1
|
Doering JA, Beitel SC, Patterson S, Eisner BK, Giesy JP, Hecker M, Wiseman S. Aryl hydrocarbon receptor nuclear translocators (ARNT1, ARNT2, and ARNT3) of white sturgeon (Acipenser transmontanus): Sequences, tissue-specific expressions, and response to β-naphthoflavone. Comp Biochem Physiol C Toxicol Pharmacol 2020; 231:108726. [PMID: 32081761 DOI: 10.1016/j.cbpc.2020.108726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/11/2020] [Accepted: 02/15/2020] [Indexed: 12/01/2022]
Abstract
Sturgeons (Acipenseridae) are ancient fishes that have tissue-specific profiles of transcriptional responses to dioxin-like compounds (DLCs) that are unique from those generally measured in teleost fishes. Because DLCs exert their critical toxicities through activation of the aryl hydrocarbon receptor (AHR), this transcription factor has been the subject of intensive study. However, less attention has focused on the aryl hydrocarbon receptor nuclear translocator (ARNT), which is the dimerization partner of the AHR and required for AHR-mediated transcription. The present study sequenced ARNT1, ARNT2, and ARNT3 in a representative species of sturgeon, the white sturgeon (Acipenser transmontanus), and quantified tissue-specific basal transcript abundance for each ARNT and the response following exposure to the model agonist of the AHR, β-naphthoflavone. In common with other proteins in sturgeons, the amino acid sequences of ARNTs are more similar to those of tetrapods than are ARNTs of other fishes. Transcripts of ARNT1, ARNT2, and ARNT3 were detected in all tissues investigated. Expression of ARNTs are tightly regulated in vertebrates, but β-naphthoflavone caused down-regulation in liver and up-regulation in gill, while an upward trend was measured in intestine. ARNTs are dimeric partners for multiple proteins, including the hypoxia inducible factor 1α (HIF1α), which mediates response to hypoxia. A downward trend in abundance of HIF1α transcript was measured in liver of white sturgeon exposed to β-naphthoflavone. Altered expression of ARNTs and HIF1α caused by activation of the AHR might affect the ability of certain tissues in sturgeons to respond to hypoxia when co-exposed to DLCs or other agonists.
Collapse
Affiliation(s)
- Jon A Doering
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada; Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada.
| | - Shawn C Beitel
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Sarah Patterson
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Bryanna K Eisner
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada; Department of Environmental Sciences, Baylor University, Waco, TX 76706, United States
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada; School of the Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C8, Canada
| | - Steve Wiseman
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
2
|
Rahman MS, Thomas P. Molecular cloning and characterization of two ARNT (ARNT-1 and ARNT-2) genes in Atlantic croaker and their expression during coexposure to hypoxia and PCB77. ENVIRONMENTAL TOXICOLOGY 2019; 34:160-171. [PMID: 30334616 DOI: 10.1002/tox.22670] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/28/2018] [Accepted: 09/30/2018] [Indexed: 06/08/2023]
Abstract
Aryl hydrocarbon receptor nuclear translocator (ARNT) is an important transcriptions factor that binds/coactivates drug-metabolizing genes in vertebrates. In this study, we report the cloning and characterization of two ARNT (ARNT-1 and ARNT-2) genes and their mRNA and protein expression in liver tissues of Atlantic croaker after co-exposure to hypoxia and 3,3',4,4'-tetrachlorobiphenyl (PCB77). The full-length croaker ARNT-1 and ARNT-2 genes encode proteins of 537 and 530 amino acids, respectively, and are highly homologous to ARNT-1 and ARNT-2 genes of other vertebrates. ARNT mRNAs are ubiquitously expressed in all tissues. Hypoxia (dissolved oxygen: 1.7 mg/L) exposure (1-4 weeks) did not affect hepatic ARNTs mRNA levels. Dietary PCB77 treatment (2 and 8 μg/g body weight/day for 4 weeks) caused marked increases in ARNTs mRNA and protein levels in normoxic fish. However, coexposure to hypoxia and PCB77 for 4 weeks significantly blunted the increase in ARNTs mRNA and protein levels in response to PCB77 exposure. These results suggest that ARNT activity and functions induced by exposure to PCB aryl hydrocarbon receptor (AhR) agonists could be compromised in croaker inhabiting hypoxic coastal regions.
Collapse
Affiliation(s)
- Md Saydur Rahman
- School of Earth, Environmental and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, Texas 78520
- Marine Science Institute, University of Texas at Austin, Port Aransas, Texas 78373
| | - Peter Thomas
- Marine Science Institute, University of Texas at Austin, Port Aransas, Texas 78373
| |
Collapse
|
3
|
A Molecular Mechanism To Switch the Aryl Hydrocarbon Receptor from a Transcription Factor to an E3 Ubiquitin Ligase. Mol Cell Biol 2017; 37:MCB.00630-16. [PMID: 28416634 DOI: 10.1128/mcb.00630-16] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 04/10/2017] [Indexed: 01/01/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that is known as a mediator of toxic responses. Recently, it was shown that the AhR has dual functions. Besides being a transcription factor, it also possesses an intrinsic E3 ubiquitin ligase function that targets, e.g., the steroid receptors for proteasomal degradation. The aim of this study was to identify the molecular switch that determines whether the AhR acts as a transcription factor or an E3 ubiquitin ligase. To do this, we used the breast cancer cell line MCF7, which expresses a functional estrogen receptor alpha (ERα) signaling pathway. Our data suggest that aryl hydrocarbon receptor nuclear translocator (ARNT) plays an important role in the modulation of the dual functions of the AhR. ARNT knockdown dramatically impaired the transcriptional activation properties of the ligand-activated AhR but did not affect its E3 ubiquitin ligase function. The availability of ARNT itself is modulated by another basic helix-loop-helix (bHLH)-Per-ARNT-SIM (PAS) protein, the repressor of AhR function (AhRR). MCF7 cells overexpressing the AhRR showed lower ERα protein levels, reduced responsiveness to estradiol, and reduced growth rates. Importantly, when these cells were used to produce estrogen-dependent xenograft tumors in SCID mice, we also observed lower ERα protein levels and a reduced tumor mass, implying a tumor-suppressive-like function of the AhR in MCF7 xenograft tumors.
Collapse
|
4
|
Ishqi HM, Ur Rehman S, Sarwar T, Husain MA, Tabish M. Identification of differentially expressed three novel transcript variants of mouse ARNT gene. IUBMB Life 2015; 68:122-35. [DOI: 10.1002/iub.1464] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 11/25/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Hassan Mubarak Ishqi
- Department of Biochemistry, Faculty of Life Sciences; A.M. University; Aligarh Uttar Pradesh India
| | - Sayeed Ur Rehman
- Department of Biochemistry, Faculty of Life Sciences; A.M. University; Aligarh Uttar Pradesh India
| | - Tarique Sarwar
- Department of Biochemistry, Faculty of Life Sciences; A.M. University; Aligarh Uttar Pradesh India
| | - Mohammed Amir Husain
- Department of Biochemistry, Faculty of Life Sciences; A.M. University; Aligarh Uttar Pradesh India
| | - Mohammad Tabish
- Department of Biochemistry, Faculty of Life Sciences; A.M. University; Aligarh Uttar Pradesh India
| |
Collapse
|
5
|
King-Heiden TC, Mehta V, Xiong KM, Lanham KA, Antkiewicz DS, Ganser A, Heideman W, Peterson RE. Reproductive and developmental toxicity of dioxin in fish. Mol Cell Endocrinol 2012; 354:121-38. [PMID: 21958697 PMCID: PMC3306500 DOI: 10.1016/j.mce.2011.09.027] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 09/12/2011] [Accepted: 09/13/2011] [Indexed: 10/17/2022]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD or dioxin) is a global environmental contaminant and the prototypical ligand for investigating aryl hydrocarbon receptor (AHR)-mediated toxicity. Environmental exposure to TCDD results in developmental and reproductive toxicity in fish, birds and mammals. To resolve the ecotoxicological relevance and human health risks posed by exposure to dioxin-like AHR agonists, a vertebrate model is needed that allows for toxicity studies at various levels of biological organization, assesses adverse reproductive and developmental effects and establishes appropriate integrative correlations between different levels of effects. Here we describe the reproductive and developmental toxicity of TCDD in feral fish species and summarize how using the zebrafish model to investigate TCDD toxicity has enabled us to characterize the AHR signaling in fish and to better understand how dioxin-like chemicals induce toxicity. We propose that such studies can be used to predict the risks that AHR ligands pose to feral fish populations and provide a platform for integrating risk assessments for both ecologically relevant organisms and humans.
