1
|
Kishtagari A, Levine RL. The Role of Somatic Mutations in Acute Myeloid Leukemia Pathogenesis. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a034975. [PMID: 32398288 DOI: 10.1101/cshperspect.a034975] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acute myeloid leukemia (AML) is characterized by attenuation of lineage differentiation trajectories that results in impaired hematopoiesis and enhanced self-renewal. To date, sequencing studies have provided a rich landscape of information on the somatic mutations that contribute to AML pathogenesis. These studies show that most AML genomes harbor relatively fewer mutations, which are acquired in a stepwise manner. Our understanding of the genetic basis of leukemogenesis informs a broader understanding of what initiates and maintains the AML clone and informs the development of prognostic models and mechanism-based therapeutic strategies. Here, we explore the current knowledge of genetic and epigenetic aberrations in AML pathogenesis and how recent studies are expanding our knowledge of leukemogenesis and using this to accelerate therapeutic development for AML patients.
Collapse
Affiliation(s)
- Ashwin Kishtagari
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA.,Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Ross L Levine
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA.,Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA.,Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA.,Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA.,Molecular Cancer Medicine Service, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
2
|
Koranteng F, Cha N, Shin M, Shim J. The Role of Lozenge in Drosophila Hematopoiesis. Mol Cells 2020; 43:114-120. [PMID: 31992020 PMCID: PMC7057836 DOI: 10.14348/molcells.2019.0249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/04/2019] [Indexed: 01/20/2023] Open
Abstract
Drosophila hematopoiesis is comparable to mammalian differentiation of myeloid lineages, and therefore, has been a useful model organism in illustrating the molecular and genetic basis for hematopoiesis. Multiple novel regulators and signals have been uncovered using the tools of Drosophila genetics. A Runt domain protein, lozenge, is one of the first players recognized and closely studied in the hematopoietic lineage specification. Here, we explore the role of lozenge in determination of prohemocytes into a special class of hemocyte, namely the crystal cell, and discuss molecules and signals controlling the lozenge function and its implication in immunity and stress response. Given the highly conserved nature of Runt domain in both invertebrates and vertebrates, studies in Drosophila will enlighten our perspectives on Runx-mediated development and pathologies.
Collapse
Affiliation(s)
| | - Nuri Cha
- Department of Life Science, Hanyang University, Seoul 04763, Korea
| | - Mingyu Shin
- Department of Life Science, Hanyang University, Seoul 04763, Korea
| | - Jiwon Shim
- Department of Life Science, Hanyang University, Seoul 04763, Korea
- Research Institute for Natural Science, Hanyang University, Seoul 04763, Korea
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 0476, Korea
| |
Collapse
|
3
|
Hong D, Fritz AJ, Gordon JA, Tye CE, Boyd JR, Tracy KM, Frietze SE, Carr FE, Nickerson JA, Van Wijnen AJ, Imbalzano AN, Zaidi SK, Lian JB, Stein JL, Stein GS. RUNX1-dependent mechanisms in biological control and dysregulation in cancer. J Cell Physiol 2019; 234:8597-8609. [PMID: 30515788 PMCID: PMC6395522 DOI: 10.1002/jcp.27841] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 11/12/2018] [Indexed: 01/02/2023]
Abstract
The RUNX1 transcription factor has recently been shown to be obligatory for normal development. RUNX1 controls the expression of genes essential for proper development in many cell lineages and tissues including blood, bone, cartilage, hair follicles, and mammary glands. Compromised RUNX1 regulation is associated with many cancers. In this review, we highlight evidence for RUNX1 control in both invertebrate and mammalian development and recent novel findings of perturbed RUNX1 control in breast cancer that has implications for other solid tumors. As RUNX1 is essential for definitive hematopoiesis, RUNX1 mutations in hematopoietic lineage cells have been implicated in the etiology of several leukemias. Studies of solid tumors have revealed a context-dependent function for RUNX1 either as an oncogene or a tumor suppressor. These RUNX1 functions have been reported for breast, prostate, lung, and skin cancers that are related to cancer subtypes and different stages of tumor development. Growing evidence suggests that RUNX1 suppresses aggressiveness in most breast cancer subtypes particularly in the early stage of tumorigenesis. Several studies have identified RUNX1 suppression of the breast cancer epithelial-to-mesenchymal transition. Most recently, RUNX1 repression of cancer stem cells and tumorsphere formation was reported for breast cancer. It is anticipated that these new discoveries of the context-dependent diversity of RUNX1 functions will lead to innovative therapeutic strategies for the intervention of cancer and other abnormalities of normal tissues.
Collapse
Affiliation(s)
- Deli Hong
- Dana Farber Cancer Institute, Boston, Massachusetts
| | - Andrew J Fritz
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Jonathan A Gordon
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Coralee E Tye
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Joseph R Boyd
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Kirsten M Tracy
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Seth E Frietze
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, Vermont
| | - Frances E. Carr
- Department of Pharmacology, University of Vermont, Burlington, Vermont
| | | | - Andre J. Van Wijnen
- Departments of Orthopedic Surgery and Biochemistry & Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Anthony N. Imbalzano
- Graduate Program in Cell Biology and Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, Massachusetts
| | - Sayyed K. Zaidi
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Jane B. Lian
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Janet L. Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Gary S. Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| |
Collapse
|
4
|
Tahirov TH, Bushweller J. Structure and Biophysics of CBFβ/RUNX and Its Translocation Products. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:21-31. [PMID: 28299648 DOI: 10.1007/978-981-10-3233-2_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The core binding factor (CBF) transcription factor is somewhat unique in that it is composed of a DNA binding RUNX subunit (RUNX1, 2, or 3) and a non-DNA binding CBFβ subunit, which modulates RUNX protein activity by modulating the auto-inhibition of the RUNX subunits. Since the discovery of this fascinating transcription factor more than 20 years ago, there has been a robust effort to characterize the structure as well as the biochemical properties of CBF. More recently, these efforts have also extended to the fusion proteins that arise from the subunits of CBF in leukemia. This chapter highlights the work of numerous labs which has provided a detailed understanding of the structure and function of this transcription factor and its fusion proteins.
Collapse
Affiliation(s)
- Tahir H Tahirov
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - John Bushweller
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22908, USA.
| |
Collapse
|
5
|
Abstract
Runx genes have been identified in all metazoans and considerable conservation of function observed across a wide range of phyla. Thus, insight gained from studying simple model organisms is invaluable in understanding RUNX biology in higher animals. Consequently, this chapter will focus on the Runx genes in the diploblasts, which includes sea anemones and sponges, as well as the lower triploblasts, including the sea urchin, nematode, planaria and insect. Due to the high degree of functional redundancy amongst vertebrate Runx genes, simpler model organisms with a solo Runx gene, like C. elegans, are invaluable systems in which to probe the molecular basis of RUNX function within a whole organism. Additionally, comparative analyses of Runx sequence and function allows for the development of novel evolutionary insights. Strikingly, recent data has emerged that reveals the presence of a Runx gene in a protist, demonstrating even more widespread occurrence of Runx genes than was previously thought. This review will summarize recent progress in using invertebrate organisms to investigate RUNX function during development and regeneration, highlighting emerging unifying themes.
Collapse
Affiliation(s)
- S Hughes
- Faculteit Techniek, Hogeschool van Arnhem en Nijmegen, Laan van Scheut 2, 6503 GL, Nijmegen, The Netherlands
| | - A Woollard
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
6
|
Jaruga A, Hordyjewska E, Kandzierski G, Tylzanowski P. Cleidocranial dysplasia and RUNX2-clinical phenotype-genotype correlation. Clin Genet 2016; 90:393-402. [DOI: 10.1111/cge.12812] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/20/2016] [Accepted: 05/28/2016] [Indexed: 12/19/2022]
Affiliation(s)
- A. Jaruga
- Department of Biochemistry and Molecular Biology; Medical University; Lublin Poland
- Postgraduate School of Molecular Medicine; Warsaw Poland
| | - E. Hordyjewska
- Department of Biochemistry and Molecular Biology; Medical University; Lublin Poland
- Postgraduate School of Molecular Medicine; Warsaw Poland
| | - G. Kandzierski
- Children Orthopaedic and Rehabilitation Department; Medical University of Lublin; Lublin Poland
| | - P. Tylzanowski
- Department of Biochemistry and Molecular Biology; Medical University; Lublin Poland
- Laboratory for Developmental and Stem Cell Biology, Department of Development and Regeneration, Skeletal Biology and Engineering Research Centre; University of Leuven; Leuven Belgium
| |
Collapse
|
7
|
Fukunaga J, Nomura Y, Tanaka Y, Amano R, Tanaka T, Nakamura Y, Kawai G, Sakamoto T, Kozu T. The Runt domain of AML1 (RUNX1) binds a sequence-conserved RNA motif that mimics a DNA element. RNA (NEW YORK, N.Y.) 2013; 19:927-936. [PMID: 23709277 PMCID: PMC3683927 DOI: 10.1261/rna.037879.112] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 03/28/2013] [Indexed: 06/02/2023]
Abstract
AML1 (RUNX1) is a key transcription factor for hematopoiesis that binds to the Runt-binding double-stranded DNA element (RDE) of target genes through its N-terminal Runt domain. Aberrations in the AML1 gene are frequently found in human leukemia. To better understand AML1 and its potential utility for diagnosis and therapy, we obtained RNA aptamers that bind specifically to the AML1 Runt domain. Enzymatic probing and NMR analyses revealed that Apt1-S, which is a truncated variant of one of the aptamers, has a CACG tetraloop and two stem regions separated by an internal loop. All the isolated aptamers were found to contain the conserved sequence motif 5'-NNCCAC-3' and 5'-GCGMGN'N'-3' (M:A or C; N and N' form Watson-Crick base pairs). The motif contains one AC mismatch and one base bulged out. Mutational analysis of Apt1-S showed that three guanines of the motif are important for Runt binding as are the three guanines of RDE, which are directly recognized by three arginine residues of the Runt domain. Mutational analyses of the Runt domain revealed that the amino acid residues used for Apt1-S binding were similar to those used for RDE binding. Furthermore, the aptamer competed with RDE for binding to the Runt domain in vitro. These results demonstrated that the Runt domain of the AML1 protein binds to the motif of the aptamer that mimics DNA. Our findings should provide new insights into RNA function and utility in both basic and applied sciences.
