1
|
Yin L, Dai Y, Wang Y, Liu S, Ye Y, Fu Y, Peng Y, Tan R, Fang L, Suo H, Qi X, Yuan B, Gao Y, Liu Y, Li X. A mitochondrial outer membrane protein TOMM20 maintains protein stability of androgen receptor and regulates AR transcriptional activity in prostate cancer cells. Oncogene 2025; 44:1567-1577. [PMID: 40044984 DOI: 10.1038/s41388-025-03328-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 02/01/2025] [Accepted: 02/21/2025] [Indexed: 05/23/2025]
Abstract
Prostate cancer (PCa) is an androgen-dependent malignancy, with HSP90 and HSP70 serving as classical molecular chaperones that maintain androgen receptor (AR) protein stability and regulate its transcriptional activation. Surprisingly, our study identified TOMM20, a mitochondrial outer membrane protein, as a potential molecular chaperone with similar roles to HSP90/HSP70. We found that TOMM20 expression is elevated in PCa tissues and cell lines and positively correlates with AR levels. RNA-seq analysis revealed that TOMM20 knockdown significantly reduced the mRNA levels of AR-regulated genes. Additionally, the protein level of KLK3 (PSA) decreased, and AR binding to the androgen response element (ARE) of the KLK3 promoter was diminished following TOMM20 knockdown, leading to decreased KLK3 gene transcription. Furthermore, TOMM20 depletion reduced both cytoplasmic and nuclear AR protein levels and facilitated AR degradation via an E3 ubiquitin ligase SKP2-mediated ubiquitin-proteasome pathway, independent of heat shock proteins (HSPs). To our knowledge, this is the first report demonstrating that TOMM20, a mitochondrial outer translocase protein, stabilizes AR protein and enhances its transcriptional activity, while its knockdown promotes AR degradation through the SKP2-mediated ubiquitin-proteasome pathway. These findings suggest that TOMM20 may serve as a potential biomarker for PCa progression and a promising therapeutic target for drug development.
Collapse
Affiliation(s)
- Linglong Yin
- Key Laboratory of Clinical Precision Pharmacy of Guangdong Higher Education Institutes, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, 510699, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, 510699, China
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yi Dai
- Key Laboratory of Clinical Precision Pharmacy of Guangdong Higher Education Institutes, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, 510699, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, 510699, China
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yue Wang
- Key Laboratory of Clinical Precision Pharmacy of Guangdong Higher Education Institutes, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, 510699, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, 510699, China
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Shiwen Liu
- Key Laboratory of Clinical Precision Pharmacy of Guangdong Higher Education Institutes, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, 510699, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, 510699, China
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yubing Ye
- Key Laboratory of Clinical Precision Pharmacy of Guangdong Higher Education Institutes, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, 510699, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, 510699, China
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yongming Fu
- Key Laboratory of Clinical Precision Pharmacy of Guangdong Higher Education Institutes, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, 510699, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, 510699, China
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yuchong Peng
- Key Laboratory of Clinical Precision Pharmacy of Guangdong Higher Education Institutes, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, 510699, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, 510699, China
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ruizheng Tan
- BaiSheng (GuangZhou) Biological Products Co. Ltd., Guangzhou, China
| | - Li Fang
- Key Laboratory of Clinical Precision Pharmacy of Guangdong Higher Education Institutes, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, 510699, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, 510699, China
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Haoran Suo
- Key Laboratory of Clinical Precision Pharmacy of Guangdong Higher Education Institutes, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, 510699, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, 510699, China
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xuli Qi
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510006, China
| | - Bowen Yuan
- Department of Pathology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Yingxue Gao
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Youhong Liu
- Xiangya Cancer Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xiong Li
- Key Laboratory of Clinical Precision Pharmacy of Guangdong Higher Education Institutes, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, 510699, China.
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, 510699, China.
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
2
|
Paul JW, Muratcioğlu S, Kuriyan J. A fluorescence-based sensor for calibrated measurement of protein kinase stability in live cells. Protein Sci 2024; 33:e5023. [PMID: 38801214 PMCID: PMC11129626 DOI: 10.1002/pro.5023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/22/2024] [Accepted: 05/02/2024] [Indexed: 05/29/2024]
Abstract
Oncogenic mutations can destabilize signaling proteins, resulting in increased or unregulated activity. Thus, there is considerable interest in mapping the relationship between mutations and the stability of signaling proteins, to better understand the consequences of oncogenic mutations and potentially inform the development of new therapeutics. Here, we develop a tool to study protein-kinase stability in live mammalian cells and the effects of the HSP90 chaperone system on the stability of these kinases. We determine the expression levels of protein kinases by monitoring the fluorescence of fluorescent proteins fused to those kinases, normalized to that of co-expressed reference fluorescent proteins. We used this tool to study the dependence of Src- and Raf-family kinases on the HSP90 system. We demonstrate that this sensor reports on destabilization induced by oncogenic mutations in these kinases. We also show that Src-homology 2 and Src-homology 3 domains, which are required for autoinhibition of Src-family kinases, stabilize these kinase domains in the cell. Our expression-calibrated sensor enables the facile characterization of the effects of mutations and small-molecule drugs on protein-kinase stability.
Collapse
Affiliation(s)
- Joseph W. Paul
- Department of Molecular and Cell BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
- California Institute for Quantitative Bioscience (QB3)University of CaliforniaBerkeleyCaliforniaUSA
| | - Serena Muratcioğlu
- Department of BiochemistryVanderbilt University School of MedicineNashvilleTennesseeUSA
| | - John Kuriyan
- Department of BiochemistryVanderbilt University School of MedicineNashvilleTennesseeUSA
- Department of ChemistryVanderbilt UniversityNashvilleTennesseeUSA
| |
Collapse
|
3
|
Arai S, Gao Y, Yu Z, Xie L, Wang L, Zhang T, Nouri M, Chen S, Asara JM, Balk SP. A carboxy-terminal ubiquitylation site regulates androgen receptor activity. Commun Biol 2024; 7:25. [PMID: 38182874 PMCID: PMC10770046 DOI: 10.1038/s42003-023-05709-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 12/14/2023] [Indexed: 01/07/2024] Open
Abstract
Degradation of unliganded androgen receptor (AR) in prostate cancer cells can be prevented by proteasome inhibition, but this is associated with only modest increases in polyubiquitylated AR. An inhibitor (VLX1570) of the deubiquitylases associated with the proteasome did not increase ubiquitylation of unliganded AR, indicating that AR is not targeted by these deubiquitylases. We then identified a series of AR ubiquitylation sites, including a not previously identified site at K911, as well as methylation sites and previously identified phosphorylation sites. Mutagenesis of K911 increases AR stability, chromatin binding, and transcriptional activity. We further found that K313, a previously reported ubiquitylation site, could also be methylated and acetylated. Mutagenesis of K313, in combination with K318, increases AR transcriptional activity, indicating that distinct posttranslational modifications at K313 differentially regulate AR activity. Together these studies expand the spectrum of AR posttranslational modifications, and indicate that the K911 site may regulate AR turnover on chromatin.
Collapse
Affiliation(s)
- Seiji Arai
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Urology, Gunma University Hospital, Maebashi, Gunma, Japan
| | - Yanfei Gao
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Ziyang Yu
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Lisha Xie
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Liyang Wang
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Tengfei Zhang
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Mannan Nouri
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Shaoyong Chen
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - John M Asara
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Steven P Balk
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Parsons EC, Hoffmann R, Baillie GS. Revisiting the roles of cAMP signalling in the progression of prostate cancer. Biochem J 2023; 480:1599-1614. [PMID: 37830741 PMCID: PMC10586777 DOI: 10.1042/bcj20230297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/29/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023]
Abstract
Prostate cancer is one of the most common cancers in men and one of the top causes of death in men worldwide. Development and function of both normal prostate cells and early-stage prostate cancer cells are dependent on the cross-talk between androgen signalling systems and a variety of other transduction pathways which drive differentiation of these cells towards castration-resistance. One such signalling pathway is the ubiquitous cAMP signalling axis which functions to activate spatially restricted pools of cAMP effectors such as protein kinase A (PKA). The importance of both PKA and cAMP in the development of prostate cancer, and their interactions with the androgen receptor, were the focus of a review by Merkle and Hoffmann in 2010. In this updated review, we revisit this topic with analysis of current PKA-related prostate cancer literature and introduce novel information on the relevance of another cAMP effector, the exchange protein directly activated by cAMP (EPAC).
Collapse
Affiliation(s)
- Emma C. Parsons
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Bearsden, Glasgow G61 1QH, U.K
| | - Ralf Hoffmann
- Oncology, Philips Research Eindhoven, High Tech Campus 34, 5656 AE Eindhoven, The Netherlands
- School of Cardiovascular & Metabolic Health, University of Glasgow, University Avenue, Glasgow G12 8QQ, U.K
| | - George S. Baillie
- School of Cardiovascular & Metabolic Health, University of Glasgow, University Avenue, Glasgow G12 8QQ, U.K
| |
Collapse
|
5
|
Cole RN, Fang Q, Wang Z. Androgen receptor nucleocytoplasmic trafficking - A one-way journey. Mol Cell Endocrinol 2023; 576:112009. [PMID: 37414131 PMCID: PMC10528972 DOI: 10.1016/j.mce.2023.112009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
The androgen receptor (AR) is a key regulator of the growth and proliferation of prostate cancer. The majority of lethal castration-resistant prostate cancer (CRPC) growth is still dependent on AR activity. The AR need to be in the nucleus to exert its biological action as a transcription factor. As such, defining the mechanisms that regulate the subcellular localization of AR are important. Previously it was believed that AR was imported into the nucleus in a ligand-dependent manner and subsequently exported out of the nucleus upon ligand withdrawal. Recent evidence has challenged this decades-old paradigm and showed that the AR is degraded, not exported, in the nucleus. This review discusses the current understanding of how AR nucleocytoplasmic localization is regulated by import and through nuclear degradation.
Collapse
Affiliation(s)
- Ryan N Cole
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Qinghua Fang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zhou Wang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Backe SJ, Mollapour M, Woodford MR. Saccharomyces cerevisiae as a tool for deciphering Hsp90 molecular chaperone function. Essays Biochem 2023; 67:781-795. [PMID: 36912239 PMCID: PMC10497724 DOI: 10.1042/ebc20220224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 03/14/2023]
Abstract
Yeast is a valuable model organism for their ease of genetic manipulation, rapid growth rate, and relative similarity to higher eukaryotes. Historically, Saccharomyces cerevisiae has played a major role in discovering the function of complex proteins and pathways that are important for human health and disease. Heat shock protein 90 (Hsp90) is a molecular chaperone responsible for the stabilization and activation of hundreds of integral members of the cellular signaling network. Much important structural and functional work, including many seminal discoveries in Hsp90 biology are the direct result of work carried out in S. cerevisiae. Here, we have provided a brief overview of the S. cerevisiae model system and described how this eukaryotic model organism has been successfully applied to the study of Hsp90 chaperone function.
Collapse
Affiliation(s)
- Sarah J. Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
| | - Mark R. Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
| |
Collapse
|
7
|
Backe SJ, Sager RA, Heritz JA, Wengert LA, Meluni KA, Aran-Guiu X, Panaretou B, Woodford MR, Prodromou C, Bourboulia D, Mollapour M. Activation of autophagy depends on Atg1/Ulk1-mediated phosphorylation and inhibition of the Hsp90 chaperone machinery. Cell Rep 2023; 42:112807. [PMID: 37453059 PMCID: PMC10529509 DOI: 10.1016/j.celrep.2023.112807] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/31/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023] Open
Abstract
Cellular homeostasis relies on both the chaperoning of proteins and the intracellular degradation system that delivers cytoplasmic constituents to the lysosome, a process known as autophagy. The crosstalk between these processes and their underlying regulatory mechanisms is poorly understood. Here, we show that the molecular chaperone heat shock protein 90 (Hsp90) forms a complex with the autophagy-initiating kinase Atg1 (yeast)/Ulk1 (mammalian), which suppresses its kinase activity. Conversely, environmental cues lead to Atg1/Ulk1-mediated phosphorylation of a conserved serine in the amino domain of Hsp90, inhibiting its ATPase activity and altering the chaperone dynamics. These events impact a conformotypic peptide adjacent to the activation and catalytic loop of Atg1/Ulk1. Finally, Atg1/Ulk1-mediated phosphorylation of Hsp90 leads to dissociation of the Hsp90:Atg1/Ulk1 complex and activation of Atg1/Ulk1, which is essential for initiation of autophagy. Our work indicates a reciprocal regulatory mechanism between the chaperone Hsp90 and the autophagy kinase Atg1/Ulk1 and consequent maintenance of cellular proteostasis.
