1
|
Moezpoor MR, Stevenson M. Help or Hinder: Protein Host Factors That Impact HIV-1 Replication. Viruses 2024; 16:1281. [PMID: 39205255 PMCID: PMC11360189 DOI: 10.3390/v16081281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Interactions between human immunodeficiency virus type 1 (HIV-1) and the host factors or restriction factors of its target cells determine the cell's susceptibility to, and outcome of, infection. Factors intrinsic to the cell are involved at every step of the HIV-1 replication cycle, contributing to productive infection and replication, or severely attenuating the chances of success. Furthermore, factors unique to certain cell types contribute to the differences in infection between these cell types. Understanding the involvement of these factors in HIV-1 infection is a key requirement for the development of anti-HIV-1 therapies. As the list of factors grows, and the dynamic interactions between these factors and the virus are elucidated, comprehensive and up-to-date summaries that recount the knowledge gathered after decades of research are beneficial to the field, displaying what is known so that researchers can build off the groundwork of others to investigate what is unknown. Herein, we aim to provide a review focusing on protein host factors, both well-known and relatively new, that impact HIV-1 replication in a positive or negative manner at each stage of the replication cycle, highlighting factors unique to the various HIV-1 target cell types where appropriate.
Collapse
Affiliation(s)
- Michael Rameen Moezpoor
- Department of Microbiology and Immunology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Mario Stevenson
- Raymond F. Schinazi and Family Endowed Chair in Biomedicine; Professor of Medicine; Director, Institute of AIDS and Emerging Infectious Diseases; Department of Microbiology and Immunology, University of Miami Leonard M. Miller School of Medicine, Life Science Technology Park, 1951 NW 7th Avenue, Room 2331B, Suite 200, Miami, FL 33136, USA;
| |
Collapse
|
2
|
Liu Y, Nonnemacher MR, Alexaki A, Pirrone V, Banerjee A, Li L, Kilareski E, Wigdahl B. Functional Studies of CCAAT/Enhancer Binding Protein Site Located Downstream of the Transcriptional Start Site. Clin Med Insights Pathol 2017; 10:1179555717694556. [PMID: 29162980 PMCID: PMC5692137 DOI: 10.1177/1179555717694556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/20/2016] [Indexed: 12/13/2022] Open
Abstract
Previous studies have identified a CCAAT/enhancer binding protein (C/EBP) site located downstream of the transcriptional start site (DS3). The role of the DS3 element with respect to HIV-1 transactivation by Tat and viral replication has not been characterized. We have demonstrated that DS3 was a functional C/EBPβ binding site and mutation of this site to the C/EBP knockout DS3-9C variant showed lower HIV-1 long terminal repeat (LTR) transactivation by C/EBPβ. However, it was able to exhibit similar or even higher transcription levels by Tat compared to the parental LTR. C/EBPβ and Tat together further enhanced the transcription level of the parental LAI-LTR and DS3-9C LTR, with higher levels in the DS3-9C LTR. HIV molecular clone viruses carrying the DS3-9C variant LTR demonstrated a decreased replication capacity and delayed rate of replication. These results suggest that DS3 plays a role in virus transcriptional initiation and provides new insight into C/EBP regulation of HIV-1.
Collapse
Affiliation(s)
- Yujie Liu
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Aikaterini Alexaki
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Vanessa Pirrone
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Anupam Banerjee
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Luna Li
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Evelyn Kilareski
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
3
|
Vicenova M, Nechvatalova K, Chlebova K, Kucerova Z, Leva L, Stepanova H, Faldyna M. Evaluation of in vitro and in vivo anti-inflammatory activity of biologically active phospholipids with anti-neoplastic potential in porcine model. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:339. [PMID: 25234616 PMCID: PMC4179840 DOI: 10.1186/1472-6882-14-339] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 09/11/2014] [Indexed: 12/11/2022]
Abstract
Background This study aims to investigate the anti-inflammatory effect of biologically active phospholipids (BAP) used in preparations for clinical practice in humans. Until date, except anti-neoplastic ability, little is known about anti-inflammatory property of the phospholipids. Methods While the course of bacterially induced acute pneumonia and markers of inflammation were studied in in vivo system in pigs orally supplemented with BAP, the pro- and anti-inflammatory response of lipopolysaccharide-stimulated porcine monocyte-derived macrophages to 24 h- and 48 h-treatmeant by BAP was investigated in in vitro system. In vivo, the animal health status was monitored and pro-inflammatory IL-1β and IL-8 in sera were detected by ELISA during the experiment, while bronchoalveolar lavage fluids (BALF) and the lungs were examined post-mortem. Total and differential counts of white blood cell (WBC) were determined in blood and BALF. In vitro, mRNA expression of pro-inflammatory (TNF-α, IL-1β, CXCL10) and anti-inflammatory (IL-10 and Arg1) cytokines, and level of activated caspase 1 and phosphorylated protein kinase C epsilon (pPKCϵ), were studied using qRT-PCR and Western blot, respectively. For the purposes of both systems, 6 animals were used in each of the BAP-supplemented and the control groups. Results In vivo, BAP had a positive influence on the course of the disease. The immunomodulatory effects of BAP were confirmed by lower levels of IL-1β, IL-8, and a lower WBC count in the supplemented group in comparison with the control group. A lower percentage of lung parenchyma was affected in the supplemented group comparing to the control group (on average, 4% and 34% of tissue, respectively). In vitro, BAP suppressed mRNA expression of mRNA for IL-10 and all pro-inflammatory cytokines tested. This down-regulation was dose- and time-dependent. Arg1 mRNA expression remained unaffected. Further dose- and time-dependent suppression of the activated caspase 1 and pPKCϵ was detected in macrophages when treated with BAP. Conclusions Our results demonstrate that BAP has anti-inflammatory and immunomodulatory properties, thus emphasizing the potential of this compound as a natural healing agent.
Collapse
|
4
|
Corden JL. RNA polymerase II C-terminal domain: Tethering transcription to transcript and template. Chem Rev 2013; 113:8423-55. [PMID: 24040939 PMCID: PMC3988834 DOI: 10.1021/cr400158h] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jeffry L Corden
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine , 725 North Wolfe Street, Baltimore Maryland 21205, United States
| |
Collapse
|
5
|
Godet J, Boudier C, Humbert N, Ivanyi-Nagy R, Darlix JL, Mély Y. Comparative nucleic acid chaperone properties of the nucleocapsid protein NCp7 and Tat protein of HIV-1. Virus Res 2012; 169:349-60. [PMID: 22743066 PMCID: PMC7114403 DOI: 10.1016/j.virusres.2012.06.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/18/2012] [Accepted: 06/19/2012] [Indexed: 10/28/2022]
Abstract
RNA chaperones are proteins able to rearrange nucleic acid structures towards their most stable conformations. In retroviruses, the reverse transcription of the viral RNA requires multiple and complex nucleic acid rearrangements that need to be chaperoned. HIV-1 has evolved different viral-encoded proteins with chaperone activity, notably Tat and the well described nucleocapsid protein NCp7. We propose here an overview of the recent reports that examine and compare the nucleic acid chaperone properties of Tat and NCp7 during reverse transcription to illustrate the variety of mechanisms of action of the nucleic acid chaperone proteins.
Collapse
Affiliation(s)
- Julien Godet
- Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, UMR 7213 CNRS, Université de Strasbourg, 67401 Illkirch, France
| | | | | | | | | | | |
Collapse
|
6
|
Brenner W, Beitz S, Schneider E, Benzing F, Unger RE, Roos FC, Thüroff JW, Hampel C. Adhesion of renal carcinoma cells to endothelial cells depends on PKCmu. BMC Cancer 2010; 10:183. [PMID: 20459627 PMCID: PMC2873397 DOI: 10.1186/1471-2407-10-183] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 05/06/2010] [Indexed: 11/29/2022] Open
Abstract
Background The formation of metastases includes the separation of tumor cells from the primary tumor, cell migration into subendothelial tissue and cell proliferation in secondary organ. In this process, cell adhesion of tumor cells to the endothelium is an essential requirement for formation of metastases. Protein kinase C (PKC) regulates adhesion and proliferation. To identify a relation between PKC isoforms and tumor progression in renal cell carcinoma (RCC), the influence of PKC isoforms on cell adhesion and proliferation, and possible influences of integrins were analyzed in RCC cells. Methods The experiments were performed in the RCC cell lines CCF-RC1 and CCF-RC2 after pre-incubation (16 h) with the PKC inhibitors GF109203X (inhibits PKCα, βI, βII, γ, δ and ε), GÖ6976 (inhibits PKCα, βI and μ), RO31-8220 (inhibits PKCα, βI, βII, γ and ε) and rottlerin (inhibits PKCδ). Cell adhesion was assessed through adherence of RCC cells to an endothelial monolayer. Cell proliferation was analyzed by a BrdU incorporation assay. The expression of β1 integrins was analyzed by flow cytometry. Results In CCF-RC1 cells, cell adhesion was significantly reduced by GÖ6976 to 55% and by RO31-8220 to 45% of control. In CCF-RC2 cells, only GÖ6976 induced a significant reduction of cell adhesion to 50% of control levels. Proliferation of both cell lines was reduced by rottlerin to 39% and 45% of control, respectively. The β1 integrin expression on the cell surface of CCF-RC1 and CCR-RC2 cells was decreased by RO31-8220 to 8% and 7% of control, respectively. β2 and β3 integrins were undetectable in both cell lines. Conclusions The combination of the PKC inhibitors leads to the assumption that PKCμ influences cell adhesion in CCF-RC1 and CCF-RC2 cells, whereas in CCF-RC1 cells PKCε also seems to be involved in this process. The expression of β1 integrins appears to be regulated in particular by PKCε. Cell proliferation was inhibited by rottlerin, so that PKCδ might be involved in cell proliferation in these cells.