Collapse
Affiliation(s)
- Junichi Fukunaga
- Research Institute for Clinical Oncology, Saitama Cancer Center, Ina, Saitama 362-0806, Japan
- CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Yusuke Nomura
- CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan
- Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yoichiro Tanaka
- Research Institute for Clinical Oncology, Saitama Cancer Center, Ina, Saitama 362-0806, Japan
- CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan
- Facility for RI Research and Education, Instrumental Analysis Center, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Ryo Amano
- Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | - Taku Tanaka
- CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan
- Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | - Yoshikazu Nakamura
- CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan
- Department of Basic Medical Sciences, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Gota Kawai
- Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | - Taiichi Sakamoto
- CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan
- Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | - Tomoko Kozu
- Research Institute for Clinical Oncology, Saitama Cancer Center, Ina, Saitama 362-0806, Japan
- CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan
| |
Collapse
|
8
|
Qin S, Zhou HX. PI 2PE: A Suite of Web Servers for Predictions Ranging From Protein Structure to Binding Kinetics. Biophys Rev 2012; 5:41-46. [PMID: 23526172 DOI: 10.1007/s12551-012-0086-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
PI2PE (http://pipe.sc.fsu.edu) is a suite of four web servers for predicting a variety of folding- and binding-related properties of proteins. These include the solvent accessibility of amino acids upon protein folding, the amino acids forming the interfaces of protein-protein and protein-nucleic acid complexes, and the binding rate constants of these complexes. Three of the servers debuted in 2007, and have garnered ~2,500 unique users and finished over 30,000 jobs. The functionalities of these servers are now enhanced, and a new sever, for predicting the binding rate constants, is added. Together, these web servers form a pipeline from protein sequence to tertiary structure, then to quaternary structure, and finally to binding kinetics.
Collapse
Affiliation(s)
- Sanbo Qin
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306, USA
| | | |
Collapse
|
9
|
Han MS, Kim HJ, Wee HJ, Lim KE, Park NR, Bae SC, van Wijnen AJ, Stein JL, Lian JB, Stein GS, Choi JY. The cleidocranial dysplasia-related R131G mutation in the Runt-related transcription factor RUNX2 disrupts binding to DNA but not CBF-beta. J Cell Biochem 2010; 110:97-103. [PMID: 20225274 DOI: 10.1002/jcb.22516] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cleidocranial dysplasia (CCD) is caused by haploinsufficiency in RUNX2 function. We have previously identified a series of RUNX2 mutations in Korean CCD patients, including a novel R131G missense mutation in the Runt-homology domain. Here, we examine the functional consequences of the RUNX2(R131G) mutation, which could potentially affect DNA binding, nuclear localization signal, and/or heterodimerization with core-binding factor-beta (CBF-beta). Immunofluorescence microscopy and western blot analysis with subcellular fractions show that RUNX2(R131G) is localized in the nucleus. Immunoprecipitation analysis reveals that heterodimerization with CBF-beta is retained. However, precipitation assays with biotinylated oligonucleotides and reporter gene assays with RUNX2 responsive promoters together reveal that DNA-binding activity and consequently the transactivation of potential of RUNX2(R131G) is abrogated. We conclude that loss of DNA binding, but not nuclear localization or CBF-beta heterodimerization, causes RUNX2 haploinsufficiency in patients with the RUNX2(R131G) mutation. Retention of specific functions including nuclear localization and binding to CBF-beta of the RUNX2(R131G) mutation may render the mutant protein an effective competitor that interferes with wild-type function.
Collapse
Affiliation(s)
- Min-Su Han
- Department of Biochemistry and Cell Biology, School of Medicine, WCU Program, Cell and Matrix Research Institute, Kyungpook National University, Daegu 700-422, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Szelag M, Potla R, Sisler J, Hamed H, Dent P, Larner AC. STAT1 Expression represses the expression of mitochondrial encoded RNAS. Cytokine 2009. [DOI: 10.1016/j.cyto.2009.07.522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Zhang HY, Jin L, Stilling GA, Ruebel KH, Coonse K, Tanizaki Y, Raz A, Lloyd RV. RUNX1 and RUNX2 upregulate Galectin-3 expression in human pituitary tumors. Endocrine 2009; 35:101-11. [PMID: 19020999 PMCID: PMC2927870 DOI: 10.1007/s12020-008-9129-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 10/09/2008] [Accepted: 10/13/2008] [Indexed: 01/17/2023]
Abstract
Galectin-3 is expressed in a cell-type specific manner in human pituitary tumors and may have a role in pituitary tumor development. In this study, we hypothesized that Galectin-3 is regulated by RUNX proteins in pituitary tumors. Transcription factor prediction programs revealed several putative binding sites in the LGALS3 (Galectin-3 gene) promoter region. A human pituitary cell line HP75 was used as a model to study LGALS3 and RUNX interactions using Chromatin immunoprecipitation assay and electrophoresis mobility shift assay. Two binding sites for RUNX1 and one binding site for RUNX2 were identified in the LGALS3 promoter region. LGALS3 promoter was further cloned into a luciferase reporter, and the experiments showed that both RUNX1 and RUNX2 upregulated LGALS3. Knock-down of either RUNX1 or RUNX2 by siRNA resulted in a significant downregulation of Galectin-3 expression and decreased cell proliferation in the HP 75 cell line. Immunohistochemistry showed a close correlation between Galectin-3 expression and RUNX1/RUNX2 level in pituitary tumors. These results demonstrate a novel binding target for RUNX1 and RUNX2 proteins and suggest that Galectin-3 is regulated by RUNX1 and RUNX2 in human pituitary tumor cells by direct binding to the promoter region of LGALS3 and thus may contribute to pituitary tumor progression.
Collapse
Affiliation(s)
- He-Yu Zhang
- Department of Pathology, Mayo Clinic College of Medicine, 200, 1 Street SW, Rochester, MN 55905, USA
| | - Long Jin
- Department of Pathology, Mayo Clinic College of Medicine, 200, 1 Street SW, Rochester, MN 55905, USA
| | - Gail A. Stilling
- Department of Pathology, Mayo Clinic College of Medicine, 200, 1 Street SW, Rochester, MN 55905, USA
| | - Katharina H. Ruebel
- Department of Pathology, Mayo Clinic College of Medicine, 200, 1 Street SW, Rochester, MN 55905, USA
| | - Kendra Coonse
- Department of Pathology, Mayo Clinic College of Medicine, 200, 1 Street SW, Rochester, MN 55905, USA
| | - Yoshinori Tanizaki
- Department of Pathology, Mayo Clinic College of Medicine, 200, 1 Street SW, Rochester, MN 55905, USA
| | - Avraham Raz
- Tumor Progression and Metastasis Program, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
| | - Ricardo V. Lloyd
- Department of Pathology, Mayo Clinic College of Medicine, 200, 1 Street SW, Rochester, MN 55905, USA
| |
Collapse
|
12
|
Duncan EJ, Wilson MJ, Smith JM, Dearden PK. Evolutionary origin and genomic organisation of runt-domain containing genes in arthropods. BMC Genomics 2008; 9:558. [PMID: 19032778 PMCID: PMC2631020 DOI: 10.1186/1471-2164-9-558] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Accepted: 11/25/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gene clusters, such as the Hox gene cluster, are known to have critical roles in development. In eukaryotes gene clusters arise primarily by tandem gene duplication and divergence. Genes within a cluster are often co-regulated, providing selective pressure to maintain the genome organisation, and this co-regulation can result in temporal or spatial co-linearity of gene expression. It has been previously noted that in Drosophila melanogaster, three of the four runt-domain (RD) containing genes are found in a relatively tight cluster on chromosome 1, raising the possibility of a putative functional RD gene cluster in D. melanogaster. RESULTS To investigate the possibility of such a gene cluster, orthologues of the Drosophila melanogaster RD genes were identified in several endopterygotan insects, two exopterygotan insects and two non-insect arthropods. In all insect species four RD genes were identified and orthology was assigned to the Drosophila sequences by phylogenetic analyses. Although four RD genes were found in the crustacean D. pulex, orthology could not be assigned to the insect sequences, indicating independent gene duplications from a single ancestor following the split of the hexapod lineage from the crustacean lineage.In insects, two chromosomal arrangements of these genes was observed; the first a semi-dispersed cluster, such as in Drosophila, where lozenge is separated from the core cluster of three RD genes often by megabases of DNA. The second arrangement was a tight cluster of the four RD genes, such as in Apis mellifera.This genomic organisation, particularly of the three core RD genes, raises the possibility of shared regulatory elements. In situ hybridisation of embryonic expression of the four RD genes in Drosophila melanogaster and the honeybee A. mellifera shows no evidence for either spatial or temporal co-linearity of expression during embryogenesis. CONCLUSION All fully sequenced insect genomes contain four RD genes and orthology can be assigned to these genes based on similarity to the D. melanogaster protein sequences. Examination of the genomic organisation of these genes provides evidence for a functional RD gene cluster. RD genes from non-insect arthropods are also clustered, however the lack of orthology between these and insect RD genes suggests this cluster is likely to have resulted from a duplication event independent from that which created the insect RD gene cluster. Analysis of embryonic RD gene expression in two endopterygotan insects, A. mellifera and D. melanogaster, did not show evidence for coordinated gene expression, therefore while the functional significance of this gene cluster remains unknown its maintenance during insect evolution implies some functional significance to the cluster.