Collapse
Affiliation(s)
- Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Jennifer A Heritz
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Laura A Wengert
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Katherine A Meluni
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Xavier Aran-Guiu
- Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, UK
| | - Barry Panaretou
- School of Cancer and Pharmaceutical Sciences, Institute of Pharmaceutical Science, King's College London, London SE1 9NQ, UK
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | | | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
8
|
He Y, Zheng CC, Yang J, Li SJ, Xu TY, Wei X, Chen WY, Jiang ZL, Xu JJ, Zhang GG, Cheng C, Chen KS, Shi XY, Qin DJ, Liu JB, Li B. Lysine butyrylation of HSP90 regulated by KAT8 and HDAC11 confers chemoresistance. Cell Discov 2023; 9:74. [PMID: 37460462 DOI: 10.1038/s41421-023-00570-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/24/2023] [Indexed: 07/20/2023] Open
Abstract
Posttranslational modification dramatically enhances protein complexity, but the function and precise mechanism of novel lysine acylation modifications remain unknown. Chemoresistance remains a daunting challenge to successful treatment. We found that lysine butyrylation (Kbu) is specifically upregulated in chemoresistant tumor cells and tissues. By integrating butyrylome profiling and gain/loss-of-function experiments, lysine 754 in HSP90 (HSP90 K754) was identified as a substrate for Kbu. Kbu modification leads to overexpression of HSP90 in esophageal squamous cell carcinoma (ESCC) and its further increase in relapse samples. Upregulation of HSP90 contributes to 5-FU resistance and can predict poor prognosis in cancer patients. Mechanistically, HSP90 K754 is regulated by the cooperation of KAT8 and HDAC11 as the writer and eraser, respectively; SDCBP increases the Kbu level and stability of HSP90 by binding competitively to HDAC11. Furthermore, SDCBP blockade with the lead compound V020-9974 can target HSP90 K754 to overcome 5-FU resistance, constituting a potential therapeutic strategy.
Collapse
Affiliation(s)
- Yan He
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Can-Can Zheng
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jing Yang
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Shu-Jun Li
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Tao-Yang Xu
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Xian Wei
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wen-You Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Zhi-Li Jiang
- Department of Radiation Oncology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiao-Jiao Xu
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Guo-Geng Zhang
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Chao Cheng
- Department of Thoracic Surgery, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Kui-Sheng Chen
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Tumor Pathology, Zhengzhou, Henan, China
| | - Xing-Yuan Shi
- Department of Radiation Oncology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Da-Jiang Qin
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jin-Bao Liu
- Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Bin Li
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
9
|
The CAPRA&PDE4D5/7/9 Prognostic Model Is Significantly Associated with Adverse Post-Surgical Pathology Outcomes. Cancers (Basel) 2022; 15:cancers15010262. [PMID: 36612262 PMCID: PMC9818961 DOI: 10.3390/cancers15010262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 01/03/2023] Open
Abstract
Objectives: To investigate the association of the prognostic risk score CAPRA&PDE4D5/7/9 as measured on pre-surgical diagnostic needle biopsy tissue with pathological outcomes after radical prostatectomies in a clinically low−intermediate-risk patient cohort. Patients and Methods: RNA was extracted from biopsy punches of diagnostic needle biopsies. The patient cohort comprises n = 151 patients; of those n = 84 had low−intermediate clinical risk based on the CAPRA score and DRE clinical stage <cT3. This cohort (n = 84) was investigated for pathology outcomes in this study. RT-qPCR was performed to determine PDE4D5, PDE4D7 and PDE4D9 transcript scores in the cohorts. The CAPRA score was inferred from the relevant clinical data (patient age, PSA, cT, biopsy Gleason, and percentage tumor positive biopsy cores). Logistic regression was used to combine the PDE4D5, PDE4D7 and PDE4D9 scores to build a PDE4D5/7/9_BCR regression model. The CAPRA&PDE4D5/7/9_BCR risk score used was same as previously published. Results: We investigated three post-surgical outcomes in this study: (i) Adverse Pathology (any ISUP pathological Gleason grade >2, or pathological pT stage > pT3a, or tumor penetrated prostate capsular status, or pN1 disease); (ii) any ISUP pathological Gleason >2; (iii) any ISUP pathological Gleason >1. In the n = 84 patients with low to intermediate clinical risk profiles, the clinical-genomics CAPRA&PDE4D5/7/9_BCR risk score was significantly lower in patients with favorable vs. unfavorable outcomes. In univariable logistic regression modeling the genomics PDE4D5/7/9_BCR as well as the clinical-genomics CAPRA&PDE4D5/7/9_BCR combination model were significantly associated with all three post-surgical pathology outcomes (p = 0.02, p = 0.0004, p = 0.04; and p = 0.01, p = 0.0002, p = 0.01, respectively). The clinically used PRIAS criteria for the selection of low-risk candidate patients for active surveillance (AS) were not significantly associated with any of the three tested post-operative pathology outcomes (p = 0.3, p = 0.1, p = 0.1, respectively). In multivariable analysis adjusted for the CAPRA score, the genomics PDE4D5/7/9_BCR risk score remained significant for the outcomes of adverse pathology (p = 0.04) and ISUP pathological Gleason >2 (p = 0.004). The negative predictive value of the CAPRA&PDE4D5/7/9_BCR risk score using the low-risk cut-off (0.1) for the three pathological endpoints was 82.0%, 100%, and 59.1%, respectively for a selected low-risk cohort of n = 22 patients (26.2% of the entire cohort) compared to 72.1%, 94.4%, and 55.6% for n = 18 low-risk patients (21.4% of the total cohort) selected based on the PRIAS inclusion criteria. Conclusion: In this study, we have shown that the previously reported clinical-genomics prostate cancer risk model CAPRA&PDE4D5/7/9_BCR which was developed to predict biological outcomes after surgery of primary prostate cancer is also significantly associated with post-surgical pathology outcomes. The risk score predicts adverse pathology independent of the clinical risk metrics. Compared to clinically used active surveillance inclusion criteria, the clinical-genomics CAPRA&PDE4D5/7/9_BCR risk model selects 22% (n = 8) more low-risk patients with higher negative predictive value to experience unfavorable post-operative pathology outcomes.
Collapse
|
10
|
Eickhoff N, Bergman AM, Zwart W. Homing in on a Moving Target: Androgen Receptor Cistromic Plasticity in Prostate Cancer. Endocrinology 2022; 163:6705578. [PMID: 36125208 DOI: 10.1210/endocr/bqac153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Indexed: 11/19/2022]
Abstract
The androgen receptor (AR) is the critical driver in prostate cancer and exerts its function mainly through transcriptional control. Recent advances in clinical studies and cell line models have illustrated that AR chromatin binding features are not static; rather they are highly variable yet reproducibly altered between clinical stages. Extensive genomic analyses of AR chromatin binding features in different disease stages have revealed a high degree of plasticity of AR chromatin interactions in clinical samples. Mechanistically, AR chromatin binding patterns are associated with specific somatic mutations on AR and other permutations, including mutations of AR-interacting proteins. Here we summarize the most recent studies on how the AR cistrome is dynamically altered in prostate cancer models and patient samples, and what implications this has for the identification of therapeutic targets to avoid the emergence of treatment resistance.
Collapse
Affiliation(s)
- Nils Eickhoff
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Andries M Bergman
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
- Department of Medical Oncology, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
- Department of Biomedical Engineering, Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands
| |
Collapse
|
11
|
The Crucial Role of AR-V7 in Enzalutamide-Resistance of Castration-Resistant Prostate Cancer. Cancers (Basel) 2022; 14:cancers14194877. [PMID: 36230800 PMCID: PMC9563243 DOI: 10.3390/cancers14194877] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Androgen receptor splice variant 7 (AR-V7) has always been considered a key driver for triggering enzalutamide resistance of castration-resistant prostate cancer (CRPC). In recent years, both the homeostasis of AR-V7 protein and AR-V7’s relationship with LncRNAs have gained great attention with in-depth studies. Starting from protein stability and LncRNA, the paper discusses and summarizes the mechanisms and drugs that affect the CRPC patients’ sensitivity to enzalutamide by regulating the protein or transcriptional stability of AR-V7, hoping to provide therapeutic ideas for subsequent research to break through the CRPC therapeutic bottleneck. Abstract Prostate cancer (PCa) has the second highest incidence of malignancies occurring in men worldwide. The first-line therapy of PCa is androgen deprivation therapy (ADT). Nonetheless, most patients progress to castration-resistant prostate cancer (CRPC) after being treated by ADT. As a second-generation androgen receptor (AR) antagonist, enzalutamide (ENZ) is the current mainstay of new endocrine therapies for CRPC in clinical use. However, almost all patients develop resistance during AR antagonist therapy due to various mechanisms. At present, ENZ resistance (ENZR) has become challenging in the clinical treatment of CRPC. AR splice variant 7 (AR-V7) refers to a ligand-independent and constitutively active variant of the AR and is considered a key driver of ENZR in CRPC. In this review, we summarize the mechanisms and biological behaviors of AR-V7 in ENZR of CRPC to contribute novel insights for CRPC therapy.
Collapse
|
12
|
Fu X, Liu J, Yan X, DiSanto ME, Zhang X. Heat Shock Protein 70 and 90 Family in Prostate Cancer. Life (Basel) 2022; 12:1489. [PMID: 36294924 PMCID: PMC9605364 DOI: 10.3390/life12101489] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Prostate cancer (PCa) is the second most frequent cancer that affects aging men worldwide. However, its exact pathogenesis has not been fully elucidated. The heat shock protein (HSP) family has cell-protective properties that may promote tumor growth and protect cancer cells from death. On a cellular level, HSP molecules have a strong relationship with multiple important biological processes, such as cell differentiation, epithelial-mesenchymal transition (EMT), and fibrosis. Because of the facilitation of HSP family molecules on tumorigenesis, a number of agents and inhibitors are being developed with potent antitumor effects whose target site is the critical structure of HSP molecules. Among all target molecules, HSP70 family and HSP90 are two groups that have been well studied, and therefore, the development of their inhibitors makes great progress. Only a small number of agents, however, have been clinically tested in recruited patients. As a result, more clinical studies are warranted for the establishment of the relationship between the HSP70 family, alongside the HSP90 molecule, and prostate cancer treatment.
Collapse
Affiliation(s)
- Xun Fu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430000, China
| | - Jiang Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430000, China
| | - Xin Yan
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430000, China
| | - Michael E. DiSanto
- Department of Surgery and Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08028, USA
| | - Xinhua Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430000, China
| |
Collapse
|
13
|
Backe SJ, Sager RA, Regan BR, Sit J, Major LA, Bratslavsky G, Woodford MR, Bourboulia D, Mollapour M. A specialized Hsp90 co-chaperone network regulates steroid hormone receptor response to ligand. Cell Rep 2022; 40:111039. [PMID: 35830801 PMCID: PMC9306012 DOI: 10.1016/j.celrep.2022.111039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/25/2022] [Accepted: 06/10/2022] [Indexed: 12/29/2022] Open
Abstract
Heat shock protein-90 (Hsp90) chaperone machinery is involved in the stability and activity of its client proteins. The chaperone function of Hsp90 is regulated by co-chaperones and post-translational modifications. Although structural evidence exists for Hsp90 interaction with clients, our understanding of the impact of Hsp90 chaperone function toward client activity in cells remains elusive. Here, we dissect the impact of recently identified higher eukaryotic co-chaperones, FNIP1/2 (FNIPs) and Tsc1, toward Hsp90 client activity. Our data show that Tsc1 and FNIP2 form mutually exclusive complexes with FNIP1, and that unlike Tsc1, FNIP1/2 interact with the catalytic residue of Hsp90. Functionally, these co-chaperone complexes increase the affinity of the steroid hormone receptors glucocorticoid receptor and estrogen receptor to their ligands in vivo. We provide a model for the responsiveness of the steroid hormone receptor activation upon ligand binding as a consequence of their association with specific Hsp90:co-chaperone subpopulations.
Collapse
Affiliation(s)
- Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Bethany R Regan
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA; College of Medicine, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Julian Sit
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA; College of Medicine, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Lauren A Major
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA; College of Medicine, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Gennady Bratslavsky
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
14
|
Fu Z, Jia B. Advances in the role of heat shock protein 90 in prostate cancer. Andrologia 2022; 54:e14376. [PMID: 35075667 DOI: 10.1111/and.14376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/10/2022] [Accepted: 01/06/2022] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer is one of the most common tumours in adult men and heat shock proteins play an important biological function in prostate cancer as molecular chaperones involved in the pathogenesis, diagnosis, treatment and prognosis of a wide range of tumours. Among them, increased expression of HSP90, a member of the heat shock protein family, is associated with resistance to prostate cancer denervation and can promote tumour resistance, invasion and bone metastasis, thus making prostate cancer more difficult to treat. Therefore, targeting HSP90 in prostate cancer could be a promising strategy for oncology treatment. This paper reviews the structure and function of HSP90, HSP90-mediated denudation resistance in prostate cancer and HSP90-targeted antitumor therapy, with the aim of providing a new theoretical basis for prostate cancer treatment options in the clinical setting.