Collapse
Affiliation(s)
- Walburgis Brenner
- Department of Urology, University Medical Center Mainz, Mainz, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Charnay N, Ivanyi-Nagy R, Soto-Rifo R, Ohlmann T, López-Lastra M, Darlix JL. Mechanism of HIV-1 Tat RNA translation and its activation by the Tat protein. Retrovirology 2009; 6:74. [PMID: 19671151 PMCID: PMC2739156 DOI: 10.1186/1742-4690-6-74] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 08/11/2009] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The human immunodeficiency virus type 1 (HIV-1) Tat protein is a major viral transactivator required for HIV-1 replication. In the nucleus Tat greatly stimulates the synthesis of full-length transcripts from the HIV-1 promoter by causing efficient transcriptional elongation. Tat induces elongation by directly interacting with the bulge of the transactivation response (TAR) RNA, a hairpin-loop located at the 5'-end of all nascent viral transcripts, and by recruiting cellular transcriptional co-activators. In the cytoplasm, Tat is thought to act as a translational activator of HIV-1 mRNAs. Thus, Tat plays a central role in the regulation of HIV-1 gene expression both at the level of mRNA and protein synthesis. The requirement of Tat in these processes poses an essential question on how sufficient amounts of Tat can be made early on in HIV-1 infected cells to sustain its own synthesis. To address this issue we studied translation of the Tat mRNA in vitro and in human cells using recombinant monocistronic and dicistronic RNAs containing the 5' untranslated region (5'-UTR) of Tat RNA. RESULTS This study shows that the Tat mRNA can be efficiently translated both in vitro and in cells. Furthermore, our data suggest that translation initiation from the Tat mRNA probably occurs by a internal ribosome entry site (IRES) mechanism. Finally, we show that Tat protein can strongly stimulate translation from its cognate mRNA in a TAR dependent fashion. CONCLUSION These results indicate that Tat mRNA translation is efficient and benefits from a feedback stimulation by the Tat protein. This translational control mechanism would ensure that minute amounts of Tat mRNA are sufficient to generate enough Tat protein required to stimulate HIV-1 replication.
Collapse
Affiliation(s)
- Nicolas Charnay
- LaboRetro, Unité de Virologie Humaine INSERM 758, IFR 128, ENS de Lyon, 46 allée d'Italie, 69364 Lyon, France.
| | | | | | | | | | | |
Collapse
|
8
|
Chen H, Van Duyne R, Zhang N, Kashanchi F, Zeng C. A novel binding pocket of cyclin-dependent kinase 2. Proteins 2009; 74:122-32. [PMID: 18615713 DOI: 10.1002/prot.22136] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The cyclin-dependent kinase 2 (cdk2) is a serine/threonine protein kinase that plays a key role in the cell cycle control system of all eukaryotic organisms. It has been a much studied drug target for potential anticancer therapy. Most cdk2 inhibitors in clinical development target almost exclusively the catalytic ATP-binding pocket of cdk2. However, several five amino-acid peptide inhibitors that are directed towards a noncatalytic binding pocket of cdk2 are reported here. Upon binding to this new pocket located at the cdk2 and cyclin interface, these peptide inhibitors are found to disrupt the cdk2/cyclin E complex partially and diminish its kinase activity in vitro.
Collapse
Affiliation(s)
- Hao Chen
- Department of Physics, The George Washington University, Washington, District of Columbia 20052, USA
| | | | | | | | | |
Collapse
|
9
|
Sánchez-Duffhues G, Calzado MA, de Vinuesa AG, Caballero FJ, Ech-Chahad A, Appendino G, Krohn K, Fiebich BL, Muñoz E. Denbinobin, a naturally occurring 1,4-phenanthrenequinone, inhibits HIV-1 replication through an NF-kappaB-dependent pathway. Biochem Pharmacol 2008; 76:1240-50. [PMID: 18840408 DOI: 10.1016/j.bcp.2008.09.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 09/02/2008] [Accepted: 09/05/2008] [Indexed: 10/21/2022]
Abstract
Anthraquinones and structurally related compounds have been recently shown to exert antiviral activities and thus exhibit a therapeutic potential. In this study we report the isolation of the 1,4-phenanthrenequinone, denbinobin, from a variety of Cannabis sativa. Denbinobin does not affect the reverse transcription and integration steps of the viral cycle but prevents HIV-1 reactivation in Jurkat T cells activated by TNFalpha, mAbs anti-CD3/CD28 or PMA. In addition, denbinobin inhibits HIV-1-LTR activity at the level of transcription elongation and also TNFalpha-induced HIV-1-LTR transcriptional activity. We found that denbinobin prevents the binding of NF-kappaB to DNA and the phosphorylation and degradation of NF-kappaB inhibitory protein, IkappaBalpha, and inhibits the phosphorylation of the NF-kappaB p65 subunit in TNFalpha-stimulated cells. These results highlight the potential of the NF-kappaB transcription factor as a target for natural anti-HIV-1 compounds such as 1,4-phenanthrenequinones, which could serve as lead compounds for the development of an alternative therapeutic approach against AIDS.
Collapse
Affiliation(s)
- Gonzalo Sánchez-Duffhues
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Facultad de Medicina, Córdoba, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Kuciak M, Gabus C, Ivanyi-Nagy R, Semrad K, Storchak R, Chaloin O, Muller S, Mély Y, Darlix JL. The HIV-1 transcriptional activator Tat has potent nucleic acid chaperoning activities in vitro. Nucleic Acids Res 2008; 36:3389-400. [PMID: 18442994 PMCID: PMC2425468 DOI: 10.1093/nar/gkn177] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) is a primate lentivirus that causes the acquired immunodeficiency syndrome (AIDS). In addition to the virion structural proteins and enzyme precursors, that are Gag, Env and Pol, HIV-1 encodes several regulatory proteins, notably a small nuclear transcriptional activator named Tat. The Tat protein is absolutely required for virus replication since it controls proviral DNA transcription to generate the full-length viral mRNA. Tat can also regulate mRNA capping and splicing and was recently found to interfere with the cellular mi- and siRNA machinery. Because of its extensive interplay with nucleic acids, and its basic and disordered nature we speculated that Tat had nucleic acid-chaperoning properties. This prompted us to examine in vitro the nucleic acid-chaperoning activities of Tat and Tat peptides made by chemical synthesis. Here we report that Tat has potent nucleic acid-chaperoning activities according to the standard DNA annealing, DNA and RNA strand exchange, RNA ribozyme cleavage and trans-splicing assays. The active Tat(44–61) peptide identified here corresponds to the smallest known sequence with DNA/RNA chaperoning properties.
Collapse
Affiliation(s)
- Monika Kuciak
- LaboRetro INSERM #758, Ecole Normale Supérieure de Lyon, IFR 128 Biosciences Lyon-Gerland, 69364 Lyon Cedex 07, France
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
de la Vega L, Sánchez-Duffhues G, Fresno M, Schmitz ML, Muñoz E, Calzado MA. The 73 kDa subunit of the CPSF complex binds to the HIV-1 LTR promoter and functions as a negative regulatory factor that is inhibited by the HIV-1 Tat protein. J Mol Biol 2007; 372:317-30. [PMID: 17669424 DOI: 10.1016/j.jmb.2007.06.075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 06/20/2007] [Accepted: 06/26/2007] [Indexed: 11/19/2022]
Abstract
Gene expression in eukaryotes requires the post-transcriptional cleavage of mRNA precursors into mature mRNAs. The cleavage and polyadenylation specificity factor (CPSF) is critical for this process and its 73 kDa subunit (CPSF-73) mediates cleavage coupled to polyadenylation and histone pre-mRNA processing. Using CPSF-73 over-expression and siRNA-mediated knockdown experiments, this study identifies CPSF-73 as an important regulatory protein that represses the basal transcriptional activity of the HIV-1 LTR promoter. Similar results were found with over-expression of the CPSF-73 homologue RC-68, but not with CPSF 100 kDa subunit (CPSF-100) and RC-74. Chromatin immunoprecipitation assays revealed the physical interaction of CPSF-73 with the HIV-1 LTR promoter. Further experiments revealed indirect CPSF-73 binding to the region between -275 to -110 within the 5' upstream region. Functional assays revealed the importance for the 5' upstream region (-454 to -110) of the LTR for CPSF-73-mediated transcription repression. We also show that HIV-1 Tat protein interacts with CPSF-73 and counteracts its repressive activity on the HIV-1 LTR promoter. Our results clearly show a novel function for CPSF-73 and add another candidate protein for explaining the molecular mechanisms underlying HIV-1 latency.
Collapse
Affiliation(s)
- Laureano de la Vega
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Facultad de Medicina, Avda de Menéndez Pidal s/n, 14004, Córdoba, Spain
| | | | | | | | | | | |
Collapse
|
12
|
Agbottah ET, Traviss C, McArdle J, Karki S, St Laurent GC, Kumar A. Nuclear Factor 90(NF90) targeted to TAR RNA inhibits transcriptional activation of HIV-1. Retrovirology 2007; 4:41. [PMID: 17565699 PMCID: PMC1910605 DOI: 10.1186/1742-4690-4-41] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Accepted: 06/12/2007] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Examination of host cell-based inhibitors of HIV-1 transcription may be important for attenuating viral replication. We describe properties of a cellular double-stranded RNA binding protein with intrinsic affinity for HIV-1 TAR RNA that interferes with Tat/TAR interaction and inhibits viral gene expression. RESULTS Utilizing TAR affinity fractionation, North-Western blotting, and mobility-shift assays, we show that the C-terminal variant of nuclear factor 90 (NF90ctv) with strong affinity for the TAR RNA, competes with Tat/TAR interaction in vitro. Analysis of the effect of NF90ctv-TAR RNA interaction in vivo showed significant inhibition of Tat-transactivation of HIV-1 LTR in cells expressing NF90ctv, as well as changes in histone H3 lysine-4 and lysine-9 methylation of HIV chromatin that are consistent with the epigenetic changes in transcriptionally repressed gene. CONCLUSION Structural integrity of the TAR element is crucial in HIV-1 gene expression. Our results show that perturbation Tat/TAR RNA interaction by the dsRNA binding protein is sufficient to inhibit transcriptional activation of HIV-1.