Collapse
Affiliation(s)
- Elizabeth J Duncan
- Laboratory for Evolution and Development, University of Otago, PO Box 56, Dunedin, Aotearoa-New Zealand
| | | | | | | |
Collapse
|
13
|
Zhang F, Sham PC, Fan H, Xu Y, Huang X, So H, Song Y, Liu P. An association study of ADSS gene polymorphisms with schizophrenia. Behav Brain Funct 2008; 4:39. [PMID: 18721483 PMCID: PMC2553416 DOI: 10.1186/1744-9081-4-39] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2008] [Accepted: 08/24/2008] [Indexed: 01/19/2023] Open
Abstract
Background Adenylosuccinate synthase (ADSS) catalyzes the first committed step of AMP synthesis. It was suggested that the blood-derived RNA of ADSS was down-regulated in schizophrenia (SZ) and one of the eight putative biomarker genes to discriminate SZ from normal controls. However, it remains unclear whether the reduction of ADSS RNA is due to the polymorphisms of the gene or not. Methods We attempted to examine the association of ADSS gene with schizophrenia in a Chinese population of 480 schizophrenics and 502 normal controls. Genotyping was performed by the Sequenom platform. Results The 6 marker SNPs (rs3102460, rs3127459, rs3127460, rs3127465, rs3006001, and rs3003211) were genotyped. The frequencies of alleles, genotypes, and haplotypes were tested between cases and controls. There was no significant difference of genotypic, allelic, or haplotypic distributions of the 6 SNPs between the two groups. Conclusion Our data did not support ADSS gene as a susceptibility gene for SZ in Chinese Han population. Large sample size study is needed to validate or replicate our association study, especially from other ethnic populations.
Collapse
Affiliation(s)
- Fuquan Zhang
- Institute of Neurological disorders, Tsinghua University; Department of Psychiatry, Yuquan Hospital, Tsinghua University, Bejing, 100049, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Okumura AJ, Peterson LF, Lo MC, Zhang DE. Expression of AML/Runx and ETO/MTG family members during hematopoietic differentiation of embryonic stem cells. Exp Hematol 2007; 35:978-88. [PMID: 17533052 DOI: 10.1016/j.exphem.2007.03.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2006] [Revised: 02/28/2007] [Accepted: 03/01/2007] [Indexed: 11/20/2022]
Abstract
Runx1/AML1 plays important roles in hematopoiesis, including the commitment of cells to hematopoiesis during embryonic development, and in the maintenance of hematopoietic cell populations. It is also one of the most common genes involved in chromosomal translocations related to leukemia. One such translocation is t(8;21), which fuses the Runx1 gene to the MTG8/ETO gene and generates the Runx1-MTG8 (AML1-ETO) fusion gene. Both Runx1 and MTG8 have two additional family members that are much less studied in hematopoiesis. Here we report the expression of every member of the Runx and MTG families as well as the Runx heterodimerization partner CBFbeta during hematopoietic differentiation of murine embryonic stem cells. We observed substantially increased expression of Runx1, Runx2, and MTG16 during hematopoietic differentiation. Furthermore, the increase in Runx2 expression is delayed relative to Runx1 expression, suggesting their possible sequential contribution to hematopoiesis.
Collapse
Affiliation(s)
- Akiko Joo Okumura
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
15
|
Noble M, Mayer-Pröschel M, Pröschel C. Redox regulation of precursor cell function: insights and paradoxes. Antioxid Redox Signal 2005; 7:1456-67. [PMID: 16356108 DOI: 10.1089/ars.2005.7.1456] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Studies on oligodendrocytes, the myelin-forming cells of the central nervous system, and on the progenitor cells from which they are derived, have provided several novel insights into the role of intracellular redox state in cell function. This review discusses our findings indicating that intracellular redox state is utilized by the organism as a means of regulating the balance between progenitor cell division and differentiation. This regulation is achieved in part through cell-intrinsic differences that modify the response of cells to extracellular signaling molecules, such that cells that are slightly more reduced are more responsive to inducers of cell survival and division and less responsive to inducers of differentiation or cell death. Cells that are slightly more oxidized, in contrast, show a greater response to inducers of differentiation or cell death, but less response to inducers of proliferation or survival. Regulation is also achieved by the ability of exogenous signaling molecules to modify intracellular redox state in a highly predictable manner, such that signaling molecules that promote self-renewal make progenitor cells more reduced and those that promote differentiation make cells more oxidized. In both cases, the redox changes induced by exposure to exogenous signaling molecules are a necessary component of their mode of action. Paradoxically, the results obtained through studies on the oligodendrocyte lineage are precisely the opposite of what might be predicted from a large number of studies demonstrating the ability of reactive oxidative species to enhance the effects of signaling through receptor tyrosine kinase receptors and to promote cell proliferation. Taken in sum, available data demonstrate clearly the existence of two distinct programs of cellular responses to changes in oxidative status. In one of these, becoming even slightly more oxidized is sufficient to inhibit proliferation and induce differentiation. In the second program, similar changes enhance proliferation. It is not yet clear how cells can interpret putatively identical signals in such opposite manners, but it does already seem clear that resolving this paradox will provide insights of considerable relevance to the understanding of normal development, tissue repair, and tumorigenesis.
Collapse
Affiliation(s)
- Mark Noble
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | | | | |
Collapse
|
16
|
Habtemariam B, Anisimov VM, MacKerell AD. Cooperative binding of DNA and CBFbeta to the Runt domain of the CBFalpha studied via MD simulations. Nucleic Acids Res 2005; 33:4212-22. [PMID: 16049027 PMCID: PMC1180745 DOI: 10.1093/nar/gki724] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Runt domain (RD) is the DNA-binding region of the Runx genes. A related protein, known as core binding factor beta (CBFbeta) also binds to the RD to enhance RD-DNA interaction by 6- to 10-fold. Here, we report results from molecular dynamics (MD) simulations of RD alone, as a dimer in complexes with DNA and CBFbeta and in a ternary complex with DNA and CBFbeta. Consistent with the experimental findings, in the presence of CBFbeta the estimated free energy of binding of RD to the DNA is more favorable, which is shown to be due to more favorable intermolecular interactions and desolvation contributions. Also contributing to the enhanced binding are favorable intramolecular interactions between the 'wing' residues (RD residues 139-145) and the 'wing1' residues (RD residues 104-116). The simulation studies also indicate that the RD-CBFbeta binding is more favorable in the presence of DNA due to a more favorable RD-CBFbeta interaction energy. In addition, it is predicted that long-range interactions involving ionic residues contribute to binding cooperativity. Results from the MD calculations are used to interpret a variety of experimental mutagenesis data. A novel role for RD Glu116 to the RD-CBFbeta interaction is predicted.
Collapse
Affiliation(s)
| | | | - Alexander D. MacKerell
- To whom correspondence should be addressed at 20 Penn Street, Baltimore, MD 21201, USA. Tel: +1 706 410 7442; Fax: +1 410 706 5017;
| |
Collapse
|
17
|
Costessi A, Pines A, D'Andrea P, Romanello M, Damante G, Cesaratto L, Quadrifoglio F, Moro L, Tell G. Extracellular nucleotides activate Runx2 in the osteoblast-like HOBIT cell line: a possible molecular link between mechanical stress and osteoblasts' response. Bone 2005; 36:418-32. [PMID: 15777650 DOI: 10.1016/j.bone.2004.10.016] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Revised: 10/18/2004] [Accepted: 10/18/2004] [Indexed: 10/25/2022]
Abstract
Dynamic mechanical loading increases bone density and strength and promotes osteoblast proliferation, differentiation and matrix production, by acting at the gene expression level. Molecular mechanisms through which mechanical forces are conversed into biochemical signalling in bone are still poorly understood. A growing body of evidence point to extracellular nucleotides (i.e., ATP and UTP) as soluble factors released in response to mechanical stimulation in different cell systems. Runx2, a fundamental transcription factor involved in controlling osteoblasts differentiation, has been recently identified as a target of mechanical signals in osteoblastic cells. We tested the hypothesis that these extracellular nucleotides could be able to activate Runx2 in the human osteoblastic HOBIT cell line. We found that ATP and UTP treatments, as well as hypotonic stress, promote a significant stimulation of Runx2 DNA-binding activity via a mechanism involving PKC and distinct mitogen-activated protein kinase cascades. In fact, by using the specific inhibitors SB203580 (specific for p38 MAPK) and PD98059 (specific for ERK-1/2 MAPK), we found that ERK-1/2, but not p38, play a major role in Runx2 activation. On the contrary, another important transcription factor, i.e., Egr-1, that we previously demonstrated being activated by extracellular released nucleotides in this osteoblastic cell line, demonstrated to be susceptible to both ERK-1/2 and p38 kinases. These data suggest a possible differential involvement of these two transcription factors in response to extracellularly released nucleotides. The biological relevance of our data is strengthened by the finding that a target gene of Runx2, i.e., Galectin-3, is up-regulated by ATP stimulation of HOBIT cells with a comparable kinetic of that found for Runx2. Since it is known that osteocytes are the primary mechanosensory cells of the bone, we hypothesize that they may signal mechanical loading to osteoblasts through release of extracellular nucleotides. Altogether, these data suggest a molecular mechanism explaining the purinoreceptors-mediated activation of specific gene expression in osteoblasts and could be of help in setting up new pharmacological strategies for the intervention in bone loss pathologies.
Collapse
Affiliation(s)
- Adalberto Costessi
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Chandrasekaran K, Mehrabian Z, Li XL, Hassel B. RNase-L regulates the stability of mitochondrial DNA-encoded mRNAs in mouse embryo fibroblasts. Biochem Biophys Res Commun 2005; 325:18-23. [PMID: 15522195 DOI: 10.1016/j.bbrc.2004.10.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2004] [Indexed: 10/26/2022]
Abstract
Accelerated decrease in the levels of mitochondrial DNA-encoded mRNA (mt-mRNA) occurs in neuronal cells exposed either to the excitatory amino acid, glutamate or to the sodium ionophore, monensin, suggesting a role of mitochondrial RNase(s) on the stability of mt-mRNAs. Here we report that in mouse embryo fibroblasts that are devoid of the interferon-regulated RNase, RNase-L, the monensin-induced decrease in the half-life of mt-mRNA was reduced. In monensin (250 nM)-treated RNase-L(+/+) cells the average half-life of mt-mRNA, determined after termination of transcription with actinomycin D, was found to be 3h, whereas in monensin-treated RNase-L(-/-) cells the half-life of mt-mRNA was >6h. In contrast, the stability of nuclear DNA-encoded beta-actin mRNA was unaffected. Induction of RNase-L expression in mouse 3T3 fibroblasts further decreased the monensin-induced reduction in mt-mRNA half-life to 1.5h. The results indicate that the RNase-L-dependent decrease in mtDNA-encoded mRNA transcript levels occurs through a decrease in the half-life of mt-mRNA, and that RNase-L may play a role in the stability of mt-mRNA.