Collapse
Affiliation(s)
- Zheng Fu
- Guizhou Medical University, Guiyang, China
| | - Benzhong Jia
- The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
15
|
The Metastasis Suppressor NDRG1 Directly Regulates Androgen Receptor Signaling in Prostate Cancer. J Biol Chem 2021; 297:101414. [PMID: 34785213 PMCID: PMC8668986 DOI: 10.1016/j.jbc.2021.101414] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
N-myc-downregulated gene 1 (NDRG1) has potent anticancer effects and inhibits cell growth, survival, metastasis, and angiogenesis. Previous studies suggested that NDRG1 is linked to the androgen signaling network, but this mechanistic relationship is unclear. Considering the crucial role of the androgen receptor (AR) in prostate cancer (PCa) progression, here we examined for the first time the effect of NDRG1 on AR expression, activation, and downstream signaling in LNCaP, 22Rv1, and C4-2B PCa cell types. We demonstrate that NDRG1 effectively promotes interaction of AR with the chaperone HSP90, which in turn stabilizes the AR while decreasing its androgen-mediated activation. The expression of NDRG1 suppressed: (1) AR activation, as measured by p-ARSer213 and p-ARSer81; (2) expression of a major AR transcriptional target, prostate-specific antigen (PSA); and (3) AR transcriptional activity, probably via inhibiting the c-Jun-AR interaction by reducing c-Jun phosphorylation (p-c-JunSer63). NDRG1 was also demonstrated to inhibit multiple key molecules involved in androgen-dependent and -independent signaling (namely EGFR, HER2, HER3, PI3K, STAT3, and NF-κB), which promote the development of castration-resistant prostate cancer. We also identified the cysteine-rich secretory protein/antigen 5/pathogenesis related-1 (CAP) domain of NDRG1 as vital for inhibition of AR activity. Examining NDRG1 and p-NDRG1 in PCa patient specimens revealed a significant negative correlation between NDRG1 and PSA levels in prostatectomy patients that went on to develop metastasis. These results highlight a vital role for NDRG1 in androgen signaling and its potential as a key therapeutic target and biomarker in PCa.
Collapse
|
16
|
PIM1 phosphorylation of the androgen receptor and 14-3-3 ζ regulates gene transcription in prostate cancer. Commun Biol 2021; 4:1221. [PMID: 34697370 PMCID: PMC8546101 DOI: 10.1038/s42003-021-02723-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 09/21/2021] [Indexed: 11/19/2022] Open
Abstract
PIM1 is a serine/threonine kinase over-expressed in prostate cancer. We have previously shown that PIM1 phosphorylates the androgen receptor (AR), the primary therapeutic target in prostate cancer, at serine 213 (pS213), which alters expression of select AR target genes. Therefore, we sought to investigate the mechanism whereby PIM1 phosphorylation of AR alters its transcriptional activity. We previously identified the AR co-activator, 14-3-3 ζ, as an endogenous PIM1 substrate in LNCaP cells. Here, we show that PIM1 phosphorylation of AR and 14-3-3 ζ coordinates their interaction, and that they extensively occupy the same sites on chromatin in an AR-dependent manner. Their occupancy at a number of genes involved in cell migration and invasion results in a PIM1-dependent increase in the expression of these genes. We also use rapid immunoprecipitation and mass spectrometry of endogenous proteins on chromatin (RIME), to find that select AR co-regulators, such as hnRNPK and TRIM28, interact with both AR and 14-3-3 ζ in PIM1 over-expressing cells. We conclude that PIM1 phosphorylation of AR and 14-3-3 ζ coordinates their interaction, which in turn recruits additional co-regulatory proteins to alter AR transcriptional activity.
Collapse
|
17
|
Biebl MM, Riedl M, Buchner J. Hsp90 Co-chaperones Form Plastic Genetic Networks Adapted to Client Maturation. Cell Rep 2021; 32:108063. [PMID: 32846121 DOI: 10.1016/j.celrep.2020.108063] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 07/01/2020] [Accepted: 08/03/2020] [Indexed: 11/18/2022] Open
Abstract
Heat shock protein 90 (Hsp90) is a molecular chaperone regulating the activity of diverse client proteins together with a plethora of different co-chaperones. Whether these functionally cooperate has remained enigmatic. We analyze all double mutants of 11 Saccharomyces cerevisiae Hsp90 co-chaperones in vivo concerning effects on cell physiology and the activation of specific client proteins. We find that client activation is supported by a genetic network with weak epistasis between most co-chaperones and a few modules with strong genetic interactions. These include an epistatic module regulating protein translation and dedicated epistatic networks for specific clients. For kinases, the bridging of Hsp70 and Hsp90 by Sti1/Hop is essential for activation, whereas for steroid hormone receptors, an epistatic module regulating their dwell time on Hsp90 is crucial, highlighting the specific needs of different clients. Thus, the Hsp90 system is characterized by plastic co-chaperone networks fine-tuning the conformational processing in a client-specific manner.
Collapse
Affiliation(s)
- Maximilian M Biebl
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Maximilian Riedl
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany.
| |
Collapse
|
18
|
Structural elements in the flexible tail of the co-chaperone p23 coordinate client binding and progression of the Hsp90 chaperone cycle. Nat Commun 2021; 12:828. [PMID: 33547294 PMCID: PMC7864943 DOI: 10.1038/s41467-021-21063-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/08/2021] [Indexed: 01/30/2023] Open
Abstract
The co-chaperone p23 is a central part of the Hsp90 machinery. It stabilizes the closed conformation of Hsp90, inhibits its ATPase and is important for client maturation. Yet, how this is achieved has remained enigmatic. Here, we show that a tryptophan residue in the proximal region of the tail decelerates the ATPase by allosterically switching the conformation of the catalytic loop in Hsp90. We further show by NMR spectroscopy that the tail interacts with the Hsp90 client binding site via a conserved helix. This helical motif in the p23 tail also binds to the client protein glucocorticoid receptor (GR) in the free and Hsp90-bound form. In vivo experiments confirm the physiological importance of ATPase modulation and the role of the evolutionary conserved helical motif for GR activation in the cellular context.
Collapse
|
19
|
Chen Y, Li X, Mamouni K, Yang Y, Danaher A, White J, Liu H, Kucuk O, Gera L, Wu D. Novel small-molecule LG1836 inhibits the in vivo growth of castration-resistant prostate cancer. Prostate 2020; 80:993-1005. [PMID: 32559345 DOI: 10.1002/pros.24032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 06/08/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Androgen deprivation therapy (ADT) is the mainstay of treatment for castration-resistant prostate cancer (CRPC). Unfortunately, although ADT initially prolongs survival, most patients relapse and develop resistance. Clinical failure of these treatments in CRPC highlights the urgent need to develop novel strategies to more effectively block androgen receptor (AR) signaling and target other oncogenic factors responsible for ADT resistance. METHODS We developed a small-molecule compound LG1836 and investigated the in vitro and in vivo activity of LG1836 against CRPC in cellular and animal models. RESULTS LG1836 exhibits potent in vitro cytotoxicity in CRPC cells. Mechanistic studies demonstrated that LG1836 inhibits the expression of AR and AR variant 7, partially mediated via proteasome-dependent protein degradation. LG1836 also suppresses survivin expression and effectively induces apoptosis in CRPC cells. Significantly, as a single agent, LG1836 is therapeutically efficacious in suppressing the in vivo growth of CRPC in the subcutaneous and intraosseous models and extends the survival of tumor-bearing mice. CONCLUSIONS These preclinical studies indicate that LG1836 is a promising lead compound for the treatment of CRPC.
Collapse
Affiliation(s)
- Yanhua Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Biochemistry and Molecular Biology, Molecular Oncology and Biomarkers Program, Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Xin Li
- Department of Biochemistry and Molecular Biology, Molecular Oncology and Biomarkers Program, Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia
- Center for Cancer Research and Therapeutic Development and Department of Biological Sciences, Clark Atlanta University, Atlanta, Georgia
| | - Kenza Mamouni
- Department of Biochemistry and Molecular Biology, Molecular Oncology and Biomarkers Program, Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Yang Yang
- Department of Biochemistry and Molecular Biology, Molecular Oncology and Biomarkers Program, Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Alira Danaher
- Center for Cancer Research and Therapeutic Development and Department of Biological Sciences, Clark Atlanta University, Atlanta, Georgia
| | - Joseph White
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - HongYan Liu
- Dotquant LLC, CoMotion Labs at University of Washington, Seattle, Washington
| | - Omer Kucuk
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
- Department of Urology, Emory University School of Medicine, Atlanta, Georgia
| | - Lajos Gera
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, School of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Daqing Wu
- Department of Biochemistry and Molecular Biology, Molecular Oncology and Biomarkers Program, Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia
- Center for Cancer Research and Therapeutic Development and Department of Biological Sciences, Clark Atlanta University, Atlanta, Georgia
- Department of Urology, Emory University School of Medicine, Atlanta, Georgia
- MetCure Therapeutics LLC, Atlanta, Georgia
| |
Collapse
|
20
|
Vickman RE, Franco OE, Moline DC, Vander Griend DJ, Thumbikat P, Hayward SW. The role of the androgen receptor in prostate development and benign prostatic hyperplasia: A review. Asian J Urol 2020; 7:191-202. [PMID: 32742923 PMCID: PMC7385520 DOI: 10.1016/j.ajur.2019.10.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/30/2019] [Accepted: 06/18/2019] [Indexed: 02/06/2023] Open
Abstract
Benign prostatic hyperplasia (BPH) is a benign enlargement of the prostate in which incidence increases linearly with age, beginning at about 50 years old. BPH is a significant source of morbidity in aging men by causing lower urinary tract symptoms and acute urinary retention. Unfortunately, the etiology of BPH incidence and progression is not clear. This review highlights the role of the androgen receptor (AR) in prostate development and the evidence for its involvement in BPH. The AR is essential for normal prostate development, and individuals with defective AR signaling, such as after castration, do not experience prostate enlargement with age. Furthermore, decreasing dihydrotestosterone availability through therapeutic targeting with 5α-reductase inhibitors diminishes AR activity and results in reduced prostate size and symptoms in some BPH patients. While there is some evidence that AR expression is elevated in certain cellular compartments, how exactly AR is involved in BPH progression has yet to be elucidated. It is possible that AR signaling within stromal cells alters intercellular signaling and a "reawakening" of the embryonic mesenchyme, loss of epithelial AR leads to changes in paracrine signaling interactions, and/or chronic inflammation aids in stromal or epithelial proliferation evident in BPH. Unfortunately, a subset of patients fails to respond to current medical approaches, forcing surgical treatment even though age or associated co-morbidities make surgery less attractive. Fundamentally, new therapeutic approaches to treat BPH are not currently forthcoming, so a more complete molecular understanding of BPH etiology is necessary to identify new treatment options.
Collapse
Affiliation(s)
- Renee E. Vickman
- Department of Surgery, NorthShore University HealthSystem, Evanston, IL, USA
| | - Omar E. Franco
- Department of Surgery, NorthShore University HealthSystem, Evanston, IL, USA
| | - Daniel C. Moline
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Praveen Thumbikat
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Simon W. Hayward
- Department of Surgery, NorthShore University HealthSystem, Evanston, IL, USA
| |
Collapse
|
21
|
Fukuda T, Takahashi K, Takase S, Orimoto A, Eitsuka T, Nakagawa K, Kiyono T. Human Derived Immortalized Dermal Papilla Cells With a Constant Expression of Testosterone Receptor. Front Cell Dev Biol 2020; 8:157. [PMID: 32269992 PMCID: PMC7109449 DOI: 10.3389/fcell.2020.00157] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/26/2020] [Indexed: 12/02/2022] Open
Abstract
Androgenetic alopecia (AGA) is the most common type of hair loss, and is mainly caused by the biological effects of testosterone on dermal papilla cells (DPCs). In vitro culturing of DPCs might be a useful tool for the screening of target molecule of AGA. However, primary DPCs cannot continuously proliferate owing to cellular senescence and cell culture stress. In this study, we introduced mutant cyclin-dependent kinase 4 (CDK4), Cyclin D1, and telomerase reverse transcriptase (TERT) into DPCs. We confirmed protein expression of CDK4 and Cyclin D1, and enzymatic activity of TERT. Furthermore, we found the established cell line was free from cellular senescence. We also introduced the androgen receptor gene using a recombinant retrovirus, to compensate the transcriptional suppressed endogenous androgen receptor in the process of cell proliferation. Furthermore, we detected the efficient nuclear translocation of androgen receptor into the nucleus after the treatment of dihydrotestosterone, indicating the functionality of our introduced receptor. Our established cell line is a useful tool to identify the downstream signaling pathway, which activated by the testosterone.
Collapse
Affiliation(s)
- Tomokazu Fukuda
- Graduate School of Science and Engineering, Iwate University, Morioka, Japan.,Soft-Path Engineering Research Center, Iwate University, Morioka, Japan
| | - Kouhei Takahashi
- Graduate School of Science and Engineering, Iwate University, Morioka, Japan
| | - Shin Takase
- Graduate School of Science and Engineering, Iwate University, Morioka, Japan
| | - Ai Orimoto
- Graduate School of Science and Engineering, Iwate University, Morioka, Japan
| | - Takahiro Eitsuka
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Kiyotaka Nakagawa
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Tohru Kiyono
- Division of Carcinogenesis and Cancer Prevention and Department of Cell Culture Technology, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
22
|
Hata J, Machida T, Matsuoka K, Hoshi S, Akaihata H, Hiraki H, Suzuki T, Ogawa S, Kataoka M, Haga N, Ishibashi K, Homma Y, Sekine H, Kojima Y. Complement activation by autoantigen recognition in the growth process of benign prostatic hyperplasia. Sci Rep 2019; 9:20357. [PMID: 31889151 PMCID: PMC6937285 DOI: 10.1038/s41598-019-57001-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 12/19/2019] [Indexed: 02/02/2023] Open
Abstract
The pathophysiology of benign prostatic hyperplasia (BPH) remained unclear. Here, we concentrated on the complement activation in the growth of BPH using a rat model. BPH tissues were harvested from rats after rat urogenital sinus implantation. The local expression and deposition levels of C1q, C3, mannose-binding lectin (MBL), factor B (FB), and C5b-9 in the rat and human BPH tissues were analyzed by real-time RT-PCR, western blotting and immunohistochemistry (IHC). Serum IgG levels in the rat BPH model were analyzed by ELISA, and IHC was used to assess tissue localization. Proteins binding serum IgG autoantibody in the BPH rats were isolated by immunoprecipitation. C1q, C3, MBL, FB and C5b-9 were highly localized in rat BPH tissues compared to normal tissues. In contrast, C3, FB and C5b-9, but not C1q and MBL, were abundantly detected in human BPH tissues compared to normal tissues. Diffuse localization of IgG in rat BPH tissues was found. Heat shock protein 90, annexin, α-smooth muscle actin, and β-actin were identified as targets for IgG autoantibodies in the BPH model. Our results strongly suggested the role for complement activation in the growth process of BPH, likely triggered by classical pathway activation with autoantibodies.