Collapse
Affiliation(s)
- Emmanuel T Agbottah
- Department of Biochemistry & Molecular Biology, School of Medicine, The George Washington University, Washington D.C. USA
| | - Christine Traviss
- Department of Biochemistry & Molecular Biology, School of Medicine, The George Washington University, Washington D.C. USA
| | - James McArdle
- Department of Biochemistry & Molecular Biology, School of Medicine, The George Washington University, Washington D.C. USA
| | - Sambhav Karki
- Department of Biochemistry & Molecular Biology, School of Medicine, The George Washington University, Washington D.C. USA
| | - Georges C St Laurent
- Department of Biochemistry & Molecular Biology, School of Medicine, The George Washington University, Washington D.C. USA
| | - Ajit Kumar
- Department of Biochemistry & Molecular Biology, School of Medicine, The George Washington University, Washington D.C. USA
| |
Collapse
|
13
|
Xu TR, He G, Dobson K, England K, Rumsby M. Phosphorylation at Ser729 specifies a Golgi localisation for protein kinase C epsilon (PKCepsilon) in 3T3 fibroblasts. Cell Signal 2007; 19:1986-95. [PMID: 17611075 DOI: 10.1016/j.cellsig.2007.05.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Revised: 04/05/2007] [Accepted: 05/18/2007] [Indexed: 11/28/2022]
Abstract
We demonstrate that GFP-PKCepsilon concentrates at a perinuclear site in living fibroblasts and that cell passage induces rapid translocation of PKCepsilon to the periphery where it appears to colocalise with F-actin. When newly passaged cells have adhered and are proliferating again, GFP-PKCepsilon returns to its perinuclear site. GFP-PKCepsilon co-localises with wheat germ agglutinin suggesting that it is associated with the Golgi at the perinuclear site. In support, PKCepsilon is detected in a Golgi-enriched fraction in pre-passage cells but is lost from the fraction after passage. PKCepsilon at the perinuclear Golgi site is phosphorylated at Ser729 but cell passage induces the loss of the phosphate at this site as reported previously [England et al. (2001) J. Biol. Chem. 276, 10437-10442]. PKCepsilon S729A, S729E and S729T mutants, which are not recognised by a specific antiphosphoPKCepsilon (Ser729) antibody, do not concentrate at a perinuclear/Golgi site in proliferating fibroblasts. This suggests that both phosphorylation and serine rather than threonine are needed at position 729 to locate PKCepsilon at its perinuclear/Golgi site. Phorbol ester induced translocation of PKCepsilon to the nucleus also requires dephosphorylation at Ser729; after translocation nuclear PKCepsilon lacks a phosphate at Ser729. Sulphation and secretion of glycosaminoglycan (GAG) chains from fibroblasts increases on passage and returns to basal as cells proliferate showing that cell passage influences secretory events at the Golgi. The results indicate that Ser729 phosphorylation plays a role in determining PKCepsilon localisation in fibroblasts.
Collapse
Affiliation(s)
- Tian-Rui Xu
- SHWFGF-Proteomics Section, Joseph Black Building, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | | | | | | | | |
Collapse
|
14
|
Choi JH, Choi BS, Kim SS, Lee JS. Differentially Expressed Cellular Gene Profiles between Healthy HIV-infected Koreans and AIDS Patients. THE KOREAN JOURNAL OF HEMATOLOGY 2007. [DOI: 10.5045/kjh.2007.42.1.33] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Jang-Hoon Choi
- Division of AIDS, Center for Immunology and Pathology, National Institute of Health, Seoul, Korea
| | - Byeong-Sun Choi
- Division of AIDS, Center for Immunology and Pathology, National Institute of Health, Seoul, Korea
| | - Sung Soon Kim
- Division of AIDS, Center for Immunology and Pathology, National Institute of Health, Seoul, Korea
| | - Joo-Shil Lee
- Division of AIDS, Center for Immunology and Pathology, National Institute of Health, Seoul, Korea
| |
Collapse
|
15
|
Slager RE, Sisson JH, Pavlik JA, Johnson JK, Nicolarsen JR, Jerrells TR, Wyatt TA. Inhibition of protein kinase C epsilon causes ciliated bovine bronchial cell detachment. Exp Lung Res 2006; 32:349-62. [PMID: 17090476 PMCID: PMC2100410 DOI: 10.1080/01902140600959630] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
This study defines the in vitro phenomenon of ciliated bovine bronchial epithelial cell (BBEC) detachment from the basal epithelium and regulation of cilia motility mediated through protein kinase C epsilon (PKCepsilon). The authors determined the time course of activation and downregulation of PKCepsilon by the known PKC activator phorbol 12-myristate 13-acetate (PMA) and demonstrate that chemical inhibition of PKC by calphostin C or the novel PKC isoform inhibitor Ro 31-8220 induced striking detachment of ciliated BBECs from the basal cell monolayer within 1 hour, independent of apoptosis or necrotic cell death. The results of this study support a possible novel PKCepsilon-mediated signaling pathway through which ciliated cell attachment is maintained.
Collapse
Affiliation(s)
- Rebecca E Slager
- Pulmonary, Critical Care and Sleep Medicine Section, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198-5300, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Rossi A, Mukerjee R, Ferrante P, Khalili K, Amini S, Sawaya BE. Human immunodeficiency virus type 1 Tat prevents dephosphorylation of Sp1 by TCF-4 in astrocytes. J Gen Virol 2006; 87:1613-1623. [PMID: 16690926 DOI: 10.1099/vir.0.81691-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Previous examination of the effect of TCF-4 on transcription of the human immunodeficiency virus type 1 (HIV-1) promoter in human astrocytic cells found that TCF-4 affects the HIV-1 promoter through the GC-rich domain (nt -80 to nt -68). Here, the physical interaction and a functional consequence of TCF4-Sp1 contact were characterized. It was shown that expression of TCF-4 in U-87 MG (human astrocytic) cells decreased basal and Sp1-mediated transcription of the HIV-1 promoter. Results from a GST pull-down assay, as well as combined immunoprecipitation and Western blot analysis of protein extracts from U-87 MG cells, revealed an interaction of Sp1 with TCF-4. Using in vitro protein chromatography, the region of Sp1 that contacts TCF-4 was mapped to aa 266-350. It was also found that, in cell-free extracts, TCF-4 prevented dsDNA-dependent protein kinase (DNA-PK)-mediated Sp1 phosphorylation. Surprisingly, TCF-4 failed to decrease Sp1-mediated transcription of the HIV-1 long terminal repeat (LTR) and Sp1 phosphorylation in cells expressing HIV-1 Tat. Results from immunoprecipitation/Western blotting demonstrated that TCF-4 lost its ability to interact with Sp1, but not with Tat, in Tat-transfected cells. Taken together, these findings suggest that activity at the HIV-1 promoter is influenced by phosphorylation of Sp1, which is affected by Tat and DNA-PK. Interactions among TCF-4, Sp1 and/or Tat may determine the level of viral gene transcription in human astrocytic cells.
Collapse
Affiliation(s)
- Andrea Rossi
- Laboratory of Biology, Don C. Gnocchi Foundation, IRCCS, 20148 Milan, Italy
- Department of Neuroscience & Center for Neurovirology, Temple University School of Medicine, 1900 N 12th Street (015-96), Philadelphia, PA 19122, USA
| | - Ruma Mukerjee
- Department of Neuroscience & Center for Neurovirology, Temple University School of Medicine, 1900 N 12th Street (015-96), Philadelphia, PA 19122, USA
| | - Pasquale Ferrante
- Laboratory of Biology, Don C. Gnocchi Foundation, IRCCS, 20148 Milan, Italy
| | - Kamel Khalili
- Department of Neuroscience & Center for Neurovirology, Temple University School of Medicine, 1900 N 12th Street (015-96), Philadelphia, PA 19122, USA
| | - Shohreh Amini
- Department of Biology, Temple University School of Medicine, 1900 N 12th Street (015-96), Philadelphia, PA 19122, USA
- Department of Neuroscience & Center for Neurovirology, Temple University School of Medicine, 1900 N 12th Street (015-96), Philadelphia, PA 19122, USA
| | - Bassel E Sawaya
- Department of Neuroscience & Center for Neurovirology, Temple University School of Medicine, 1900 N 12th Street (015-96), Philadelphia, PA 19122, USA
| |
Collapse
|
17
|
Zhou M, Lu H, Park H, Wilson-Chiru J, Linton R, Brady JN. Tax interacts with P-TEFb in a novel manner to stimulate human T-lymphotropic virus type 1 transcription. J Virol 2006; 80:4781-91. [PMID: 16641271 PMCID: PMC1472077 DOI: 10.1128/jvi.80.10.4781-4791.2006] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Human T-lymphotropic virus type 1 (HTLV-1) encodes a transcriptional activator, Tax, whose function is essential for viral transcription and replication. Tax transactivates the viral long-terminal repeat through a series of protein-protein interactions which facilitate CREB and CBP/p300 binding. In addition, Tax dissociates transcription repressor histone deacetylase 1 interaction with the CREB response element. The subsequent events through which Tax interacts and communicates with RNA polymerase II and cyclin-dependent kinases (CDKs) are not clearly understood. Here we present evidence that Tax recruits positive transcription elongation factor b (P-TEFb) (CDK9/cyclin T1) to the viral promoter. This recruitment likely involves protein-protein interactions since Tax associates with P-TEFb in vitro as demonstrated by glutathione S-transferase fusion protein pull-down assays and in vivo as shown by co-immunoprecipitation assays. Functionally, small interfering RNA directed toward CDK9 inhibited Tax transactivation in transient assays. Consistent with these findings, the depletion of CDK9 from nuclear extracts inhibited Tax transactivation in vitro. Reconstitution of the reaction with wild-type P-TEFb, but not a kinase-dead mutant, recovered HTLV-1 transcription. Moreover, the addition of the CDK9 inhibitor flavopiridol blocked Tax transactivation in vitro and in vivo. Interestingly, we found that Tax regulates CDK9 kinase activity through a novel autophosphorylation pathway.
Collapse
Affiliation(s)
- Meisheng Zhou
- Virus Tumor Biology Section, Laboratory of Cellular Oncology, Center for Cancer Research, NCI/NIH, , Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
18
|
Márquez N, Sancho R, Macho A, Moure A, Masip I, Messeguer A, Muñoz E. Anti-Tat and anti-HIV activities of trimers of n-alkylglycines. Biochem Pharmacol 2006; 71:596-604. [PMID: 16405868 DOI: 10.1016/j.bcp.2005.11.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Revised: 11/03/2005] [Accepted: 11/28/2005] [Indexed: 10/25/2022]
Abstract
Transcription of human immunodeficiency virus (HIV-1) is activated by viral Tat protein which regulates HIV-LTR transcription and elongation. In the present report, the evaluation of the anti-Tat activity of a combinatorial library composed of 5120 N-trialkylglycines is reported. The antiviral activity was studied through luciferase-based assays targeting the HIV-1 promoter activation induced by the HIV-1 Tat protein. We identified five peptoids with specific anti-HIV-1 Tat activity; none of these peptoids affected the binding of HIV-1 Tat protein to the viral TAR RNA. Using a recombinant-virus assay in which luciferase activity correlates with the rate of HIV-1 transcription we have detected that one of the five selected peptoids, NC37-37-15C, is a potent inhibitor of HIV-1-LTR transcription in both primary T lymphocytes and transformed cell lines. The inhibitory effect of NC37-37-15C, which is additive with azidothymidine (AZT), correlates with its ability to inhibit CTD phosphorylation and shows a suitable profile for development of novel anti-HIV-1 drugs. Likewise, the structural simplicity of N-alkylglycine oligomers makes these peptidomimetics amenable to structural manipulation, thus facilitating the optimisation of lead molecules for drug-like properties.