Collapse
Affiliation(s)
- Tisha C. King-Heiden
- Department of Biology and River Studies Center, University of Wisconsin, La Crosse, WI
| | - Vatsal Mehta
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI
| | - Kong M. Xiong
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI
| | - Kevin A. Lanham
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI
| | | | - Alissa Ganser
- Department of Biology and River Studies Center, University of Wisconsin, La Crosse, WI
| | - Warren Heideman
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI
| | - Richard E. Peterson
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI
| |
Collapse
|
6
|
Zhou H, Qu Y, Wu H, Liao C, Zheng J, Diao X, Xue Q. Molecular phylogenies and evolutionary behavior of AhR (aryl hydrocarbon receptor) pathway genes in aquatic animals: implications for the toxicology mechanism of some persistent organic pollutants (POPs). CHEMOSPHERE 2010; 78:193-205. [PMID: 19853884 DOI: 10.1016/j.chemosphere.2009.09.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2009] [Revised: 07/15/2009] [Accepted: 09/03/2009] [Indexed: 05/28/2023]
Abstract
Phylogenetic analysis of AhR pathway genes and their evolutionary rate variations were studied on aquatic animals. The gene sequences for the proteins involved in this pathway were obtained from four major phylogenetic groups, including bivalvia, amphibian, teleostei and mammalia. These genes were distributed under four major steps of toxicology regulation: formation of cytosolic complex, translocation of AhR, heterodimerization of AhR and induction of CYP1A. The NJ, MP, and ML algorithm were used on protein coding DNA sequences to deduce the evolutionary relationship for the respective AhR pathway gene among different aquatic animals. The rate of non-synonymous nucleotide substitutions per non-synonymous site (d(N)) and synonymous nucleotide substitutions per synonymous site (d(S)) were calculated for different clade of the respective phylogenetic tree for each AhR pathway gene. The phylogenetic analysis suggests that evolutionary pattern of AhR pathway genes in aquatic animals is characterized mainly through gene duplication events or alterative splicing. The d(N) values indicate that all AhR pathway genes are well conserved in aquatic animals, except for CYP1A gene. Furthermore, compare with other aquatic animals, the d(N) value indicates that AhR pathway genes of fish are less conserved, and these genes likely go through an adaptive evolution within aquatic animals.
Collapse
Affiliation(s)
- Hailong Zhou
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | | | | | | | | | | | | |
Collapse
|
7
|
The active form of human aryl hydrocarbon receptor (AHR) repressor lacks exon 8, and its Pro 185 and Ala 185 variants repress both AHR and hypoxia-inducible factor. Mol Cell Biol 2009; 29:3465-77. [PMID: 19380484 DOI: 10.1128/mcb.00206-09] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) repressor (AHRR) inhibits AHR-mediated transcription and has been associated with reproductive dysfunction and tumorigenesis in humans. Previous studies have characterized the repressor function of AHRRs from mice and fish, but the human AHRR ortholog (AHRR(715)) appeared to be nonfunctional in vitro. Here, we report a novel human AHRR cDNA (AHRRDelta8) that lacks exon 8 of AHRR(715). AHRRDelta8 was the predominant AHRR form expressed in human tissues and cell lines. AHRRDelta8 effectively repressed AHR-dependent transactivation, whereas AHRR(715) was much less active. Similarly, AHRRDelta8, but not AHRR(715), formed a complex with AHR nuclear translocator (ARNT). Repression of AHR by AHRRDelta8 was not relieved by overexpression of ARNT or AHR coactivators, suggesting that competition for these cofactors is not the mechanism of repression. AHRRDelta8 interacted weakly with AHR but did not inhibit its nuclear translocation. In a survey of transcription factor specificity, AHRRDelta8 did not repress the nuclear receptor pregnane X receptor or estrogen receptor alpha but did repress hypoxia-inducible factor (HIF)-dependent signaling. AHRRDelta8-Pro(185) and -Ala(185) variants, which have been linked to human reproductive disorders, both were capable of repressing AHR or HIF. Together, these results identify AHRRDelta8 as the active form of human AHRR and reveal novel aspects of its function and specificity as a repressor.
Collapse
|
8
|
Dougherty EJ, Pollenz RS. Analysis of Ah receptor-ARNT and Ah receptor-ARNT2 complexes in vitro and in cell culture. Toxicol Sci 2007; 103:191-206. [PMID: 18096572 DOI: 10.1093/toxsci/kfm300] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
ARNT and ARNT2 proteins are expressed in mammalian and aquatic species and exhibit a high level of amino acid identity in the basic-helix loop-helix PER/ARNT/SIM domains involved in protein interactions and DNA binding. Since the analysis of ARNT2 function at the protein level has been limited, ARNT2 function in aryl hydrocarbon receptor (AHR)-mediated signaling was evaluated and compared to ARNT. In vitro, ARNT and ARNT2 dimerized equally with the AHR in the presence of 2,3,7,8-tetracholorodibenzo-p-dioxin (TCDD) and ARNT2 outcompeted ARNT for binding to the AHR when expressed in excess. In contrast, activation of the AHR with 3-methylcholanthrene or benzo[a]pyrene resulted in predominant formation of AHR*ARNT complexes. ARNT2 expressed in Hepa-1 cell culture lines with reduced ARNT protein resulted in minimal induction of endogenous CYP1A1 protein compared to cells expressing ARNT, and mutation of the putative proline residue at amino acid 352 to histidine failed to produce an ARNT2 that could function in AHR-mediated signaling. However, the expression of ARNT2 in wild-type Hepa-1 cells reduced TCDD-mediated induction of endogenous CYP1A1 protein by 30%, even though AHR*ARNT2 complexes could not be detected in nuclear extracts. Western blot analysis of numerous mouse tissues and various cell culture lines showed that both endogenous ARNT and ARNT2 could be detected in cells derived from kidney, central nervous system, and retinal epithelium. Thus, ARNT2 has the ability to dimerize with the liganded AHR in vitro and is influenced by the activating ligand yet appears to be limited in its ability to influence AHR-mediated signaling in cell culture.
Collapse
Affiliation(s)
- Edward J Dougherty
- Division of Cell Biology, Microbiology, and Molecular Biology, Department of Biology, University of South Florida, Tampa, Florida 33620, USA
| | | |
Collapse
|
9
|
Zeruth G, Pollenz RS. Functional analysis of cis-regulatory regions within the dioxin-inducible CYP1A promoter/enhancer region from zebrafish (Danio rerio). Chem Biol Interact 2007; 170:100-13. [PMID: 17720151 DOI: 10.1016/j.cbi.2007.07.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Revised: 06/26/2007] [Accepted: 07/12/2007] [Indexed: 11/23/2022]
Abstract
In vitro mutagenesis was utilized to render the various xenobiotic response elements (XREs) within the zebrafish CYP1A promoter/enhancer region non-functional either independently or in combination. Reporter gene assays revealed that only XRE4, XRE7, and XRE8 contributed to maximal TCDD-mediated induction of luciferase and that the contribution of each XRE to maximal induction was not equal. XRE4 and XRE7 were capable of functioning independently, while XRE8 alone could not support TCDD-mediated induction but was required for the ability of XRE4 and XRE7 to support maximal induction. These results were observed in cell lines derived from human, mouse and zebrafish. Mutagenesis of 3' nucleotides flanking the non-functional XRE5, and functional XRE4 did not alter the function of these XREs in cell culture. In silico analyses revealed the presence of putative Sp1, AP2, CREB, and two HNF-3 transcription factor binding sites that were localized to common positions within the enhancer region of both the mouse and zebrafish CYP1A genes. In vitro mutagenesis of the binding sites showed that loss of the Sp1 or AP2 sites had minimal impact on TCDD-mediated gene induction while loss of the putative CREB site resulted in a modest decrease in basal and inducible activity and mutation of the HNF-3 reduced inducible activity by >90% of controls. Collectively, these findings suggest that the presence of XREs is not the sole determinant for regulation of aryl hydrocarbon receptor (AHR)-mediated gene and do not function in an additive manner.