Collapse
Affiliation(s)
- Krish Chandrasekaran
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | | | | |
Collapse
|
19
|
Yan J, Liu Y, Lukasik SM, Speck NA, Bushweller JH. CBFbeta allosterically regulates the Runx1 Runt domain via a dynamic conformational equilibrium. Nat Struct Mol Biol 2004; 11:901-6. [PMID: 15322525 DOI: 10.1038/nsmb819] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2004] [Accepted: 06/18/2004] [Indexed: 11/09/2022]
Abstract
Core binding factors (CBFs) are heterodimeric transcription factors consisting of a DNA-binding CBFalpha subunit and non-DNA-binding CBFbeta subunit. The CBFbeta subunit increases the affinity of the DNA-binding Runt domain of CBFalpha for DNA while making no direct contacts to the DNA. We present evidence for conformational exchange in the S-switch region in a Runt domain-DNA complex that is quenched upon CBFbeta binding. Analysis of (15)N backbone relaxation parameters shows that binding of CBFbeta reduces the backbone dynamics in the microsecond-to-millisecond time frame for several regions of the Runt domain that make energetically important contacts with the DNA. The DNA also undergoes conformational exchange in the Runt domain-DNA complex that is quenched in the presence of CBFbeta. Our results indicate that allosteric regulation by the CBFbeta subunit is mediated by a shift in an existing dynamic conformational equilibrium of both the Runt domain and DNA.
Collapse
Affiliation(s)
- Jiangli Yan
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22906, USA
| | | | | | | | | |
Collapse
|
20
|
Zhang L, Li Z, Yan J, Pradhan P, Corpora T, Cheney MD, Bravo J, Warren AJ, Bushweller JH, Speck NA. Mutagenesis of the Runt domain defines two energetic hot spots for heterodimerization with the core binding factor beta subunit. J Biol Chem 2003; 278:33097-104. [PMID: 12807883 DOI: 10.1074/jbc.m303972200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Core-binding factors (CBFs) are a small family of heterodimeric transcription factors that play critical roles in several developmental pathways and in human disease. Mutations in CBF genes are found in leukemias, bone disorders, and gastric cancers. CBFs consist of a DNA-binding CBF alpha subunit (Runx1, Runx2, or Runx3) and a non-DNA-binding CBF beta subunit. CBF alpha binds DNA in a sequence-specific manner, whereas CBF beta enhances DNA binding by CBF alpha. Both DNA binding and heterodimerization with CBF beta are mediated by a single domain in the CBF alpha subunits known as the "Runt domain." We analyzed the energetic contribution of amino acids in the Runx1 Runt domain to heterodimerization with CBF beta. We identified two energetic "hot spots" that were also found in a similar analysis of CBF beta (Tang, Y.-Y., Shi, J., Zhang, L., Davis, A., Bravo, J., Warren, A. J., Speck, N. A., and Bushweller, J. H. (2000) J. Biol. Chem. 275, 39579-39588). The importance of the hot spot residues for Runx1 function was demonstrated in in vivo transient transfection assays. These data refine the structural analyses and further our understanding of the Runx1-CBF beta interface.
Collapse
Affiliation(s)
- Lina Zhang
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Li Z, Yan J, Matheny CJ, Corpora T, Bravo J, Warren AJ, Bushweller JH, Speck NA. Energetic contribution of residues in the Runx1 Runt domain to DNA binding. J Biol Chem 2003; 278:33088-96. [PMID: 12807882 DOI: 10.1074/jbc.m303973200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Core-binding factors (CBFs) are a small family of heterodimeric transcription factors that play critical roles in hematopoiesis and in the development of bone, stomach epithelium, and proprioceptive neurons. Mutations in CBF genes are found in leukemias, bone disorders, and gastric cancer. CBFs consist of a DNA-binding CBF alpha subunit and a non-DNA-binding CBF beta subunit. DNA binding and heterodimerization with CBF beta are mediated by the Runt domain in CBF alpha. Here we report an alanine-scanning mutagenesis study of the Runt domain that targeted amino acids identified by structural studies to reside at the DNA or CBF beta interface, as well as amino acids mutated in human disease. We determined the energy contributed by each of the DNA-contacting residues in the Runt domain to DNA binding both in the absence and presence of CBF beta. We propose mechanisms by which mutations in the Runt domain found in hematopoietic and bone disorders affect its affinity for DNA.
Collapse
Affiliation(s)
- Zhe Li
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Rennert J, Coffman JA, Mushegian AR, Robertson AJ. The evolution of Runx genes I. A comparative study of sequences from phylogenetically diverse model organisms. BMC Evol Biol 2003; 3:4. [PMID: 12659662 PMCID: PMC153517 DOI: 10.1186/1471-2148-3-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2002] [Accepted: 03/24/2003] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Runx genes encode proteins defined by the highly conserved Runt DNA-binding domain. Studies of Runx genes and proteins in model organisms indicate that they are key transcriptional regulators of animal development. However, little is known about Runx gene evolution. RESULTS A phylogenetically broad sampling of publicly available Runx gene sequences was collected. In addition to the published sequences from mouse, sea urchin, Drosophila melanogaster and Caenorhabditis elegans, we collected several previously uncharacterised Runx sequences from public genome sequence databases. Among deuterostomes, mouse and pufferfish each contain three Runx genes, while the tunicate Ciona intestinalis and the sea urchin Strongylocentrotus purpuratus were each found to have only one Runx gene. Among protostomes, C. elegans has a single Runx gene, while Anopheles gambiae has three and D. melanogaster has four, including two genes that have not been previously described. Comparative sequence analysis reveals two highly conserved introns, one within and one just downstream of the Runt domain. All vertebrate Runx genes utilize two alternative promoters. CONCLUSIONS In the current public sequence database, the Runt domain is found only in bilaterians, suggesting that it may be a metazoan invention. Bilaterians appear to ancestrally contain a single Runx gene, suggesting that the multiple Runx genes in vertebrates and insects arose by independent duplication events within those respective lineages. At least two introns were present in the primordial bilaterian Runx gene. Alternative promoter usage arose prior to the duplication events that gave rise to three Runx genes in vertebrates.
Collapse
Affiliation(s)
- Jessica Rennert
- Stowers Institute for Medical Research, 1000 E. 50Street, Kansas City, MO 64110, USA
- Computational Biosciences Program, Arizona State University, Tempe, AZ 85287, USA
| | - James A Coffman
- Stowers Institute for Medical Research, 1000 E. 50Street, Kansas City, MO 64110, USA
| | - Arcady R Mushegian
- Stowers Institute for Medical Research, 1000 E. 50Street, Kansas City, MO 64110, USA
| | - Anthony J Robertson
- Stowers Institute for Medical Research, 1000 E. 50Street, Kansas City, MO 64110, USA
| |
Collapse
|
23
|
Zhang L, Lukasik SM, Speck NA, Bushweller JH. Structural and functional characterization of Runx1, CBF beta, and CBF beta-SMMHC. Blood Cells Mol Dis 2003; 30:147-56. [PMID: 12732176 DOI: 10.1016/s1079-9796(03)00022-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Core binding factors (CBFs) are heterodimeric transcription factors consisting of a DNA-binding CBF alpha subunit and non-DNA-binding CBF beta subunit. DNA binding and heterodimerization is mediated by a single domain in the CBF alpha subunit called the Runt domain, while sequences flanking the Runt domain confer other biochemical activities such as transactivation. On the other hand, the heterodimerization domain in CBF beta is the only functional domain that has been identified in this subunit. The biophysical properties of the Runt domain and the CBF beta heterodimerization domain, and the structures of the isolated domains as well as of the Runt domain-DNA, Runt domain-CBF beta, and ternary Runt domain-CBF beta-DNA complexes, have been characterized over the past several years, and are summarized in this review.
Collapse
Affiliation(s)
- Lina Zhang
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | | | |
Collapse
|
24
|
Vangala RK, Heiss-Neumann MS, Rangatia JS, Singh SM, Schoch C, Tenen DG, Hiddemann W, Behre G. The myeloid master regulator transcription factor PU.1 is inactivated by AML1-ETO in t(8;21) myeloid leukemia. Blood 2003; 101:270-7. [PMID: 12393465 DOI: 10.1182/blood-2002-04-1288] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcription factor PU.1 plays a pivotal role in normal myeloid differentiation. PU.1(-/-) mice exhibit a complete block in myeloid differentiation. Heterozygous PU.1 mutations were reported in some patients with acute myeloid leukemia (AML), but not in AML with translocation t(8;21), which gives rise to the fusion gene AML1-ETO. Here we report a negative functional impact of AML1-ETO on the transcriptional activity of PU.1. AML1-ETO physically binds to PU.1 in t(8;21)(+) Kasumi-1 cells. AML1-ETO binds to the beta(3)beta(4) region in the DNA-binding domain of PU.1 and displaces the coactivator c-Jun from PU.1, thus down-regulating the transcriptional activity of PU.1. This physical interaction of AML1-ETO and PU.1 did not abolish the DNA-binding capacity of PU.1. AML1-ETO down-regulates the transactivation capacity of PU.1 in myeloid U937 cells, and the expression levels of PU.1 target genes in AML French-American-British (FAB) subtype M2 patients with t(8;21) were lower than in patients without t(8;21). Conditional expression of AML1-ETO causes proliferation in mouse bone marrow cells and inhibits antiproliferative function of PU.1. Overexpression of PU.1, however, differentiates AML1-ETO-expressing Kasumi-1 cells to the monocytic lineage. Thus, the function of PU.1 is down-regulated by AML1-ETO in t(8;21) myeloid leukemia, whereas overexpression of PU.1 restores normal differentiation.