Collapse
Affiliation(s)
- Nieves Márquez
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Facultad de Medicina, Avda. de Menéndez Pidal s/n, E-14004 Córdoba, Spain
| | | | | | | | | | | | | |
Collapse
|
19
|
Desfosses Y, Solis M, Sun Q, Grandvaux N, Van Lint C, Burny A, Gatignol A, Wainberg MA, Lin R, Hiscott J. Regulation of human immunodeficiency virus type 1 gene expression by clade-specific Tat proteins. J Virol 2005; 79:9180-91. [PMID: 15994812 PMCID: PMC1168763 DOI: 10.1128/jvi.79.14.9180-9191.2005] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The major group of human immunodeficiency virus type 1 (HIV-1) strains that comprise the current global pandemic have diversified during their worldwide spread into at least 10 distinct subtypes, or clades. Subtype C predominates in sub-Saharan Africa and is responsible for the majority of worldwide HIV-1 infections, subtype B predominates in North America and Europe, and subtype E is prevalent in Southeast Asia. Significant amino acid variations have been observed among the clade-specific Tat proteins. For the present study, we examined clade-specific interactions between Tat, transactivation-responsive (TAR) element, and P-TEFb proteins and how these interactions may modulate the efficiency of HIV-1 transcription. Clade-specific Tat proteins significantly modified viral gene expression. Tat proteins derived from HIV-1 clades C and E were strong transactivators of long terminal repeat (LTR) activity; Tat E also had a longer half-life than the other Tat proteins and interacted more efficiently with the stem-loop TAR element. Chimeric Tat proteins harboring the Tat E activation domain were strong transactivators of LTR expression. While Tat B, C, and E were able to rescue a Tat-defective HIV-1 proviral clone, Tat E was significantly more efficient at rescue than Tat C, possibly due to the relative stability of the Tat protein. Swapping the activation domains of Tat B, C, and E identified the cyclin T1 association domain as a critical determinant of the transactivation efficiency and of Tat-defective HIV-1 provirus rescue.
Collapse
Affiliation(s)
- Yan Desfosses
- McGill AIDS Center, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, 3755 Cote Ste. Catherine, Montreal, Quebec, Canada H3T1E2
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Zhou M, Deng L, Lacoste V, Park HU, Pumfery A, Kashanchi F, Brady JN, Kumar A. Coordination of transcription factor phosphorylation and histone methylation by the P-TEFb kinase during human immunodeficiency virus type 1 transcription. J Virol 2004; 78:13522-33. [PMID: 15564463 PMCID: PMC533906 DOI: 10.1128/jvi.78.24.13522-13533.2004] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) Tat protein recruits positive transcription elongation factor b (P-TEFb) to the transactivation response (TAR) RNA structure to facilitate formation of processive transcription elongation complexes (TECs). Here we examine the role of the Tat/TAR-specified cyclin-dependent kinase 9 (CDK9) kinase activity in regulation of HIV-1 transcription elongation and histone methylation. In HIV-1 TECs, P-TEFb phosphorylates the RNA polymerase II (RNAP II) carboxyl-terminal domain (CTD) and the transcription elongation factors SPT5 and Tat-SF1 in a Tat/TAR-dependent manner. Using in vivo chromatin immunoprecipitation analysis, we demonstrate the following distinct properties of the HIV-1 transcription complexes. First, the RNAP II CTD is phosphorylated at Ser 2 and Ser 5 near the promoter and at downstream coding regions. Second, the stable association of SPT5 with the TECs is dependent upon P-TEFb kinase activity. Third, P-TEFb kinase activity is critical for the induction of methylation of histone H3 at lysine 4 and lysine 36 on HIV-1 genes. Flavopiridol, a potent P-TEFb kinase inhibitor, inhibits CTD phosphorylation, stable SPT5 binding, and histone methylation, suggesting that its potent antiviral activity is due to its ability to inhibit several critical and unique steps in HIV-1 transcription elongation.
Collapse
Affiliation(s)
- Meisheng Zhou
- Department of Biochemistry and Molecular Biology, The George Washington University School of Medicine, Washington, DC 20037, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Marecki JC, Cota-Gomez A, Vaitaitis GM, Honda JR, Porntadavity S, St Clair DK, Flores SC. HIV-1 Tat regulates the SOD2 basal promoter by altering Sp1/Sp3 binding activity. Free Radic Biol Med 2004; 37:869-80. [PMID: 15706661 DOI: 10.1016/j.freeradbiomed.2004.06.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Regulation of the basal manganese superoxide dismutase (SOD2) promoter depends on the transcriptional activity of the Sp family of transcription factors. Here we report that reduced expression in the presence of Tat is independent of induction with Tumor necrosis factor alpha and that Tat affects the interaction of Sp1 and Sp3 with the basal promoter. Footprinting and electrophoretic mobility shift assay (EMSA) analyses with extracts from HeLa cells showed that Sp1/Sp3 complexes populate the proximal SOD2 promoter, and that Tat leads to an increase in the binding activity of Sp3. In Drosophila S2 cells, both Sp1 and Sp3 activated the basal SOD2 promoter (88.1 +/- 39.4 fold vs. 10.3 +/- 3.5 fold, respectively), demonstrating a positive, yet lower transcriptional regulatory function for Sp3. Additionally, the inability of Sp3 to synergistically affect promoter activity indicates an efficient competition of Sp3 with Sp1 for the multiple Sp binding sites in the SOD2 basal promoter. Tat potentiated both Sp1 and Sp3 activation of the promoter in S2 cells, though the activity of Sp3 was still lower than that of Sp1. Thus, the consequence of a shift by Tat to increased Sp3-containing complexes on the basal SOD2 promoter is decreased SOD2 expression. Together, our studies demonstrate the functional importance of the interaction of Sp1, Sp3, and Tat, revealing a possible mechanism for the attenuation of basal manganese superoxide dismutase expression.
Collapse
Affiliation(s)
- John C Marecki
- Cardiovascular Pulmonary Research Laboratory, University of Colorado Health Sciences Center, Denver, CO 80262, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Amini S, Saunders M, Kelley K, Khalili K, Sawaya BE. Interplay between HIV-1 Vpr and Sp1 modulates p21(WAF1) gene expression in human astrocytes. J Biol Chem 2004; 279:46046-56. [PMID: 15302882 DOI: 10.1074/jbc.m403792200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Vpr (viral protein R) of human immunodeficiency virus, type 1, which is expressed during the late stage of the viral infection, has received special attention because of its ability to control transcription of the human immunodeficiency virus, type 1, long terminal repeat and to influence cell cycle progression. Here we demonstrate that Vpr has the ability to regulate transcription of the cyclin-dependent kinase inhibitor, p21(WAF1) (p21), one of the key regulators of the cell cycle, in human astrocytic cells. The results from transcription assays demonstrated that Vpr augments promoter activity of p21 through the GC-rich region located between nucleotides -84 and -74 with respect to the +1 transcription start site. Activation of p21 by Vpr required cooperativity of Sp1, which binds to the DNA sequence spanning -84 to -74. Results from bandshift assay revealed an increased level of Sp1 DNA binding activity in the presence of Vpr. Furthermore, Vpr was able to associate with Sp1 via the zinc finger domain located in the C-terminal region of Sp1. Functional studies revealed that the cooperativity between Vpr and Sp1 requires the zinc finger domain at the C terminus and the glutamine-rich domain at the N terminus of Sp1. Expression of p53 further enhanced the level of Vpr-Sp1-mediated transcription activation of p21 through the sequence spanning -84 to -74 and increased the DNA binding activity of Sp1 in the presence of Vpr. Results from glutathione S-transferase pull-down assay showed the association of Vpr with p53 in extracts containing Sp1. Altogether, the outcome of our functional and binding studies suggested that the physical interaction of Vpr with Sp1 and p53 could modulate transcriptional activity of p21.
Collapse
Affiliation(s)
- Shohreh Amini
- Center for Neurovirology and Cancer Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122, USA
| | | | | | | | | |
Collapse
|
23
|
de la Fuente C, Kashanchi F. The expanding role of Tax in transcription. Retrovirology 2004; 1:19. [PMID: 15285790 PMCID: PMC506788 DOI: 10.1186/1742-4690-1-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2004] [Accepted: 07/30/2004] [Indexed: 11/21/2022] Open
Abstract
The viral transactivator of HTLV-I, Tax, has long been shown to target the earliest steps of transcription by forming quaternary complexes with sequence specific transcription factors and histone-modifying enzymes in the LTR of HTLV-I. However, a new study suggests that Tax preferentially transactivates the 21-bp repeats through CREB1 and not other bZIP proteins. The additional transactivation of Tax-responsive promoters subsequent to initiation is also presented. This result highlights a potentially novel role of Tax following TBP recruitment (i.e. initiation) and may expand the mechanism of Tax transactivation in promoter clearance and transcriptional elongation.
Collapse
Affiliation(s)
- Cynthia de la Fuente
- Department of Biochemistry and Molecular Biology, The George Washington University School of Medicine, Washington, DC 20037, USA
| | - Fatah Kashanchi
- Institute for Proteomics Technology and Application, The George Washington University, Washington, DC 20037, USA
- Department of Biochemistry and Molecular Biology, The George Washington University School of Medicine, Washington, DC 20037, USA
- The Institute for Genomic Research (TIGR), Rockville, MD 20850, USA
| |
Collapse
|
24
|
Sancho R, Márquez N, Gómez-Gonzalo M, Calzado MA, Bettoni G, Coiras MT, Alcamí J, López-Cabrera M, Appendino G, Muñoz E. Imperatorin inhibits HIV-1 replication through an Sp1-dependent pathway. J Biol Chem 2004; 279:37349-59. [PMID: 15218031 DOI: 10.1074/jbc.m401993200] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Coumarins and structurally related compounds have been recently shown to present anti-human immunodeficiency virus, type 1 (HIV-1) activity. Among them, the dietary furanocoumarin imperatorin is present in citrus fruits, in culinary herbs, and in some medicinal plants. In this study we report that imperatorin inhibits either vesicular stomatitis virus-pseudotyped or gp160-enveloped recombinant HIV-1 infection in several T cell lines and in HeLa cells. These recombinant viruses express luciferase as a marker of viral replication. Imperatorin did not inhibit the reverse transcription nor the integration steps in the viral cell cycle. Using several 5' long terminal repeat-HIV-1 constructs where critical response elements were either deleted or mutated, we found that the transcription factor Sp1 is critical for the inhibitory activity of imperatorin induced by both phorbol 12-myristate 13-acetate and HIV-1 Tat. Moreover in transient transfections imperatorin specifically inhibited phorbol 12-myristate 13-acetate-induced transcriptional activity of the Gal4-Sp1 fusion protein. Since Sp1 is also implicated in cell cycle progression we further studied the effect of imperatorin on cyclin D1 gene transcription and protein expression and in HeLa cell cycle progression. We found that imperatorin strongly inhibited cyclin D1 expression and arrested the cells at the G(1) phase of the cell cycle. These results highlight the potential of Sp1 transcription factor as a target for natural anti-HIV-1 compounds such as furanocoumarins that might have a potential therapeutic role in the management of AIDS.