Collapse
Affiliation(s)
- Gary Zeruth
- Division of Cell Biology, Microbiology and Molecular Biology, Department of Biology, University of South Florida, Tampa, FL 33620, United States
| | | |
Collapse
|
10
|
Lee JS, Kim EY, Iwata H, Tanabe S. Molecular characterization and tissue distribution of aryl hydrocarbon receptor nuclear translocator isoforms, ARNT1 and ARNT2, and identification of novel splice variants in common cormorant (Phalacrocorax carbo). Comp Biochem Physiol C Toxicol Pharmacol 2007; 145:379-93. [PMID: 17337252 DOI: 10.1016/j.cbpc.2007.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 01/18/2007] [Accepted: 01/19/2007] [Indexed: 10/23/2022]
Abstract
High levels of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related planar halogenated aromatic hydrocarbons (PHAHs) are accumulated in fish-eating birds including common cormorant (Phalacrocorax carbo). Most of the biochemical and toxic effects of TCDD are mediated by a basic helix-loop-helix and a conserved region among Per, ARNT, and Sim (bHLH/PAS) proteins, aryl hydrocarbon receptor (AHR) and AHR nuclear translocator (ARNT). To study the molecular mechanism of TCDD toxicity in common cormorant as an avian model species, characterization of the AHR/ARNT signaling pathway in this species is necessary. The present study focuses on molecular characterization of ARNT from common cormorant (ccARNT). The cDNA of the ccARNT isoform, ccARNT1 obtained by the screening of hepatic cDNA library contains a 2424-bp open reading frame that encodes 807 amino acids, exhibiting high identities (92%) with chicken ARNT. This isoform contains a unique 22 amino acid residue in 3' end of PAS A domain as is also recognized in chicken ARNT. The ccARNT2 cDNA isolated from brain tissue has a 2151-bp open reading frame. The deduced amino acid sequence of ccARNT2 protein (716 aa) shows a conservation of bHLH and PAS motif in its N-terminal region with high similarities (96% and 78%, respectively) to that of ccARNT1. Using quantitative RT-PCR methods, the tissue distribution profiles of ccARNT1 and ccARNT2 were unveiled. Both ccARNT1 and ccARNT2 mRNAs were ubiquitously expressed in all examined tissues including liver. The expression profile of ccARNT1 was comparable with that of rodent ARNT1, but ccARNT2 was not with rodent ARNT2, implying different roles of ARNT2 between the two species. There was a significant positive correlation between ARNT1 and ARNT2 mRNA expression levels in the liver of wild cormorant population, indicating that their expressions may be enforced by similar transcriptional regulation mechanism. Novel variants of ccARNT1 and ccARNT2 isoforms that were supposed to arise from their splicing process were also identified and their hepatic expression profiles were determined. These results indicate that ccARNT1, ccARNT2 and their splice variants may more intricately regulate the AHR/ARNT signaling pathway and consequently may be responsible for the species diversity of toxic effects and susceptibility to PHAHs.
Collapse
Affiliation(s)
- Jin-Seon Lee
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Ehime, Japan
| | | | | | | |
Collapse
|
11
|
Pollenz RS, Buggy C. Ligand-dependent and -independent degradation of the human aryl hydrocarbon receptor (hAHR) in cell culture models. Chem Biol Interact 2006; 164:49-59. [PMID: 16978595 DOI: 10.1016/j.cbi.2006.08.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Revised: 08/04/2006] [Accepted: 08/17/2006] [Indexed: 11/27/2022]
Abstract
Studies have shown that zebrafish and rodent aryl hydrocarbon receptors (AHRs) are degraded following ligand exposure and that reductions in AHR protein can impact growth and development in vivo. The current study was designed to evaluate the degradation of the AHR in seven human cell lines that were derived from various carcinomas or from normal tissue. Consistent with studies in other species, the results show that the human AHR (hAHR) is degraded in a ligand dependent manner following exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin for up to 16h. However, the hAHRs expressed in the various cell lines show differences in the time course and magnitude of degradation. The ligand dependent degradation is completely blocked by treatment with the proteasome inhibitor, MG-132. Ligand-independent degradation of the hAHR following exposure to geldanamycin (GA) is also observed in the different cell lines, although the magnitude of hAHR degradation is also is variable. These findings are significant since they indicate that ligand-dependent and independent degradation of the AHR is a conserved aspect of this signal transduction cascade from fish to human. In addition, the study identifies several cell lines that may provide novel models to further assess the regulation of AHR-mediated signaling and degradation of the human AHR.
Collapse
Affiliation(s)
- Richard S Pollenz
- Department of Biology, University of South Florida, 4202 E Fowler Avenue SCA 110, Tampa, FL 33620-5200, United States.
| | | |
Collapse
|
12
|
Mortensen AS, Tolfsen CC, Arukwe A. Gene expression patterns in estrogen (nonylphenol) and aryl hydrocarbon receptor agonists (PCB-77) interaction using rainbow trout (Oncorhynchus Mykiss) primary hepatocyte culture. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2006; 69:1-19. [PMID: 16291559 DOI: 10.1080/15287390500257792] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
It was previously reported that in vivo exposure of fish to combined aryl hydrocarbon receptor agonist (AhR; 3,3',4,4'-tetrachlorobiphenyl, PCB-77) and estrogen receptor agonist (ER; nonylphenol, NP) resulted in potentiation and inhibition (depending on dose ratio, sequential order of exposure, and seasonal changes) of NP-induced responses by PCB-77. The experiments described in this report extend this study by testing whether the effects of PCB-77 on NP-induced ER signaling are mediated through AhR-induced transcriptional suppression of target genes. Trout hepatocytes were isolated by a two-step collagenase perfusion method. After 48-h culture, hepatocytes were exposed to 5 or 10 microM nonylphenol (NP) singly and in combination with PCB-77 at 0.1, 1, and 10 microM. Cells were harvested after 96-h exposure and processed for RNA isolation. Gene expression patterns were quantified using real-time polymerase chain reaction (PCR) with specific primer sets and by Northern blot. Exposure of cells to NP caused significant elevation of ERalpha, ERbeta, Vtg, and Zrp mRNA expressions, while combined exposure with PCB-77 concentration inhibited NP-induced ERs and their target gene expressions. Exposure of trout hepatocytes to PCB-77 alone caused a rapid induction of cytochrome P-450 (CYP) 1A1 mRNA, and combined exposure with NP caused significant reduction in PCB-77 induced CYP1A1 gene expression. Exposure of cells to PCB-77 concentrations induced significant reduction in AhRalpha mRNA (except 1 microM PCB-77, which caused the induction of AhRalpha mRNA levels). AhRbeta mRNA levels in the cells were inhibited after 96-h exposure to PCB-77, while combined exposure with 5 microM NP restored the PCB-77-inhibited AhRbeta mRNA levels to baseline. Taken together, the overall results in this study show that PCB-77 suppresses the gene expression of the ERs and their target genes by transcription mechanism(s). The roles of AhRs in mediating these responses seem to involve the ligand-activated AhR transcriptional induction of CYP1A1. In addition to their frequently described functions as activators of metabolic potentiation and detoxification of various foreign chemicals, data presented in the present study point to other endogenous functions of AhRs that need to be studied further.
Collapse
|
13
|
Prasch AL, Tanguay RL, Mehta V, Heideman W, Peterson RE. Identification of zebrafish ARNT1 homologs: 2,3,7,8-tetrachlorodibenzo-p-dioxin toxicity in the developing zebrafish requires ARNT1. Mol Pharmacol 2005; 69:776-87. [PMID: 16306231 DOI: 10.1124/mol.105.016873] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To use the zebrafish (Danio rerio) as a model to study 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) developmental toxicity, it is essential to know which proteins are involved in mediating toxicity. Previous work has identified zfAHR2 as the receptor that binds TCDD mediating downstream responses. Although zfARNT2b can form a functional heterodimer with zfAHR2 in vitro, zfarnt2 null mutants show no protection against endpoints of TCDD developmental toxicity, demonstrating that zfARNT2b cannot be the physiological dimerization partner for zfAHR2 mediating responses to TCDD in zebrafish embryos. The purpose of the current study was to identify an alternate dimerization partner(s) for zfAHR2 that may function to mediate TCDD developmental toxicity. By searching zebrafish genomic sequence and using the polymerase chain reaction-based rapid amplification of cDNA ends technique, three forms of cDNA that seem to be alternate mRNA splice variants of a zebrafish homolog of ARNT1 were detected. Analysis of the zfARNT1 proteins in vitro demonstrates that the two longest forms of zfARNT1, zfARNT1b and zfARNT1c, can form functional heterodimers with zfAHR2. However, the shortest form, zfARNT1a, seems to be nonfunctional with zfAHR2 in vitro. To determine whether a zfARNT1 protein functions with zfAHR2 in vivo, a morpholino targeted against the 5' end of zfARNT1 (zfarnt1-MO) was used. Injection of the zfarnt1-MO before TCDD treatment significantly decreases the induction of zfCYP1A mRNA and protein. In addition, zfarnt1 morphants show complete protection against TCDD-induced pericardial edema and show partial protection against reduced blood flow and craniofacial malformations caused by TCDD, demonstrating the role of zfARNT1 proteins in mediating these responses.
