
| | - Jonathan R Swann
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, London, United Kingdom;
| | | |
Collapse
|
15
|
Aydemir TB, Troche C, Kim MH, Cousins RJ. Hepatic ZIP14-mediated Zinc Transport Contributes to Endosomal Insulin Receptor Trafficking and Glucose Metabolism. J Biol Chem 2016; 291:23939-23951. [PMID: 27703010 DOI: 10.1074/jbc.m116.748632] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/12/2016] [Indexed: 12/12/2022] Open
Abstract
Zinc influences signaling pathways through controlled targeted zinc transport. Zinc transporter Zip14 KO mice display a phenotype that includes impaired intestinal barrier function with low grade chronic inflammation, hyperinsulinemia, and increased body fat, which are signatures of diet-induced diabetes (type 2 diabetes) and obesity in humans. Hyperglycemia in type 2 diabetes and obesity is caused by insulin resistance. Insulin resistance results in inhibition of glucose uptake by liver and other peripheral tissues, principally adipose and muscle and with concurrently higher hepatic glucose production. Therefore, modulation of hepatic glucose metabolism is an important target for antidiabetic treatment approaches. We demonstrate that during glucose uptake, cell surface abundance of zinc transporter ZIP14 and mediated zinc transport increases. Zinc is distributed to multiple sites in hepatocytes through sequential translocation of ZIP14 from plasma membrane to early and late endosomes. Endosomes from Zip14 KO mice were zinc-deficient because activities of the zinc-dependent insulin-degrading proteases insulin-degrading enzyme and cathepsin D were impaired; hence insulin receptor activity increased. Transient increases in cytosolic zinc levels are concurrent with glucose uptake and suppression of glycogen synthesis. In contrast, Zip14 KO mice exhibited greater hepatic glycogen synthesis and impaired gluconeogenesis and glycolysis related to low cytosolic zinc levels. We can conclude that ZIP14-mediated zinc transport contributes to regulation of endosomal insulin receptor activity and glucose homeostasis in hepatocytes. Therefore, modulation of ZIP14 transport activity presents a new target for management of diabetes and other glucose-related disorders.
Collapse
Affiliation(s)
- Tolunay Beker Aydemir
- From the Food Science and Human Nutrition Department and Center for Nutritional Sciences College of Agricultural and Life Sciences and
| | - Catalina Troche
- From the Food Science and Human Nutrition Department and Center for Nutritional Sciences College of Agricultural and Life Sciences and
| | - Min-Hyun Kim
- From the Food Science and Human Nutrition Department and Center for Nutritional Sciences College of Agricultural and Life Sciences and
| | - Robert J Cousins
- From the Food Science and Human Nutrition Department and Center for Nutritional Sciences College of Agricultural and Life Sciences and .,the Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
16
|
Solomou A, Philippe E, Chabosseau P, Migrenne-Li S, Gaitan J, Lang J, Magnan C, Rutter GA. Over-expression of Slc30a8/ZnT8 selectively in the mouse α cell impairs glucagon release and responses to hypoglycemia. Nutr Metab (Lond) 2016; 13:46. [PMID: 27390586 PMCID: PMC4936320 DOI: 10.1186/s12986-016-0104-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 06/28/2016] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The human SLC30A8 gene encodes the secretory granule-localised zinc transporter ZnT8 whose expression is chiefly restricted to the endocrine pancreas. Single nucleotide polymorphisms (SNPs) in the human SLC30A8 gene have been associated, through genome-wide studies, with altered type 2 diabetes risk. In addition to a role in the control of insulin release, recent studies involving targeted gene ablation from the pancreatic α cell (Solomou et al., J Biol Chem 290(35):21432-42) have also implicated ZnT8 in the control of glucagon release. Up to now, however, the possibility that increased levels of the transporter in these cells may impact glucagon secretion has not been explored. METHODS Here, we use a recently-developed reverse tetracyline transactivator promoter-regulated ZnT8 transgene to drive the over-expression of human ZnT8 selectively in the α cell in adult mice. Glucose homeostasis and glucagon secretion were subsequently assessed both in vivo during hypoglycemic clamps and from isolated islets in vitro. RESULTS Doxyclin-dependent human ZnT8 mRNA expression was apparent in both isolated islets and in fluorescence-activated cell sorting- (FACS) purified α cells. Examined at 12 weeks of age, intraperitoneal glucose (1 g/kg) tolerance was unchanged in transgenic mice versus wild-type littermates (n = 8-10 mice/genotype, p > 0.05) and sensitivity to intraperitoneal insulin (0.75U/kg) was similarly unaltered in transgenic animals. In contrast, under hyperinsulinemic-hypoglycemic clamp, a ~45 % (p < 0.001) reduction in glucose infusion rate was apparent, and glucagon release was significantly (~40 %, p < 0.01) impaired, in transgenic mice. Correspondingly, examined in vitro, glucagon secretion was significantly reduced (~30 %, p < 0.05) from transgenic versus control islets at low, stimulatory glucose concentrations (1 mM, p < 0.05) but not at high glucose (17 mM) glucose (p > 0.05). Over-expression of ZnT8 in glucagonoma-derived αTC1-9 cells increased granule free Zn(2+) concentrations consistent with a role for Zn(2+) in this compartment in the action of ZnT8 on glucagon secretion. CONCLUSIONS Increased ZnT8 expression, and a likely increase in intragranular free Zn(2+) concentration, is deleterious in pancreatic α cells for stimulated glucagon release. These data provide further evidence that type 2 diabetes-associated polymorphisms in the SLC30A8/ZnT8 gene may act in part via alterations in glucagon release and suggest that ZnT8 activation may restrict glucagon release in some settings.
Collapse
Affiliation(s)
- Antonia Solomou
- />Section of Cell Biology and Functional Genomics, Division of Diabetes Endocrinology and Metabolism, Department of Medicine, Imperial College London, Imperial Centre for Translational and Experimental Medicine, Hammersmith Hospital, du Cane Road, London, W12 0NN UK
| | - Erwann Philippe
- />University Paris Diderot-Paris 7-Unit of Functional and Adaptive Biology (BFA) UMR 8251 CNRS, Paris, France
| | - Pauline Chabosseau
- />Section of Cell Biology and Functional Genomics, Division of Diabetes Endocrinology and Metabolism, Department of Medicine, Imperial College London, Imperial Centre for Translational and Experimental Medicine, Hammersmith Hospital, du Cane Road, London, W12 0NN UK
| | - Stephanie Migrenne-Li
- />University Paris Diderot-Paris 7-Unit of Functional and Adaptive Biology (BFA) UMR 8251 CNRS, Paris, France
| | - Julien Gaitan
- />CNRS UMR 5248, Chimie et Biologie des Membranes et Nano-objets, Université de Bordeaux, F-33615 Pessac, France
| | - Jochen Lang
- />CNRS UMR 5248, Chimie et Biologie des Membranes et Nano-objets, Université de Bordeaux, F-33615 Pessac, France
| | - Christophe Magnan
- />University Paris Diderot-Paris 7-Unit of Functional and Adaptive Biology (BFA) UMR 8251 CNRS, Paris, France
| | - Guy A. Rutter
- />Section of Cell Biology and Functional Genomics, Division of Diabetes Endocrinology and Metabolism, Department of Medicine, Imperial College London, Imperial Centre for Translational and Experimental Medicine, Hammersmith Hospital, du Cane Road, London, W12 0NN UK
| |
Collapse
|
17
|
Maret W. Analyzing free zinc(II) ion concentrations in cell biology with fluorescent chelating molecules. Metallomics 2015; 7:202-11. [PMID: 25362967 DOI: 10.1039/c4mt00230j] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Essential metal ions are tightly controlled in biological systems. An understanding of metal metabolism and homeostasis is being developed from quantitative information of the sizes, concentrations, and dynamics of cellular and subcellular metal ion pools. In the case of human zinc metabolism, minimally 24 proteins of two zinc transporter families and a dozen metallothioneins participate in cellular uptake, extrusion, and re-distribution among cellular compartments. Significantly, zinc(ii) ions are now considered signaling ions in intra- and intercellular communication. Such functions require transients of free zinc ions. It is experimentally quite challenging to distinguish zinc that is protein-bound from zinc that is not bound to proteins. Measurement of total zinc is relatively straightforward with analytical techniques such as atomic absorption/emission spectroscopy or inductively coupled plasma mass spectrometry. Total zinc concentrations of human cells are 200-300 μM. In contrast, the pool of non-protein bound zinc is mostly examined with fluorescence microscopy/spectroscopy. There are two widely applied fluorescence approaches, one employing low molecular weight chelating agents ("probes") and the other metal-binding proteins ("sensors"). The protein sensors, such as the CALWY, Zap/ZifCY, and carbonic anhydrase-based sensors, can be genetically encoded and have certain advantages in terms of controlling intracellular concentration, localization, and calibration. When employed correctly, both probes and sensors can establish qualitative differences in free zinc ion concentrations. However, when quantitative information is sought, the assumptions underlying the applications of probes and sensors must be carefully examined and even then measured pools of free zinc ions remain methodologically defined. A consensus is building that the steady-state free zinc ion concentrations in the cytosol are in the picomolar range but there is no consensus on their concentrations in subcellular compartments. Applying the extensive toolbox of available probes/sensors in biological systems requires an understanding of the principles of cellular zinc homeostasis and the chemical biology of the probes and sensors. Regardless of limitations in specificity (for a particular metal ion), selectivity (for a particular metal pool), and sensitivity (detection limit), the technology is making remarkable contributions to imaging zinc with high spatiotemporal resolution in single cells and to defining the biochemical functions of zinc ions in cellular regulation.