Collapse
MESH Headings
- Animals
- Binding Sites
- Bone Marrow Cells/cytology
- Cell Differentiation
- Cell Division
- Chromosomes, Human, Pair 21
- Chromosomes, Human, Pair 8
- Core Binding Factor Alpha 2 Subunit
- Down-Regulation/drug effects
- Humans
- Leukemia, Myeloid, Acute/etiology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Mice
- Oncogene Proteins, Fusion/metabolism
- Oncogene Proteins, Fusion/pharmacology
- Oncogene Proteins, Fusion/physiology
- Protein Binding
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins/physiology
- Proto-Oncogene Proteins c-jun
- RUNX1 Translocation Partner 1 Protein
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Trans-Activators/physiology
- Transcription Factors/metabolism
- Transcription Factors/pharmacology
- Transcription Factors/physiology
- Transcription, Genetic/drug effects
- Translocation, Genetic
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Rajani K Vangala
- Department of Internal Medicine III, University Hospital Grosshadern, Ludwig-Maximilians-University Munich and GSF-National Research Center for Environment and Health, Germany
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Bartfeld D, Shimon L, Couture GC, Rabinovich D, Frolow F, Levanon D, Groner Y, Shakked Z. DNA recognition by the RUNX1 transcription factor is mediated by an allosteric transition in the RUNT domain and by DNA bending. Structure 2002; 10:1395-407. [PMID: 12377125 DOI: 10.1016/s0969-2126(02)00853-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Runt domain proteins are transcription regulators of major developmental pathways. Here we present the crystal structures of the Runt domain (RD) of the human protein RUNX1 and its DNA binding site in their free states and compare them with the published crystal structures of RD bound to DNA and to the partner protein CBFbeta. We demonstrate that (1) RD undergoes an allosteric transition upon DNA binding, which is further stabilized by CBFbeta, and that (2) the free DNA target adopts a bent-helical conformation compatible with that of the complex. These findings elucidate the mechanism by which CBFbeta enhances RD binding to DNA as well as the role of the intrinsic conformation of the DNA target in the recognition process.
Collapse
Affiliation(s)
- Deborah Bartfeld
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Langabeer SE, Gale RE, Rollinson SJ, Morgan GJ, Linch DC. Mutations of the AML1 gene in acute myeloid leukemia of FAB types M0 and M7. Genes Chromosomes Cancer 2002; 34:24-32. [PMID: 11921279 DOI: 10.1002/gcc.10031] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The AML1 gene encodes a transcription factor that, together with its heterodimeric partner CBFB, regulates a number of target genes that are essential for normal hemopoiesis. In acute myeloid leukemia (AML), AML1 is disrupted not only by chromosomal translocations but also by mutations in the runt domain, which binds both DNA and CBFB. Acquired mutations have been described predominantly in the AML FAB type M0. To date, most patients appear to have biallelic disease, suggesting a complete lack of normal AML1 function. Inherited loss of function mutations thought to lead to haploinsufficiency also have been described in patients who have a familial disorder with predisposition to AML (FPD/AML), indicating the role of AML1 in megakaryopoiesis. Using single-strand conformation polymorphism analysis, we studied the AML1 runt domain in 41 patients with M0 AML and identified potentially pathologic mutations in five (12%). Biallelic disease could be confirmed in only one patient, using loss of heterozygosity studies. At least three of the mutations would lead to truncated proteins similar to those reported in FPD/AML, suggesting that haploinsufficiency plays a role in the pathogenesis of this minimally differentiated type of leukemia. The incidence of acquired mutations in AML patients with acute megakaryoblastic leukemia (FAB type M7) was the same as that reported in other non-M0 patients, with only one mutation detected in 20 (5%) patients studied.
Collapse
MESH Headings
- Adult
- Aged
- Core Binding Factor Alpha 2 Subunit
- DNA Mutational Analysis
- DNA-Binding Proteins/genetics
- Female
- Humans
- Leukemia, Megakaryoblastic, Acute/classification
- Leukemia, Megakaryoblastic, Acute/genetics
- Leukemia, Megakaryoblastic, Acute/immunology
- Leukemia, Myeloid, Acute/classification
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Loss of Heterozygosity/genetics
- Male
- Middle Aged
- Molecular Sequence Data
- Mutation/genetics
- Proto-Oncogene Proteins
- Recurrence
- Remission Induction
- Transcription Factors/genetics
Collapse
Affiliation(s)
- Stephen E Langabeer
- Department of Haematology, University College London, London, United Kingdom.
| | | | | | | | | |
Collapse
|
27
|
Kalev-Zylinska ML, Horsfield JA, Flores MVC, Postlethwait JH, Vitas MR, Baas AM, Crosier PS, Crosier KE. Runx1 is required for zebrafish blood and vessel development and expression of a human RUNX1-CBF2T1 transgene advances a model for studies of leukemogenesis. Development 2002; 129:2015-30. [PMID: 11934867 DOI: 10.1242/dev.129.8.2015] [Citation(s) in RCA: 206] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
RUNX1/AML1/CBFA2 is essential for definitive hematopoiesis, and chromosomal translocations affecting RUNX1 are frequently involved in human leukemias. Consequently, the normal function of RUNX1 and its involvement in leukemogenesis remain subject to intensive research. To further elucidate the role of RUNX1 in hematopoiesis, we cloned the zebrafish ortholog (runx1) and analyzed its function using this model system. Zebrafish runx1 is expressed in hematopoietic and neuronal cells during early embryogenesis. runx1 expression in the lateral plate mesoderm co-localizes with the hematopoietic transcription factor scl, and expression of runx1 is markedly reduced in the zebrafish mutants spadetail and cloche. Transient expression of runx1 in cloche embryos resulted in partial rescue of the hematopoietic defect. Depletion of Runx1 with antisense morpholino oligonucleotides abrogated the development of both blood and vessels, as demonstrated by loss of circulation, incomplete development of vasculature and the accumulation of immature hematopoietic precursors. The block in definitive hematopoiesis is similar to that observed in Runx1 knockout mice, implying that zebrafish Runx1 has a function equivalent to that in mammals. Our data suggest that zebrafish Runx1 functions in both blood and vessel development at the hemangioblast level, and contributes to both primitive and definitive hematopoiesis. Depletion of Runx1 also caused aberrant axonogenesis and abnormal distribution of Rohon-Beard cells, providing the first functional evidence of a role for vertebrate Runx1 in neuropoiesis.To provide a base for examining the role of Runx1 in leukemogenesis, we investigated the effects of transient expression of a human RUNX1-CBF2T1 transgene [product of the t(8;21) translocation in acute myeloid leukemia] in zebrafish embryos. Expression of RUNX1-CBF2T1 caused disruption of normal hematopoiesis, aberrant circulation, internal hemorrhages and cellular dysplasia. These defects reproduce those observed in Runx1-depleted zebrafish embryos and RUNX1-CBF2T1 knock-in mice. The phenotype obtained with transient expression of RUNX1-CBF2T1 validates the zebrafish as a model system to study t(8;21)-mediated leukemogenesis.
Collapse
|
28
|
Nagata T, Werner MH. Functional mutagenesis of AML1/RUNX1 and PEBP2 beta/CBF beta define distinct, non-overlapping sites for DNA recognition and heterodimerization by the Runt domain. J Mol Biol 2001; 308:191-203. [PMID: 11327761 DOI: 10.1006/jmbi.2001.4596] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Runt domain family of transcription factors play key roles in transcriptional regulation of definitive hematopoiesis and osteogenesis. This transcription factor family is characterized by a DNA-binding alpha-subunit harboring the Runt domain and a secondary subunit, beta, which binds to the Runt domain and enhances its interaction with DNA. Missense mutations in the Runt domain from either the blood or bone-related gene product are associated with the onset of acute human leukemia as well as a disease of skeletal patterning known as cleidocranial dysplasia. NMR "footprinting" analysis of Runt domain/beta/DNA ternary complexes in solution previously identified the likely residues that form the heterodimerization and DNA-binding surfaces of the Runt domain. Functional mutagenesis at 37 positions in the Runt domain or beta confirms the original identification of these interaction surfaces and reveals that the heterodimerization and DNA-binding surfaces of the Runt domain occur at distinct, non-overlapping sites within the domain. The analysis of an additional 21 disease-related missense mutations identified from patients with either blood or bone disease demonstrates that the primary defect in these patients is a failure in DNA-recognition by the Runt domain. The molecular basis for the DNA-binding defect is analyzed in the context of the three-dimensional structure of the Runt domain in binary and ternary protein/DNA complexes.
Collapse
Affiliation(s)
- T Nagata
- The Rockefeller University, 1230 York Avenue, Box 42, New York, NY 10021, USA
| | | |
Collapse
|
29
|
Tahirov TH, Inoue-Bungo T, Morii H, Fujikawa A, Sasaki M, Kimura K, Shiina M, Sato K, Kumasaka T, Yamamoto M, Ishii S, Ogata K. Structural analyses of DNA recognition by the AML1/Runx-1 Runt domain and its allosteric control by CBFbeta. Cell 2001; 104:755-67. [PMID: 11257229 DOI: 10.1016/s0092-8674(01)00271-9] [Citation(s) in RCA: 257] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The core binding factor (CBF) heterodimeric transcription factors comprised of AML/CBFA/PEBP2alpha/Runx and CBFbeta/PEBP2beta subunits are essential for differentiation of hematopoietic and bone cells, and their mutation is intimately related to the development of acute leukemias and cleidocranial dysplasia. Here, we present the crystal structures of the AML1/Runx-1/CBFalpha(Runt domain)-CBFbeta(core domain)-C/EBPbeta(bZip)-DNA, AML1/Runx-1/CBFalpha(Runt domain)-C/EBPbeta(bZip)-DNA, and AML1/Runx-1/CBFalpha(Runt domain)-DNA complexes. The hydrogen bonding network formed among CBFalpha(Runt domain) and CBFbeta, and CBFalpha(Runt domain) and DNA revealed the allosteric regulation mechanism of CBFalpha(Runt domain)-DNA binding by CBFbeta. The point mutations of CBFalpha related to the aforementioned diseases were also mapped and their effect on DNA binding is discussed.