Collapse
Affiliation(s)
- Rocío Sancho
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Facultad de Medicina, Avda. de Menendez Pidal s/n, 14004 Córdoba, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Hines R, Sorensen BR, Shea MA, Maury W. PU.1 binding to ets motifs within the equine infectious anemia virus long terminal repeat (LTR) enhancer: regulation of LTR activity and virus replication in macrophages. J Virol 2004; 78:3407-18. [PMID: 15016863 PMCID: PMC371083 DOI: 10.1128/jvi.78.7.3407-3418.2004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2003] [Accepted: 11/21/2003] [Indexed: 11/20/2022] Open
Abstract
Binding of the transcription factor PU.1 to its DNA binding motif regulates the expression of a number of B-cell- and myeloid-specific genes. The long terminal repeat (LTR) of macrophage-tropic strains of equine infectious anemia virus (EIAV) contains three PU.1 binding sites, namely an invariant promoter-proximal site as well as two upstream sites. We have previously shown that these sites are important for EIAV LTR activity in primary macrophages (W. Maury, J. Virol. 68:6270-6279, 1994). Since the sequences present in these three binding motifs are not identical, we sought to determine the role of these three sites in EIAV LTR activity. While DNase I footprinting studies indicated that all three sites within the enhancer were bound by recombinant PU.1, reporter gene assays demonstrated that the middle motif was most important for basal levels of LTR activity in macrophages and that the 5' motif had little impact. The impact of the 3' site became evident in Tat transactivation studies, in which the loss of the site reduced Tat-transactivated expression 40-fold. In contrast, elimination of the 5' site had no effect on Tat-mediated activity. Binding studies were performed to determine whether differences in PU.1 binding affinity for the three sites correlated with the relative impact of each site on LTR transcription. While small differences were observed in the binding affinities of the three sites, with the promoter-proximal site having the strongest binding affinity, these differences could not account for the dramatic differences observed in the transcriptional effects. Instead, the promoter-proximal position of the 3' motif appeared to be critical for its transcriptional impact and suggested that the PU.1 sites may serve different roles depending upon the location of the sites within the enhancer. Infectivity studies demonstrated that an LTR containing an enhancer composed of the three PU.1 sites was not sufficient to drive viral replication in macrophages. These findings indicate that while the promoter-proximal PU.1 site is the most critical site for EIAV LTR activity in the presence of Tat, other elements within the enhancer are needed for EIAV replication in macrophages.
Collapse
Affiliation(s)
- Robert Hines
- Division of Basic Biomedical Science, University of South Dakota, Vermillion, South Dakota 57069, USA
| | | | | | | |
Collapse
|
26
|
Neuveut C, Scoggins RM, Camerini D, Markham RB, Jeang KT. Requirement for the second coding exon of Tat in the optimal replication of macrophage-tropic HIV-1. J Biomed Sci 2003. [DOI: 10.1007/bf02256316] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
27
|
Battisti PL, Daher A, Bannwarth S, Voortman J, Peden KWC, Hiscott J, Mouland AJ, Benarous R, Gatignol A. Additive activity between the trans-activation response RNA-binding protein, TRBP2, and cyclin T1 on HIV type 1 expression and viral production in murine cells. AIDS Res Hum Retroviruses 2003; 19:767-78. [PMID: 14585207 DOI: 10.1089/088922203769232566] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tat-mediated trans-activation of the HIV-1 long terminal repeat (LTR) occurs through the phosphorylation of the carboxy-terminal domain of the RNA polymerase II. The kinase complex, pTEFb, composed of cyclin T1 (CycT1) and CDK9, mediates this process. The trans-activation response (TAR) RNA-binding protein 2 (TRBP2) increases HIV-1 LTR expression through TAR and protein kinase R (PKR) binding, but not through interactions with the Tat-CycT1-CDK9 complex. TRBP2 and the Tat-CycT1-CDK9 complex have overlapping binding sites on TAR RNA. TRBP2 and CycT1 increased Tat trans-activation in NIH 3T3 cells with additive effects. Upon transfection of HIV-1 pLAI, pNL4-3, pMAL, and pAD molecular clones, reverse transcriptase (RT) activity and p24 concentration were decreased 200- to 900-fold in NIH 3T3 cells compared with HeLa cells in both cells and supernatants. In murine cells, cotransfection of the HIV clones with CycT1 or TRBP2 increased modestly the expression of RT activity in cell extracts. The analysis of Gag expression in murine cells transfected with CycT1 compared with human cells showed a 20-fold decrease in expression and a strong processing defect. The expression of both CycT1 and TRBP2 had a more than additive activity on RT function in cell extracts and on viral particle production in supernatant of murine cells. These results suggest an activity of CycT1 and TRBP2 at different steps in HIV-1 expression and indicate the requirement for another posttranscriptional factor in murine cells for full HIV replication.
Collapse
Affiliation(s)
- Pier-Luigi Battisti
- Molecular Oncology Group, Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Yedavalli VSRK, Benkirane M, Jeang KT. Tat and trans-activation-responsive (TAR) RNA-independent induction of HIV-1 long terminal repeat by human and murine cyclin T1 requires Sp1. J Biol Chem 2003; 278:6404-10. [PMID: 12458222 DOI: 10.1074/jbc.m209162200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
P-TEFb, cyclin T1 + CDK9, is needed for the expression of cellular promoters and primate lentiviral long terminal repeats (LTRs). Curiously, cellular and lentiviral promoters differ dramatically in the requirements for positive transcriptional elongation factor (P-TEF) b activity. Lentiviral LTRs, but not cellular promoters, need an RNA-associated P-TEFb/Tat/TAR (trans-activation-responsive) RNA ternary complex. Ternary complex defective murine cycT1 is apparently inactive for lentiviral transcription. Why P-TEFb requires Tat/TAR for LTRs but not for cellular promoters remains unknown. To explore this question, we sought to determine whether DNA targeting of murine and human cyclin T1 can reconstitute a Tat/TAR-independent activity to the HIV-1 LTR. In the absence of Tat and TAR, we found that both HuCycT1 and MuCycT1 can robustly activate the HIV-1 LTR. We further showed that Sp1 is necessary and sufficient for this DNA-targeted activity. Thus, like cellular promoters, HIV-1 LTR can use P-TEFb function without a Tat/TAR RNA complex. This activity could explain recent findings of robust HIV-1 replication in rat cells that cannot form a P-TEFb/Tat/TAR moiety.
Collapse
Affiliation(s)
- Venkat S R K Yedavalli
- Molecular Virology Section, Laboratory of Molecular Microbiology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-0460, USA
| | | | | |
Collapse
|
29
|
Brès V, Tagami H, Péloponèse JM, Loret E, Jeang KT, Nakatani Y, Emiliani S, Benkirane M, Kiernan RE. Differential acetylation of Tat coordinates its interaction with the co-activators cyclin T1 and PCAF. EMBO J 2002; 21:6811-9. [PMID: 12486002 PMCID: PMC139090 DOI: 10.1093/emboj/cdf669] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The HIV-1 transactivator protein, Tat, is an atypical transcriptional activator that functions through binding, not to DNA, but to a short leader RNA, TAR. Although details of its functional mechanism are still unknown, emerging findings suggest that Tat serves primarily to adapt co-activator complexes such as p300, PCAF and P-TEFb to the HIV-1 long terminal repeat. Hence, an understanding of how Tat interacts with these cofactors is crucial. It has recently been shown that acetylation at a single lysine, residue 50, regulated the association of Tat with PCAF. Here, we report that in the absence of Tat acetylation, PCAF binds to amino acids 20-40 within Tat. Interestingly, acetylation of Tat at Lys28 abrogates Tat-PCAF interaction. Acetylation at Lys50 creates a new site for binding to PCAF and dictates the formation of a ternary complex of Tat-PCAF-P-TEFb. Thus, differential lysine acetylation of Tat coordinates the interactions with its co-activators, cyclin T1 and PCAF. Our results may help in understanding the ordered recruitment of Tat co-activators to the HIV-1 promoter.