Collapse
Affiliation(s)
- Junya Hata
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan.
| | - Takeshi Machida
- Department of Immunology, Fukushima Medical University School of qwMedicine, Fukushima, 960-1295, Japan
| | - Kanako Matsuoka
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Seiji Hoshi
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Hidenori Akaihata
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Hiroyuki Hiraki
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Toshiyuki Suzuki
- Department of Biomolecular Science Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Soichiro Ogawa
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Masao Kataoka
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Nobuhiro Haga
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Kei Ishibashi
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Yoshimi Homma
- Department of Biomolecular Science Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Hideharu Sekine
- Department of Immunology, Fukushima Medical University School of qwMedicine, Fukushima, 960-1295, Japan
| | - Yoshiyuki Kojima
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| |
Collapse
|
23
|
Zhang L, Pattanayak A, Li W, Ko HK, Fowler G, Gordon R, Bergan R. A Multifunctional Therapy Approach for Cancer: Targeting Raf1- Mediated Inhibition of Cell Motility, Growth, and Interaction with the Microenvironment. Mol Cancer Ther 2019; 19:39-51. [PMID: 31582531 DOI: 10.1158/1535-7163.mct-19-0222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/17/2019] [Accepted: 09/26/2019] [Indexed: 11/16/2022]
Abstract
Prostate cancer cells move from their primary site of origin, interact with a distant microenvironment, grow, and thereby cause death. It had heretofore not been possible to selectively inhibit cancer cell motility. Our group has recently shown that inhibition of intracellular activation of Raf1 with the small-molecule therapeutic KBU2046 permits, for the first time, selective inhibition of cell motility. We hypothesized that simultaneous disruption of multiple distinct functions that drive progression of prostate cancer to induce death would result in advanced disease control. Using a murine orthotopic implantation model of human prostate cancer metastasis, we demonstrate that combined treatment with KBU2046 and docetaxel retains docetaxel's antitumor action, but provides improved inhibition of metastasis, compared with monotherapy. KBU2046 does not interfere with hormone therapy, inclusive of enzalutamide-mediated inhibition of androgen receptor (AR) function and cell growth inhibition, and inclusive of the ability of castration to inhibit LNCaP-AR cell outgrowth in mice. Cell movement is necessary for osteoclast-mediated bone degradation. KBU2046 inhibits Raf1 and its downstream activation of MEK1/2 and ERK1/2 in osteoclasts, inhibiting cytoskeleton rearrangement, resorptive cavity formation, and bone destruction in vitro, with improved effects observed when the bone microenvironment is chemically modified by pretreatment with zoledronic acid. Using a murine cardiac injection model of human prostate cancer bone destruction quantified by CT, KBU2046 plus zoledronic exhibit improved inhibitory efficacy, compared with monotherapy. The combined disruption of pathways that drive cell movement, interaction with bone, and growth constitutes a multifunctional targeting strategy that provides advanced disease control.
Collapse
Affiliation(s)
- Limin Zhang
- Division of Hematology/Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon.,Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Abhinandan Pattanayak
- Division of Hematology/Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Wenqi Li
- Division of Hematology/Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Hyun-Kyung Ko
- Division of Hematology/Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Graham Fowler
- Division of Hematology/Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Ryan Gordon
- Division of Hematology/Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Raymond Bergan
- Division of Hematology/Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon.
| |
Collapse
|
24
|
Abstract
Spinal and bulbar muscular atrophy (SBMA) is a neuromuscular disease caused by a polyglutamine (polyQ) expansion in the androgen receptor (AR). Despite the fact that the monogenic cause of SBMA has been known for nearly 3 decades, there is no effective treatment for this disease, underscoring the complexity of the pathogenic mechanisms that lead to a loss of motor neurons and muscle in SBMA patients. In the current review, we provide an overview of the system-wide clinical features of SBMA, summarize the structure and function of the AR, discuss both gain-of-function and loss-of-function mechanisms of toxicity caused by polyQ-expanded AR, and describe the cell and animal models utilized in the study of SBMA. Additionally, we summarize previously conducted clinical trials which, despite being based on positive results from preclinical studies, proved to be largely ineffective in the treatment of SBMA; nonetheless, these studies provide important insights as researchers develop the next generation of therapies.
Collapse
Affiliation(s)
- Frederick J Arnold
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 411E Jefferson Alumni Hall, 1020 Locust Street, Philadelphia, Pennsylvania, 19107, USA
| | - Diane E Merry
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 411E Jefferson Alumni Hall, 1020 Locust Street, Philadelphia, Pennsylvania, 19107, USA.
| |
Collapse
|
25
|
Hoter A, Rizk S, Naim HY. The Multiple Roles and Therapeutic Potential of Molecular Chaperones in Prostate Cancer. Cancers (Basel) 2019; 11:cancers11081194. [PMID: 31426412 PMCID: PMC6721600 DOI: 10.3390/cancers11081194] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 12/19/2022] Open
Abstract
Prostate cancer (PCa) is one of the most common cancer types in men worldwide. Heat shock proteins (HSPs) are molecular chaperones that are widely implicated in the pathogenesis, diagnosis, prognosis, and treatment of many cancers. The role of HSPs in PCa is complex and their expression has been linked to the progression and aggressiveness of the tumor. Prominent chaperones, including HSP90 and HSP70, are involved in the folding and trafficking of critical cancer-related proteins. Other members of HSPs, including HSP27 and HSP60, have been considered as promising biomarkers, similar to prostate-specific membrane antigen (PSMA), for PCa screening in order to evaluate and monitor the progression or recurrence of the disease. Moreover, expression level of chaperones like clusterin has been shown to correlate directly with the prostate tumor grade. Hence, targeting HSPs in PCa has been suggested as a promising strategy for cancer therapy. In the current review, we discuss the functions as well as the role of HSPs in PCa progression and further evaluate the approach of inhibiting HSPs as a cancer treatment strategy.
Collapse
Affiliation(s)
- Abdullah Hoter
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Sandra Rizk
- School of Arts and Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Hassan Y Naim
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
| |
Collapse
|
26
|
Brünnert D, Langer C, Zimmermann L, Bargou RC, Burchardt M, Chatterjee M, Stope MB. The heat shock protein 70 inhibitor VER155008 suppresses the expression of HSP27, HOP and HSP90β and the androgen receptor, induces apoptosis, and attenuates prostate cancer cell growth. J Cell Biochem 2019; 121:407-417. [PMID: 31222811 DOI: 10.1002/jcb.29195] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/31/2019] [Indexed: 01/05/2023]
Abstract
Heat shock proteins (HSPs) are molecular chaperones that play a pivotal role in correct folding, stabilization and intracellular transport of many client proteins including those involved in oncogenesis. HSP70, which is frequently overexpressed in prostate cancer (PCa), has been shown to critically contribute to tumor cell survival, and might therefore represent a potential therapeutic target. We treated both the androgen receptor (AR)-positive LNCaP and the AR-negative PC-3 cell lines with the pharmacologic HSP70 inhibitor VER155008. Although we observed antiproliferative effects and induction of apoptosis upon HSP70 inhibition, the apoptotic effect was more pronounced in AR-positive LNCaP cells. In addition, VER155008 treatment induced G1 cell cycle arrest in LNCaP cells and decreased AR expression. Further analysis of the HSP system by Western blot analysis revealed that expression of HSP27, HOP and HSP90β was significantly inhibited by VER155008 treatment, whereas the HSP40, HSP60, and HSP90α expression remained unchanged. Taken together, VER155008 might serve as a novel therapeutic option in PCa patients independent of the AR expression status.
Collapse
Affiliation(s)
- Daniela Brünnert
- Comprehensive Cancer Center Mainfranken, Translational Oncology, University Hospital of Würzburg, Würzburg, Germany
| | - Clara Langer
- Department of Urology, University Medicine Greifswald, Greifswald, Germany
| | - Luise Zimmermann
- Department of Urology, University Medicine Greifswald, Greifswald, Germany
| | - Ralf C Bargou
- Comprehensive Cancer Center Mainfranken, Translational Oncology, University Hospital of Würzburg, Würzburg, Germany
| | - Martin Burchardt
- Department of Urology, University Medicine Greifswald, Greifswald, Germany
| | - Manik Chatterjee
- Comprehensive Cancer Center Mainfranken, Translational Oncology, University Hospital of Würzburg, Würzburg, Germany
| | - Matthias B Stope
- Department of Urology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
27
|
Dagar M, Singh JP, Dagar G, Tyagi RK, Bagchi G. Phosphorylation of HSP90 by protein kinase A is essential for the nuclear translocation of androgen receptor. J Biol Chem 2019; 294:8699-8710. [PMID: 30992362 PMCID: PMC6552429 DOI: 10.1074/jbc.ra119.007420] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/26/2019] [Indexed: 11/06/2022] Open
Abstract
The androgen receptor (AR) is often activated in prostate cancer patients undergoing androgen-ablative therapy because of the activation of cellular pathways that stimulate the AR despite low androgen levels. In many of these tumors, the cAMP-dependent protein kinase A (PKA) pathway is activated. Previous studies have shown that PKA can synergize with low levels of androgen to enhance androgen signaling and consequent cell proliferation, leading to castration-resistant prostate cancer. However, the mechanism by which PKA causes AR stimulation in the presence of low/no androgen is not established yet. Here, using immunofluorescence immunoblotting assays, co-immunoprecipitation, siRNA-mediated gene silencing, and reporter gene assays, we demonstrate that PKA activation is necessary for the phosphorylation of heat shock protein (HSP90) that binds to unliganded AR in the cytoplasm, restricting its entry into the nucleus. We also found that PKA-mediated phosphorylation of the Thr89 residue in HSP90 releases AR from HSP90, enabling AR binding to HSP27 and its migration into the nucleus. Substitution of the Thr89 in HSP90 prevented its phosphorylation by PKA and significantly reduced AR transactivation and cellular proliferation. We further observed that the transcription of AR target genes, such as prostate-specific antigen (PSA), is also lowered in the HSP90 Thr89 variant. These results suggest that using a small-molecule inhibitor against the HSP90 Thr89 residue in conjunction with existing androgen-ablative therapy may be more effective than androgen-ablative therapy alone in the treatment of prostate cancer patients.
Collapse
Affiliation(s)
- Manisha Dagar
- From the Amity Institute of Biotechnology, Amity University Haryana, Gurgaon 122413, India and
| | - Julie Pratibha Singh
- From the Amity Institute of Biotechnology, Amity University Haryana, Gurgaon 122413, India and
| | - Gunjan Dagar
- From the Amity Institute of Biotechnology, Amity University Haryana, Gurgaon 122413, India and
| | - Rakesh K Tyagi
- the Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Gargi Bagchi
- From the Amity Institute of Biotechnology, Amity University Haryana, Gurgaon 122413, India and
| |
Collapse
|
28
|
Talaei S, Mellatyar H, Asadi A, Akbarzadeh A, Sheervalilou R, Zarghami N. Spotlight on 17-AAG as an Hsp90 inhibitor for molecular targeted cancer treatment. Chem Biol Drug Des 2019; 93:760-786. [PMID: 30697932 DOI: 10.1111/cbdd.13486] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/31/2018] [Accepted: 01/06/2019] [Indexed: 12/11/2022]
Abstract
Hsp90 is a ubiquitous chaperone with important roles in the organization and maturation of client proteins that are involved in the progression and survival of cancer cells. Multiple oncogenic pathways can be affected by inhibition of Hsp90 function through degradation of its client proteins. That makes Hsp90 a therapeutic target for cancer treatment. 17-allylamino-17-demethoxy-geldanamycin (17-AAG) is a potent Hsp90 inhibitor that binds to Hsp90 and inhibits its chaperoning function, which results in the degradation of Hsp90's client proteins. There have been several preclinical studies of 17-AAG as a single agent or in combination with other anticancer agents for a wide range of human cancers. Data from various phases of clinical trials show that 17-AAG can be given safely at biologically active dosages with mild toxicity. Even though 17-AAG has suitable pharmacological potency, its low water solubility and high hepatotoxicity could significantly restrict its clinical use. Nanomaterials-based drug delivery carriers may overcome these drawbacks. In this paper, we review preclinical and clinical research on 17-AAG as a single agent and in combination with other anticancer agents. In addition, we highlight the potential of using nanocarriers and nanocombination therapy to improve therapeutic effects of 17-AAG.