Collapse
Affiliation(s)
- Amy L Prasch
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, USA
| | | | | | | | | |
Collapse
|
14
|
Yang JS, Dai ZM, Yang F, Yang WJ. Molecular cloning of Clock cDNA from the prawn, Macrobrachium rosenbergii. Brain Res 2005; 1067:13-24. [PMID: 16271708 DOI: 10.1016/j.brainres.2005.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2005] [Revised: 09/06/2005] [Accepted: 10/02/2005] [Indexed: 11/15/2022]
Abstract
CLOCK, which belongs to the basic helix-loop-helix (bHLH)/PER-ARNT-SIM (PAS) superfamily of transcription factors, is one of the most essential proteins involved in circadian systems of animals. Clock genes have been cloned from several species, including mammals, insects, birds, fish, and amphibians. In the present study, we successfully isolated a Clock homolog (termed Mar-Clock) from the giant prawn, Macrobrachium rosenbergii. The 2949-bp cDNA contained a 2115 bp open reading frame that encoded a putative CLOCK protein of 704 amino acids (termed Mar-CLOCK) exhibiting high identities with CLOCK homologs in other species (30-35%). This is the first report of a circadian clock gene from crustaceans. Mar-CLOCK possessed an exceptionally long glutamine-rich domain (140 amino acids) in its C-terminus, which usually ranges from 14 to 57 amino acids in other known CLOCKs and is supposed to function in transcriptional activation. Using RT-PCR, we observed that Mar-Clock was expressed in all tested tissues. Semiquantitative RT-PCR was performed to investigate the gene expression profile during the light-dark cycle. The results indicated that the expression of the Mar-Clock gene had no significant rhythmicity in central nervous tissues (thoracic ganglia and eyestalk) or peripheral tissues (gill, ovary, hepatopancreas, and muscle). Furthermore, gene expression tended to increase in the central nervous system (brain, thoracic, and abdominal ganglia) of eyestalk-ablated or constant dark (DD) prawns, and in the eyestalk-ablated gill. No expression change was found under constant light (LL) or in heart and muscle.
Collapse
Affiliation(s)
- Jin-Shu Yang
- College of Life Sciences, Zhejiang University, 232 Wensan Road, Hangzhou, Zhejiang 310012, People's Republic of China
| | | | | | | |
Collapse
|
15
|
Zeruth G, Pollenz RS. Isolation and Characterization of a Dioxin-InducibleCYP1A1Promoter/Enhancer Region from Zebrafish (Danio rerio). Zebrafish 2005; 2:197-210. [DOI: 10.1089/zeb.2005.2.197] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Gary Zeruth
- Department of Biology, University of South Florida, Tampa, Florida
| | | |
Collapse
|
16
|
Pollenz RS, Popat J, Dougherty EJ. Role of the carboxy-terminal transactivation domain and active transcription in the ligand-induced and ligand-independent degradation of the mouse Ahb-1 receptor. Biochem Pharmacol 2005; 70:1623-33. [PMID: 16226227 DOI: 10.1016/j.bcp.2005.09.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Revised: 09/10/2005] [Accepted: 09/12/2005] [Indexed: 11/24/2022]
Abstract
To assess the importance of transactivation domains (TAD), DNA binding and transcription on the degradation of the AH receptor (AHR), Hepa-1 cells were pre-treated with actinomycin D (AD) or cycloheximide (CHX) and exposed to 2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD). AD or CHX did not affect nuclear localization or DNA binding of the AHR but inhibited ligand-induced degradation. In contrast, AD or CHX did not inhibit geldanamycin (GA) induced degradation of the AHR. To assess the role of the COOH-terminal TAD in AHR degradation, stop codons were placed at nucleotide 1501 and 1921 of the Ah(b-1) AHR coding region to generate AHR(500) and AHR(640). Stable cell lines were generated and exposed to TCDD. Cells expressing AHR(500) did not induce CYP1A1 protein, but exhibited significant degradation of AHR(500). Cells expressing AHR(640) induced CYP1A1 protein to 50% of the level of cells expressing wild type AHR and exhibited significant degradation of AHR(640). Importantly, AD and CHX did not inhibit the TCDD-induced degradation of either AHR(500) and AHR(640) and these receptors showed a more rapid profile of ligand-induced degradation compared to cells expressing wild type AHR. TCDD exposure to Hepa-1 cells with reduced aryl hydrocarbon receptor nuclear translocator (ARNT), showed ligand-induced degradation of the AHR that was not blocked by AD. However, AD inhibited TCDD-induced degradation when ARNT expression was restored. These results show that multiple mechanisms exist for the ligand and GA-induced degradation of the AHR and suggest that ligand-induced degradation can switch between two mechanisms depending on the presence of a functional TAD and the binding to DNA.
Collapse
Affiliation(s)
- Richard S Pollenz
- Department of Biology, University of South Florida, BSF 110, 4202 E Fowler Ave, Tampa, FL 33620, USA.
| | | | | |
Collapse
|
17
|
Abstract
The role of oxygen in regulating patterns of gene expression in mammalian development, physiology, and pathology has received increasing attention, especially after the discovery of the hypoxia-inducible factor (HIF), a transcription factor that has been likened to a "master switch" in the transcriptional response of mammalian cells and tissues to low oxygen. At present, considerably less is known about the molecular responses of nonmammalian vertebrates and invertebrates to hypoxic exposure. Because many animals live in aquatic habitats that are variable in oxygen tension, it is relevant to study oxygen-dependent gene expression in these animals. The purpose of this review is to discuss hypoxia-induced gene expression in fishes from an evolutionary and ecological context. Recent studies have described homologs of HIF in fish and have begun to evaluate their function. A number of physiological processes are known to be altered by hypoxic exposure of fish, although the evidence linking them to HIF is less well developed. The diversity of fish presents many opportunities to evaluate if inter- and intraspecific variation in HIF structure and function correlate with hypoxia tolerance. Furthermore, as an aquatic group, fish offer the opportunity to examine the interactions between hypoxia and other stressors, including pollutants, common in aquatic environments. It is possible, if not likely, that results obtained by studying the molecular responses of fish to hypoxia will find parallels in the oxygen-dependent responses of mammals, including humans. Moreover, novel responses to hypoxia could be discovered through studies of this diverse and species-rich group.
Collapse
Affiliation(s)
- Mikko Nikinmaa
- Dept. of Biology, Univ. of Turku, FI-20014 Turku, Finland.
| | | |
Collapse
|
18
|
Stamm S, Ben-Ari S, Rafalska I, Tang Y, Zhang Z, Toiber D, Thanaraj TA, Soreq H. Function of alternative splicing. Gene 2004; 344:1-20. [PMID: 15656968 DOI: 10.1016/j.gene.2004.10.022] [Citation(s) in RCA: 651] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Revised: 09/10/2004] [Accepted: 10/21/2004] [Indexed: 02/06/2023]
Abstract
Alternative splicing is one of the most important mechanisms to generate a large number of mRNA and protein isoforms from the surprisingly low number of human genes. Unlike promoter activity, which primarily regulates the amount of transcripts, alternative splicing changes the structure of transcripts and their encoded proteins. Together with nonsense-mediated decay (NMD), at least 25% of all alternative exons are predicted to regulate transcript abundance. Molecular analyses during the last decade demonstrate that alternative splicing determines the binding properties, intracellular localization, enzymatic activity, protein stability and posttranslational modifications of a large number of proteins. The magnitude of the effects range from a complete loss of function or acquisition of a new function to very subtle modulations, which are observed in the majority of cases reported. Alternative splicing factors regulate multiple pre-mRNAs and recent identification of physiological targets shows that a specific splicing factor regulates pre-mRNAs with coherent biological functions. Therefore, evidence is now accumulating that alternative splicing coordinates physiologically meaningful changes in protein isoform expression and is a key mechanism to generate the complex proteome of multicellular organisms.
Collapse
Affiliation(s)
- Stefan Stamm
- Institute for Biochemistry, University of Erlangen, Fahrstrasse 17, 91054 Erlangen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Poulaki V, Joussen AM, Mitsiades N, Mitsiades CS, Iliaki EF, Adamis AP. Insulin-like growth factor-I plays a pathogenetic role in diabetic retinopathy. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 165:457-69. [PMID: 15277220 PMCID: PMC1618554 DOI: 10.1016/s0002-9440(10)63311-1] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Diabetic retinopathy is a leading cause of blindness in the Western world. Aberrant intercellular adhesion molecule-1 expression and leukocyte adhesion have been implicated in its pathogenesis, raising the possibility of an underlying chronic inflammatory mechanism. In the current study, the role of insulin-like growth factor (IGF)-I in these processes was investigated. We found that systemic inhibition of IGF-I signaling with a receptor-neutralizing antibody, or with inhibitors of PI-3 kinase (PI-3K), c-Jun kinase (JNK), or Akt, suppressed retinal Akt, JNK, HIF-1alpha, nuclear factor (NF)-kappaB, and AP-1 activity, vascular endothelial growth factor (VEGF) expression, as well as intercellular adhesion molecule-1 levels, leukostasis, and blood-retinal barrier breakdown, in a relevant animal model. Intravitreous administration of IGF-I increased retinal Akt, JNK, HIF-1alpha, NF-kappaB, and AP-1 activity, and VEGF levels. IGF-I stimulated VEGF promoter activity in vitro, mainly via HIF-1alpha, and secondarily via NF-kappaB and AP-1. In conclusion, IGF-I participates in the pathophysiology of diabetic retinopathy by inducing retinal VEGF expression via PI-3K/Akt, HIF-1alpha, NF-kappaB, and secondarily, JNK/AP-1 activation. Taken together, these in vitro and in vivo signaling studies thus identify potential targets for pharmacological intervention to preserve vision in patients with diabetes.