Collapse
Affiliation(s)
- Vanessa Brès
- Laboratoire de Virologie Moléculaire et Transfert de Gène, Institut de Génétique Humaine, CNRS UPR1142, Montpellier, Laboratoire d’Ingenierie des Systemes Macromoleculaires, Institut de Biologie Structurale et Microbiologie, CNRS UPR 9027, Marseille, Institut Cochin, Departement des Maladies Infectieuses, Paris, France, Laboratory of Molecular Virology, NIAID, NIH, Bethesda, MD and Dana Farber Cancer Research Center, Boston, MA, USA Corresponding author e-mail:
| | - Hideaki Tagami
- Laboratoire de Virologie Moléculaire et Transfert de Gène, Institut de Génétique Humaine, CNRS UPR1142, Montpellier, Laboratoire d’Ingenierie des Systemes Macromoleculaires, Institut de Biologie Structurale et Microbiologie, CNRS UPR 9027, Marseille, Institut Cochin, Departement des Maladies Infectieuses, Paris, France, Laboratory of Molecular Virology, NIAID, NIH, Bethesda, MD and Dana Farber Cancer Research Center, Boston, MA, USA Corresponding author e-mail:
| | - Jean-Marie Péloponèse
- Laboratoire de Virologie Moléculaire et Transfert de Gène, Institut de Génétique Humaine, CNRS UPR1142, Montpellier, Laboratoire d’Ingenierie des Systemes Macromoleculaires, Institut de Biologie Structurale et Microbiologie, CNRS UPR 9027, Marseille, Institut Cochin, Departement des Maladies Infectieuses, Paris, France, Laboratory of Molecular Virology, NIAID, NIH, Bethesda, MD and Dana Farber Cancer Research Center, Boston, MA, USA Corresponding author e-mail:
| | - Erwan Loret
- Laboratoire de Virologie Moléculaire et Transfert de Gène, Institut de Génétique Humaine, CNRS UPR1142, Montpellier, Laboratoire d’Ingenierie des Systemes Macromoleculaires, Institut de Biologie Structurale et Microbiologie, CNRS UPR 9027, Marseille, Institut Cochin, Departement des Maladies Infectieuses, Paris, France, Laboratory of Molecular Virology, NIAID, NIH, Bethesda, MD and Dana Farber Cancer Research Center, Boston, MA, USA Corresponding author e-mail:
| | - Kuan-Teh Jeang
- Laboratoire de Virologie Moléculaire et Transfert de Gène, Institut de Génétique Humaine, CNRS UPR1142, Montpellier, Laboratoire d’Ingenierie des Systemes Macromoleculaires, Institut de Biologie Structurale et Microbiologie, CNRS UPR 9027, Marseille, Institut Cochin, Departement des Maladies Infectieuses, Paris, France, Laboratory of Molecular Virology, NIAID, NIH, Bethesda, MD and Dana Farber Cancer Research Center, Boston, MA, USA Corresponding author e-mail:
| | - Yoshihiro Nakatani
- Laboratoire de Virologie Moléculaire et Transfert de Gène, Institut de Génétique Humaine, CNRS UPR1142, Montpellier, Laboratoire d’Ingenierie des Systemes Macromoleculaires, Institut de Biologie Structurale et Microbiologie, CNRS UPR 9027, Marseille, Institut Cochin, Departement des Maladies Infectieuses, Paris, France, Laboratory of Molecular Virology, NIAID, NIH, Bethesda, MD and Dana Farber Cancer Research Center, Boston, MA, USA Corresponding author e-mail:
| | - Stephane Emiliani
- Laboratoire de Virologie Moléculaire et Transfert de Gène, Institut de Génétique Humaine, CNRS UPR1142, Montpellier, Laboratoire d’Ingenierie des Systemes Macromoleculaires, Institut de Biologie Structurale et Microbiologie, CNRS UPR 9027, Marseille, Institut Cochin, Departement des Maladies Infectieuses, Paris, France, Laboratory of Molecular Virology, NIAID, NIH, Bethesda, MD and Dana Farber Cancer Research Center, Boston, MA, USA Corresponding author e-mail:
| | - Monsef Benkirane
- Laboratoire de Virologie Moléculaire et Transfert de Gène, Institut de Génétique Humaine, CNRS UPR1142, Montpellier, Laboratoire d’Ingenierie des Systemes Macromoleculaires, Institut de Biologie Structurale et Microbiologie, CNRS UPR 9027, Marseille, Institut Cochin, Departement des Maladies Infectieuses, Paris, France, Laboratory of Molecular Virology, NIAID, NIH, Bethesda, MD and Dana Farber Cancer Research Center, Boston, MA, USA Corresponding author e-mail:
| | - Rosemary E. Kiernan
- Laboratoire de Virologie Moléculaire et Transfert de Gène, Institut de Génétique Humaine, CNRS UPR1142, Montpellier, Laboratoire d’Ingenierie des Systemes Macromoleculaires, Institut de Biologie Structurale et Microbiologie, CNRS UPR 9027, Marseille, Institut Cochin, Departement des Maladies Infectieuses, Paris, France, Laboratory of Molecular Virology, NIAID, NIH, Bethesda, MD and Dana Farber Cancer Research Center, Boston, MA, USA Corresponding author e-mail:
| |
Collapse
|
30
|
Lin PS, Marshall NF, Dahmus ME. CTD phosphatase: role in RNA polymerase II cycling and the regulation of transcript elongation. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2002; 72:333-65. [PMID: 12206456 DOI: 10.1016/s0079-6603(02)72074-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The repetitive C-terminal domain (CTD) of the largest RNA polymerase II subunit plays a critical role in the regulation of gene expression. The activity of the CTD is dependent on its state of phosphorylation. A variety of CTD kinases act on RNA polymerase II at specific steps in the transcription cycle and preferentially phosphorylate distinct positions within the CTD consensus repeat. A single CTD phosphatase has been identified and characterized that in concert with CTD kinases establishes the level of CTD phosphorylation. The involvement of CTD phosphatase in controlling the progression of RNAP II around the transcription cycle, the mobilization of stored RNAP IIO, and the regulation of transcript elongation and RNA processing is discussed.
Collapse
|
31
|
Kobor MS, Greenblatt J. Regulation of transcription elongation by phosphorylation. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1577:261-275. [PMID: 12213657 DOI: 10.1016/s0167-4781(02)00457-8] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The synthesis of mRNA by RNA polymerase II (RNAPII) is a multistep process that is regulated by different mechanisms. One important aspect of transcriptional regulation is phosphorylation of components of the transcription apparatus. The phosphorylation state of RNAPII carboxy-terminal domain (CTD) is controlled by a variety of protein kinases and at least one protein phosphatase. We discuss emerging genetic and biochemical evidence that points to a role of these factors not only in transcription initiation but also in elongation and possibly termination. In addition, we review phosphorylation events involving some of the general transcription factors (GTFs) and other regulatory proteins. As an interesting example, we describe the modulation of transcription associated kinases and phosphatase by the HIV Tat protein. We focus on bringing together recent findings and propose a revised model for the RNAPII phosphorylation cycle.
Collapse
Affiliation(s)
- Michael S Kobor
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
32
|
Cota-Gomez A, Flores NC, Cruz C, Casullo A, Aw TY, Ichikawa H, Schaack J, Scheinman R, Flores SC. The human immunodeficiency virus-1 Tat protein activates human umbilical vein endothelial cell E-selectin expression via an NF-kappa B-dependent mechanism. J Biol Chem 2002; 277:14390-9. [PMID: 11827962 DOI: 10.1074/jbc.m108591200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human immunodeficiency virus infection is associated with inflammation and endothelial cell activation that cannot be ascribed to direct infection by the virus or to the presence of opportunistic infections. Factors related to the virus itself, to the host and/or to environmental exposures probably account for these observations. The HIV protein Tat, a viral regulator required for efficient transcription of the viral genome in host cells is secreted from infected cells and taken up by uninfected by-stander cells. Tat can also act as a general transcriptional activator of key inflammatory molecules. We have examined whether Tat contributes to this endothelial cell activation by activating NF-kappaB. Human endothelial cells exposed to Tat in the culture medium activated E-selectin expression with delayed kinetics compared with tumor necrosis factor (TNF). Tat-mediated E-selectin up-regulation required the basic domain of Tat and was inhibited by a Tat antibody. Transfection of human E-selectin promoter-luciferase reporter constructs into Tat-bearing cells or into endothelial cells co-transfected with a Tat expression vector resulted in induction of luciferase expression. Either Tat or TNF activated p65 translocation and binding to an oligonucleotide containing the E-selectin kappaB site 3 sequence. Tat-mediated p65 translocation was also delayed compared with TNF. Neither agent induced new synthesis of p65. A super-repressor adenovirus (AdIkappaBalphaSR) that constitutively sequesters IkappaB in the cytoplasm as well as cycloheximide or actinomycin D inhibited Tat- or TNF-mediated kappaB translocation and E-selectin up-regulation.
Collapse
Affiliation(s)
- Adela Cota-Gomez
- Webb-Waring Institute for Cancer, Aging and Antioxidant Research, the Department of Microbiology, School of Pharmacy, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Bharucha DC, Zhou M, Nekhai S, Brady JN, Shukla RR, Kumar A. A protein phosphatase from human T cells augments tat transactivation of the human immunodeficiency virus type 1 long-terminal repeat. Virology 2002; 296:6-16. [PMID: 12036313 DOI: 10.1006/viro.2002.1438] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
HIV-1 Tat protein regulates viral gene expression by modulating the activity and association of cellular transcription factors with RNA polymerase II (RNAPII). Possible mechanisms include Tat-associated protein kinase(s) and phosphatase(s) that regulate phosphorylation of the C-terminal domain (CTD) of the large subunit of RNAPII. Hypophosphorylated RNAPII (RNAPIIa) is recruited to promoters during formation of a preinitiation complex, whereas hyperphosphorylated RNAPII (RNAPIIo) is associated with the elongation complex. The role of phosphatases in maintaining the equilibrium between the two phosphorylated states of RNAPII, which is required for sustained transcriptional activation from the HIV-1 LTR, is not clear. In this study, we discuss the properties of a Tat-associated CTD phosphatase fractionated from Jurkat T cells. The Tat-associated protein phosphatase (TAPP) is related to the serine/threonine, type 1, protein phosphatase (PP1) family. TAPP dephosphorylates the hyperphosphorylated form of recombinant CTD specifically on serine 2, and augments Tat-mediated transcriptional transactivation of HIV-1 LTR in an in vitro transcription reaction. TAPP is associated with the transcription complex during the early initiation steps, and its release from the HIV-1 promoter coincides with the Tat-specific activation of CDK9. The results suggest a unique role of the Tat-associated phosphatase which regulates viral transcription by target-specific dephosphorylation of RNAPII during the early stages of elongation.
Collapse
Affiliation(s)
- Diana C Bharucha
- Department of Biochemistry and Molecular Biology, The George Washington University Medical Center, Washington, DC 20037, USA
| | | | | | | | | | | |
Collapse
|
34
|
Zhou M, Nekhai S, Bharucha DC, Kumar A, Ge H, Price DH, Egly JM, Brady JN. TFIIH inhibits CDK9 phosphorylation during human immunodeficiency virus type 1 transcription. J Biol Chem 2001; 276:44633-40. [PMID: 11572868 DOI: 10.1074/jbc.m107466200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tat stimulates human immunodeficiency virus, type 1 (HIV-1), transcription elongation by recruitment of the human transcription elongation factor P-TEFb, consisting of CDK9 and cyclin T1, to the TAR RNA structure. It has been demonstrated further that CDK9 phosphorylation is required for high affinity binding of Tat/P-TEFb to the TAR RNA structure and that the state of P-TEFb phosphorylation may regulate Tat transactivation. We now demonstrate that CDK9 phosphorylation is uniquely regulated in the HIV-1 preinitiation and elongation complexes. The presence of TFIIH in the HIV-1 preinitiation complex inhibits CDK9 phosphorylation. As TFIIH is released from the elongation complex between +14 and +36, CDK9 phosphorylation is observed. In contrast to the activity in the "soluble" complex, phosphorylation of CDK9 is increased by the presence of Tat in the transcription complexes. Consistent with these observations, we have demonstrated that purified TFIIH directly inhibits CDK9 autophosphorylation. By using recombinant TFIIH subcomplexes, our results suggest that the XPB subunit of TFIIH is responsible for this inhibition of CDK9 phosphorylation. Interestingly, our results further suggest that the phosphorylated form of CDK9 is the active kinase for RNA polymerase II carboxyl-terminal domain phosphorylation.