Collapse
Affiliation(s)
- Wolfgang Maret
- King's College London, Faculty of Life Sciences and Medicine, Division of Diabetes and Nutritional Sciences and Department of Biochemistry, Metal Metabolism Group, 150 Stamford St., London SE1 9NH, UK.
| |
Collapse
|
18
|
Ranasinghe P, Pigera S, Galappatthy P, Katulanda P, Constantine GR. Zinc and diabetes mellitus: understanding molecular mechanisms and clinical implications. ACTA ACUST UNITED AC 2015; 23:44. [PMID: 26381880 PMCID: PMC4573932 DOI: 10.1186/s40199-015-0127-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/20/2015] [Indexed: 01/08/2023]
Abstract
Background Diabetes mellitus is a leading cause of morbidity and mortality worldwide. Studies have shown that Zinc has numerous beneficial effects in both type-1 and type-2 diabetes. We aim to evaluate the literature on the mechanisms and molecular level effects of Zinc on glycaemic control, β-cell function, pathogenesis of diabetes and its complications. Methods A review of published studies reporting mechanisms of action of Zinc in diabetes was undertaken in PubMed and SciVerse Scopus medical databases using the following search terms in article title, abstract or keywords; (“Zinc” or “Zn”) and (“mechanism” or “mechanism of action” or “action” or “effect” or “pathogenesis” or “pathology” or “physiology” or “metabolism”) and (“diabetes” or “prediabetes” or “sugar” or “glucose” or “insulin”). Results The literature search identified the following number of articles in the two databases; PubMed (n = 1799) and SciVerse Scopus (n = 1879). After removing duplicates the total number of articles included in the present review is 111. Our results show that Zinc plays an important role in β-cell function, insulin action, glucose homeostasis and the pathogenesis of diabetes and its complications. Conclusion Numerous in-vitro and in-vivo studies have shown that Zinc has beneficial effects in both type-1 and type-2 diabetes. However further randomized double-blinded placebo-controlled clinical trials conducted for an adequate duration, are required to establish therapeutic safety in humans. Electronic supplementary material The online version of this article (doi:10.1186/s40199-015-0127-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Priyanga Ranasinghe
- Department of Pharmacology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka.
| | - Shehani Pigera
- Department of Pharmacology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | | | - Prasad Katulanda
- Diabetes Research Unit, Department of Clinical Medicine, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Godwin R Constantine
- Diabetes Research Unit, Department of Clinical Medicine, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| |
Collapse
|
19
|
Torres N, Guevara-Cruz M, Velázquez-Villegas LA, Tovar AR. Nutrition and Atherosclerosis. Arch Med Res 2015; 46:408-26. [DOI: 10.1016/j.arcmed.2015.05.010] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 05/12/2015] [Indexed: 12/15/2022]
|
20
|
Diethyldithiocarbamate-mediated zinc ion chelation reveals role of Cav2.3 channels in glucagon secretion. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:953-64. [DOI: 10.1016/j.bbamcr.2015.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 12/28/2014] [Accepted: 01/03/2015] [Indexed: 12/13/2022]
|
21
|
Myers SA. Zinc transporters and zinc signaling: new insights into their role in type 2 diabetes. Int J Endocrinol 2015; 2015:167503. [PMID: 25983752 PMCID: PMC4423030 DOI: 10.1155/2015/167503] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/07/2015] [Accepted: 04/12/2015] [Indexed: 12/13/2022] Open
Abstract
Zinc is an essential trace element that plays a vital role in many biological processes including growth and development, immunity, and metabolism. Recent studies have highlighted zinc's dynamic role as a "cellular second messenger" in the control of insulin signaling and glucose homeostasis. Accordingly, mechanisms that contribute to dysfunctional zinc signaling are suggested to be associated with metabolic disease states including cancer, cardiovascular disease, Alzheimer's disease, and diabetes. The actions of the proteins that control the uptake, storage, and distribution of zinc, the zinc transporters, are under intense investigation due to their emerging role in type 2 diabetes. The synthesis, secretion, and action of insulin are dependent on zinc and the transporters that make this ion available to cellular processes. This suggests that zinc plays a previously unidentified role where changes in zinc status over time may affect insulin activity. This previously unexplored concept would raise a whole new area of research into the pathophysiology of insulin resistance and introduce a new class of drug target with utility for diabetes pharmacotherapy.
Collapse
Affiliation(s)
- Stephen A. Myers
- University of Tasmania (UTAS), School of Health Sciences, Newnham Campus, Launceston, TAS 7250, Australia
- *Stephen A. Myers:
| |
Collapse
|
22
|
Kaur K, Gupta R, Saraf SA, Saraf SK. Zinc: The Metal of Life. Compr Rev Food Sci Food Saf 2014; 13:358-376. [PMID: 33412710 DOI: 10.1111/1541-4337.12067] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 02/05/2014] [Indexed: 01/15/2023]
Abstract
The importance of zinc was 1st reported for Aspergillus niger. It took over 75 y to realize that zinc is also an essential trace element for rats, and an additional 30 y went by before it was recognized that this was also true for humans. The adult body contains about 2 to 3 g of zinc. Zinc is found in organs, tissues, bones, fluids, and cells. It is essential for many physiological functions and plays a significant role in a number of enzyme actions in the living systems. Bioinformatics estimates report that 10% of the human proteome contains zinc-binding sites. Based on its role in such a plethora of cellular components, zinc has diverse biological functions from enzymatic catalysis to playing a crucial role in cellular neuronal systems. Thus, based on the various published studies and reports, it is pertinent to state that zinc is one of the most important essential trace metals in human nutrition and lifestyle. Its deficiency may severely affect the homeostasis of a biological system. This review compiles the role of zinc in prophylaxis/therapeutics and provides current information about its effect on living beings.