Collapse
Affiliation(s)
- Vassiliki Poulaki
- Retina Research Institute, Massachusetts Eye and Ear Infirmary, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
20
|
Wentworth JN, Buzzeo R, Pollenz RS. Functional characterization of aryl hydrocarbon receptor (zfAHR2) localization and degradation in zebrafish (Danio rerio). Biochem Pharmacol 2004; 67:1363-72. [PMID: 15013852 DOI: 10.1016/j.bcp.2003.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2003] [Accepted: 12/04/2003] [Indexed: 10/26/2022]
Abstract
The basic-helix-loop-helix/PAS (bHLH/PAS) family of proteins is a group of transcription factors that regulate key pathways during normal development and in the response to stress. The aryl hydrocarbon receptor (AHR) is a member of this family. Recently, Danio rerio (zebrafish) has become an important model system in the study of the signal transduction pathway and complements the results seen in mammalian models. However, studies of the AHR protein have been limited by the lack of antibody reagents and thus, little is known concerning the localization and degradation of the zebrafish AHR (zfAHR). In this report, we describe the production and characterization of specific polyclonal antibodies to the zfAHR2 protein and the analysis of AHR-mediated signal transduction in the zebrafish liver cell line (ZFL). The results show that the zfAHR2 is degraded via the 26S proteasome following exposure of cells to beta-naphthoflavone (BNF). Interestingly, the time course is slower and the magnitude of zfAHR2 degradation is not as great as seen for the mammalian AHR. Studies also show that the zfAHR2 is rapidly degraded in a ligand-independent manner by exposure of cells to geldanamycin (GA) to levels consistent with mammalian AHR. Finally, immunohistochemical staining of the ZFL cells suggest that the unliganded AHR resides in both the cytoplasm and nucleus and undergoes active nucleocytoplasmic shuttling in the absence of ligand. These results suggest that there is conservation of function between fish and mammals with respect to ligand-dependent and -independent degradation of the AHR and that the zfAHR2 is degraded via the 26S proteasome.
Collapse
Affiliation(s)
- Jeannette N Wentworth
- Department of Biology, University of South Florida, 4202 E Fowler Ave SCA 110, Tampa, FL 33620-5200, USA
| | | | | |
Collapse
|
21
|
Rowatt AJ, DePowell JJ, Powell WH. ARNT gene multiplicity in amphibians: characterization of ARNT2 from the frog Xenopus laevis. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2004; 300:48-57. [PMID: 14984034 DOI: 10.1002/jez.b.45] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The aryl hydrocarbon receptor nuclear translocator (ARNT) is a member of the Per-ARNT-Sim (PAS) protein superfamily, transcription factors that mediate the cellular responses to various developmental signals and environmental conditions. A beta-class ("partner") PAS protein, ARNT exhibits the capacity to form transcriptionally active heterodimers with several alpha-class ("sensor") proteins, including the aryl hydrocarbon receptors (AHRs), the hypoxia-inducible factors (HIFs), and the Single minded (Sim) proteins. Two genes encode different forms of ARNT in mammals: ARNT1, which is widely expressed, and ARNT2, which is limited to the brain and kidneys of adults and specific neural and branchial tissues of embryos. In contrast, fish apparently express only a single ARNT gene, although in different species, this may be either ARNT1 or ARNT2. In efforts to understand the evolution of ARNT proteins throughout the vertebrate lineage, we isolated an ARNT cDNA from early life stages of the amphibian Xenopus laevis. The encoded protein binds cognate DNA sequences in concert with mouse AHR. Phylogenetic analysis reveals that this sequence is orthologous to mammalian ARNT2 and paralogous to the recently reported X. laevis ARNT1. ARNT2 mRNA expression begins later than ARNT1 (stage 22 vs. stage 8), suggesting the two proteins play distinct roles during development. Hence, in the expression of two well-conserved ARNT paralogs with distinct expression patterns, X. laevis resembles mammals rather than fish. Diversity in the number and function of PAS proteins, including ARNT, may underlie significant species differences in developmental programming and biochemical response to environmental conditions. The identification of multiple amphibian ARNT paralogs represents an important step in the understanding of evolution and functional variation of ARNT in vertebrates.
Collapse
|
22
|
Cao Z, Tanguay RL, McKenzie D, Peterson RE, Aiken JM. Identification of a putative calcium-binding protein as a dioxin-responsive gene in zebrafish and rainbow trout. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2003; 63:271-282. [PMID: 12711416 DOI: 10.1016/s0166-445x(02)00184-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD, dioxin) is a widespread environmental contaminant that causes multiple effects in vertebrates. TCDD elicits its toxicity through aryl hydrocarbon receptor (AhR)-mediated modulation of gene regulation, increasing intracellular free calcium, and inducing calcium-mediated apoptosis in cell culture. Two TCDD-responsive cDNAs, which encode putative calcium-binding proteins, have been isolated from zebrafish and rainbow trout. The zebrafish and rainbow trout sequences are 88% similar to each other at the amino acid level and are orthologs of the human S100A4 calcium-binding protein. In zebrafish liver cell culture, treatment with TCDD increases S100A4a mRNA abundance. In juvenile rainbow trout, S100A4 mRNA was constitutively expressed in the heart, kidney, intestine, and spleen, but not in the liver. Exposure to TCDD significantly increased rainbow trout S100A4 mRNA abundance in the rainbow trout kidney. Taken together, these findings demonstrate in zebrafish and rainbow trout that dioxin increases expression of this EF-hand calcium-binding protein gene in a tissue-dependent fashion. However, demonstration that the encoded S100A4 proteins actually bind calcium and play a role in dioxin toxicity will require further study.
Collapse
Affiliation(s)
- Zhengjin Cao
- Department of Animal Health and Biomedical Science, University of Wisconsin, 1656 Linden Drive, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
23
|
Korkalainen M, Tuomisto J, Pohjanvirta R. Identification of novel splice variants of ARNT and ARNT2 in the rat. Biochem Biophys Res Commun 2003; 303:1095-100. [PMID: 12684048 DOI: 10.1016/s0006-291x(03)00489-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Most of the biochemical and toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) are mediated by the bHLH/PAS protein AH receptor (AHR). For regulation of gene activities, AHR dimerizes with another member of the bHLH/PAS protein family, AHR nuclear translocator (ARNT). A substrain of Wistar rats, Han/Wistar (Kuopio) (H/W), is about 1000-fold more resistant to the acute lethality of TCDD than other strains, exemplified by Long-Evans (Turku/AB) (L-E); the LD50 values for these two strains are >9600 and 10-20 microg/kg, respectively. Previous studies have demonstrated that the major reason for the exceptional TCDD resistance of H/W rats lies in their AHR, which is remodeled at its C-terminal transactivation domain, but there appears to be another contributing gene product. The present study set out to compare the primary structure of ARNT and the closely related ARNT2 proteins in H/W and L-E rats by cDNA cloning. To our surprise, we found several isoforms of these proteins only one of which has previously been reported in rats. All of the isoforms appeared to arise from alternative splicing. For ARNT, isoforms with deletions at exon 5, 3(') end of exon 6 or 5(') end of exon 11, or with an insertion at 5(') end of exon 20 were discovered. There was also interindividual variation in the number of glutamine-encoding codons at 5(') end of exon 16. The most exciting new variant was revealed for ARNT2, because the insertion found at 5(') end of exon 19 disrupts the functionally critical transactivation domain in the protein, implying a dominant negative role for this isoform. The relative expression levels of the variants did not differ in the two rat strains, nor did TCDD modify the ratios, suggesting that the variants do not contribute to TCDD resistance. However, the regulation of ARNT and ARNT2 activities may be more intricate than previously assumed.