Collapse
Affiliation(s)
- Sona Talaei
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Mellatyar
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asadollah Asadi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roghayeh Sheervalilou
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
29
|
Centenera MM, Selth LA, Ebrahimie E, Butler LM, Tilley WD. New Opportunities for Targeting the Androgen Receptor in Prostate Cancer. Cold Spring Harb Perspect Med 2018; 8:a030478. [PMID: 29530945 PMCID: PMC6280715 DOI: 10.1101/cshperspect.a030478] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Recent genomic analyses of metastatic prostate cancer have provided important insight into adaptive changes in androgen receptor (AR) signaling that underpin resistance to androgen deprivation therapies. Novel strategies are required to circumvent these AR-mediated resistance mechanisms and thereby improve prostate cancer survival. In this review, we present a summary of AR structure and function and discuss mechanisms of AR-mediated therapy resistance that represent important areas of focus for the development of new therapies.
Collapse
Affiliation(s)
- Margaret M Centenera
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide SA 5005, Australia
- South Australian Health and Medical Research Institute, Adelaide SA 5001, Australia
| | - Luke A Selth
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide SA 5005, Australia
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide SA 5005, Australia
| | - Esmaeil Ebrahimie
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide SA 5005, Australia
| | - Lisa M Butler
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide SA 5005, Australia
- South Australian Health and Medical Research Institute, Adelaide SA 5001, Australia
| | - Wayne D Tilley
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide SA 5005, Australia
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide SA 5005, Australia
| |
Collapse
|
30
|
Manca S, Frisbie CP, LaGrange CA, Casey CA, Riethoven JJM, Petrosyan A. The Role of Alcohol-Induced Golgi Fragmentation for Androgen Receptor Signaling in Prostate Cancer. Mol Cancer Res 2018; 17:225-237. [PMID: 30224543 DOI: 10.1158/1541-7786.mcr-18-0577] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/23/2018] [Accepted: 08/22/2018] [Indexed: 01/18/2023]
Abstract
Multiple epidemiologic observations and meta-analysis clearly indicate the link between alcohol abuse and the incidence and progression of prostate cancer; however, the mechanism remains enigmatic. Recently, it was found that ethanol (EtOH) induces disorganization of the Golgi complex caused by impaired function of the largest Golgi matrix protein, giantin (GOLGB1), which, in turn, alters the Golgi docking of resident Golgi proteins. Here, it is determined that in normal prostate cells, histone deacetylase 6 (HDAC6), the known regulator of androgen receptor (AR) signaling, localizes in the cytoplasm and nucleus, while its kinase, glycogen synthase kinase β (GSK3β), primarily resides in the Golgi. Progression of prostate cancer is accompanied by Golgi scattering, translocation of GSK3β from the Golgi to the cytoplasm, and the cytoplasmic shift in HDAC6 localization. Alcohol dehydrogenase-generated metabolites induces Golgi disorganization in androgen-responsive LNCaP and 22Rv1 cells, facilitates tumor growth in a mouse xenograft model and activates anchorage-independent proliferation, migration, and cell adhesion. EtOH-treated cells demonstrate reduced giantin and subsequent cytoplasmic GSK3β; this phenomenon was validated in giantin-depleted cells. Redistribution of GSK3β to the cytoplasm results in phosphorylation of HDAC6 and its retention in the cytoplasm, which, in turn, stimulates deacetylation of HSP90, AR import into the nucleus, and secretion of prostate-specific antigen (PSA). Finally, the relationship between Golgi morphology, HDAC6 cytoplasmic content, and clinicopathologic features was assessed in human prostate cancer patient specimens with and without a history of alcohol dependence. IMPLICATIONS: This study demonstrates the importance of alcohol-induced Golgi fragmentation in the activation of AR-mediated proliferation.
Collapse
Affiliation(s)
- Sonia Manca
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Cole P Frisbie
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Chad A LaGrange
- Division of Urologic Surgery, Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska
| | - Carol A Casey
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Jean-Jack M Riethoven
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, Nebraska.,The Nebraska Center for Integrated Biomolecular Communication, Lincoln, Nebraska
| | - Armen Petrosyan
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska. .,The Nebraska Center for Integrated Biomolecular Communication, Lincoln, Nebraska.,The Fred and Pamela Buffett Cancer Center, Omaha, Nebraska
| |
Collapse
|
31
|
Yang Y, Mamouni K, Li X, Chen Y, Kavuri S, Du Y, Fu H, Kucuk O, Wu D. Repositioning Dopamine D2 Receptor Agonist Bromocriptine to Enhance Docetaxel Chemotherapy and Treat Bone Metastatic Prostate Cancer. Mol Cancer Ther 2018; 17:1859-1870. [PMID: 29907594 PMCID: PMC6125160 DOI: 10.1158/1535-7163.mct-17-1176] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/02/2018] [Accepted: 06/11/2018] [Indexed: 12/25/2022]
Abstract
Docetaxel resistance remains a major obstacle in the treatment of prostate cancer bone metastasis. In this study, we demonstrate that the dopamine D2 receptor (DRD2) agonist bromocriptine effectively enhances docetaxel efficacy and suppresses skeletal growth of prostate cancer in preclinical models. DRD2 is ubiquitously expressed in prostate cancer cell lines and significantly reduced in prostate cancer tissues with high Gleason score. Bromocriptine has weak to moderate cytotoxicity in prostate cancer cells, but effectively induces cell-cycle arrest. At the molecular level, bromocriptine inhibits the expression of c-Myc, E2F-1, and survivin and increases the expression of p53, p21, and p27. Intriguingly, bromocriptine markedly reduces androgen receptor levels, partially through Hsp90-mediated protein degradation. The combination of bromocriptine and docetaxel demonstrates enhanced in vitro cytotoxicity in prostate cancer cells and significantly retards the skeletal growth of C4-2-Luc tumors in mice. Collectively, these results provide the first experimental evidence for repurposing bromocriptine as an effective adjunct therapy to enhance docetaxel efficacy in prostate cancer. Mol Cancer Ther; 17(9); 1859-70. ©2018 AACR.
Collapse
Affiliation(s)
- Yang Yang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China,Molecular Oncology and Biomarkers Program, Georgia Cancer Center; Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Kenza Mamouni
- Molecular Oncology and Biomarkers Program, Georgia Cancer Center; Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Xin Li
- Molecular Oncology and Biomarkers Program, Georgia Cancer Center; Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Yanhua Chen
- Molecular Oncology and Biomarkers Program, Georgia Cancer Center; Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA,Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Sravan Kavuri
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Yuhong Du
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Haian Fu
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Omer Kucuk
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Daqing Wu
- Molecular Oncology and Biomarkers Program, Georgia Cancer Center; Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA,MetCure Therapeutics LLC, Atlanta, GA, USA,Correspondence to: Dr. Daqing Wu, Georgia Cancer Center and Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA; ; Phone: (706)723-4137
| |
Collapse
|
32
|
Moses MA, Kim YS, Rivera-Marquez GM, Oshima N, Watson MJ, Beebe KE, Wells C, Lee S, Zuehlke AD, Shao H, Bingman WE, Kumar V, Malhotra SV, Weigel NL, Gestwicki JE, Trepel JB, Neckers LM. Targeting the Hsp40/Hsp70 Chaperone Axis as a Novel Strategy to Treat Castration-Resistant Prostate Cancer. Cancer Res 2018; 78:4022-4035. [PMID: 29764864 DOI: 10.1158/0008-5472.can-17-3728] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 04/12/2018] [Accepted: 05/11/2018] [Indexed: 01/01/2023]
Abstract
Castration-resistant prostate cancer (CRPC) is characterized by reactivation of androgen receptor (AR) signaling, in part by elevated expression of AR splice variants (ARv) including ARv7, a constitutively active, ligand binding domain (LBD)-deficient variant whose expression has been correlated with therapeutic resistance and poor prognosis. In a screen to identify small-molecule dual inhibitors of both androgen-dependent and androgen-independent AR gene signatures, we identified the chalcone C86. Binding studies using purified proteins and CRPC cell lysates revealed C86 to interact with Hsp40. Pull-down studies using biotinylated-C86 found Hsp40 present in a multiprotein complex with full-length (FL-) AR, ARv7, and Hsp70 in CRPC cells. Treatment of CRPC cells with C86 or the allosteric Hsp70 inhibitor JG98 resulted in rapid protein destabilization of both FL-AR and ARv, including ARv7, concomitant with reduced FL-AR- and ARv7-mediated transcriptional activity. The glucocorticoid receptor, whose elevated expression in a subset of CRPC also leads to androgen-independent AR target gene transcription, was also destabilized by inhibition of Hsp40 or Hsp70. In vivo, Hsp40 or Hsp70 inhibition demonstrated single-agent and combinatorial activity in a 22Rv1 CRPC xenograft model. These data reveal that, in addition to recognized roles of Hsp40 and Hsp70 in FL-AR LBD remodeling, ARv lacking the LBD remain dependent on molecular chaperones for stability and function. Our findings highlight the feasibility and potential benefit of targeting the Hsp40/Hsp70 chaperone axis to treat prostate cancer that has become resistant to standard antiandrogen therapy.Significance: These findings highlight the feasibility of targeting the Hsp40/Hsp70 chaperone axis to treat CRPC that has become resistant to standard antiandrogen therapy. Cancer Res; 78(14); 4022-35. ©2018 AACR.
Collapse
Affiliation(s)
- Michael A Moses
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Yeong Sang Kim
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Genesis M Rivera-Marquez
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Nobu Oshima
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Matthew J Watson
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Kristin E Beebe
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Catherine Wells
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Sunmin Lee
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Abbey D Zuehlke
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Hao Shao
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California at San Francisco, San Francisco, California
| | - William E Bingman
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Vineet Kumar
- Department of Radiation Oncology, Division of Radiation and Cancer Biology, Stanford University School of Medicine, Stanford, California
| | - Sanjay V Malhotra
- Department of Radiation Oncology, Division of Radiation and Cancer Biology, Stanford University School of Medicine, Stanford, California
| | - Nancy L Weigel
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California at San Francisco, San Francisco, California
| | - Jane B Trepel
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Leonard M Neckers
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland.
| |
Collapse
|
33
|
Ban F, Dalal K, LeBlanc E, Morin H, Rennie PS, Cherkasov A. Cheminformatics Driven Development of Novel Therapies for Drug Resistant Prostate Cancer. Mol Inform 2018; 37:e1800043. [PMID: 29733509 DOI: 10.1002/minf.201800043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 04/18/2018] [Indexed: 11/07/2022]
Abstract
Androgen receptor (AR) is a master regulator of prostate cancer (PCa), and therefore is a pivotal drug target for the treatment of PCa including its castration-resistance form (CRPC). The development of acquired resistance is a major challenge in the use of the current antiandrogens. The recent advancements in inhibiting AR activity with small molecules specifically designed to target areas distinct from the receptor's androgen binding site are carefully discussed. Our new classes of AR inhibitors of AF2 and BF3 functional sites and DBD domains designed using cheminformatics techniques are promising to circumvent various AR-dependent resistance mechanisms.
Collapse
Affiliation(s)
- Fuqiang Ban
- Vancouver Prostate Centre (VPC), 2660 Oak Street, Vancouver, British Columbia, V6H3Z6, Canada
| | - Kush Dalal
- Vancouver Prostate Centre (VPC), 2660 Oak Street, Vancouver, British Columbia, V6H3Z6, Canada
| | - Eric LeBlanc
- Vancouver Prostate Centre (VPC), 2660 Oak Street, Vancouver, British Columbia, V6H3Z6, Canada
| | - Hélène Morin
- Vancouver Prostate Centre (VPC), 2660 Oak Street, Vancouver, British Columbia, V6H3Z6, Canada
| | - Paul S Rennie
- Vancouver Prostate Centre (VPC), 2660 Oak Street, Vancouver, British Columbia, V6H3Z6, Canada.,Department of Urology, University of British Columbia, 2660 Oak Street, Vancouver, British Columbia, V6H 3Z6, Canada
| | - Artem Cherkasov
- Vancouver Prostate Centre (VPC), 2660 Oak Street, Vancouver, British Columbia, V6H3Z6, Canada.,Department of Urology, University of British Columbia, 2660 Oak Street, Vancouver, British Columbia, V6H 3Z6, Canada
| |
Collapse
|
34
|
Salerno M, Cascio O, Bertozzi G, Sessa F, Messina A, Monda V, Cipolloni L, Biondi A, Daniele A, Pomara C. Anabolic androgenic steroids and carcinogenicity focusing on Leydig cell: a literature review. Oncotarget 2018; 9:19415-19426. [PMID: 29721213 PMCID: PMC5922407 DOI: 10.18632/oncotarget.24767] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 02/27/2018] [Indexed: 01/25/2023] Open
Abstract
Anabolic androgenic steroids (AAS) are some of the most common drugs used among athletes, frequently in combination with resistance training, to improve physical performance or for aesthetic purpose. A great number of scientific reports showed the detrimental effects of anabolic androgenic steroids on different organs and tissues. In this literature review, we analyzed the AAS-mediated carcinogenicity, focusing on Leydig cell tumor. AAS-induced carcinogenicity can affect DNA transcription through two pathways. It can act directly via the androgen receptor, by means of dihydrotestosterone (DHT) produced by the action of 5-a-reductase. It can also work through the estrogen receptor, by means of estradiol produced by CYP19 aromatase. In addition, nandrolone and stanazolol can activate the PI3K/AKT and PLC/PKC pathways via IGF-1. This would result in cell proliferation in Leydig cell cancer, or magnify cyclin D1 concentration inducing breast cell proliferation. AAS abuse is becoming a serious public health concern in view of the severe health consequences secondary to AAS abuse. The negative role of AAS in supraphysiological dosage impairs the expression of enzymes involved in testosterone biosynthesis. Abnormal synthesis of testosterone plays has a negative effect on the hormonal changes/regulation, and might be involved in certain carcinogenic mechanisms. At the light of this review, it could become very interesting to perform an information campaign more strengthened in gyms and schools in order to prevent male fertility impairment and other tissues damage.