Collapse
Affiliation(s)
- T H Tahirov
- Kanagawa Academy of Science and Technology (KAST), Yokohama City University School of Medicine, 3-9 Fukuura, Yokohama 236-0004, Kanazawa-ku, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Tang YY, Shi J, Zhang L, Davis A, Bravo J, Warren AJ, Speck NA, Bushweller JH. Energetic and functional contribution of residues in the core binding factor beta (CBFbeta ) subunit to heterodimerization with CBFalpha. J Biol Chem 2000; 275:39579-88. [PMID: 10984496 DOI: 10.1074/jbc.m007350200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Core-binding factors (CBFs) are a small family of heterodimeric transcription factors that play critical roles in several developmental pathways, including hematopoiesis and bone development. Mutations in CBF genes are found in leukemias and bone disorders. CBFs consist of a DNA-binding CBFalpha subunit (Runx1, Runx2, or Runx3) and a non-DNA-binding CBFbeta subunit. CBFalpha binds DNA in a sequence-specific manner, whereas CBFbeta enhances DNA binding by CBFalpha. Recent structural analyses of the DNA-binding Runt domain of CBFalpha and the CBFbeta subunit identified the heterodimerization surfaces on each subunit. Here we identify amino acids in CBFbeta that mediate binding to CBFalpha. We determine the energy contributed by each of these amino acids to heterodimerization and the importance of these residues for in vivo function. These data refine the structural analyses and further support the hypothesis that CBFbeta enhances DNA binding by inducing a conformational change in the Runt domain.
Collapse
Affiliation(s)
- Y Y Tang
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Montano MM, Wittmann BM, Bianco NR. Identification and characterization of a novel factor that regulates quinone reductase gene transcriptional activity. J Biol Chem 2000; 275:34306-13. [PMID: 10908561 DOI: 10.1074/jbc.m003880200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The regulation of the quinone reductase (QR) gene as well as other genes involved in detoxification is known to be mediated by an electrophile/antioxidant response element (EpRE/ARE). We have previously observed that QR is up-regulated by the antiestrogen trans-hydroxytamoxifen in breast cancer cells. QR gene regulation by the antiestrogen-occupied estrogen receptor (ER) is mediated by the EpRE-containing region of the human QR gene, and the ER is one of the complex of proteins that binds to the EpRE. In an effort to further understand the mechanism for ER regulation of QR gene we identified other protein factors that regulate QR gene transcriptional activity in breast cancer cells. One of these protein factors, hPMC2 (human homolog of Xenopus gene which prevents mitotic catastrophe), directly binds to the EpRE and interacts with the ER in yeast genetic screening and in vitro assays. Interestingly hPMC2 interacts more strongly to ER beta when compared with ER alpha. In transient transfection assays using reporter constructs containing the EpRE, hPMC2 alone can slightly activate reporter in ER-negative MDA-MB-231 breast cancer cells. The activation of QR gene activity by hPMC2 is enhanced in the presence of ER beta.
Collapse
Affiliation(s)
- M M Montano
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44122, USA.
| | | | | |
Collapse
|
32
|
Abstract
Core binding factor (CBF) is a heterodimeric transcription factor consisting of a DNA-binding subunit (Runx, also referred to as CBFA, AML 1, PEBP2alpha) and a non-DNA-binding subunit (CBFB). Biophysical characterization of the two proteins (and their interactions is providing a detailed understanding of this important transcription factor at the molecular level. Measurements of the relevant binding constants are helping to elucidate the mechanism of leukemogenesis associated with altered forms of these proteins. Determination of the 3D structures of CBFB and the DNA- and CBFB-binding domain of Runx, referred to as the Runt domain, are providing a structural basis for the functioning of the two proteins of CBF.
Collapse
Affiliation(s)
- J H Bushweller
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville 22908-0736, USA.
| |
Collapse
|
33
|
Downing JR, Higuchi M, Lenny N, Yeoh AE. Alterations of the AML1 transcription factor in human leukemia. Semin Cell Dev Biol 2000; 11:347-60. [PMID: 11105899 DOI: 10.1006/scdb.2000.0183] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The identification of clonal chromosomal translocations in human leukemias provided one of the first insights into the underlying pathogenesis of this clinically heterogeneous disease. Over the last decade a large number of these chromosomal rearrangements have been molecularly cloned and the involved genes identified. A surprising finding that has emerged from this work is that many of these chromosomal alterations target the genes encoding the AML1/CBFbeta transcription factor complex, a critical regulator of normal hematopoiesis. In this review, we summarize our present understanding of the mechanisms through which alterations of AML1/CBFbeta contribute to leukemogenesis.
Collapse
Affiliation(s)
- J R Downing
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | | | | | | |
Collapse
|
34
|
Warren AJ, Bravo J, Williams RL, Rabbitts TH. Structural basis for the heterodimeric interaction between the acute leukaemia-associated transcription factors AML1 and CBFbeta. EMBO J 2000; 19:3004-15. [PMID: 10856244 PMCID: PMC203359 DOI: 10.1093/emboj/19.12.3004] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mutations in the genes encoding the interacting proteins AML1 and CBFbeta are the most common genetic abnormalities in acute leukaemia, and congenital mutations in the related AML3 gene are associated with disorders of osteogenesis. Furthermore, the interaction of AML1 with CBFbeta is essential for haematopoiesis. We report the 2.6 A resolution crystal structure of the complex between the AML1 Runt domain and CBFbeta, which represents a paradigm for the mode of interaction of this highly conserved family of transcription factors. The structure demonstrates that point mutations associated with cleidocranial dysplasia map to the conserved heterodimer interface, suggesting a role for CBFbeta in osteogenesis, and reveals a potential protein interaction platform composed of conserved negatively charged residues on the surface of CBFbeta.
Collapse
Affiliation(s)
- A J Warren
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
| | | | | | | |
Collapse
|
35
|
Zhang Y, Derynck R. Transcriptional regulation of the transforming growth factor-beta -inducible mouse germ line Ig alpha constant region gene by functional cooperation of Smad, CREB, and AML family members. J Biol Chem 2000; 275:16979-85. [PMID: 10748032 DOI: 10.1074/jbc.m001526200] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Smads regulate transcription of defined genes in response to transforming growth factor-beta (TGF-beta) receptor activation. This process involves functional cross-talk of Smads with transcription factors at responsive DNA elements to achieve maximal transcription activation and specificity. TGF-beta has been shown to induce transcription of the germ line (GL) Ig alpha constant region gene and to direct class switching to IgA antibodies. It has been shown that acute myeloid leukemia (AML) transcription factors cooperate with Smad3 to stimulate transcription from the GL Ig alpha constant region gene promoter. We report here that the TGF-beta-induced transcription from this promoter requires DNA binding of cAMP-response element-binding protein (CREB) to the nearby ATF/cAMP-response element site and of Smads to a nearby Smad binding sequence. At these sites, Smad3/4 cooperates with CREB to activate transcription in response to TGF-beta, and disruption of either binding sequence abolished TGF-beta-induced transcription. In addition, AML1 or AML2 also binds to the promoter and cooperates with Smad3/4, and in this way further enhances the TGF-beta-induced transcriptional activation of the GL Ig alpha promoter. Thus, whereas Smad3/4, CREB, and AML family members bind independently to the respective DNA sequences in the GL Ig alpha promoter, functional synergy of Smads with CREB and AML proteins results in maximal TGF-beta-induced transcription.
Collapse
Affiliation(s)
- Y Zhang
- Departments of Growth and Development and Anatomy, Programs in Cell Biology and Developmental Biology, University of California at San Francisco, San Francisco, California 94143-0640, USA
| | | |
Collapse
|
36
|
Ward AC, Loeb DM, Soede-Bobok AA, Touw IP, Friedman AD. Regulation of granulopoiesis by transcription factors and cytokine signals. Leukemia 2000; 14:973-90. [PMID: 10865962 DOI: 10.1038/sj.leu.2401808] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The development of mature granulocytes from hematopoietic precursor cells is controlled by a myriad of transcription factors which regulate the expression of essential genes, including those encoding growth factors and their receptors, enzymes, adhesion molecules, and transcription factors themselves. In particular, C/EBPalpha, PU.1, CBF, and c-Myb have emerged as critical players during early granulopoiesis. These transcription factors interact with one another as well as other factors to regulate the expression of a variety of genes important in granulocytic lineage commitment. An important goal remains to understand in greater detail how these various factors act in concert with signals emanating from cytokine receptors to influence the various steps of maturation, from the pluripotent hematopoietic stem cell, to a committed myeloid progenitor, to myeloid precursors, and ultimately to mature granulocytes.
Collapse
Affiliation(s)
- A C Ward
- Institute of Hematology, Erasmus University Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
37
|
Tang YY, Crute BE, Kelley JJ, Huang X, Yan J, Shi J, Hartman KL, Laue TM, Speck NA, Bushweller JH. Biophysical characterization of interactions between the core binding factor alpha and beta subunits and DNA. FEBS Lett 2000; 470:167-72. [PMID: 10734228 DOI: 10.1016/s0014-5793(00)01312-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Core binding factors (CBFs) play key roles in several developmental pathways and in human disease. CBFs consist of a DNA binding CBFalpha subunit and a non-DNA binding CBFbeta subunit that increases the affinity of CBFalpha for DNA. We performed sedimentation equilibrium analyses to unequivocally establish the stoichiometry of the CBFalpha:beta:DNA complex. Dissociation constants for all four equilibria involving the CBFalpha Runt domain, CBFbeta, and DNA were defined. Conformational changes associated with interactions between CBFalpha, CBFbeta, and DNA were monitored by nuclear magnetic resonance and circular dichroism spectroscopy. The data suggest that CBFbeta 'locks in' a high affinity DNA binding conformation of the CBFalpha Runt domain.