Collapse
Affiliation(s)
- Merja Korkalainen
- National Public Health Institute, Laboratory of Toxicology, Department of Environmental Health, P.O. Box 95, Neulaniementie 4, FIN-70701 Kuopio, Finland.
| | | | | |
Collapse
|
24
|
Pollenz RS, Necela B, Marks-Sojka K. Analysis of rainbow trout Ah receptor protein isoforms in cell culture reveals conservation of function in Ah receptor-mediated signal transduction. Biochem Pharmacol 2002; 64:49-60. [PMID: 12106605 DOI: 10.1016/s0006-2952(02)01061-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Two distinct aryl hydrocarbon receptor (AHR) cDNAs have been isolated from rainbow trout. The encoded receptor protein products termed rtAHR2alpha and rtAHR2ss are 97% identical at the amino acid level but are reported to have distinct functions with regard to AHR-mediated gene regulation. To test this hypothesis, the two proteins were evaluated functionally both in vitro and in a Chinese hamster lung cell line, E36. To facilitate analysis, both rtAHR2 isoforms were tagged with the FLAG peptide and could be expressed and quantified in a rabbit reticulocyte lysate. However, both proteins failed to form functional complexes with mammalian or rainbow trout AHR nuclear translocator protein (ARNT) that could associate with xenobiotic response elements (XREs) in a ligand-dependent manner in vitro. In contrast, both proteins exhibited positive function on AHR-mediated signaling when expressed in the E36 cell line. Both rtAHR2 isoforms showed a cytoplasmic distribution in the unliganded state and could drive the expression of a reporter gene under control of the trout CYP1A3 promoter. Although both proteins induced reporter gene activity to the same magnitude, the EC(50) values of the two isoforms for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) differed by an order of magnitude, with the rtAHR2ss isoform less responsive to TCDD. When the functions of the rtAHR2 isoforms were tested in the context of the dominant negative rtARNT(a) protein, TCDD-mediated induction of reporter gene activity was reduced as the level of rtARNT(a) protein increased. In summary, both rtAHR2 isoforms appear to exhibit positive function in AHR-mediated signaling, suggesting conservation of function.
Collapse
Affiliation(s)
- Richard S Pollenz
- Department of Biology, University of South Florida, 4202 East Fowler Avenue, SCA 110, Tampa, FL 33620-5200, USA
| | | | | |
Collapse
|
25
|
Powell WH, Hahn ME. Identification and functional characterization of hypoxia-inducible factor 2alpha from the estuarine teleost, Fundulus heteroclitus: interaction of HIF-2alpha with two ARNT2 splice variants. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 2002; 294:17-29. [PMID: 11932946 DOI: 10.1002/jez.10074] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The hypoxia-inducible factors (HIFs) are dimeric transcription factors that mediate changes in gene expression during adaptation of animals to oxygen stress. Both alpha (HIFalpha) and beta (ARNT) subunits are members of the basic helix-loop-helix/Per-ARNT-Sim family of proteins. Mammals have at least three different HIF-alpha subunits, paralogous proteins expressed in tissue-specific fashion (HIF-1alpha, HIF-2alpha, and HIF-3alpha). However, the diversity and functional properties of teleost HIFs are poorly understood. In efforts to characterize mechanisms of hypoxia adaptation in estuarine fish, we have isolated cDNAs encoding HIF subunits from Fundulus heteroclitus (Atlantic killifish or mummichog), including a HIF-2alpha homolog and ARNT2alt, a splice variant of ARNT2 that contains an additional exon encoding 16 amino acids near the amino terminus. HIF-2alpha protein synthesized in vitro binds cognate DNA elements in concert with either Fundulus ARNT2 splice variant or murine ARNT1. HIF-2alpha, ARNT2, and ARNT2alt mRNAs are expressed in all organs examined. The HIF-2alpha cDNA encodes a protein of 96.4 kDa, sharing 53-54% identity with mammalian and avian orthologs. The oxygen-dependent degradation domain, however, exhibits substantial divergence from well-conserved mammalian sequences, suggesting the possibility of important functional differences, perhaps in the sensitivity to induction of activity by hypoxia. Hypoxia-tolerant fishes such as F. heteroclitus represent a unique opportunity for the study of functional and evolutionary aspects of adaptation to hypoxia at the molecular, cellular, and organismal levels. This study extends the understanding of hypoxia signaling in fish, the evolution and diversity of HIF function, and the evolution of the PAS family of proteins.
Collapse
Affiliation(s)
- Wade H Powell
- Biology Department, Kenyon College, Gambier, Ohio 43022, USA.
| | | |
Collapse
|
26
|
Andreasen EA, Tanguay RL, Peterson RE, Heideman W. Identification of a critical amino acid in the aryl hydrocarbon receptor. J Biol Chem 2002; 277:13210-8. [PMID: 11823471 DOI: 10.1074/jbc.m200073200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Two aryl hydrocarbon receptors (rtAHR2alpha and rtAHR2beta) have been identified in the rainbow trout (Oncorhynchus mykiss). These receptors share 98% amino acid identity, yet their functional properties differ. Both rtAHR2alpha and rtAHR2beta bind 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), dimerize with rainbow trout ARNTb (rtARNTb), and recognize dioxin response elements in vitro. However, in a transient transfection assay the two proteins show differential ability to recognize enhancers, produce transactivation, and respond to TCDD. To identify the sequence differences that confer the functional differences between rtAHR2alpha and rtAHR2beta, we constructed chimeric rtAHRs, in which segments of one receptor form was replaced with the corresponding part from the other isoform. This approach progressively narrowed the region being examined to a single residue, corresponding to position 111 in rtAHR2beta. Altering this residue in rtAHR2beta from the lysine to glutamate found in rtAHR2alpha produced an rtAHR2beta with the properties of rtAHR2alpha. All other known AHRs resemble rtAHR2alpha and carry glutamate at this position, located at the N terminus of the PAS-A domain. We tested the effect of altering this glutamate in the human and zebrafish AHRs to lysine. This lysine substitution produced AHRs with transactivation properties that were similar to rtAHR2beta. These results identify a critical residue in AHR proteins that has an important impact on transactivation, enhancer site recognition, and regulation by ligand.
Collapse
Affiliation(s)
- Eric A Andreasen
- Molecular and Environmental Toxicology Program, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
27
|
Poulaki V, Qin W, Joussen AM, Hurlbut P, Wiegand SJ, Rudge J, Yancopoulos GD, Adamis AP. Acute intensive insulin therapy exacerbates diabetic blood-retinal barrier breakdown via hypoxia-inducible factor-1α and VEGF. J Clin Invest 2002. [DOI: 10.1172/jci0213776] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
28
|
Poulaki V, Qin W, Joussen AM, Hurlbut P, Wiegand SJ, Rudge J, Yancopoulos GD, Adamis AP. Acute intensive insulin therapy exacerbates diabetic blood-retinal barrier breakdown via hypoxia-inducible factor-1alpha and VEGF. J Clin Invest 2002; 109:805-15. [PMID: 11901189 PMCID: PMC150907 DOI: 10.1172/jci13776] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Acute intensive insulin therapy is an independent risk factor for diabetic retinopathy. Here we demonstrate that acute intensive insulin therapy markedly increases VEGF mRNA and protein levels in the retinae of diabetic rats. Retinal nuclear extracts from insulin-treated rats contain higher hypoxia-inducible factor-1alpha (HIF-1alpha) levels and demonstrate increased HIF-1alpha-dependent binding to hypoxia-responsive elements in the VEGF promoter. Blood-retinal barrier breakdown is markedly increased with acute intensive insulin therapy but can be reversed by treating animals with a fusion protein containing a soluble form of the VEGF receptor Flt; a control fusion protein has no such protective effect. The insulin-induced retinal HIF-1alpha and VEGF increases and the related blood-retinal barrier breakdown are suppressed by inhibitors of p38 mitogen-activated protein kinase (MAPK) and phosphatidylinositol (PI) 3-kinase, but not inhibitors of p42/p44 MAPK or protein kinase C. Taken together, these findings indicate that acute intensive insulin therapy produces a transient worsening of diabetic blood-retinal barrier breakdown via an HIF-1alpha-mediated increase in retinal VEGF expression. Insulin-induced VEGF expression requires p38 MAPK and PI 3-kinase, whereas hyperglycemia-induced VEGF expression is HIF-1alpha-independent and requires PKC and p42/p44 MAPK. To our knowledge, these data are the first to identify a specific mechanism for the transient worsening of diabetic retinopathy, specifically blood-retinal barrier breakdown, that follows the institution of intensive insulin therapy.
Collapse
Affiliation(s)
- Vassiliki Poulaki
- Laboratory of Surgical Research, Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Kumar MB, Ramadoss P, Reen RK, Vanden Heuvel JP, Perdew GH. The Q-rich subdomain of the human Ah receptor transactivation domain is required for dioxin-mediated transcriptional activity. J Biol Chem 2001; 276:42302-10. [PMID: 11551916 DOI: 10.1074/jbc.m104798200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR), a basic helix-loop-helix/Per-Arnt-Sim transcription factor, mediates many of the toxic and biological effects of the environmental contaminant, 2,3,7,8-tetrachlorodibenzo-p-dioxin, which include the transcriptional activation of dioxin-responsive genes such as CYP1A1. Many aspects of this process are known; however, the mechanism of transcriptional activation and the proteins that are key to this process remain to be determined. The hAhR has a complex transactivation domain, composed of three potentially distinct subdomains. Deletional analysis of the hAhR transactivation domain indicates that removal of the P/S/T-rich subdomain enhances transcriptional activity, whereas the Q-rich subdomain is critical for hAhR transactivation potential, and the acidic subdomain by itself fails to activate a dioxin response element-driven reporter gene. Deletional analysis of the Q-rich subdomain identified a critical stretch of 23 amino acids between residues 666 and 688 of the hAhR, which are required for transactivation potential. Alanine scanning mutagenesis of this region identified a leucine residue (Leu-678), which is required for hAhR activity. Functional analysis of this point mutant revealed that it is capable of binding ligand, heterodimerization, and subsequent binding to dioxin response elements. Further, when hAhR/L678A and hAhR containing only the acidic subdomain were overexpressed they acted as dominant negative receptors and repressed wild-type hAhR activity. In addition, the hAhR/L678A failed to activate CYP1A1 gene transcription in transfected BP-8 cells and exhibited reduced binding to RIP140 in vitro. Thus, Leu-678 appears to be critical for efficient transactivation activity of the hAhR and appears to disrupt recruitment of co-regulators.