Collapse
Affiliation(s)
- Kuljeet Kaur
- Faculty of Pharmacy, Babu Banarasi Das Natl. Inst. of Technology and Management (BBD Univ.), Lucknow, India
| | - Rajiv Gupta
- Faculty of Pharmacy, Babu Banarasi Das Natl. Inst. of Technology and Management (BBD Univ.), Lucknow, India
| | - Shubhini A Saraf
- Dept. of Pharmaceutical Sciences, SB&BT, Babasaheb Bhimrao Ambedkar Univ., Lucknow, India
| | - Shailendra K Saraf
- Faculty of Pharmacy, Babu Banarasi Das Northern India Inst. of Technology, Lucknow, India
| |
Collapse
|
23
|
Bondzio A, Pieper R, Gabler C, Weise C, Schulze P, Zentek J, Einspanier R. Feeding low or pharmacological concentrations of zinc oxide changes the hepatic proteome profiles in weaned piglets. PLoS One 2013; 8:e81202. [PMID: 24282572 PMCID: PMC3839893 DOI: 10.1371/journal.pone.0081202] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 10/15/2013] [Indexed: 12/15/2022] Open
Abstract
Pharmacological levels of zinc oxide can promote growth and health of weaning piglets, but the underlying molecular mechanisms are yet not fully understood. The aim of this study was to determine changes in the global hepatic protein expression in response to dietary zinc oxide in weaned piglets. Nine half-sib piglets were allocated to three dietary zinc treatment groups (50, 150, 2500 mg/kg dry matter). After 14 d, pigs were euthanized and liver samples taken. The increase in hepatic zinc concentration following dietary supplementation of zinc was accompanied by up-regulation of metallothionein mRNA and protein expression. Global hepatic protein profiles were obtained by two-dimensional difference gel electrophoresis following matrix-assisted laser desorption ionization/time-of-flight mass spectrometry. A total of 15 proteins were differentially (P<0.05) expressed between groups receiving control (150 mg/kg) or pharmacological levels of zinc (2500 mg/kg) with 7 down- (e.g. arginase1, thiosulfate sulfurtransferase, HSP70) and 8 up-regulated (e.g. apolipoprotein AI, transferrin, C1-tetrahydrofolate synthase) proteins. Additionally, three proteins were differentially expressed with low zinc supply (50 mg/kg Zn) in comparison to the control diet. The identified proteins were mainly associated with functions related to cellular stress, transport, metabolism, and signal transduction. The differential regulation was evaluated at the mRNA level and a subset of three proteins of different functional groups was selected for confirmation by western blotting. The results of this proteomic study suggest that zinc affects important liver functions such as blood protein secretion, protein metabolism, detoxification and redox homeostasis, thus supporting the hypothesis of intermediary effects of pharmacological levels of zinc oxide fed to pigs.
Collapse
Affiliation(s)
- Angelika Bondzio
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Robert Pieper
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Christoph Gabler
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Christoph Weise
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Petra Schulze
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Juergen Zentek
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Ralf Einspanier
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
24
|
Qin Y, Miranda JG, Stoddard CI, Dean KM, Galati DF, Palmer AE. Direct comparison of a genetically encoded sensor and small molecule indicator: implications for quantification of cytosolic Zn(2+). ACS Chem Biol 2013; 8:2366-71. [PMID: 23992616 DOI: 10.1021/cb4003859] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fluorescent sensors are powerful tools for visualizing and quantifying molecules and ions in living cells. A variety of small molecule and genetically encoded sensors have been developed for studying intracellular Zn(2+) homeostasis and signaling, but no direct comparisons exist, making it challenging for researchers to identify the appropriate sensor for a given application. Here we directly compare the widely used small molecule probe FluoZin-3 and a genetically encoded sensor, ZapCY2. We demonstrate that, in contrast to FluoZin-3, ZapCY2 exhibits a well-defined cytosolic localization, provides estimates of Zn(2+) concentration with little variability, does not perturb cytosolic Zn(2+) levels, and exhibits rapid Zn(2+) response dynamics. ZapCY2 was used to measure Zn(2+) concentrations in 5 different cell types, revealing higher cytosolic Zn(2+) levels in prostate cancer cells compared to normal prostate cells (although the total zinc is reduced in prostate cancer cells), suggesting distinct regulatory mechanisms.
Collapse
Affiliation(s)
- Yan Qin
- Department
of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado-Boulder, UCB 596, Boulder, Colorado 80309, United States
| | - Jose G. Miranda
- Department
of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado-Boulder, UCB 596, Boulder, Colorado 80309, United States
| | - Caitlin I. Stoddard
- Department
of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado-Boulder, UCB 596, Boulder, Colorado 80309, United States
| | - Kevin M. Dean
- Department
of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado-Boulder, UCB 596, Boulder, Colorado 80309, United States
| | - Domenico F. Galati
- Department
of Molecular, Cellular, and Developmental Biology, University of Colorado-Boulder, UCB
347, Boulder, Colorado 80309, United States
| | - Amy E. Palmer
- Department
of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado-Boulder, UCB 596, Boulder, Colorado 80309, United States
| |
Collapse
|
25
|
Zinc transporter ZIP14 functions in hepatic zinc, iron and glucose homeostasis during the innate immune response (endotoxemia). PLoS One 2012; 7:e48679. [PMID: 23110240 PMCID: PMC3480510 DOI: 10.1371/journal.pone.0048679] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 09/28/2012] [Indexed: 12/16/2022] Open
Abstract
ZIP14 (slc39A14) is a zinc transporter induced in response to pro-inflammatory stimuli. ZIP14 induction accompanies the reduction in serum zinc (hypozincemia) of acute inflammation. ZIP14 can transport Zn2+ and non-transferrin-bound Fe2+ in vitro. Using a Zip14−/− mouse model we demonstrated that ZIP14 was essential for control of phosphatase PTP1B activity and phosphorylation of c-Met during liver regeneration. In the current studies, a global screening of ZIP transporter gene expression in response to LPS-induced endotoxemia was conducted. Following LPS, Zip14 was the most highly up-regulated Zip transcript in liver, but also in white adipose tissue and muscle. Using ZIP14−/− mice we show that ZIP14 contributes to zinc absorption from the gastrointestinal tract directly or indirectly as zinc absorption was decreased in the KOs. In contrast, Zip14−/− mice absorbed more iron. The Zip14 KO mice did not exhibit hypozincemia following LPS, but do have hypoferremia. Livers of Zip14−/− mice had increased transcript abundance for hepcidin, divalent metal transporter-1, ferritin and transferrin receptor-1 and greater accumulation of iron. The Zip14−/− phenotype included greater body fat, hypoglycemia and higher insulin levels, as well as increased liver glucose and greater phosphorylation of the insulin receptor and increased GLUT2, SREBP-1c and FASN expression. The Zip14 KO mice exhibited decreased circulating IL-6 with increased hepatic SOCS-3 following LPS, suggesting SOCS-3 inhibited insulin signaling which produced the hypoglycemia in this genotype. The results are consistent with ZIP14 ablation yielding abnormal labile zinc pools which lead to increased SOCS-3 production through G-coupled receptor activation and increased cAMP production as well as signaled by increased pSTAT3 via the IL-6 receptor, which inhibits IRS 1/2 phosphorylation. Our data show the role of ZIP14 in the hepatocyte is multi-functional since zinc and iron trafficking are altered in the Zip14−/− mice and their phenotype shows defects in glucose homeostasis.