Collapse
Affiliation(s)
- Y Y Tang
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Gu TL, Goetz TL, Graves BJ, Speck NA. Auto-inhibition and partner proteins, core-binding factor beta (CBFbeta) and Ets-1, modulate DNA binding by CBFalpha2 (AML1). Mol Cell Biol 2000; 20:91-103. [PMID: 10594012 PMCID: PMC85059 DOI: 10.1128/mcb.20.1.91-103.2000] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Core-binding factor alpha2 (CBFalpha2; otherwise known as AML1 or PEBP2alphaB) is a DNA-binding subunit in the family of core-binding factors (CBFs), heterodimeric transcription factors that play pivotal roles in multiple developmental processes in mammals, including hematopoiesis and bone development. The Runt domain in CBFalpha2 (amino acids 51 to 178) mediates DNA binding and heterodimerization with the non-DNA-binding CBFbeta subunit. Both the CBFbeta subunit and the DNA-binding protein Ets-1 stimulate DNA binding by the CBFalpha2 protein. Here we quantify and compare the extent of cooperativity between CBFalpha2, CBFbeta, and Ets-1. We also identify auto-inhibitory sequences within CBFalpha2 and sequences that modulate its interactions with CBFbeta and Ets-1. We show that sequences in the CBFalpha2 Runt domain and sequences C terminal to amino acid 214 inhibit DNA binding. Sequences C terminal to amino acid 214 also inhibit heterodimerization with the non-DNA-binding CBFbeta subunit, particularly heterodimerization off DNA. CBFbeta rescinds the intramolecular inhibition of CBFalpha2, stimulating DNA binding approximately 40-fold. In comparison, Ets-1 stimulates CBFalpha2 DNA binding 7- to 10-fold. Although the Runt domain alone is sufficient for heterodimerization with CBFbeta, sequences N terminal to amino acid 41 and between amino acids 190 and 214 are required for cooperative DNA binding with Ets-1. Cooperative DNA binding with Ets-1 is less pronounced with the CBFalpha2-CBFbeta heterodimer than with CBFalpha2 alone. These analyses demonstrate that CBFalpha2 is subject to both negative regulation by intramolecular interactions, and positive regulation by two alternative partnerships.
Collapse
Affiliation(s)
- T L Gu
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | |
Collapse
|
39
|
Berardi MJ, Sun C, Zehr M, Abildgaard F, Peng J, Speck NA, Bushweller JH. The Ig fold of the core binding factor alpha Runt domain is a member of a family of structurally and functionally related Ig-fold DNA-binding domains. Structure 1999; 7:1247-56. [PMID: 10545320 DOI: 10.1016/s0969-2126(00)80058-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND CBFA is the DNA-binding subunit of the transcription factor complex called core binding factor, or CBF. Knockout of the Cbfa2 gene in mice leads to embryonic lethality and a profound block in hematopoietic development. Chromosomal disruptions of the human CBFA gene are associated with a large percentage of human leukemias. RESULTS Utilizing nuclear magnetic resonance spectroscopy we have determined the three-dimensional fold of the CBFA Runt domain in its DNA-bound state, showing that it is an s-type immunoglobulin (Ig) fold. DNA binding by the Runt domain is shown to be mediated by loop regions located at both ends of the Runt domain Ig fold. A putative site for CBFB binding has been identified; the spatial location of this site provides a rationale for the ability of CBFB to modulate the affinity of the Runt domain for DNA. CONCLUSIONS Structural comparisons demonstrate that the s-type Ig fold found in the Runt domain is conserved in the Ig folds found in the DNA-binding domains of NF-kappaB, NFAT, p53, STAT-1, and the T-domain. Thus, these proteins form a family of structurally and functionally related DNA-binding domains. Unlike the other members of this family, the Runt domain utilizes loops at both ends of the Ig fold for DNA recognition.
Collapse
Affiliation(s)
- M J Berardi
- Department of Molecular Physiology and Biological Physics University of Virginia, Charlottesville, VA 22906, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Song WJ, Sullivan MG, Legare RD, Hutchings S, Tan X, Kufrin D, Ratajczak J, Resende IC, Haworth C, Hock R, Loh M, Felix C, Roy DC, Busque L, Kurnit D, Willman C, Gewirtz AM, Speck NA, Bushweller JH, Li FP, Gardiner K, Poncz M, Maris JM, Gilliland DG. Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat Genet 1999; 23:166-75. [PMID: 10508512 DOI: 10.1038/13793] [Citation(s) in RCA: 829] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Familial platelet disorder with predisposition to acute myelogenous leukaemia (FPD/AML, MIM 601399) is an autosomal dominant disorder characterized by qualitative and quantitative platelet defects, and propensity to develop acute myelogenous leukaemia (AML). Informative recombination events in 6 FPD/AML pedigrees with evidence of linkage to markers on chromosome 21q identified an 880-kb interval containing the disease gene. Mutational analysis of regional candidate genes showed nonsense mutations or intragenic deletion of one allele of the haematopoietic transcription factor CBFA2 (formerly AML1) that co-segregated with the disease in four FPD/AML pedigrees. We identified heterozygous CBFA2 missense mutations that co-segregated with the disease in the remaining two FPD/AML pedigrees at phylogenetically conserved amino acids R166 and R201, respectively. Analysis of bone marrow or peripheral blood cells from affected FPD/AML individuals showed a decrement in megakaryocyte colony formation, demonstrating that CBFA2 dosage affects megakaryopoiesis. Our findings support a model for FPD/AML in which haploinsufficiency of CBFA2 causes an autosomal dominant congenital platelet defect and predisposes to the acquisition of additional mutations that cause leukaemia.
Collapse
Affiliation(s)
- W J Song
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Li LH, Gergen JP. Differential interactions between Brother proteins and Runt domain proteins in the Drosophila embryo and eye. Development 1999; 126:3313-22. [PMID: 10393111 DOI: 10.1242/dev.126.15.3313] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Brother and Big brother were isolated as Runt-interacting proteins and are homologous to CBF(beta), which interacts with the mammalian CBF(alpha) Runt-domain proteins. In vitro experiments indicate that Brother family proteins regulate the DNA binding activity of Runt-domain proteins without contacting DNA. In both mouse and human there is genetic evidence that the CBF(alpha) and CBF(beta) proteins function together in hematopoiesis and leukemogenesis. Here we demonstrate functional interactions between Brother proteins and Runt domain proteins in Drosophila. First, we show that a specific point mutation in Runt that disrupts interaction with Brother proteins but does not affect DNA binding activity is dysfunctional in several in vivo assays. Interestingly, this mutant protein acts dominantly to interfere with the Runt-dependent activation of Sxl-lethal transcription. To investigate further the requirements for Brother proteins in Drosophila development, we examine the effects of expression of a Brother fusion protein homologous to the dominant negative CBF(beta)::SMMHC fusion protein that is associated with leukemia in humans. This Bro::SMMHC fusion protein interferes with the activity of Runt and a second Runt domain protein, Lozenge. Moreover, we find that the effects of lozenge mutations on eye development are suppressed by expression of wild-type Brother proteins, suggesting that Brother/Big brother dosage is limiting in this developmental context. Results obtained when Runt is expressed in developing eye discs further support this hypothesis. Our results firmly establish the importance of the Brother and Big brother proteins for the biological activities of Runt and Lozenge, and further suggest that Brother protein function is not restricted to enhancing DNA-binding.
Collapse
Affiliation(s)
- L H Li
- Department of Biochemistry and Cell Biology and the Institute for Cell and Developmental Biology, SUNY at Stony Brook, Stony Brook, NY 11794-5215, USA
| | | |
Collapse
|
42
|
Downing JR. The AML1-ETO chimaeric transcription factor in acute myeloid leukaemia: biology and clinical significance. Br J Haematol 1999; 106:296-308. [PMID: 10460585 DOI: 10.1046/j.1365-2141.1999.01377.x] [Citation(s) in RCA: 167] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- J R Downing
- Department of Pathology and Laboratory Medicine, St Jude Children's Research Hospital, Memphis, Tennessee, USA.
| |
Collapse
|
43
|
Lewis AF, Stacy T, Green WR, Taddesse-Heath L, Hartley JW, Speck NA. Core-binding factor influences the disease specificity of Moloney murine leukemia virus. J Virol 1999; 73:5535-47. [PMID: 10364302 PMCID: PMC112611 DOI: 10.1128/jvi.73.7.5535-5547.1999] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The core site in the Moloney murine leukemia virus (Moloney MLV) enhancer was previously shown to be an important determinant of the T-cell disease specificity of the virus. Mutation of the core site resulted in a significant shift in disease specificity of the Moloney virus from T-cell leukemia to erythroleukemia. We and others have since determined that a protein that binds the core site, one of the core-binding factors (CBF) is highly expressed in thymus and is essential for hematopoiesis. Here we test the hypothesis that CBF plays a critical role in mediating pathogenesis of Moloney MLV in vivo. We measured the affinity of CBF for most core sites found in MLV enhancers, introduced sites with different affinities for CBF into the Moloney MLV genome, and determined the effects of these sites on viral pathogenesis. We found a correlation between CBF affinity and the latent period of disease onset, in that Moloney MLVs with high-affinity CBF binding sites induced leukemia following a shorter latent period than viruses with lower-affinity sites. The T-cell disease specificity of Moloney MLV also appeared to correlate with the affinity of CBF for its binding site. The data support a role for CBF in determining the pathogenic properties of Moloney MLV.
Collapse
Affiliation(s)
- A F Lewis
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | | | | | |
Collapse
|
44
|
Mao S, Frank RC, Zhang J, Miyazaki Y, Nimer SD. Functional and physical interactions between AML1 proteins and an ETS protein, MEF: implications for the pathogenesis of t(8;21)-positive leukemias. Mol Cell Biol 1999; 19:3635-44. [PMID: 10207087 PMCID: PMC84165 DOI: 10.1128/mcb.19.5.3635] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/1998] [Accepted: 02/19/1999] [Indexed: 11/20/2022] Open
Abstract
The AML1 and ETS families of transcription factors play critical roles in hematopoiesis; AML1, and its non-DNA-binding heterodimer partner CBFbeta, are essential for the development of definitive hematopoiesis in mice, whereas the absence of certain ETS proteins creates specific defects in lymphopoiesis or myelopoiesis. The promoter activities of numerous genes expressed in hematopoietic cells are regulated by AML1 proteins or ETS proteins. MEF (for myeloid ELF-1-like factor) is a recently cloned ETS family member that, like AML1B, can strongly transactivate several of these promoters, which led us to examine whether MEF functionally or physically interacts with AML1 proteins. In this study, we demonstrate direct interactions between MEF and AML1 proteins, including the AML1/ETO fusion protein, in t(8;21)-positive acute myeloid leukemia (AML) cells. Using mutational analysis, we identified a novel ETS-interacting subdomain (EID) in the C-terminal portion of the Runt homology domain (RHD) in AML1 proteins and determined that the N-terminal region of MEF was responsible for its interaction with AML1. MEF and AML1B synergistically transactivated an interleukin 3 promoter reporter gene construct, yet the activating activity of MEF was abolished when MEF was coexpressed with AML1/ETO. The repression by AML1/ETO was independent of DNA binding but depended on its ability to interact with MEF, suggesting that AML1/ETO can repress genes not normally regulated by AML1 via protein-protein interactions. Interference with MEF function by AML1/ETO may lead to dysregulation of genes important for myeloid differentiation, thereby contributing to the pathogenesis of t(8;21) AML.