Collapse
Affiliation(s)
- M B Kumar
- Department of Veterinary Science and the Center for Molecular Toxicology and Carcinogenesis and the Graduate Program in Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | |
Collapse
|
30
|
Bollérot K, Angelier N, Coumailleau P. Molecular cloning and embryonic expression of the Xenopus Arnt gene. Mech Dev 2001; 108:227-31. [PMID: 11578881 DOI: 10.1016/s0925-4773(01)00488-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In this paper, we report the cloning of a Xenopus bHLH/PAS factor homologous to the mammalian aryl hydrocarbon receptor nuclear translocator (Arnt) or Drosophila Tango gene. Sequence data analysis indicates that protein domains organization in xArnt is strongly conserved and that xArnt is highly related to the mammalian Arnt1 isoform. As revealed by reverse transcriptase polymerase chain reaction and whole-mount in situ hybridization, xArnt gene is expressed during early and late development. At early stages, xArnt transcripts are restricted to the ectoderm and extends to the marginal zone at gastrula stage. In tail bud embryo, xArnt is strongly expressed in branchial arches, optical and optical vesicles, and pronephros and pronephritic duct.
Collapse
Affiliation(s)
- K Bollérot
- Université Pierre et Marie Curie, Groupe Genes et Developpement, UMR7622-CNRS Biologie Moléculaire et Cellulaire du Développement, 9 quai St Bernard, 75252 Paris Cedex 05, France
| | | | | |
Collapse
|
31
|
Necela B, Pollenz RS. Identification of a novel C-terminal domain involved in the negative function of the rainbow trout Ah receptor nuclear translocator protein isoform a (rtARNTa) in Ah receptor-mediated signaling. Biochem Pharmacol 2001; 62:307-18. [PMID: 11434903 DOI: 10.1016/s0006-2952(01)00671-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Rainbow trout aryl hydrocarbon receptor (AHR) nuclear translocator isoform a (rtARNTa) has a negative function in AHR-mediated signal transduction. Previous analyses suggest that the negative function is at the level of DNA binding and may be due to the presence of 57 C-terminal amino acids that are strongly hydrophobic. To assess the negative activity of rtARNTa at the molecular level, hydrophobic-rich domains corresponding to amino acids 601-637, 601-631, and 616-631 were analyzed for the ability to affect the function of truncated rtARNT proteins in complementation and gel shift assays. Addition of the hydrophobic-rich domains to these proteins reduced their ability to complement AHR-mediated signal transduction in mouse hepatoma cells by 65-95%. The decrease in function was related to a reduced ability of the AHR. rtARNT complex to bind DNA and not due to a lack of dimerization with AHR. Expression of the hydrophobic-rich domains on Gal4 proteins showed that the C-terminal domain of rtARNTa was unlikely to contain transactivation function; however, the hydrophobic domains reduced the ability of the Gal4 proteins to bind DNA. Immunoprecipitation and mutational experiments indicate that the hydrophobic-rich domains do not interact with the bHLH motif of AHR. Interestingly, immunoprecipitation experiments also revealed that the C-terminal hydrophobic-rich region of rtARNTa could oligomerize in vitro in a chimera with the Gal4 DNA binding domain. These findings indicate that the C-terminal hydrophobic amino acids are critical for the negative function of rtARNTa in AHR-mediated signaling and suggest that multiple mechanisms may be involved in the repression of DNA binding.
Collapse
Affiliation(s)
- B Necela
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | | |
Collapse
|
32
|
Soitamo AJ, Rabergh CM, Gassmann M, Sistonen L, Nikinmaa M. Characterization of a hypoxia-inducible factor (HIF-1alpha ) from rainbow trout. Accumulation of protein occurs at normal venous oxygen tension. J Biol Chem 2001; 276:19699-705. [PMID: 11278461 DOI: 10.1074/jbc.m009057200] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mammalian hypoxia-inducible factor-1 (HIF-1) is a heterodimeric transcription factor that controls the induction of several genes involved in glycolysis, erythropoiesis, and angiogenesis when cells are exposed to hypoxic conditions. Until now, the expression and function of HIF-1alpha have not been studied in fish, which experience wide fluctuations of oxygen tensions in their natural environment. Using electrophoretic mobility shift assay, we have ascertained that a hypoxia-inducible factor is present in rainbow trout cells. We have also cloned the full-length cDNA (3605 base pairs) of the HIF-1alpha from rainbow trout with a predicted protein sequence of 766 amino acids that showed a 61% similarity to human and mouse HIF-1alpha. Polyclonal antibodies against the N-terminal part (amino acids 12-363) and the C-terminal part (amino acids 330-730) of rainbow trout HIF-1alpha protein recognized rainbow trout and chinook salmon HIF-1alpha protein in Western blot analysis. Also, the human and mouse HIF-1alpha proteins were recognized by the N-terminal rainbow trout anti-HIF-1alpha antibody but not by the C-terminal HIF-1alpha antibody. The accumulation of HIF-1alpha was studied by incubating rainbow trout and chinook salmon cells at different oxygen concentrations from 20 to 0.2% O(2) for 1 h. The greatest accumulation of HIF-1alpha protein occurred at 5% O(2) (38 torr), a typical oxygen tension of venous blood in normoxic animals. The protein stability experiments in the absence or presence of a proteasome inhibitor, MG-132, demonstrated that the inhibitor is able to stabilize the protein, which normally is degraded via the proteasome pathway both in normoxia and hypoxia. Notably, the hypoxia response element of oxygen-dependent degradation domain is identical in mammalian, Xenopus, and rainbow trout HIF-1alpha proteins, suggesting a high degree of evolutionary conservation in degradation of HIF-1alpha protein.
Collapse
Affiliation(s)
- A J Soitamo
- Turku Centre for Biotechnology, University of Turku, Abo Akademi University, FIN-20521 Turku, Finland.
| | | | | | | | | |
Collapse
|
33
|
Rees BB, Sudradjat FA, Love JW. Acclimation to hypoxia increases survival time of zebrafish, Danio rerio, during lethal hypoxia. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 2001; 289:266-72. [PMID: 11241397 DOI: 10.1002/1097-010x(20010401/30)289:4<266::aid-jez7>3.0.co;2-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Survivorship of zebrafish, Danio rerio, was measured during lethal hypoxic stress after pretreatment in water at either ambient oxygen or at a lowered, but nonlethal, level of oxygen. Acclimation to nonlethal hypoxia (pO(2) congruent with 15 Torr; ca. 10% air-saturation) for 48 hr significantly extended survival time during more severe hypoxia (pO(2) congruent with 8 Torr; ca. 5% air-saturation) compared to survival of individuals with no prior hypoxic exposure. The magnitude of the acclimation effect depended upon the sex of the fish: hypoxia pretreatment increased the survival times of males by a factor of approximately 9 and that of females by a factor of 3 relative to controls. In addition, survival time of control and hypoxia acclimated fish depended upon when in the year experiments were conducted. Survival times were 2-3 times longer when measured in the late fall or winter compared to survival times measured during the spring or summer. These results demonstrate a direct survival benefit of short-term acclimation to hypoxia in this genetically tractable fish. The fact that the acclimation effect depended upon the sex of the fish and the season during which experiments were conducted demonstrates that other genetic and/or environmental factors affect hypoxia tolerance in this species. J. Exp. Zool. 289:266-272, 2001.