Collapse
Affiliation(s)
- Monica Salerno
- University of Foggia, Department of Clinical and Experimental Medicine, Foggia, Italy
| | - Orazio Cascio
- University of Catania, Department of Medical, Surgical and Advanced Technologies, "G.F. Ingrassia", Catania, Italy
| | - Giuseppe Bertozzi
- University of Foggia, Department of Clinical and Experimental Medicine, Foggia, Italy
| | - Francesco Sessa
- University of Foggia, Department of Clinical and Experimental Medicine, Foggia, Italy
| | - Antonietta Messina
- University of Campania "L. Vanvitelli", Department of Experimental Medicine, Naples, Italy
| | - Vincenzo Monda
- University of Campania "L. Vanvitelli", Department of Experimental Medicine, Naples, Italy
| | - Luigi Cipolloni
- Università degli Studi di Roma "La Sapienza", Department of Public Health, Roma, Italy
| | - Antonio Biondi
- University of Catania, Department of Surgery, Catania, Italy
| | - Aurora Daniele
- University of Campania "L. Vanvitelli", CEINGE Biotecnologie Avanzate S.C. a r.l., Naples, Italy
| | - Cristoforo Pomara
- University of Catania, Department of Medical, Surgical and Advanced Technologies, "G.F. Ingrassia", Catania, Italy
| |
Collapse
|
35
|
Mellatyar H, Talaei S, Pilehvar-Soltanahmadi Y, Barzegar A, Akbarzadeh A, Shahabi A, Barekati-Mowahed M, Zarghami N. Targeted cancer therapy through 17-DMAG as an Hsp90 inhibitor: Overview and current state of the art. Biomed Pharmacother 2018; 102:608-617. [PMID: 29602128 DOI: 10.1016/j.biopha.2018.03.102] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/06/2018] [Accepted: 03/17/2018] [Indexed: 12/08/2022] Open
Abstract
Heat shock protein 90 (Hsp90) is an evolutionary preserved molecular chaperone which mediates many cellular processes such as cell transformation, proliferation, and survival in normal and stress conditions. Hsp90 plays an important role in folding, maturation, stabilization and activation of Hsp90 client proteins which all contribute to the development, and proliferation of cancer as well as other inflammatory diseases. Functional inhibition of Hsp90 can have a massive effect on various oncogenic and inflammatory pathways, and will result in the degradation of their client proteins. This turns it into an interesting target in the treatment of different malignancies. 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG) as a semi-synthetic derivative of geldanamycin, has several advantages over 17-Allylamino-17-demethoxygeldanamycin (17-AAG) such as higher water solubility, good bioavailability, reduced metabolism, and greater anti-tumour capability. 17-DMAG binds to the Hsp90, and inhibits its function which eventually results in the degradation of Hsp90 client proteins. Here, we reviewed the pre-clinical data and clinical trial data on 17-DMAG as a single agent, in combination with other agents and loaded on nanomaterials in various cancers and inflammatory diseases.
Collapse
Affiliation(s)
- Hassan Mellatyar
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sona Talaei
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Younes Pilehvar-Soltanahmadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Barzegar
- Research Institute for Fundamental Sciences (RIFS), University of Tabriz, Tabriz, Iran
| | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arman Shahabi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mazyar Barekati-Mowahed
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Nosratollah Zarghami
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
36
|
Shamaladevi N, Araki S, Lyn DA, Ayyathurai R, Gao J, Lokeshwar VB, Navarrete H, Lokeshwar BL. The andean anticancer herbal product BIRM causes destabilization of androgen receptor and induces caspase-8 mediated-apoptosis in prostate cancer. Oncotarget 2018; 7:84201-84213. [PMID: 27705939 PMCID: PMC5356655 DOI: 10.18632/oncotarget.12393] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 09/25/2016] [Indexed: 12/17/2022] Open
Abstract
BIRM is an anticancer herbal formulation from Ecuador. Previous study established its antitumor and antimetastatic activity against prostate cancer models. The activity of BIRM against human prostate cancer (PCa) cells was investigated to uncover its mechanism of antitumor activity. In androgen receptor (AR)-expressing PCa cells BIRM was 2.5-fold (250%) more cytotoxic in presence of androgen (DHT) compared to cells grown in the absence of DHT. In AR-positive cells (LAPC-4 and LNCaP) BIRM caused a dose and time-dependent down-regulation of AR and increased apoptosis. Exposing cells to BIRM did not affect the synthesis of AR and AR promoter activity but increased degradation of AR via proteasome-pathway. BIRM caused destabilization of HSP90-AR association in LAPC-4 cells. It induced apoptosis in PCa cells by activation of caspase-8 via death receptor and FADD-mediated pathways. A synthetic inhibitor of Caspase-8 cleavage (IETD-CHO) aborted BIRM-induced apoptosis. The effect of BIRM on AKT-mediated survival pathway in both AR+ and AR- negative (PC-3 and DU145) showed decreased levels of p-AKTser 473 in all PCa cell lines. BIRM dosed by oral gavage in mice bearing PC-3ML tumors showed selective efficacy on tumor growth; before tumors are established but limited efficacy when treated on existing tumors. Moreover, BIRM inhibited the LNCaP tumor generated by orthotropic implantation into dorsal prostate of nude mice. Partial purification of BIRM by liquid-liquid extraction and further fractionation by HPLC showed 4-fold increased specific activity on PCa cells. These results demonstrate a mechanistic basis of anti-tumor activity of the herbal extract BIRM.
Collapse
Affiliation(s)
- Nagarajarao Shamaladevi
- Departments of Urology and Sylvester Cancer Center, Miller School of Medicine, University of Miami, Miami FL, USA
| | - Shinako Araki
- Departments of Urology and Sylvester Cancer Center, Miller School of Medicine, University of Miami, Miami FL, USA.,Okayama University Graduate School of Medicine, Okayama, Japan
| | - Dominic A Lyn
- Departments of Urology and Sylvester Cancer Center, Miller School of Medicine, University of Miami, Miami FL, USA
| | | | - Jie Gao
- Georgia Cancer Center and Department of Medicine, Augusta University, Augusta GA, USA
| | - Vinata B Lokeshwar
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta GA, USA
| | - Hugo Navarrete
- Herbarium QCA, Pontificia Universidad Catolica del-Ecuador, Quito, Ecuador
| | - Bal L Lokeshwar
- Georgia Cancer Center and Department of Medicine, Augusta University, Augusta GA, USA
| |
Collapse
|
37
|
Tsui KH, Chang YL, Feng TH, Hou CP, Lin YH, Yang PS, Lee BW, Juang HH. Capillarisin blocks prostate-specific antigen expression on activation of androgen receptor in prostate carcinoma cells. Prostate 2018; 78:242-249. [PMID: 29164633 DOI: 10.1002/pros.23463] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/03/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Capillarisin (Cap), an active ingredient of Artemisia capillaris extracts, has known for its anti-inflammatory, antioxidant, and anticancer properties. Functions of Cap in prostate cancer are not clear. We investigate effects of Cap on downregulation of prostate specific antigen (PSA) via modulation of androgen receptor (AR) in prostate carcinoma cells. METHODS Cell proliferation was measured by water-soluble tetrazolium-1 (WST-1) cell proliferation assays. The PSA and AR expressions were assessed by immunoblotting and RT-qPCR assays. Effects of Cap on PSA expressions were determined by ELISA, immunoblotting, and reporter assays. Co-immunoprecipitation and immunoblotting assays were used to define the effects of Cap on dissociation of AR-heat shock protein 90 (Hsp90) interaction. RESULTS Cap inhibited LNCaP cell growth in a dose- and/or time-dependent way without inducing poly ADP-Ribose Polymerase (PARP) cleavage. Cap not only effectively suppressed AR and PSA protein expressions, but also attenuated activations of synthetic androgen (R1881) on PSA promoter activity dose- and time-dependently. The Cap pretreatment abrogated effects of R1881 on AR activity by reducing AR translocation to the nucleus. Immunoblotting assays indicated that Cap promoted a degradation of AR proteins dose-dependently in either cycloheximide pretreated-LNCaP cells or AR-ectopic expressed PC-3 cells. Pretreatment of MG132, a proteasome inhibitor, attenuated effect of Cap on AR degradation. Cap lessened AR stability by dissociation of AR-Hsp90 interaction. CONCLUSIONS Our results indicated that Cap inhibited growth of LNCaP cells. Cap effectively suppressed androgen activation on AR-mediated transactivation, which is AR-dependent through AR degradation and dissociation of AR-Hsp90 in prostate carcinoma cells.
Collapse
Affiliation(s)
- Ke-Hung Tsui
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan, Taiwan
- Department of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Ying-Ling Chang
- Department of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
- Graduate Institute of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Tsui-Hsia Feng
- School of Nursing, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Chen-Pang Hou
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan, Taiwan
| | - Yu-Hsiang Lin
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan, Taiwan
| | - Pei-Shan Yang
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan, Taiwan
| | - Bing-Wei Lee
- Graduate Institute of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Horng-Heng Juang
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan, Taiwan
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| |
Collapse
|
38
|
DePaolo JS, Wang Z, Guo J, Zhang G, Qian C, Zhang H, Zabaleta J, Liu W. Acetylation of androgen receptor by ARD1 promotes dissociation from HSP90 complex and prostate tumorigenesis. Oncotarget 2018; 7:71417-71428. [PMID: 27659526 PMCID: PMC5342088 DOI: 10.18632/oncotarget.12163] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 09/02/2016] [Indexed: 01/10/2023] Open
Abstract
Prostate cancer is an androgen receptor (AR)-driven disease and post-translational modification of AR is critical for AR activation. We previously reported that Arrest-defective protein 1 (ARD1) is an oncoprotein in prostate cancer. It acetylates and activates AR to promote prostate tumorigenesis. However, the ARD1-targeted residue within AR and the mechanisms of the acetylation event in prostate tumorigenesis remained unknown. In this study, we show that ARD1 acetylates AR at lysine 618 (K618) in vitro and in vivo. An AR construct with the charged lysine substitution by arginine (AR-618R) reduces RNA Pol II binding, AR transcriptional activity, prostate cancer cell growth, and xenograft tumor formation due to attenuation of AR nuclear translocation, whereas, construct mimicking neutral polar substitution acetylation at K618 by glutamine (AR-618Q) enhanced these effects beyond that of the wild-type AR. Mechanistically, ARD1 forms a ternary complex with AR and HSP90 in vitro and in vivo. Expression of ARD1 increases levels of AR acetylation and AR-HSP90 dissociation in a dose dependent manner. Moreover, the AR acetylation defective K618R mutant is unable to dissociate from HSP90 while the HSP90-dissociated AR is acetylated following ligand exposure. This work identifies a new mechanism for ligand-induced AR-HSP90 dissociation and AR activation. Targeting ARD1-mediated AR acetylation may be a potent intervention for AR-dependent prostate cancer therapy.