Collapse
|
26
|
Kizawa K, Jinbo Y, Inoue T, Takahara H, Unno M, Heizmann CW, Izumi Y. Human S100A3 tetramerization propagates Ca(2+)/Zn(2+) binding states. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:1712-9. [PMID: 22846892 DOI: 10.1016/j.bbamcr.2012.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 07/16/2012] [Accepted: 07/19/2012] [Indexed: 10/28/2022]
Abstract
The S100A3 homotetramer assembles upon citrullination of a specific symmetric Arg51 pair on its homodimer interface in human hair cuticular cells. Each S100A3 subunit contains two EF-hand-type Ca(2+)-binding motifs and one (Cys)3His-type Zn(2+)-binding site in the C-terminus. The C-terminal coiled domain is cross-linked to the presumed docking surface of the dimeric S100A3 via a disulfide bridge. The aim of this study was to determine the structural and functional role of the C-terminal Zn(2+)-binding domain, which is unique to S100A3, in homotetramer assembly. The binding of either Ca(2+) or Zn(2+) reduced the α-helix content of S100A3 and modulated its affinity for the other cation. The binding of a single Zn(2+) accelerated the Ca(2+)-dependent tetramerization of S100A3 while inducing an extensive unfolding of helix IV. The Ca(2+) and Zn(2+) binding affinities of S100A3 were enhanced when the other cation bound in concert with the tetramerization of S100A3. Small angle scattering analyses revealed that the overall structure of the S100A3 tetramer bound both Ca(2+) and Zn(2+) had a similar molecular shape to the Ca(2+)-bound form in solution. The binding states of the Ca(2+) or Zn(2+) to each S100A3 subunit within a homotetramer appear to be propagated by sensing the repositioning of helix III and the rearrangement of the C-terminal tail domain. This article is part of a Special Issue entitled: 12th European Symposium on Calcium.
Collapse
Affiliation(s)
- Kenji Kizawa
- Innovative Beauty Science Laboratory, Kanebo Cosmetics Inc., Odawara, Japan.
| | | | | | | | | | | | | |
Collapse
|
27
|
Yaghmaei P, Esfahani-Nejad H, Ahmadi R, Hayati-Roodbari N, Ebrahim-Habibi A. Maternal zinc intake of Wistar rats has a protective effect in the alloxan-induced diabetic offspring. J Physiol Biochem 2012; 69:35-43. [DOI: 10.1007/s13105-012-0185-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 06/05/2012] [Indexed: 10/28/2022]
|
28
|
Abstract
OBJECTIVE The objective of the study was to induce transdifferentiation of human hepatoma HepG2 cells into pancreatic-like cells without direct genetic intervention. METHODS HepG2 cells were transfected with plasmids for the hepatocyte marker protein green fluorescent protein (albumin-GFP) and the pancreatic cell marker Discosoma spp red fluorescent protein (elastase-DsRed) to create FAE-HepG2 cells. Fluorescent marker expression was used to monitor in vitro transdifferentiation stimulated 100 mM CCl₄, 2 mM D-galactosamine, or 200 μM ZnCl₂. Concentrations were selected for optimal cell survival rate. Transdifferentiation was also characterized by immunohistochemical detection of amylase, glucagon, and insulin and by polymerase change reaction analysis of amylase and insulin mRNA production. RESULTS Control cells expressed albumin-GFP but no elastase-DsRed. By 30 days of culture, all 3 agents induced expression of pancreatic-like cell marker elastase-DsRed. ZnCl₂ was the most effective as most cells expressed elastase-DsRed in the absence of simultaneous expression of albumin-GFP. For CCl₄ and D-galactosamine, elastase-DsRed was expressed in the same cells as albumin-GFP. Cells treated by each agent also expressed amylase, insulin, and glucagon proteins and mRNAs. CONCLUSIONS Without direct genetic intervention, select low small molecules can induce in vitro transformation of hepatoma cells into pancreatic-like cells.
Collapse
|
29
|
Measuring steady-state and dynamic endoplasmic reticulum and Golgi Zn2+ with genetically encoded sensors. Proc Natl Acad Sci U S A 2011; 108:7351-6. [PMID: 21502528 DOI: 10.1073/pnas.1015686108] [Citation(s) in RCA: 238] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Zn(2+) plays essential roles in biology, and cells have adopted exquisite mechanisms for regulating steady-state Zn(2+) levels. Although much is known about total Zn(2+) in cells, very little is known about its subcellular distribution. Yet defining the location of Zn(2+) and how it changes with signaling events is essential for elucidating how cells regulate this essential ion. Here we create fluorescent sensors genetically targeted to the endoplasmic reticulum (ER) and Golgi to monitor steady-state Zn(2+) levels as well as flux of Zn(2+) into and out of these organelles. These studies reveal that ER and Golgi contain a concentration of free Zn(2+) that is 100 times lower than the cytosol. Both organelles take up Zn(2+) when cytosolic levels are elevated, suggesting that the ER and Golgi can sequester elevated cytosolic Zn(2+) and thus have the potential to play a role in influencing Zn(2+) toxicity. ER Zn(2+) homeostasis is perturbed by small molecule antagonists of Ca(2+) homeostasis and ER Zn(2+) is released upon elevation of cytosolic Ca(2+) pointing to potential exchange of these two ions across the ER. This study provides direct evidence that Ca(2+) signaling can influence Zn(2+) homeostasis and vice versa, that Zn(2+) dynamics may modulate Ca(2+) signaling.
Collapse
|
30
|
Hojyo S, Fukada T, Shimoda S, Ohashi W, Bin BH, Koseki H, Hirano T. The zinc transporter SLC39A14/ZIP14 controls G-protein coupled receptor-mediated signaling required for systemic growth. PLoS One 2011; 6:e18059. [PMID: 21445361 PMCID: PMC3062567 DOI: 10.1371/journal.pone.0018059] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 02/20/2011] [Indexed: 01/05/2023] Open
Abstract
Aberrant zinc (Zn) homeostasis is associated with abnormal control of mammalian growth, although the molecular mechanisms of Zn's roles in regulating systemic growth remain to be clarified. Here we report that the cell membrane-localized Zn transporter SLC39A14 controls G-protein coupled receptor (GPCR)-mediated signaling. Mice lacking Slc39a14 (Slc39a14-KO mice) exhibit growth retardation and impaired gluconeogenesis, which are attributable to disrupted GPCR signaling in the growth plate, pituitary gland, and liver. The decreased signaling is a consequence of the reduced basal level of cyclic adenosine monophosphate (cAMP) caused by increased phosphodiesterase (PDE) activity in Slc39a14-KO cells. We conclude that SLC39A14 facilitates GPCR-mediated cAMP-CREB signaling by suppressing the basal PDE activity, and that this is one mechanism for Zn's involvement in systemic growth processes. Our data highlight SLC39A14 as an important novel player in GPCR-mediated signaling. In addition, the Slc39a14-KO mice may be useful for studying the GPCR-associated regulation of mammalian systemic growth.