Collapse
Affiliation(s)
- S Mao
- Laboratory of Molecular Aspects of Hematopoiesis, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
45
|
Wolf-Watz M, Xie XQ, Holm M, Grundström T, Härd T. Solution properties of the free and DNA-bound Runt domain of AML1. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 261:251-60. [PMID: 10103057 DOI: 10.1046/j.1432-1327.1999.00269.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Runt domain is responsible for specific DNA and protein-protein interactions in a family of transcription factors which includes human AML1. Structural data on the Runt domain has not yet become available, possibly due to solubility and stability problems with expressed protein fragments. Here we describe the optimization and characterization of a 140-residue fragment, containing the Runt domain of AML1, which is suitable for structural studies. The fragment of AML1 including amino acids 46-185 [AML1 Dm(46-185)] contains a double cysteine-->serine mutation which does not affect Runt domain structure or DNA-binding affinity. Purified AML1 Dm(46-185) is soluble and optimally stable in a buffer containing 200 mm MgSO4 and 20 mm sodium phosphate at pH 6.0. Nuclear magnetic resonance and circular dichroism spectroscopy indicate that the Runt domain contains beta-sheet, but little or no alpha-helical secondary structure elements. The 45 N-terminal residues of AML1 are unstructured and removal of the N-terminal enhances sequence-specific DNA binding. The NMR spectrum of AML1 Dm(46-185) displays a favorable chemical shift dispersion and resolved NOE connectivities are readily identified, suggesting that a structure determination of this Runt domain fragment is feasible. A titration of 15N-labelled AML1 Dm(46-185) with a 14-bp cognate DNA duplex results in changes in the 15N NMR heteronuclear single quantum coherence spectrum which indicate the formation of a specific complex and structural changes in the Runt domain upon DNA binding.
Collapse
Affiliation(s)
- M Wolf-Watz
- Department of Biotechnology, Royal Institute of Technology, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
46
|
Talibi D, Raymond M. Isolation of a putative Candida albicans transcriptional regulator involved in pleiotropic drug resistance by functional complementation of a pdr1 pdr3 mutation in Saccharomyces cerevisiae. J Bacteriol 1999; 181:231-40. [PMID: 9864335 PMCID: PMC103554 DOI: 10.1128/jb.181.1.231-240.1999] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Three Candida albicans genes, designated FCR (for fluconazole resistance), have been isolated by their ability to complement the fluconazole (FCZ) hypersensitivity of a Saccharomyces cerevisiae mutant lacking the transcription factors Pdr1p and Pdr3p. Overexpression of any of the three FCR genes in the pdr1 pdr3 mutant resulted in increased resistance of the cells to FCZ and cycloheximide and in increased expression of PDR5, a gene coding for a drug efflux transporter of the ATP-binding cassette superfamily and whose transcription is under the control of Pdr1p and Pdr3p. Deletion of PDR5 in the pdr1 pdr3 strain completely abrogated the ability of the three FCR genes to confer FCZ resistance, demonstrating that PDR5 is required for FCR-mediated FCZ resistance in S. cerevisiae. The FCR1 gene encodes a putative 517-amino-acid protein with an N-terminal Zn2C6-type zinc finger motif homologous to that found in fungal zinc cluster proteins, including S. cerevisiae Pdr1p and Pdr3p. We have constructed a C. albicans CAI4-derived mutant strain carrying a homozygous deletion of the FCR1 gene and analyzed its ability to grow in the presence of FCZ. We found that the fcr1Delta/fcr1Delta mutant displays hyperresistance to FCZ and other antifungal drugs compared to the parental CAI4 strain. This hyperresistance could be reversed to wild-type levels by reintroduction of a plasmid-borne copy of FCR1 into the fcr1Delta/fcr1Delta mutant. Taken together, our results indicate that the FCR1 gene behaves as a negative regulator of drug resistance in C. albicans and constitute the first evidence that FCZ resistance can result from the inactivation of a regulatory factor such as Fcr1p.
Collapse
Affiliation(s)
- D Talibi
- Institut de Recherches Cliniques de Montréal, Montréal, Québec, Canada H2W 1R7
| | | |
Collapse
|
47
|
Levanon D, Eisenstein M, Groner Y. Site-directed mutagenesis supports a three-dimensional model of the runt domain. J Mol Biol 1998; 277:509-12. [PMID: 9533875 DOI: 10.1006/jmbi.1998.1633] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The "runt domain" (RD) is a 128 amino acid region of the Drosophila pair-rule gene runt. This highly conserved region delineates the DNA-binding domain of a new family of transcription factors; the RD proteins. The family includes genes from Drosophila, chicken and mammals that are involved in a wide range of developmental processes, from sex determination and neurogenesis in Drosophila to hematopoiesis and osteoblast differentiation in mouse and human. The RD confers DNA binding ability and mediates the interaction of mammalian RD proteins with the beta-subunit (CBFbeta), which enhances the DNA binding. The primary sequence of RD shows no similarity to other known DNA-binding motifs and its three-dimensional (3D) structure is not known. We employed molecular modeling-based mutagenesis to generate a 3D model of RD. Fold recognition programs identified the palm subdomain of rat DNA polymerase beta as the most likely fold for RD. In the predicted model, the RD region which interacts with DNA contains two arginine residues, R130 and R135, which appear to be in close contact with the major groove of the DNA and to interact with the three essential guanine bases of the core DNA motif PyGPyGGT. We mutated these two R residues and demonstrated that mutations markedly reduced the binding of RD to DNA with no effect on RD interaction with CBFbeta. The data provide important clues about the possible 3D structure of the RD and its interaction with the core DNA motif.
Collapse
Affiliation(s)
- D Levanon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
48
|
Erman B, Cortes M, Nikolajczyk BS, Speck NA, Sen R. ETS-core binding factor: a common composite motif in antigen receptor gene enhancers. Mol Cell Biol 1998; 18:1322-30. [PMID: 9488447 PMCID: PMC108845 DOI: 10.1128/mcb.18.3.1322] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/1997] [Accepted: 12/09/1997] [Indexed: 02/06/2023] Open
Abstract
A tripartite domain of the murine immunoglobulin mu heavy-chain enhancer contains the muA and muB elements that bind ETS proteins and the muE3 element that binds leucine zipper-containing basic helix-loop-helix (bHLH-zip) factors. Analysis of the corresponding region of the human mu enhancer revealed high conservation of the muA and muB motifs but a striking absence of the muE3 element. Instead of bHLH-zip proteins, we found that the human enhancer bound core binding factor (CBF) between the muA and mu elements; CBF binding was shown to be a common feature of both murine and human enhancers. Furthermore, mutant enhancers that bound prototypic bHLH-zip proteins but not CBF did not activate transcription in B cells, and conversely, CBF transactivated the murine enhancer in nonlymphoid cells. Taking these data together with the earlier analysis of T-cell-specific enhancers, we propose that ETS-CBF is a common composite element in the regulation of antigen receptor genes. In addition, these studies identify the first B-cell target of CBF, a protein that has been implicated in the development of childhood pre-B-cell leukemias.
Collapse
Affiliation(s)
- B Erman
- Rosenstiel Research Center and Department of Biology, Brandeis University, Waltham, Massachusetts 02254, USA
| | | | | | | | | |
Collapse
|
49
|
Huang X, Crute BE, Sun C, Tang YY, Kelley JJ, Lewis AF, Hartman KL, Laue TM, Speck NA, Bushweller JH. Overexpression, purification, and biophysical characterization of the heterodimerization domain of the core-binding factor beta subunit. J Biol Chem 1998; 273:2480-7. [PMID: 9442100 DOI: 10.1074/jbc.273.4.2480] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Core-binding factors (CBF) are heteromeric transcription factors essential for several developmental processes, including hematopoiesis. CBFs contain a DNA-binding CBF alpha subunit and a non-DNA binding CBF beta subunit that increases the affinity of CBF alpha for DNA. We have developed a procedure for overexpressing and purifying full-length CBF beta as well as a truncated form containing the N-terminal 141 amino acids using a novel glutaredoxin fusion expression system. Substantial quantities of the CBF beta proteins can be produced in this manner allowing for their biophysical characterization. We show that the full-length and truncated forms of CBF beta bind to a CBF alpha DNA complex with very similar affinities. Sedimentation equilibrium measurements show these proteins to be monomeric. Circular dichroism spectroscopy demonstrates that CBF beta is a mixed alpha/beta protein and NMR spectroscopy shows that the truncated and full-length proteins are structurally similar and suitable for structure determination by NMR spectroscopy.
Collapse
Affiliation(s)
- X Huang
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Aoyagi N, Oshige M, Hirose F, Kuroda K, Matsukage A, Sakaguchi K. DNA polymerase epsilon from Drosophila melanogaster. Biochem Biophys Res Commun 1997; 230:297-301. [PMID: 9016770 DOI: 10.1006/bbrc.1996.5945] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We identified a DNA polymerase species in Drosophila melanogaster embryos, and purified it. This polymerase shared some common properties with DNA polymerase epsilon from mammals and yeast as follows; it has a preference for poly(dA)/oligo(dT) as a template/primer, it is highly processive in DNA synthesis, it co-fractionates with 3'-5' exonuclease activity, it is sensitive to aphidicolin and is resistance to ddTTP. The polymerase activity was inhibited in the immuno-precipitation assay with anti-pol-epsilon antibodies, which were produced against a polypeptide coded on the cDNA of a putative Drosophila pol-epsilon we isolated previously. Using these antibodies, Western blot analysis revealed that this polymerase is a 250kDa polypeptide, which is the same size as observed in mammals and yeast. These results indicate that Drosophila produces the epsilon-class of DNA polymerase, and like mammals or yeast, possesses the 5 typical classes of DNA polymerases (alpha to epsilon) in its embryos.
Collapse
Affiliation(s)
- N Aoyagi
- Department of Applied Biological Science, Faculty of Science and Technology, Science University of Tokyo, Noda-shi, Japan
| | | | | | | | | | | |
Collapse
|