Collapse
Affiliation(s)
- M Zhou
- Virus Tumor Biology Section, Basic Research Laboratory, Division of Basic Sciences, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Browning CM, Smith MJ, Clark NM, Lane BR, Parada C, Montano M, KewalRamani VN, Littman DR, Essex M, Roeder RG, Markovitz DM. Human GLI-2 is a tat activation response element-independent Tat cofactor. J Virol 2001; 75:2314-23. [PMID: 11160734 PMCID: PMC114814 DOI: 10.1128/jvi.75.5.2314-2323.2001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2000] [Accepted: 12/07/2000] [Indexed: 11/20/2022] Open
Abstract
Zinc finger-containing GLI proteins are involved in the development of Caenorhabditis elegans, Xenopus, Drosophila, zebrafish, mice, and humans. In this study, we show that an isoform of human GLI-2 strongly synergizes with the Tat transactivating proteins of human immunodeficiency virus types 1 and 2 (HIV-1 and -2) and markedly stimulates viral replication. GLI-2 also synergizes with the previously described Tat cofactor cyclin T1 to stimulate Tat function. Surprisingly, GLI-2/Tat synergy is not dependent on either a typical GLI DNA binding site or an intact Tat activation response element but does require an intact TATA box. Thus, GLI-2/Tat synergy results from a mechanism of action which is novel both for a GLI protein and for a Tat cofactor. These findings link the GLI family of transcriptional and developmental regulatory proteins to Tat function and HIV replication.
Collapse
Affiliation(s)
- C M Browning
- Department of Microbiology and Immunology, Ann Arbor, Michigan 48109-0640,USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Berkhout B. Multiple biological roles associated with the repeat (R) region of the HIV-1 RNA genome. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2001; 48:29-73. [PMID: 10987088 DOI: 10.1016/s1054-3589(00)48003-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- B Berkhout
- Department of Human Retrovirology, University of Amsterdam, The Netherlands
| |
Collapse
|
37
|
Gatignol A, Jeang KT. Tat as a transcriptional activator and a potential therapeutic target for HIV-1. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2001; 48:209-27. [PMID: 10987092 DOI: 10.1016/s1054-3589(00)48007-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- A Gatignol
- U529 INSERM, Institut Cochin de Génétique Moléculaire, Paris, France
| | | |
Collapse
|
38
|
Licciardo P, Napolitano G, Majello B, Lania L. Inhibition of Tat transactivation by the RNA polymerase II CTD-phosphatase FCP1. AIDS 2001; 15:301-7. [PMID: 11273209 DOI: 10.1097/00002030-200102160-00002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES To asses the role of the RNAPII carboxy-terminal domain (CTD) phosphatase FCP1 on HIV-1 Tat-mediated transactivation. DESIGN Construction of expression vectors encoding FCP1 phosphatase and analysis of their functions on Tat activity. METHODS Basal and Tat-mediated transactivation of HIV-1 long terminal repeat (LTR)-driven transcription was compared, by transient transfections, in the presence of FCP1 phosphatase. Protein interactions were analysed by in vitro binding assays. RESULTS FCP1 specifically and effectively represses Tat transactivation but not HIV-1 LTR-basal transcription. Protein interaction assays demonstrated that FCP1 specifically and directly binds Tat in vitro. CONCLUSION The specific and efficient inhibitory function of FCP1 highlights the important role of this CTD-phosphatase in Tat-mediated transactivation, and it suggests that FCP1 might represent a specific target for modulation of Tat activity in infected cells.
Collapse
Affiliation(s)
- P Licciardo
- Department of Genetics, Molecular and General Biology, University of Naples Federico II and the International Institute of Genetics and Biophysics, Italy
| | | | | | | |
Collapse
|
39
|
Marshall NF, Dahmus ME. C-terminal domain phosphatase sensitivity of RNA polymerase II in early elongation complexes on the HIV-1 and adenovirus 2 major late templates. J Biol Chem 2000; 275:32430-7. [PMID: 10938286 DOI: 10.1074/jbc.m005898200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The fate of RNA polymerase II in early elongation complexes is under the control of factors that regulate and respond to the phosphorylation state of the C-terminal domain (CTD). Phosphorylation of the CTD protects early elongation complexes from negative transcription elongation factors such as NELF, DSIF, and factor 2. To understand the relationship between transcript elongation and the sensitivity of RNA polymerase IIO to dephosphorylation, elongation complexes at defined positions on the Ad2-ML and human immunodeficiency virus type 1 (HIV-1) templates were purified, and their sensitivity to CTD phosphatase was determined. Purified elongation complexes treated with 1% Sarkosyl and paused at U(14)/G(16) on an HIV-1 template and at G(11) on the Ad2-ML template are equally sensitive to dephosphorylation by CTD phosphatase. Multiple elongation complexes paused at more promoter distal sites are more resistant to dephosphorylation than are U(14)/G(16) and G(11) complexes. The HIV-1 long terminal repeat and adenovirus 2 major late promoter do not appear to differentially influence the CTD phosphatase sensitivity of stringently washed complexes. Subsequent elongation by 1% Sarkosyl-washed U(14)/G(16) complexes is unaffected by prior CTD phosphatase treatment. This result is consistent with the hypothesis that CTD phosphatase requires the presence of specific elongation factors to propagate a negative effect on transcript elongation. The action of CTD phosphatase on elongation complexes is inhibited by HIV-1 Tat protein. This observation is consistent with the idea that Tat suppression of CTD phosphatase plays a role in transactivation.
Collapse
Affiliation(s)
- N F Marshall
- Section of Molecular and Cellular Biology, Division of Biological Sciences, University of California, Davis, California 95616, USA
| | | |
Collapse
|
40
|
Abstract
Equine infectious anemia virus (EIAV) is an ungulate lentivirus that is related to human immunodeficiency virus (HIV). Much of the understanding of lentiviral gene regulation comes from studies using HIV. HIV studies have provided insights into molecular regulation of EIAV expression; however, much of the regulation of EIAV expression stands in stark contrast to that of HIV. This review provides an overview of the current state of knowledge of EIAV regulation by comparing and contrasting EIAV gene regulation to HIV. The role of EIAV gene regulation is discussed in relation to EIAV pathogenesis.
Collapse
Affiliation(s)
- W Maury
- Department of Microbiology, University of South Dakota School of Medicine, Vermillion 57069, USA.
| |
Collapse
|
41
|
Abstract
The HIV-1 Tat protein is an RNA-binding transcriptional transactivator. Recent findings suggest that Tat associates with a cellular kinase that phosphorylates the carboxyl-terminal domain of the largest subunit of RNA polymerase II. Here we review, in brief, the role of Tat-associated kinase in Tat-activated transcription. We discuss evidence that suggests involvement of TFIIH and/or P-TEFb.
Collapse
Affiliation(s)
- K T Jeang
- Molecular Virology Section, Laboratory of Molecular Microbiology, NIAID, NIH, Bethesda, MD 20892-0460, USA.
| |
Collapse
|
42
|
Napolitano G, Majello B, Licciardo P, Giordano A, Lania L. Transcriptional activity of positive transcription elongation factor b kinase in vivo requires the C-terminal domain of RNA polymerase II. Gene 2000; 254:139-45. [PMID: 10974544 DOI: 10.1016/s0378-1119(00)00278-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phosphorylation of the carboxyl-terminal domain (CTD) of RNA polymerase II (RNAPII) is an important step in transcription and the positive transcription elongation factor b (P-TEFb) has been proposed to facilitate elongation at many genes. The P-TEFb contains a catalytic subunit (Cdk9) that, in association with a cyclin subunit (cyclinT1), has the ability to phosphorylate the CTD substrate in vitro. Here, we demonstrate that cyclinT1/Cdk9-mediated transcription requires CTD-containing RNAPII, suggesting that the CTD is the major target of the cyclinT1/Cdk9 complex in vivo. Unlike Cdk7 and Cdk8, two other cyclin-dependent kinases that are capable of phosphorylating the CTD in vitro, we found that only the Cdk9 activates gene expression in a catalysis-dependent manner. Finally, unlike cyclinT1 and T2, we found that the targeted recruitment to promoter DNA of cyclinK (a recently described alternative partner of Cdk9) does not stimulate transcription in vivo. Collectively, our data strongly indicate that the P-TEFb kinase subunits cyclinT/Cdk9 are specifically involved in transcription and the CTD domain of RNAPII is the major functional target of this complex in vivo.
Collapse
Affiliation(s)
- G Napolitano
- Department of Genetics, Molecular and General Biology, University of Naples 'Federico II' and International Institute of Genetics and Biophysics, CNR, Via Mezzocannone 8, 80134, Naples, Italy
| | | | | | | | | |
Collapse
|
43
|
Fong YW, Zhou Q. Relief of two built-In autoinhibitory mechanisms in P-TEFb is required for assembly of a multicomponent transcription elongation complex at the human immunodeficiency virus type 1 promoter. Mol Cell Biol 2000; 20:5897-907. [PMID: 10913173 PMCID: PMC86067 DOI: 10.1128/mcb.20.16.5897-5907.2000] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tat stimulation of human immunodeficiency virus type 1 (HIV-1) transcription requires Tat-dependent recruitment of human positive transcription elongation factor b (P-TEFb) to the HIV-1 promoter and the formation on the trans-acting response element (TAR) RNA of a P-TEFb-Tat-TAR ternary complex. We show here that the P-TEFb heterodimer of Cdk9-cyclin T1 is intrinsically incapable of forming a stable complex with Tat and TAR due to two built-in autoinhibitory mechanisms in P-TEFb. Both mechanisms exert little effect on the P-TEFb-Tat interaction but prevent the P-TEFb-Tat complex from binding to TAR RNA. The first autoinhibition arises from the unphosphorylated state of Cdk9, which establishes a P-TEFb conformation unfavorable for TAR recognition. Autophosphorylation of Cdk9 overcomes this inhibition by inducing conformational changes in P-TEFb, thereby exposing a region in cyclin T1 for possible TAR binding. An intramolecular interaction between the N- and C-terminal regions of cyclin T1 sterically blocks the P-TEFb-TAR interaction and constitutes the second autoinhibitory mechanism. This inhibition is relieved by the binding of the C-terminal region of cyclin T1 to the transcription elongation factor Tat-SF1 and perhaps other cellular factors. Upon release from the intramolecular interaction, the C-terminal region also interacts with RNA polymerase II and is required for HIV-1 transcription, suggesting its role in bridging the P-TEFb-Tat-TAR complex and the basal elongation apparatus. These data reveal novel control mechanisms for the assembly of a multicomponent transcription elongation complex at the HIV-1 promoter.