Collapse
Affiliation(s)
- Shintaro Hojyo
- Laboratory for Cytokine Signaling, RIKEN Research Center for Allergy and Immunology, Suehiro, Tsurumi, Yokohama, Kanagawa, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Bicer M, Gunay M, Akil M, Avunduk MC, Mogulkoc R, Baltaci AK. Effect of long-term intraperitoneal zinc administration on liver glycogen levels in diabetic rats subjected to acute forced swimming. Biol Trace Elem Res 2011; 139:317-24. [PMID: 20213347 DOI: 10.1007/s12011-010-8658-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 02/18/2010] [Indexed: 12/19/2022]
Abstract
This study aims to examine the effect of zinc administration on liver glycogen levels of rats in which diabetes was induced with streptozotocin and which were subjected to acute swimming exercise. The study was conducted on 80 adult Sprague-Dawley male rats, which were equally allocated to eight groups: group 1, general control; group 2, zinc-administrated control; group 3, zinc-administrated diabetic control; group 4, swimming control; group 5, zinc-administrated swimming; group 6, zinc-administrated diabetic swimming; group 7, diabetic swimming; group 8, diabetic control group. In order to induce diabetes, animals were injected with 40 mg/kg intraperitoneal (ip) streptozotocin. The injections were repeated in the same dose after 24 h. Animals which had blood glucose at or above 300 mg/dl 6 days after the last injections were accepted as diabetic. Zinc was administrated ip for 4 weeks as 6 mg/kg/day per rat. Hepatic tissue samples taken from the animals at the end of the study were fixed in 95% ethyl alcohol. Cross sections of 5 µm thickness, taken by the help of a microtome from the tissue samples buried in paraffin, were placed on a microscope slide and stained with periodic acid-Schiff and evaluated by light microscope. All microscopic images were transferred to a PC and assessed with the help of Clemex PE3.5 image analysis software. The lowest liver glycogen levels in the study were obtained in groups 3, 4, 6, 7, and 8. Liver glycogen levels in group 5 were higher than groups 3, 4, 6, 7, and 8, but lower than groups 1 and 2 (p < 0.05). Groups 1 and 2 had the highest liver glycogen levels. The results obtained from the study indicate that liver glycogen levels which dropped in acute swimming exercise were restored by zinc administration and that diabetes induced in rats prevented the protective effect of zinc.
Collapse
Affiliation(s)
- Mursel Bicer
- High School of Physical Fitness and Sport, Selcuk University, Konya, Turkey.
| | | | | | | | | | | |
Collapse
|
32
|
The role of zinc in the S100 proteins: insights from the X-ray structures. Amino Acids 2010; 41:761-72. [DOI: 10.1007/s00726-010-0540-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Accepted: 02/22/2010] [Indexed: 02/06/2023]
|
33
|
Affiliation(s)
- Wolfgang Maret
- Department of Preventive Medicine & Community Health, The University of Texas Medical Branch, Galveston, Texas 77555-1109, USA.
| | | |
Collapse
|
34
|
Cummings JE, Kovacic JP. The ubiquitous role of zinc in health and disease. J Vet Emerg Crit Care (San Antonio) 2009; 19:215-40. [PMID: 19691507 DOI: 10.1111/j.1476-4431.2009.00418.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To review zinc physiology and pathophysiology and the importance of zinc toxicity and deficiency in veterinary patients. DATA SOURCES A review of human and veterinary medical literature. HUMAN DATA SYNTHESIS There is a significant amount of original research in humans and animals on the role of zinc in multiple organ systems. There is also significant data available on human patients with zinc abnormalities. VETERINARY DATA SYNTHESIS Zinc deficiency has been studied in dogs with genetic disease and dietary deficiency leading to dermatological disease and immune deficiency. Zinc toxicity has been described after ingestion of metallic foreign bodies containing zinc. CONCLUSIONS Historically, the role of zinc in health and disease has been studied through patients with toxicity or severe deficiency with obvious clinical signs. As the ubiquitous contribution of zinc to structure and function in biological systems was discovered, clinically significant but subtle deficiency states have been revealed. In human medicine, mild zinc deficiencies are currently thought to cause chronic metabolic derangement leading to or exacerbating immune deficiency, gastrointestinal problems, endocrine disorders, neurologic dysfunction, cancer, accelerated aging, degenerative disease, and more. Determining the causal relationships between mild zinc deficiency and concurrent disease is complicated by the lack of sensitive or specific tests for zinc deficiency. The prevalence of zinc deficiency and its contribution to disease in veterinary patients is not well known. Continued research is warranted to develop more sensitive and specific tests to assess zinc status, to determine which patients are at risk for deficiency, and to optimize supplementation in health and disease.
Collapse
|
35
|
Molecular aspects of human cellular zinc homeostasis: redox control of zinc potentials and zinc signals. Biometals 2009; 22:149-57. [DOI: 10.1007/s10534-008-9186-z] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Accepted: 12/07/2008] [Indexed: 11/27/2022]
|
36
|
Evers TH, Appelhof MAM, Meijer EW, Merkx M. His-tags as Zn(II) binding motifs in a protein-based fluorescent sensor. Protein Eng Des Sel 2008; 21:529-36. [PMID: 18502789 DOI: 10.1093/protein/gzn029] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fluorescent indicators that allow real-time imaging of Zn(II) in living cells are invaluable tools for understanding Zn(II) homeostasis. Genetically encoded sensors based on fluorescence resonance energy transfer between fluorescent protein domains have important advantages over synthetic probes. We discovered that hexahistidine tags have a strong tendency to dimerize upon binding of Zn(II) in solution and we used this principle to develop a new protein-based sensor for Zn(II). Enhanced cyan and yellow fluorescent proteins were connected by long flexible peptide linkers and His-tags were incorporated at both termini of this fusion protein. The resulting sensor CLY9-2His allows the ratiometric fluorescent detection of Zn(II) in the nanomolar range. In addition, CLY9-2His is selective over the physiologically relevant metal ions Fe(II), Mn(II), Ca(II) and Mg(II). Our approach demonstrates the potential of using small peptides as metal-binding ligands in chelating fluorescent protein chimeras.
Collapse
Affiliation(s)
- Toon H Evers
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | | | | | | |
Collapse
|
37
|
Evers TH, Appelhof MAM, de Graaf-Heuvelmans PTHM, Meijer EW, Merkx M. Ratiometric detection of Zn(II) using chelating fluorescent protein chimeras. J Mol Biol 2007; 374:411-25. [PMID: 17936298 DOI: 10.1016/j.jmb.2007.09.021] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Revised: 09/04/2007] [Accepted: 09/06/2007] [Indexed: 11/19/2022]
Abstract
Fluorescent indicators for the real-time imaging of small molecules or metal ions in living cells are invaluable tools for understanding their physiological function. Genetically encoded sensors based on fluorescence resonance energy transfer (FRET) between fluorescent protein domains have important advantages over synthetic probes, but often suffer from a small ratiometric change. Here, we present a new design approach to obtain sensors with a large difference in emission ratio between the bound and unbound states. De novo Zn(II)-binding sites were introduced directly at the surface of both fluorescent domains of a chimera of enhanced cyan and yellow fluorescent protein, connected by a flexible peptide linker. The resulting sensor ZinCh displayed an almost fourfold change in fluorescence emission ratio upon binding of Zn(II). Besides a high affinity for Zn(II), the sensor was shown to be selective over other physiologically relevant metal ions. Its unique biphasic Zn(II)-binding behavior could be attributed to the presence of two distinct Zn(II)-binding sites and allowed ratiometric fluorescent detection of Zn(II) over a concentration range from 10 nM to 1 mM. Size-exclusion chromatography and fluorescence anisotropy were used to provide a detailed picture of the conformational changes associated with each Zn(II)-binding step. The high affinity for Zn(II) was mainly due to a high effective concentration of the fluorescent proteins and could be understood quantitatively by modeling the peptide linker between the fluorescent proteins as a random coil. The strategy of using chelating fluorescent protein chimeras to develop FRET sensor proteins with a high ratiometric change is expected to be more generally applicable, in particular for other metal ions and small molecules.
Collapse
Affiliation(s)
- Toon H Evers
- Laboratory of Macromolecular and Organic Chemistry, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | | | | | | | | |
Collapse
|
38
|
Kröncke KD. Cellular stress and intracellular zinc dyshomeostasis. Arch Biochem Biophys 2007; 463:183-7. [PMID: 17442256 DOI: 10.1016/j.abb.2007.03.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Revised: 03/09/2007] [Accepted: 03/12/2007] [Indexed: 11/20/2022]
Abstract
Various stressful conditions like oxidative or nitrosative stress, heavy metal load or thiol-modifying compounds have been shown to disturb the intracellular zinc homeostasis leading to increasing concentrations of free zinc within the cytoplasm or nuclei of cells. However, much less is known about the consequences of a disturbed intracellular Zn2+ homeostasis under these conditions. Current knowledge is reviewed here.