Collapse
Affiliation(s)
- John S DePaolo
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA.,Department of Pathology, Tulane University School of Medicine, New Orleans, LA, 70112, USA,Department of Pediatrics, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Zehua Wang
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Jianhui Guo
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | | | - Chiping Qian
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | | | | | - Wanguo Liu
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| |
Collapse
|
39
|
Kim HT, Kim YJ, Park SR, Ryu SY, Jung JY. NAD(P)H-quinone oxidoreductase 1 silencing aggravates hormone-induced prostatic hyperplasia in mice. Andrologia 2017; 50. [DOI: 10.1111/and.12906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2017] [Indexed: 12/17/2022] Open
Affiliation(s)
- H.-T. Kim
- Department of Veterinary Medicine & Institute of Veterinary Science; Chungnam National University; Daejeon Korea
| | - Y.-J. Kim
- Department of Veterinary Medicine & Institute of Veterinary Science; Chungnam National University; Daejeon Korea
| | - S.-R. Park
- Department of Veterinary Medicine & Institute of Veterinary Science; Chungnam National University; Daejeon Korea
| | - S.-Y. Ryu
- Department of Veterinary Medicine & Institute of Veterinary Science; Chungnam National University; Daejeon Korea
| | - J.-Y. Jung
- Department of Veterinary Medicine & Institute of Veterinary Science; Chungnam National University; Daejeon Korea
| |
Collapse
|
40
|
McCarty DJ, Huang W, Kane MA, Purushottamachar P, Gediya LK, Njar VC. Novel galeterone analogs act independently of AR and AR-V7 for the activation of the unfolded protein response and induction of apoptosis in the CWR22Rv1 prostate cancer cell model. Oncotarget 2017; 8:88501-88516. [PMID: 29179452 PMCID: PMC5687622 DOI: 10.18632/oncotarget.19762] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/06/2017] [Indexed: 12/29/2022] Open
Abstract
The androgen receptor (AR) has long been the primary target for the treatment of prostate cancer (PC). Despite continuous efforts to block AR activity through ligand depletion, AR antagonism, AR depletion and combinations thereof, advanced PC tumors remain resilient. Herein, we evaluate two galeterone analogs, VNPT-178 and VNLG-74A, in PC cell models of diverse androgen and AR dependence attempting to delineate their mechanisms of action and potential clinical utility. Employing basic biochemical techniques, we determined that both analogs have improved antiproliferative and anti-AR activities compared to FDA-approved abiraterone and enzalutamide. However, induction of apoptosis in these models is independent of the AR and its truncated variant, AR-V7, and instead likely results from sustained endoplasmic reticulum stress and deregulated calcium homeostasis. Using in silico molecular docking, we predict VNPT-178 and VNLG-74A bind the ATPase domain of BiP/Grp78 and Hsp70-1A with greater affinity than the AR. Disruption of 70 kDa heat shock protein function may be the underlying mechanism of action for these galeterone analogs. Therefore, despite simultaneously antagonizing AR activity, AR and/or AR-V7 expression alone may inadequately predict a patient's response to treatment with VNPT-178 or VNLG-74A. Future studies evaluating the context-specific limitations of these compounds may provide clarity for their clinical application.
Collapse
Affiliation(s)
- David J. McCarty
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Weiliang Huang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Puranik Purushottamachar
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Lalji K. Gediya
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Vincent C.O. Njar
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
41
|
Stelloo S, Nevedomskaya E, Kim Y, Hoekman L, Bleijerveld OB, Mirza T, Wessels LFA, van Weerden WM, Altelaar AFM, Bergman AM, Zwart W. Endogenous androgen receptor proteomic profiling reveals genomic subcomplex involved in prostate tumorigenesis. Oncogene 2017; 37:313-322. [PMID: 28925401 DOI: 10.1038/onc.2017.330] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 07/10/2017] [Accepted: 08/06/2017] [Indexed: 12/13/2022]
Abstract
Androgen receptor (AR) is a key player in prostate cancer development and progression. Here we applied immunoprecipitation mass spectrometry of endogenous AR in LNCaP cells to identify components of the AR transcriptional complex. In total, 66 known and novel AR interactors were identified in the presence of synthetic androgen, most of which were critical for AR-driven prostate cancer cell proliferation. A subset of AR interactors required for LNCaP proliferation were profiled using chromatin immunoprecipitation assays followed by sequencing, identifying distinct genomic subcomplexes of AR interaction partners. Interestingly, three major subgroups of genomic subcomplexes were identified, where selective gain of function for AR genomic action in tumorigenesis was found, dictated by FOXA1 and HOXB13. In summary, by combining proteomic and genomic approaches we reveal subclasses of AR transcriptional complexes, differentiating normal AR behavior from the oncogenic state. In this process, the expression of AR interactors has key roles by reprogramming the AR cistrome and interactome in a genomic location-specific manner.
Collapse
Affiliation(s)
- S Stelloo
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - E Nevedomskaya
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Y Kim
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - L Hoekman
- Mass Spectrometry and Proteomics Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - O B Bleijerveld
- Mass Spectrometry and Proteomics Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - T Mirza
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - L F A Wessels
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Faculty of EEMCS, Delft University of Technology, Delft, The Netherlands
| | - W M van Weerden
- Department of Urology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - A F M Altelaar
- Mass Spectrometry and Proteomics Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, The Netherlands Proteomics Centre, Utrecht University, Utrecht, The Netherlands
| | - A M Bergman
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Division of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - W Zwart
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
42
|
Sahasrabudhe P, Rohrberg J, Biebl MM, Rutz DA, Buchner J. The Plasticity of the Hsp90 Co-chaperone System. Mol Cell 2017; 67:947-961.e5. [PMID: 28890336 DOI: 10.1016/j.molcel.2017.08.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/10/2017] [Accepted: 08/08/2017] [Indexed: 11/20/2022]
Abstract
The Hsp90 system in the eukaryotic cytosol is characterized by a cohort of co-chaperones that bind to Hsp90 and affect its function. Although progress has been made regarding the underlying biochemical mechanisms, how co-chaperones influence Hsp90 client proteins in vivo has remained elusive. By investigating the effect of 12 Hsp90 co-chaperones on the activity of different client proteins in yeast, we find that deletion of co-chaperones can have a neutral or negative effect on client activity but can also lead to more active clients. Only a few co-chaperones are active on all clients studied. Closely related clients and even point mutants can depend on different co-chaperones. These effects are direct because differences in client-co-chaperone interactions can be reconstituted in vitro. Interestingly, some co-chaperones affect client conformation in vivo. Thus, co-chaperones adapt the Hsp90 cycle to the requirements of the client proteins, ensuring optimal activation.
Collapse
Affiliation(s)
- Priyanka Sahasrabudhe
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, 85748 Garching, Germany
| | - Julia Rohrberg
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, 85748 Garching, Germany
| | - Maximillian M Biebl
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, 85748 Garching, Germany
| | - Daniel A Rutz
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, 85748 Garching, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, 85748 Garching, Germany.
| |
Collapse
|
43
|
Kim Y, Park SE, Moon JW, Kim BM, Kim HG, Jeong IG, Yoo S, Ahn JB, You D, Pak JH, Kim S, Hwang JJ, Kim CS. Downregulation of androgen receptors by NaAsO 2 via inhibition of AKT-NF-κB and HSP90 in castration resistant prostate cancer. Prostate 2017; 77:1128-1136. [PMID: 28556958 DOI: 10.1002/pros.23370] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 04/28/2017] [Indexed: 11/05/2022]
Abstract
BACKGROUND Androgen and androgen receptor (AR) play essential roles in the development and maintenance of prostate cancer. The recently identified AR splice variants (AR-Vs) have been considered as a plausible mechanism for the primary resistance against androgen deprivation therapy (ADT) in castration-resistant prostate cancer (CRPC). Sodium meta-arsenite (NaAsO2 ; KML001; Kominox), a trivalent arsenical, is an orally bioavailable and water soluble, which is currently in phase I/II clinical trials for the treatment of prostate cancer. It has a potent anti-cancer effect on prostate cancer cells and xenografts. The aim of this study was to examine the effect of NaAsO2 on AR signaling in LNCaP and 22Rv1 CRPC cells. METHODS We used hormone-sensitive LNCaP cells, hormone-insensitive 22Rv1 cells, and CRPC patient-derived primary cells. We analyzed anti-cancer effect of NaAsO2 using real-time quantitative reverse transcription-PCR, Western blotting, immunofluorescence staining and CellTiter Glo® luminescent assay. Statistical evaluation of the results was performed by one-way ANOVA. RESULTS NaAsO2 significantly reduced the translocation of AR and AR-Vs to the nucleus as well as their level in LNCaP and 22Rv1 cells. Besides, the level of the prostate-specific antigen (PSA), downstream target gene of AR, was also decreased. This compound was also an effective modulator of AKT-dependent NF-κB activation which regulates AR. NaAsO2 significantly inhibited phosphorylation of AKT and expression and nuclear translocation of NF-κB. We then investigated the effect of NaAsO2 on AR stabilization. NaAsO2 promoted HSP90 acetylation by down-regulating HDAC6, which reduces the stability of AR in prostate cancer cells. CONCLUSIONS Here, we show that NaAsO2 disrupts AR signaling at multiple levels by affecting AR expression, stability, and degradation in primary tumor cell cultures from prostate cancer patients as well as CRPC cell lines. These results suggest that NaAsO2 could be a novel therapeutics for prostate cancer.
Collapse
Affiliation(s)
- Yunlim Kim
- Department of Urology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
- Institute for Innovative Cancer Research, Asan Medical Center, Seoul, Korea
| | - Sang Eun Park
- Institute for Innovative Cancer Research, Asan Medical Center, Seoul, Korea
| | - Jeong-Weon Moon
- Department of Urology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Bong-Min Kim
- Department of Urology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Ha-Gyeong Kim
- Institute for Innovative Cancer Research, Asan Medical Center, Seoul, Korea
| | - In Gab Jeong
- Department of Urology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Sangjun Yoo
- Department of Urology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Jae Beom Ahn
- Department of Urology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Dalsan You
- Department of Urology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Jhang Ho Pak
- Asan Institute for Life Science, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, Korea
| | - Sujong Kim
- Pharmaceutical Division, Komipharm International Co., Ltd., Shiheung, Korea
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - Jung Jin Hwang
- Institute for Innovative Cancer Research, Asan Medical Center, Seoul, Korea
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, Korea
| | - Choung-Soo Kim
- Department of Urology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
- Institute for Innovative Cancer Research, Asan Medical Center, Seoul, Korea
| |
Collapse
|
44
|
Le B, Powers GL, Tam YT, Schumacher N, Malinowski RL, Steinke L, Kwon G, Marker PC. Multi-drug loaded micelles delivering chemotherapy and targeted therapies directed against HSP90 and the PI3K/AKT/mTOR pathway in prostate cancer. PLoS One 2017; 12:e0174658. [PMID: 28350865 PMCID: PMC5370140 DOI: 10.1371/journal.pone.0174658] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 03/13/2017] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Advanced prostate cancers that are resistant to all current therapies create a need for new therapeutic strategies. One recent innovative approach to cancer therapy is the simultaneous use of multiple FDA-approved drugs to target multiple pathways. A challenge for this approach is caused by the different solubility requirements of each individual drug, resulting in the need for a drug vehicle that is non-toxic and capable of carrying multiple water-insoluble antitumor drugs. Micelles have recently been shown to be new candidate drug solubilizers for anti cancer therapy. METHODS This study set out to examine the potential use of multi-drug loaded micelles for prostate cancer treatment in preclinical models including cell line and mouse models for prostate cancers with Pten deletions. Specifically antimitotic agent docetaxel, mTOR inhibitor rapamycin, and HSP90 inhibitor 17-N-allylamino-17-demethoxygeldanamycin were incorporated into the micelle system (DR17) and tested for antitumor efficacy. RESULTS In vitro growth inhibition of prostate cancer cells was greater when all three drugs were used in combination compared to each individual drug, and packaging the drugs into micelles enhanced the cytotoxic effects. At the molecular level DR17 targeted simultaneously several molecular signaling axes important in prostate cancer including androgen receptor, mTOR, and PI3K/AKT. In a mouse genetic model of prostate cancer, DR17 treatment decreased prostate weight, which was achieved by both increasing caspase-dependent cell death and decreasing cell proliferation. Similar effects were also observed when DR17 was administered to nude mice bearing prostate cancer cells xenografts. CONCLUSION These results suggest that combining these three cancer drugs in multi-drug loaded micelles may be a promising strategy for prostate cancer therapy.
Collapse
Affiliation(s)
- Bao Le
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ginny L. Powers
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Yu Tong Tam
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Nicholas Schumacher
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Rita L. Malinowski
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Laura Steinke
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Glen Kwon
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Paul C. Marker
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
45
|
Dayal S, Zhou J, Manivannan P, Siddiqui MA, Ahmad OF, Clark M, Awadia S, Garcia-Mata R, Shemshedini L, Malathi K. RNase L Suppresses Androgen Receptor Signaling, Cell Migration and Matrix Metalloproteinase Activity in Prostate Cancer Cells. Int J Mol Sci 2017; 18:ijms18030529. [PMID: 28257035 PMCID: PMC5372545 DOI: 10.3390/ijms18030529] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 02/15/2017] [Accepted: 02/20/2017] [Indexed: 01/20/2023] Open
Abstract
The interferon antiviral pathways and prostate cancer genetics converge on a regulated endoribonuclease, RNase L. Positional cloning and linkage studies mapped Hereditary Prostate Cancer 1 (HPC1) to RNASEL. To date, there is no correlation of viral infections with prostate cancer, suggesting that RNase L may play additional roles in tumor suppression. Here, we demonstrate a role of RNase L as a suppressor of androgen receptor (AR) signaling, cell migration and matrix metalloproteinase activity. Using RNase L mutants, we show that its nucleolytic activity is dispensable for both AR signaling and migration. The most prevalent HPC1-associated mutations in RNase L, R462Q and E265X, enhance AR signaling and cell migration. RNase L negatively regulates cell migration and attachment on various extracellular matrices. We demonstrate that RNase L knockdown cells promote increased cell surface expression of integrin β1 which activates Focal Adhesion Kinase-Sarcoma (FAK-Src) pathway and Ras-related C3 botulinum toxin substrate 1-guanosine triphosphatase (Rac1-GTPase) activity to increase cell migration. Activity of matrix metalloproteinase (MMP)-2 and -9 is significantly increased in cells where RNase L levels are ablated. We show that mutations in RNase L found in HPC patients may promote prostate cancer by increasing expression of AR-responsive genes and cell motility and identify novel roles of RNase L as a prostate cancer susceptibility gene.