Collapse
Affiliation(s)
- Y W Fong
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720-3206, USA
| | | |
Collapse
|
44
|
Abstract
Eukaryotic mRNA synthesis is catalyzed by multisubunit RNA polymerase II and proceeds through multiple stages referred to as preinitiation, initiation, elongation, and termination. Over the past 20 years, biochemical studies of eukaryotic mRNA synthesis have largely focused on the preinitiation and initiation stages of transcription. These studies led to the discovery of the class of general initiation factors (TFIIB, TFIID, TFIIE, TFIIF, and TFIIH), which function in intimate association with RNA polymerase II and are required for selective binding of polymerase to its promoters, formation of the open complex, and synthesis of the first few phosphodiester bonds of nascent transcripts. Recently, biochemical studies of the elongation stage of eukaryotic mRNA synthesis have led to the discovery of several cellular proteins that have properties expected of general elongation factors and that have been found to play unanticipated roles in human disease. Among these candidate general elongation factors are the positive transcription elongation factor b (P-TEFb), eleven-nineteen lysine-rich in leukemia (ELL), Cockayne syndrome complementation group B (CSB), and elongin proteins, which all function in vitro to expedite elongation by RNA polymerase II by suppressing transient pausing or premature arrest by polymerase through direct interactions with the elongation complex. Despite their similar activities in elongation, the P-TEFb, ELL, CSB, and elongin proteins appear to play roles in a diverse collection of human diseases, including human immunodeficiency virus-1 infection, acute myeloid leukemia, Cockayne syndrome, and the familial cancer predisposition syndrome von Hippel-Lindau disease. here we review our current understanding of the P-TEFb, ELL, CSB, and elongin proteins, their mechanisms of action, and their roles in human disease.
Collapse
Affiliation(s)
- J W Conaway
- Howard Hughes Medical Institute, Oklahoma Medical Research Foundation, Oklahoma City 73104, USA
| | | |
Collapse
|
45
|
Zhou M, Halanski MA, Radonovich MF, Kashanchi F, Peng J, Price DH, Brady JN. Tat modifies the activity of CDK9 to phosphorylate serine 5 of the RNA polymerase II carboxyl-terminal domain during human immunodeficiency virus type 1 transcription. Mol Cell Biol 2000; 20:5077-86. [PMID: 10866664 PMCID: PMC85957 DOI: 10.1128/mcb.20.14.5077-5086.2000] [Citation(s) in RCA: 205] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tat stimulates human immunodeficiency virus type 1 (HIV-1) transcriptional elongation by recruitment of carboxyl-terminal domain (CTD) kinases to the HIV-1 promoter. Using an immobilized DNA template assay, we have analyzed the effect of Tat on kinase activity during the initiation and elongation phases of HIV-1 transcription. Our results demonstrate that cyclin-dependent kinase 7 (CDK7) (TFIIH) and CDK9 (P-TEFb) both associate with the HIV-1 preinitiation complex. Hyperphosphorylation of the RNA polymerase II (RNAP II) CTD in the HIV-1 preinitiation complex, in the absence of Tat, takes place at CTD serine 2 and serine 5. Analysis of preinitiation complexes formed in immunodepleted extracts suggests that CDK9 phosphorylates serine 2, while CDK7 phosphorylates serine 5. Remarkably, in the presence of Tat, the substrate specificity of CDK9 is altered, such that the kinase phosphorylates both serine 2 and serine 5. Tat-induced CTD phosphorylation by CDK9 is strongly inhibited by low concentrations of 5, 6-dichloro-1-beta-D-ribofuranosylbenzimidazole, an inhibitor of transcription elongation by RNAP II. Analysis of stalled transcription elongation complexes demonstrates that CDK7 is released from the transcription complex between positions +14 and +36, prior to the synthesis of transactivation response (TAR) RNA. In contrast, CDK9 stays associated with the complex through +79. Analysis of CTD phosphorylation indicates a biphasic modification pattern, one in the preinitiation complex and the other between +36 and +79. The second phase of CTD phosphorylation is Tat-dependent and TAR-dependent. These studies suggest that the ability of Tat to increase transcriptional elongation may be due to its ability to modify the substrate specificity of the CDK9 complex.
Collapse
Affiliation(s)
- M Zhou
- Virus Tumor Biology Section, LRBGE, Division of Basic Sciences, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Okamoto H, Cujec TP, Peterlin BM, Okamoto T. HIV-1 replication is inhibited by a pseudo-substrate peptide that blocks Tat transactivation. Virology 2000; 270:337-44. [PMID: 10792993 DOI: 10.1006/viro.2000.0311] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The activation of the HIV-1 long terminal repeat (LTR) by the viral transcriptional transactivator Tat is an essential step in the viral replication cycle. To increase the processivity of RNA polymerase II, Tat interacts with the positive transcription elongation factor b (P-TEFb) and cyclin-dependent kinase (CDK)-activating kinase (CAK). In this study, we demonstrate that a pseudo-substrate peptide for CDK7, mC2p, inhibits HIV-1 replication as well as Tat transactivation. Specifically, mC2p blocks only the activity of CAK and not that of P-TEFb. Moreover, mC2p inhibits Tat transactivation and HIV replication. Therefore, the activation of CDK7 by Tat is considered a critical step of Tat transactivation and mC2p and related compounds represent potential candidates for novel anti-HIV therapeutics.
Collapse
Affiliation(s)
- H Okamoto
- Department of Molecular Genetics, Nagoya City University Medical School, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8601, Japan
| | | | | | | |
Collapse
|
47
|
Affiliation(s)
- D H Price
- Department of Biochemistry, University of Iowa, Iowa City, Iowa 52242, USA.
| |
Collapse
|
48
|
Xiao H, Palhan V, Yang Y, Roeder RG. TIP30 has an intrinsic kinase activity required for up-regulation of a subset of apoptotic genes. EMBO J 2000; 19:956-63. [PMID: 10698937 PMCID: PMC305635 DOI: 10.1093/emboj/19.5.956] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
CC3 is a metastasis suppressor that inhibits metastasis of the variant small cell lung carcinoma (v-SCLC) by predisposing cells to apoptosis. The same protein was also reported as a cellular cofactor, TIP30, which stimulates HIV-1 Tat-activated transcription by interacting with both Tat and RNA polymerase II. We report here that TIP30/CC3 is a novel serine/threonine kinase. It phosphorylates the heptapeptide repeats of the C-terminal domain (CTD) of the largest RNA polymerase II subunit in a Tat-dependent manner. Amino acid substitutions in the putative ATP binding motif that abolish the TIP30 kinase activity also inhibit the ability of TIP30 to enhance Tat-activated transcription or to sensitize NIH 3T3 and v-SCLC cells to apoptosis. Furthermore, ectopic expression of TIP30/CC3 in v-SCLC cells induces expression of a number of genes that include the apoptosis-related genes Bad and Siva, as well as metastasis suppressor NM23-H2. These data demonstrate a molecular mechanism for TIP30/CC3 function and suggest a novel pathway for regulating apoptosis.
Collapse
Affiliation(s)
- H Xiao
- Laboratory of Biochemistry, The Rockefeller University, New York, NY 10021, USA
| | | | | | | |
Collapse
|
49
|
Thébault S, Gachon F, Lemasson I, Devaux C, Mesnard JM. Molecular cloning of a novel human I-mfa domain-containing protein that differently regulates human T-cell leukemia virus type I and HIV-1 expression. J Biol Chem 2000; 275:4848-57. [PMID: 10671520 DOI: 10.1074/jbc.275.7.4848] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulation of viral genome expression is the result of complex cooperation between viral proteins and host cell factors. We report here the characterization of a novel cellular factor sharing homology with the specific cysteine-rich C-terminal domain of the basic helix-loop-helix repressor protein I-mfa. The synthesis of this new factor, called HIC for Human I-mfa domain-Containing protein, is controlled at the translational level by two different codons, an ATG and an upstream non-ATG translational initiator, allowing the production of two protein isoforms, p32 and p40, respectively. We show that the HIC protein isoforms present different subcellular localizations, p32 being mainly distributed throughout the cytoplasm, whereas p40 is targeted to the nucleolus. Moreover, in trying to understand the function of HIC, we have found that both isoforms stimulate in T-cells the expression of a luciferase reporter gene driven by the human T-cell leukemia virus type I-long terminal repeat in the presence of the viral transactivator Tax. We demonstrate by mutagenesis that the I-mfa-like domain of HIC is involved in this regulation. Finally, we also show that HIC is able to down-regulate the luciferase expression from the human immunodeficiency virus type 1-long terminal repeat induced by the viral transactivator Tat. From these results, we propose that HIC and I-mfa represent two members of a new family of proteins regulating gene expression and characterized by a particular cysteine-rich C-terminal domain.
Collapse
Affiliation(s)
- S Thébault
- Institut de Biologie, Laboratoire Infections Rétrovirales et Signalisation Cellulaire, CRBM-CNRS UPR 1086, 4 Boulevard Henri IV, 34060 Montpellier, France
| | | | | | | | | |
Collapse
|
50
|
Nekhai S, Shukla RR, Fernandez A, Kumar A, Lamb NJ. Cell cycle-dependent stimulation of the HIV-1 promoter by Tat-associated CAK activator. Virology 2000; 266:246-56. [PMID: 10639311 DOI: 10.1006/viro.1999.0035] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activation of the HIV-1 promoter by the virally encoded Tat protein is characterized by efficient processive transcription, mediated by host cell factors that are tethered to the promoter with the Tat-TAR RNA complex. Importantly, viral gene activation has been shown to be stimulated in mitogenically induced cells, although the link between cell cycle regulation and viral gene activation is unclear. We reported a Tat-associated CAK/CTD kinase from mitogenically induced primary human T-cells (TTK) (S. Nekhai et al., 1997, J. Virol. 71, 7436-7441). Here, biological activity of the kinase has been studied by direct microinjection at the individual-cell level. The TTK-dependent Tat response is maximal during G1 phase as shown by co-injection with Tat protein in cells synchronized at the various stages of the cell cycle. The cell cycle dependence of the Tat response was confirmed by inhibiting G0 --> G1 progression with the expression of dominant negative mutant Ras(Asn17) or the cyclin-dependent kinase CDK4. The results support a mechanism whereby transactivation of the HIV promoter is regulated by cell growth signal transduction pathways that target the Tat cofactor.
Collapse
Affiliation(s)
- S Nekhai
- Department of Biochemistry, George Washington University School of Medicine, Washington, DC, 20037, USA
| | | | | | | | | |
Collapse
|