Collapse
Affiliation(s)
- Klaus-D Kröncke
- Institute of Biochemistry and Molecular Biology I, Heinrich-Heine-University of Düsseldorf, Universitätsstr.1, D-40225, Düsseldorf, Germany.
| |
Collapse
|
39
|
Abstract
The present review attempts to provide an update of the scientific knowledge on the renal toxicity which occurs in human subjects as a result of chronic ingestion of low-level dietary Cd. It highlights important features of Cd toxicology and sources of uncertainty in the assessment of health risk due to dietary Cd. It also discusses potential mechanisms for increased susceptibility to Cd toxicity in individuals with diabetes. Exposure assessment on the basis of Cd levels in foodstuffs reveals that vegetables and cereals are the main sources of dietary Cd, although Cd is also found in meat, albeit to a lesser extent. Cd accumulates particularly in the kidney and liver, and hence offal contains relatively high amounts. Fish contains only small quantities of Cd, while crustaceans and molluscs may accumulate larger amounts from the aquatic environment. Data on Cd accumulation in human kidney and liver obtained from autopsy studies are presented, along with results of epidemiological studies showing the relationship between renal tubular dysfunction and kidney Cd burden. These findings suggest that a kidney Cd level of 50 μg/g wet weight is a maximum tolerable level in order to avoid abnormal kidney function. This renal Cd burden corresponds to a urinary Cd excretion of 2 μg/d. Accordingly, safe daily levels of Cd intake should be kept below 30 μg per person. Individual variations in Cd absorption and sensitivity to toxicity predicts that a dietary Cd intake of 30 μg/d may result in a slight renal dysfunction in about 1 % of the adult population. The previous guideline for a maximum recommended Cd intake of 1 μg/kg body weight per d is thus shown to be too high to ensure that renal dysfunction does not occur as a result of dietary Cd intake.
Collapse
|
40
|
Krezel A, Hao Q, Maret W. The zinc/thiolate redox biochemistry of metallothionein and the control of zinc ion fluctuations in cell signaling. Arch Biochem Biophys 2007; 463:188-200. [PMID: 17391643 DOI: 10.1016/j.abb.2007.02.017] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Revised: 02/08/2007] [Accepted: 02/09/2007] [Indexed: 11/29/2022]
Abstract
Free zinc ions are potent effectors of proteins. Their tightly controlled fluctuations ("zinc signals") in the picomolar range of concentrations modulate cellular signaling pathways. Sulfur (cysteine) donors generate redox-active coordination environments in proteins for the redox-inert zinc ion and make it possible for redox signals to induce zinc signals. Amplitudes of zinc signals are determined by the cellular zinc buffering capacity, which itself is redox-sensitive. In part by interfering with zinc and redox buffering, reactive species, drugs, toxins, and metal ions can elicit zinc signals that initiate physiological and pathobiochemical changes or lead to cellular injury when free zinc ions are sustained at higher concentrations. These interactions establish redox-inert zinc as an important factor in redox signaling. At the center of zinc/redox signaling are the zinc/thiolate clusters of metallothionein. They can transduce zinc and redox signals and thereby attenuate or amplify these signals.
Collapse
Affiliation(s)
- Artur Krezel
- Department of Preventive Medicine & Community Health, The University of Texas Medical Branch, Division of Human Nutrition, 700 Harborside Drive, Galveston, TX 77555, USA
| | | | | |
Collapse
|
41
|
Muylle FAR, Adriaensen D, De Coen W, Timmermans JP, Blust R. Tracing of labile zinc in live fish hepatocytes using FluoZin-3. Biometals 2006; 19:437-50. [PMID: 16841253 DOI: 10.1007/s10534-005-4576-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2005] [Accepted: 10/24/2005] [Indexed: 10/24/2022]
Abstract
Intracellular zinc levels are homeostatically regulated and although most is bound, a pool of labile Zn(II) is present in cells. We show here that the zinc probe FluoZin-3 is useful to monitor zinc fluxes during fluorescent imaging of the trout hepatic cell line D11. Nuclei and bulk cytosol appeared to lack detectable labile zinc, while the punctuate staining pattern colocalized with a lysosome-specific probe. Applying extracellular zinc alone resulted in vesicular sequestration of the metal ion. Together with Na-pyrithione a delayed and toxic rise in cellular fluorescence was triggered. When using another ionophore, 4-Br A23187, a zinc buffering effect of the vesicular pools was evident. Secondly, N-ethylmaleimide induced a homogeneous fluorescence rise, which was strongly enhanced by addition of Zn-pyrithione and disappeared after TPEN washing. This suggests the involvement of thiol residues in controlling available cytosolic zinc. Our observations have implications for the interpretation of calculated intracellular Zn2+ concentrations.
Collapse
Affiliation(s)
- Frederik A R Muylle
- Department of Biology, University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp, Belgium.
| | | | | | | | | |
Collapse
|
42
|
Goel A, Dani V, Dhawan DK. Chlorpyrifos-induced alterations in the activities of carbohydrate metabolizing enzymes in rat liver: The role of zinc. Toxicol Lett 2006; 163:235-41. [PMID: 16378699 DOI: 10.1016/j.toxlet.2005.11.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Revised: 11/02/2005] [Accepted: 11/02/2005] [Indexed: 10/25/2022]
Abstract
The present study was conducted to evaluate the adverse effects of chlorpyrifos on the key enzymes of carbohydrate metabolism in liver, and also to assess the role of zinc under these toxic conditions. Male Sprague-Dawley (SD) rats received either oral chlorpyrifos treatment (13.5 mg/kg body weight in corn oil) every alternate day, zinc alone (227 mg/l in drinking water), or combined chlorpyrifos and zinc treatments for a total duration of 8 weeks. The effects of different treatment regimens were studied on various enzymes of carbohydrate metabolism in the rat livers, which included hexokinase, glucose-6-phosphatase, fructose-1,6-diphosphatase, glycogen phosphorylase, succinate dehydrogenase (SDH), lactate dehydrogenase (LDH) and the levels of glycogen. In vitro uptake of (14)C-D-glucose was also assessed in liver slices after similar treatments. Chlorpyrifos intoxication resulted in a significant increase in the activities of glucose-6-phosphatase and glycogen phosphorylase, whereas, it caused a significant inhibition in the levels of hexokinase, SDH, LDH and glycogen content. However, zinc treatment to chlorpyrifos-intoxicated animals was able to normalize the activities of most of these enzymes to either close to, or within normal limits. Chlorpyrifos intoxication demonstrated significantly inhibited (14)C-D-glucose uptake in liver slices, which again was reversed to normal limits following simultaneous zinc treatment. Levels of metallothionein were also found to be depressed in chlorpyrifos-treated animals, but tended to increase significantly on co-administration of zinc to chlorpyrifos-treated group. Hence, the present study clearly suggests that zinc plays an important role in regulating the hepatic activities of the enzymes involved in carbohydrate metabolism under conditions of chlorpyrifos toxicity.