Collapse
Affiliation(s)
- Shubham Dayal
- Department of Biological Sciences, 2801 W. Bancroft St., University of Toledo, Toledo, OH 43606, USA.
| | - Jun Zhou
- Department of Biological Sciences, 2801 W. Bancroft St., University of Toledo, Toledo, OH 43606, USA.
| | - Praveen Manivannan
- Department of Biological Sciences, 2801 W. Bancroft St., University of Toledo, Toledo, OH 43606, USA.
| | - Mohammad Adnan Siddiqui
- Department of Biological Sciences, 2801 W. Bancroft St., University of Toledo, Toledo, OH 43606, USA.
| | - Omaima Farid Ahmad
- Department of Biological Sciences, 2801 W. Bancroft St., University of Toledo, Toledo, OH 43606, USA.
| | - Matthew Clark
- Department of Biological Sciences, 2801 W. Bancroft St., University of Toledo, Toledo, OH 43606, USA.
| | - Sahezeel Awadia
- Department of Biological Sciences, 2801 W. Bancroft St., University of Toledo, Toledo, OH 43606, USA.
| | - Rafael Garcia-Mata
- Department of Biological Sciences, 2801 W. Bancroft St., University of Toledo, Toledo, OH 43606, USA.
| | - Lirim Shemshedini
- Department of Biological Sciences, 2801 W. Bancroft St., University of Toledo, Toledo, OH 43606, USA.
| | - Krishnamurthy Malathi
- Department of Biological Sciences, 2801 W. Bancroft St., University of Toledo, Toledo, OH 43606, USA.
| |
Collapse
|
46
|
Epigenomic Regulation of Androgen Receptor Signaling: Potential Role in Prostate Cancer Therapy. Cancers (Basel) 2017; 9:cancers9010009. [PMID: 28275218 PMCID: PMC5295780 DOI: 10.3390/cancers9010009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/02/2017] [Accepted: 01/11/2017] [Indexed: 12/18/2022] Open
Abstract
Androgen receptor (AR) signaling remains the major oncogenic pathway in prostate cancer (PCa). Androgen-deprivation therapy (ADT) is the principle treatment for locally advanced and metastatic disease. However, a significant number of patients acquire treatment resistance leading to castration resistant prostate cancer (CRPC). Epigenetics, the study of heritable and reversible changes in gene expression without alterations in DNA sequences, is a crucial regulatory step in AR signaling. We and others, recently described the technological advance Chem-seq, a method to identify the interaction between a drug and the genome. This has permitted better understanding of the underlying regulatory mechanisms of AR during carcinogenesis and revealed the importance of epigenetic modifiers. In screening for new epigenomic modifiying drugs, we identified SD-70, and found that this demethylase inhibitor is effective in CRPC cells in combination with current therapies. The aim of this review is to explore the role of epigenetic modifications as biomarkers for detection, prognosis, and risk evaluation of PCa. Furthermore, we also provide an update of the recent findings on the epigenetic key processes (DNA methylation, chromatin modifications and alterations in noncoding RNA profiles) involved in AR expression and their possible role as therapeutic targets.
Collapse
|
47
|
Rosati R, Chen B, Patki M, McFall T, Ou S, Heath E, Ratnam M, Qin Z. Hybrid Enzalutamide Derivatives with Histone Deacetylase Inhibitor Activity Decrease Heat Shock Protein 90 and Androgen Receptor Levels and Inhibit Viability in Enzalutamide-Resistant C4-2 Prostate Cancer Cells. Mol Pharmacol 2016; 90:225-37. [PMID: 27382012 PMCID: PMC4998664 DOI: 10.1124/mol.116.103416] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/30/2016] [Indexed: 11/22/2022] Open
Abstract
Histone deacetylase inhibitors (HDACIs) can disrupt the viability of prostate cancer (PCa) cells through modulation of the cytosolic androgen receptor (AR) chaperone protein heat shock protein 90 (HSP90). However, toxicities associated with their pleiotropic effects could contribute to the ineffectiveness of HDACIs in PCa treatment. We designed hybrid molecules containing partial chemical scaffolds of enzalutamide and suberoylanilide hydroxamic acid (SAHA), with weakened intrinsic pan-HDACI activities, to target HSP90 and AR in enzalutamide-resistant PCa cells. The potency of the new molecules, compounds 2-75 [4-(3-(4-cyano-3-(trifluoromethyl)phenyl)-5,5-dimethyl-4-oxo-2-thioxoimidazolidin-1-yl)-2-fluoro-N-(7-(hydroxyamino)-7-oxoheptyl)benzamide] and 1005 [(E)-3-(4-(3-(4-cyano-3-(trifluoromethyl)phenyl)-5,5-dimethyl-4-oxo-2-thioxoimidazolidin-1-yl)-2-fluorophenyl)-N-hydroxyacrylamide], as inhibitors of nuclear and cytosolic histone deacetylases was substantially lower than that of SAHA in cell-free and in situ assays. Compounds 2-75 and 1005 antagonized gene activation by androgen without inducing chromatin association of AR. Enzalutamide had no effect on the levels of AR or HSP90, whereas the hybrid compounds induced degradation of both AR and HSP90, similar to (compound 1005) or more potently than (compound 2-75) SAHA. Similar to SAHA, compounds 2-75 and 1005 decreased the level of HSP90 and induced acetylation in a predicted approximately 55 kDa HSP90 fragment. Compared with SAHA, compound 2-75 induced greater hyperacetylation of the HDAC6 substrate α-tubulin. In contrast with SAHA, neither hybrid molecule caused substantial hyperacetylation of histones H3 and H4. Compounds 2-75 and 1005 induced p21 and caused loss of viability in the enzalutamide-resistant C4-2 cells, with efficacies that were comparable to or better than SAHA. The results suggest the potential of the new compounds as prototype antitumor drugs that would downregulate HSP90 and AR in enzalutamide-resistant PCa cells with weakened effects on nuclear HDACI targets.
Collapse
Affiliation(s)
- Rayna Rosati
- Barbara Ann Karmanos Cancer Institute, Departments of Oncology (R.R., M.P., T.M., E.H., M.R.) and Pharmaceutical Sciences (B.C., S.O., Z.Q.), Wayne State University, Detroit, Michigan
| | - Bailing Chen
- Barbara Ann Karmanos Cancer Institute, Departments of Oncology (R.R., M.P., T.M., E.H., M.R.) and Pharmaceutical Sciences (B.C., S.O., Z.Q.), Wayne State University, Detroit, Michigan
| | - Mugdha Patki
- Barbara Ann Karmanos Cancer Institute, Departments of Oncology (R.R., M.P., T.M., E.H., M.R.) and Pharmaceutical Sciences (B.C., S.O., Z.Q.), Wayne State University, Detroit, Michigan
| | - Thomas McFall
- Barbara Ann Karmanos Cancer Institute, Departments of Oncology (R.R., M.P., T.M., E.H., M.R.) and Pharmaceutical Sciences (B.C., S.O., Z.Q.), Wayne State University, Detroit, Michigan
| | - Siyu Ou
- Barbara Ann Karmanos Cancer Institute, Departments of Oncology (R.R., M.P., T.M., E.H., M.R.) and Pharmaceutical Sciences (B.C., S.O., Z.Q.), Wayne State University, Detroit, Michigan
| | - Elisabeth Heath
- Barbara Ann Karmanos Cancer Institute, Departments of Oncology (R.R., M.P., T.M., E.H., M.R.) and Pharmaceutical Sciences (B.C., S.O., Z.Q.), Wayne State University, Detroit, Michigan
| | - Manohar Ratnam
- Barbara Ann Karmanos Cancer Institute, Departments of Oncology (R.R., M.P., T.M., E.H., M.R.) and Pharmaceutical Sciences (B.C., S.O., Z.Q.), Wayne State University, Detroit, Michigan
| | - Zhihui Qin
- Barbara Ann Karmanos Cancer Institute, Departments of Oncology (R.R., M.P., T.M., E.H., M.R.) and Pharmaceutical Sciences (B.C., S.O., Z.Q.), Wayne State University, Detroit, Michigan
| |
Collapse
|
48
|
Infiltrating bone marrow mesenchymal stem cells (BM-MSCs) increase prostate cancer cell invasion via altering the CCL5/HIF2α/androgen receptor signals. Oncotarget 2016; 6:27555-65. [PMID: 26342197 PMCID: PMC4695008 DOI: 10.18632/oncotarget.4515] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 07/17/2015] [Indexed: 11/25/2022] Open
Abstract
Several infiltrating cells in the tumor microenvironment could influence the cancer progression via secreting various cytokines. Here, we found the CCL5 secreted from BM-MSCs suppressed androgen receptor (AR) signals via enhancing the expression of hypoxia inducible factor 2α (HIF2α) in prostate cancer (PCa) cells. Mechanism dissection revealed that the increased HIF2α might alter the AR-HSP90 interaction to suppress the AR transactivation, and inhibition of HIF2α reversed the BM-MSCs-increased PCa stem cell population and PCa cells invasion. Importantly, CCL5 could suppress the prolyl hydroxylases (PHDs) expression, which might then lead to suppress VHL-mediated HIF2α ubiquitination. Together, these results demonstrated that the CCL5 signals from infiltrating BM-MSC cells to HIF2α signals within PCa cells might play a key role to increase PCa stem cell population and PCa metastasis via altering the AR signals. Targeting this newly identified CCL5/HIF2α/AR axis signal axis may allow us to develop a novel way to suppress PCa metastasis.
Collapse
|
49
|
Foley C, Mitsiades N. Moving Beyond the Androgen Receptor (AR): Targeting AR-Interacting Proteins to Treat Prostate Cancer. HORMONES & CANCER 2016; 7:84-103. [PMID: 26728473 PMCID: PMC5380740 DOI: 10.1007/s12672-015-0239-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/23/2015] [Indexed: 02/07/2023]
Abstract
Medical or surgical castration serves as the backbone of systemic therapy for advanced and metastatic prostate cancer, taking advantage of the importance of androgen signaling in this disease. Unfortunately, resistance to castration emerges almost universally. Despite the development and approval of new and more potent androgen synthesis inhibitors and androgen receptor (AR) antagonists, prostate cancers continue to develop resistance to these therapeutics, while often maintaining their dependence on the AR signaling axis. This highlights the need for innovative therapeutic approaches that aim to continue disrupting AR downstream signaling but are orthogonal to directly targeting the AR itself. In this review, we discuss the preclinical research that has been done, as well as clinical trials for prostate cancer, on inhibiting several important families of AR-interacting proteins, including chaperones (such as heat shock protein 90 (HSP90) and FKBP52), pioneer factors (including forkhead box protein A1 (FOXA1) and GATA-2), and AR transcriptional coregulators such as the p160 steroid receptor coactivators (SRCs) SRC-1, SRC-2, SRC-3, as well as lysine deacetylases (KDACs) and lysine acetyltransferases (KATs). Researching the effect of-and developing new therapeutic agents that target-the AR signaling axis is critical to advancing our understanding of prostate cancer biology, to continue to improve treatments for prostate cancer and for overcoming castration resistance.
Collapse
Affiliation(s)
- Christopher Foley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Suite R407, MS: BCM187, Houston, TX, 77030, USA
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Suite R407, MS: BCM187, Houston, TX, 77030, USA
| | - Nicholas Mitsiades
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Suite R407, MS: BCM187, Houston, TX, 77030, USA.
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Suite R407, MS: BCM187, Houston, TX, 77030, USA.
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
50
|
Shukla GC, Plaga AR, Shankar E, Gupta S. Androgen receptor-related diseases: what do we know? Andrology 2016; 4:366-81. [PMID: 26991422 DOI: 10.1111/andr.12167] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 12/28/2015] [Accepted: 01/06/2016] [Indexed: 01/09/2023]
Abstract
The androgen receptor (AR) and the androgen-AR signaling pathway play a significant role in male sexual differentiation and the development and function of male reproductive and non-reproductive organs. Because of AR's widely varied and important roles, its abnormalities have been identified in various diseases such as androgen insensitivity syndrome, spinal bulbar muscular atrophy, benign prostatic hyperplasia, and prostate cancer. This review provides an overview of the function of androgens and androgen-AR mediated diseases. In addition, the diseases delineated above are discussed with respect to their association with mutations and other post-transcriptional modifications in the AR. Finally, we present an introduction to the potential therapeutic application of most recent pharmaceuticals including miRNAs in prostate cancer that specifically target the transactivation function of the AR at post-transcriptional stages.
Collapse
Affiliation(s)
- G C Shukla
- Center of Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH, USA.,Department of Biological Sciences, Cleveland State University, Cleveland, OH, USA
| | - A R Plaga
- Center of Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH, USA.,Department of Biological Sciences, Cleveland State University, Cleveland, OH, USA
| | - E Shankar
- Department of Urology, Case Western Reserve University & University Hospitals Case Medical Center, Cleveland, OH, USA
| | - S Gupta
- Department of Urology, Case Western Reserve University & University Hospitals Case Medical Center, Cleveland, OH, USA.,Department of Nutrition, Case Western Reserve University, Cleveland, OH, USA.,Division of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, OH, USA.,Department of Urology, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| |
Collapse
|