Collapse
Affiliation(s)
- Ajay Goel
- Department of Biophysics, Panjab University, Sector 14, Chandigarh 160014, India.
| | | | | |
Collapse
|
43
|
Cima RR, Dubach JM, Wieland AM, Walsh BM, Soybel DI. Intracellular Ca(2+) and Zn(2+) signals during monochloramine-induced oxidative stress in isolated rat colon crypts. Am J Physiol Gastrointest Liver Physiol 2006; 290:G250-61. [PMID: 16002562 DOI: 10.1152/ajpgi.00501.2004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
During acute exacerbations of inflammatory bowel diseases, oxidants are generated through the interactions of bacteria in the lumen, activated granulocytes, and cells of the colon mucosa. In this study we explored the ability of one such class of oxidants, represented by monochloramine (NH(2)Cl), to serve as agonists of Ca(2+) and Zn(2+) accumulation within the colonocyte. Individual colon crypts prepared from Sprague-Dawley rats were mounted in perfusion chambers after loading with fluorescent reporters fura 2-AM and fluozin 3-AM. These reporters were characterized, in situ, for responsiveness to Ca(2+) and Zn(2+) in the cytoplasm. Responses to different concentrations of NH(2)Cl (50, 100, and 200 microM) were monitored. Subsequent studies were designed to identify the sources and mechanisms of NH(2)Cl-induced increases in Ca(2+) and Zn(2+) in the cytoplasm. Exposure to NH(2)Cl led to dose-dependent increases in intracellular Ca(2+) concentration ([Ca(2+)](i)) in the range of 200-400 nM above baseline levels. Further studies indicated that NH(2)Cl-induced accumulation of Ca(2+) in the cytoplasm is the result of release from intracellular stores and basolateral entry of extracellular Ca(2+) through store-operated channels. In addition, exposure to NH(2)Cl resulted in dose-dependent and sustained increases in intracellular Zn(2+) concentration ([Zn(2+)](i)) in the nanomolar range. These alterations were neutralized by dithiothreitol, which shields intracellular thiol groups from oxidation. We conclude that Ca(2+)- and Zn(2+)-handling proteins are susceptible to oxidation by chloramines, leading to sustained, but not necessarily toxic, increases in [Ca(2+)](i) and [Zn(2+)](i). Under certain conditions, NH(2)Cl may act not as a toxin but as an agent that activates intracellular signaling pathways.
Collapse
Affiliation(s)
- Robert R Cima
- Department of Surgery, Brigham and Women's Hospital, 75 Francis St., Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
44
|
Keen CL, Jue T, Tran CD, Vogel J, Downing RG, Iyengar V, Rucker RB. Analytical methods: improvements, advancements and new horizons. J Nutr 2003; 133:1574S-8S. [PMID: 12730469 DOI: 10.1093/jn/133.5.1574s] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The workshop and exhibits dealing with analytical methods were selected to highlight the current state of the art in elemental analysis. The presentations in the first part of the workshop described approaches and advances important to the analysis of trace minerals. These presentations included: 1) two approaches to mass spectrometry, inductively coupled plasma and accelerator mass spectrometry; 2) use of nuclear magnetic resonance in studies of mineral function; and 3) the use and limitations of fluorescent probes in studies of metal uptake and regulation. In the second part of the workshop, the International Atomic Energy's contributions to nutritional "metrology" were described. Advances in instrumentation over the past decade have led to extraordinary improvements in the precision and sensitivity of mineral analyses. The ability to address isotopic speciation at such low levels sets the stage for numerous novel approaches in the assessment of trace mineral function.
Collapse
Affiliation(s)
- Carl L Keen
- Department of Nutrition, University of California, Davis, Davis, CA, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Sauer GR, Smith DM, Cahalane M, Wu LNY, Wuthier RE. Intracellular zinc fluxes associated with apoptosis in growth plate chondrocytes. J Cell Biochem 2003; 88:954-69. [PMID: 12616534 DOI: 10.1002/jcb.10446] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Matrix vesicles released by epiphyseal growth plate chondrocytes are known to contain a significant quantity of labile Zn(2+). Zonal analysis of chicken metatarsal bones showed that the resting/proliferative region of the growth plate contained high levels of Zn(2+) with significantly lower levels in the hypertrophic cartilage suggesting a loss of cellular Zn(2+) as the chondrocytes mature. Intracellular labile Zn(2+) was measured in primary cultures of growth plate chondrocytes by assay with the fluorescent Zn-chelator toluenesulfonamidoquinoline (TSQ) and imaged by multi-photon laser scanning microscopy (MPLSM) with the TSQ derivative zinquin. Short-term exposure to Zn(2+), both in the presence and absence of pyrithione resulted in significant increases in cytosolic Zn(2+). Treatment with the membrane-permeant Zn(2+) chelator TPEN rapidly reduced the levels of labile Zn(2+) and triggered apoptosis. Cytosolic Zn(2+) levels were significantly reduced following 24-h incubations with known inducers of chondrocyte apoptosis. The loss of intracellular Zn(2+) was accompanied by a significant reduction in the cytosolic metal-binding protein metallothionein. Examination of Zn(2+)-treated cells with MPLSM showed uniformly higher zinquin fluorescence. Treatment of Zn(2+)-loaded cells with TPEN quenched zinquin fluorescence confirming that the observed fluorescence in chondrocytes is due to the presence of intracellular Zn(2+). A dose-dependent increase in zinquin fluorescence was observed in cells treated with a range of Zn(2+) concentrations. Short-term treatment of cultured chondrocytes with apoptosis-inducing chemicals resulted in transient increases in intracellular labile Zn(2+). These results indicate that Zn(2+) is mobilized from intracellular binding sites in the early stages of chondrocyte apoptosis and is subsequently lost from the cells. The early mobilization of Zn(2+) provides a mechanism for its movement to matrix vesicles and the extracellular matrix.
Collapse
Affiliation(s)
- Glenn R Sauer
- Biology Department, Fairfield University, Fairfield, Connecticut 06430, USA.
| | | | | | | | | |
Collapse
|
46
|
Jiang D, Sullivan PG, Sensi SL, Steward O, Weiss JH. Zn(2+) induces permeability transition pore opening and release of pro-apoptotic peptides from neuronal mitochondria. J Biol Chem 2001; 276:47524-9. [PMID: 11595748 DOI: 10.1074/jbc.m108834200] [Citation(s) in RCA: 211] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rapid entry of Ca(2+) or Zn(2+) kills neurons. Mitochondria are major sites of Ca(2+)-dependent toxicity. This study examines Zn(2+)-initiated mitochondrial cell death signaling. 10 nm Zn(2+) induced acute swelling of isolated mitochondria, which was much greater than that induced by higher Ca(2+) levels. Zn(2+) entry into mitochondria was dependent upon the Ca(2+) uniporter, and the consequent swelling resulted from opening of the mitochondrial permeability transition pore. Confocal imaging of intact neurons revealed entry of Zn(2+) (with Ca(2+)) to cause pronounced mitochondrial swelling, which was far greater than that induced by Ca(2+) entry alone. Further experiments compared the abilities of Zn(2+) and Ca(2+) to induce mitochondrial release of cytochrome c (Cyt-c) or apoptosis-inducing factor. In isolated mitochondria, 10 nm Zn(2+) exposures induced Cyt-c release. Induction of Zn(2+) entry into cortical neurons resulted in distinct increases in cytosolic Cyt-c immunolabeling and in cytosolic and nuclear apoptosis-inducing factor labeling within 60 min. In comparison, higher absolute [Ca(2+)](i) rises were less effective in inducing release of these factors. Addition of the mitochondrial permeability transition pore inhibitors cyclosporin A and bongkrekic acid decreased Zn(2+)-dependent release of the factors and attenuated neuronal cell death as assessed by trypan blue staining 5-6 h after the exposures.
Collapse
Affiliation(s)
- D Jiang
- Department of Neurology, University of California, 2101 Gillespie Neuroscience Facility, Irvine, CA 92697-4292, USA
| | | | | | | | | |
Collapse
|
47
|
Lynch CJ, Patson BJ, Goodman SA, Trapolsi D, Kimball SR. Zinc stimulates the activity of the insulin- and nutrient-regulated protein kinase mTOR. Am J Physiol Endocrinol Metab 2001; 281:E25-34. [PMID: 11404220 DOI: 10.1152/ajpendo.2001.281.1.e25] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recent studies indicate that zinc activates p70 S6 kinase (p70(S6k)) by a mechanism involving phosphatidylinositol 3-kinase (PI 3-kinase) and Akt (protein kinase B). Here it is shown that phenanthroline, a zinc and heavy metal chelator, inhibited both amino acid- and insulin-stimulated phosphorylation of p70(S6k). Both amino acid and insulin activations of p70(S6k) involve a rapamycin-sensitive step that involves the mammalian target of rapamycin (mTOR, also known as FRAP and RAFT). However, in contrast to insulin, amino acids activate p70(S6k) by an unknown PI 3-kinase- and Akt-independent mechanism. Thus the effects of chelator on amino acid activation of p70(S6k) were surprising. For this reason, we tested the hypothesis that zinc directly regulates mTOR activity, independently of PI 3-kinase activation. In support of this, basal and amino acid stimulation of p70(S6k) phosphorylation was increased by zinc addition to the incubation media. Furthermore, the protein kinase activities of mTOR immunoprecipitated from rat brain lysates were stimulated two- to fivefold by 10-300 microM Zn2+ in the presence of an excess of either Mn2+ or Mg2+, whereas incubation with 1,10-phenanthroline had no effect. These findings indicate that Zn2+ regulates, but is not absolutely required for, mTOR protein kinase activity. Zinc also stimulated a recombinant human form of mTOR. The stimulatory effects of Zn2+ were maximal at approximately 100 microM but decreased and became inhibitory at higher physiologically irrelevant concentrations. Micromolar concentrations of other divalent cations, Ca2+, Fe2+, and Mn2+, had no effect on the protein kinase activity of mTOR in the presence of excess Mg2+. Our results and the results of others suggest that zinc acts at multiple steps in amino acid- and insulin cell-signaling pathways, including mTOR, and that the additive effects of Zn2+ on these steps may thereby promote insulin and nutritional signaling.
Collapse
Affiliation(s)
- C J Lynch
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA.
| | | | | | | | | |
Collapse
|
48
|
Canesi L, Betti M, Ciacci C, Gallo G. Insulin-like effect of zinc in mytilus digestive gland cells: modulation of tyrosine kinase-mediated cell signaling. Gen Comp Endocrinol 2001; 122:60-6. [PMID: 11352554 DOI: 10.1006/gcen.2001.7612] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The possible effects of zinc in the modulation of the activity of glycolytic enzymes phosphofructokinase and pyruvate kinase through tyrosine kinase-mediated signal transduction in isolated digestive gland cells from mussels (Mytilus galloprovincialis Lam.) were investigated. Addition of micromolar concentrations of zinc resulted in both time- and concentration-dependent stimulation of glycolytic enzyme activities similar to those previously observed with insulin; however, zinc pretreatment prevented the glycolytic effect of insulin in mussel cells. The insulin-like effect of zinc was mediated by increased tyrosine phosphorylation of multiple proteins, as demonstrated by Western blotting with antiphosphotyrosine antibodies. The pattern of zinc-induced phosphorylation resembled that induced by insulin. Moreover, both zinc and insulin induced activation of mitogen activated protein kinases (MAPKs); however, whereas zinc gave a clear effect on the stress-activated p-38 MAPK, insulin activated extracellular-activated MAPK (ERK2) and inhibited p-38. The results demonstrate that zinc can act as a physiological regulator of tyrosine kinase-mediated cell signaling in mussel digestive gland cells, in particular at the level of MAPK activation. Activation of p-38 by zinc may be a key step in prevention of the glycolytic effect of insulin in mussel cells. These data underline the importance of cross talk between different MAPKs in determination of the response to extracellular stimuli in marine invertebrate cells.
Collapse
Affiliation(s)
- L Canesi
- Istituto Scienze Fisiologiche, Università di Urbino, Loc. Crocicchia, Urbino (PU), 61029, Italy
| | | | | | | |
Collapse
|
49
|
Snitsarev V, Budde T, Stricker TP, Cox JM, Krupa DJ, Geng L, Kay AR. Fluorescent detection of Zn(2+)-rich vesicles with Zinquin: mechanism of action in lipid environments. Biophys J 2001; 80:1538-46. [PMID: 11222314 PMCID: PMC1301345 DOI: 10.1016/s0006-3495(01)76126-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
High concentrations of free Zn2+ ions are found in certain glutamatergic synaptic vesicles in the mammalian brain. These terminals can be visualized histochemically with quinoline sulfonamide compounds that form fluorescent complexes with Zn2+. The present study was undertaken to examine the interaction of the water-soluble quinoline sulfonamide probe, Zinquin (2-methyl-8-(toluene-p-sulfonamido)-6-quinolyloxyacetic acid) with the complex heterogeneous cellular environment. Experiments on rat hippocampal and neocortical slices gave indications that Zinquin in its free acid form was able to diffuse across the plasma and synaptic vesicle membranes. Further experiments were undertaken on unilamellar liposomes to study the interaction of Zinquin and its metal complexes in membranes. These experiments confirmed that Zinquin is able to diffuse across lipid bilayers. Steady-state and time-resolved fluorimetric studies showed that Zinquin in aqueous solution mainly forms a 1:2 (metal:ligand) complex with small amounts of a 1:1 complex. Formation of the 1:1 complex was favored by the presence of lipid, suggesting that it partitions into membranes. Evidence is presented that Zinquin can act as a Zn(2+)-ionophore, exchanging Zn2+ for two protons. The presence of a pH gradient across vesicles traps the Zn(2+)-probe complex within the vesicles. Zinquin is useful as a qualitative probe for detecting the presence of vesicular Zn2+; however, its tendency to partition into membranes and to serve as an ionophore should be borne in mind.
Collapse
Affiliation(s)
- V Snitsarev
- Departmentsof Biological Sciences, University of Iowa, Iowa City 52242, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Liuzzi JP, Blanchard RK, Cousins RJ. Differential regulation of zinc transporter 1, 2, and 4 mRNA expression by dietary zinc in rats. J Nutr 2001; 131:46-52. [PMID: 11208937 DOI: 10.1093/jn/131.1.46] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Zinc metabolism is well regulated over a wide range of dietary intakes to help maintain cellular zinc-dependent functions. Expression of transporter molecules, which influence zinc influx and efflux across the plasma and intracellular membranes, contributes to this regulation. We have examined in rats the comparative response of zinc transporters 1, 2, and 4 (ZnT-1, ZnT-2 and ZnT-4) to dietary zinc. ZnT-1 and ZnT-4 are expressed ubiquitously, whereas ZnT-2 is limited to small intestine, kidney, placenta and, in some cases, the liver. When zinc intake was low (<1 mg Zn/kg), ZnT-2 mRNA was extremely low in small intestine and kidney compared with an adequate intake (30 mg Zn/kg). ZnT-1 and ZnT-2 mRNAs were markedly greater in both tissues when a supplemental zinc intake (180 mg Zn/kg) was provided. ZnT-4 was refractory to changes in zinc intake. When zinc was provided as a single oral dose (70 mg/kg body), ZnT-1 and ZnT-2 mRNA levels were increased many fold in small intestine, liver and kidney, whereas ZnT-4 gene expression was not changed. The expression of ZnT-1 and ZnT-2 is comparable to zinc-induced changes in metallothionein mRNA levels, suggesting a similar mode of regulation for these genes. The relative differential in regulation by zinc is ZnT-2 > ZnT-1 > ZnT-4. These data provide evidence that, in an animal model, zinc transporter expression is responsive to zinc under physiologically relevant conditions.
Collapse
Affiliation(s)
- J P Liuzzi
- Food Science and Human Nutrition Department and Center for Nutritional Sciences, University of Florida, Gainesville FL 32611-0370, USA
| | | | | |
Collapse
|