Collapse
Affiliation(s)
- B B Rees
- Department of Biological Sciences, University of New Orleans, Lakefront Campus, New Orleans, Louisiana 70148, USA.
| | | | | |
Collapse
|
34
|
Hsu HJ, Wang WD, Hu CH. Ectopic expression of negative ARNT2 factor disrupts fish development. Biochem Biophys Res Commun 2001; 282:487-92. [PMID: 11401485 DOI: 10.1006/bbrc.2001.4525] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ARNT factors are a cluster of bHLH-PAS factors that heterodimerize with other specific bHLH-PAS factors to mediate a wide range of biological responses. Previously, we obtained a truncated form of ARNT2-like factor, ARNT2A, from zebrafish, which encompasses the basic-helix-loop-helix and PAS A/B domains, but lacks a transactivation domain at its carboxyl end. Herein, we report another truncated ARNT2-like factor, ARNT2X, in zebrafish, which differs from ARNT2A at its N-terminal region. In cultured ZLE cells, transiently expressed ARNT2X and ARNT2A inhibited 2,3,7,8-TCDD-activated cyp1a1 transcription with different efficiencies. In the developing embryo, arnt2X mRNA was consistently expressed in the retinal and neural tube regions until the hatching stages, but it exhibited a more specific pattern at larval stages, including expression in the brain, eyes, hypothalamus, pharyngeal skeleton, heart, liver, pronephros duct, pectoral fin, and epithelial cells of the swim bladder. In contrast, arnt2A transcription diminished after hatching. Microinjecting a recombinant arnt2X-expression vector into fertilized eggs before cleavage stages caused severe defects in brain, eyes, pectoral fin, heart, and gut development. This suggests that the ARNT-mediated signal transduction pathways play important roles in fish tissue development.
Collapse
Affiliation(s)
- H J Hsu
- Institute of Marine Biotechnology, National Taiwan Ocean University, 2, Pei-Ning Road, Keelung, Taiwan, 202-24, Republic of China
| | | | | |
Collapse
|
35
|
Catron T, Mendiola MA, Smith SM, Born J, Walker MK. Hypoxia regulates avian cardiac Arnt and HIF-1alpha mRNA expression. Biochem Biophys Res Commun 2001; 282:602-7. [PMID: 11401503 DOI: 10.1006/bbrc.2001.4613] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aryl hydrocarbon receptor nuclear translocator (Arnt) and hypoxia-inducible factor (HIF)-1alpha mediate cellular responses to hypoxia. We investigated the ability of hypoxia to regulate Arnt and HIF-1alpha mRNA in the heart in vivo. We cloned avian Arnt, developed an in vivo model of chronic cardiac hypoxia, and measured expression of cardiac Arnt and HIF-1alpha mRNA by quantitative RT-PCR. Chronic hypoxic exposure (24 h to 15% O(2)) of day 9 chick embryos resulted in a 30-fold increase in covalent binding of (3)H-misonidazole, a hypoxic tissue marker, to cardiac tissue, and a 2-fold induction of cardiac inducible nitric oxide synthase mRNA, compared to normoxic controls. In this same model, cardiac Arnt mRNA expression decreased by 35%, while HIF-1alpha mRNA expression increased 400%. These data suggest that regulation of Arnt and HIF-1alpha mRNA expression may contribute to the physiological responses of the heart during prolonged hypoxia.
Collapse
Affiliation(s)
- T Catron
- College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| | | | | | | | | |
Collapse
|
36
|
Bello SM, Franks DG, Stegeman JJ, Hahn ME. Acquired resistance to Ah receptor agonists in a population of Atlantic killifish (Fundulus heteroclitus) inhabiting a marine superfund site: in vivo and in vitro studies on the inducibility of xenobiotic metabolizing enzymes. Toxicol Sci 2001; 60:77-91. [PMID: 11222875 DOI: 10.1093/toxsci/60.1.77] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
New Bedford Harbor (NBH), MA, is a federal Superfund site that is heavily contaminated with polychlorinated biphenyls (PCBs) and other halogenated aromatic hydrocarbons (HAHs), including some potent aryl hydrocarbon receptor (AhR) agonists. A population of Atlantic killifish (Fundulus heteroclitus) continues to inhabit this site, despite accumulating extraordinarily high concentrations of PCBs (272 microg/g dry weight). To determine if NBH killifish have developed resistance to HAHs that act through the AhR, we examined the inducibility of cytochrome P4501A1 (CYP1A1), UDP glucuronosyl transferase (UGT), and glutathione S-transferase (GST) in fish from NBH and a reference site, Scorton Creek (SC, Cape Cod, MA; PCB concentrations 0.177 microg/g dry weight). 2,3,7,8-Tetrachlorodibenzofuran (TCDF) induced CYP1A1 mRNA, protein, and activity in SC fish in all tissues examined (liver, heart, gut, gill, kidney, spleen, and gonad). In contrast, NBH fish expressed low levels of CYP1A1 and showed no induction of CYP1A1 mRNA, protein, or activity by TCDF, or induction that was lower in magnitude or required higher doses of inducer. p-Nitrophenol UGT activity was not induced by TCDF in either population, while GST activity with 1-chloro-2,4-dinitrobenzene as substrate was induced only in NBH fish in one experiment. Inducibility of CYP1A1 by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or beta-naphthoflavone (BNF) was measured in primary hepatocyte cultures prepared from SC and NBH fish. TCDD induced CYP1A1 activity (ethoxyresorufin O-deethylase) to the same degree in hepatocytes from both populations, demonstrating the functionality of the AhR signaling pathway in NBH fish. However, hepatocytes from NBH fish were 14-fold less sensitive to TCDD than were those from SC fish. The nonhalogenated AhR agonist BNF also induced CYP1A1 in cells from both populations, although with only a 3-fold difference in sensitivity (NBH < SC). These results indicate that chronic exposure to high levels of HAHs has led to a reduction in the sensitivity of NBH killifish to AhR agonists. The resistance is systemic and pretranslational, and exhibits compound-specific differences in magnitude. These findings suggest an alteration in the AhR signal transduction pathway in NBH fish.
Collapse
Affiliation(s)
- S M Bello
- Biology Department, MS32, Woods Hole Oceanographic Institution, 45 Water Street, Woods Hole, Massachusetts 02543, USA
| | | | | | | |
Collapse
|
37
|
Sojka KM, Kern CB, Pollenz RS. Expression and subcellular localization of the aryl hydrocarbon receptor nuclear translocator (ARNT) protein in mouse and chicken over developmental time. THE ANATOMICAL RECORD 2000; 260:327-34. [PMID: 11074397 DOI: 10.1002/1097-0185(200012)260:4<326::aid-ar10>3.0.co;2-u] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The aryl hydrocarbon receptor nuclear translocator (ARNT) is a basic-helix-loop-helix/Per- ARNT-Sim (bHLH/PAS) transcription factor that is involved in multiple signaling pathways. This study focuses on the tissue distribution and subcellular localization of ARNT during embryological development of the mouse and chicken. Two different species were chosen to determine the consistency of the ARNT staining pattern. Immunohistochemical techniques were used to stain sections of embryos over three developmental time points for each species. Mouse tissues evaluated from embryonic day 10.5, 12.5, and 15, exhibited predominant nuclear staining with little change in expression patterns over time. Chicken tissues evaluated from embryonic day 2, 4, and 10 also showed predominant nuclear staining within all cells and little change in expression over developmental time, as well as, low levels of cytoplasmic ARNT staining in some cells. Importantly, in all tissues, the level of ARNT staining within the nuclear compartment was greater than staining observed in the cytoplasm. Thus, the overall conclusions from these studies are that i) the predominant subcellular localization of ARNT protein is nuclear, and ii) that mouse and chicken appear to maintain ARNT protein expression in many cell types over developmental time. These data support vertebrate ARNT as a nuclear transcription factor and a model in which dimerization partners require nuclear localization for interaction.
Collapse
Affiliation(s)
- K M Sojka
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29403, USA
| | | | | |
Collapse
|
38
|
Tanguay RL, Andreasen E, Heideman W, Peterson RE. Identification and expression of alternatively spliced aryl hydrocarbon nuclear translocator 2 (ARNT2) cDNAs from zebrafish with distinct functions. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1494:117-28. [PMID: 11072074 DOI: 10.1016/s0167-4781(00)00225-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In order to further establish zebrafish as a vertebrate model for studying the mechanism of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) toxicity it is necessary to characterize the aryl hydrocarbon receptor/aryl hydrocarbon receptor nuclear translocator (AhR/ARNT) signaling pathways in this species. In this study, three zfARNT2 cDNAs were isolated, expressed, and characterized and named zfARNT2b, zfARNT2c, and zfARNT2a. zfARNT2b, zfARNT2c, and zfARNT2a encode proteins with theoretical molecular weights of 81, 79, and 45 kDa, respectively. zfARNT2b and zfARNT2a proteins are identical over the first 403 amino acids but differ in their C-terminal domains as a result of alternative mRNA splicing. zfARNT2c is nearly identical to zfARNT2b, with the exception of an in frame 15 amino acid deletion adjacent to the basic region of zfARNT2c. Using quantitative RT-PCR methods the tissue distribution of each zfARNT2 isoform was determined. In COS-7 cells expressing zfARNT2b and zfAhR2, 10 nM TCDD causes a nine-fold induction of a dioxin responsive reporter gene. In COS-7 cells expressing zfARNT2a or zfARNT2c, TCDD does not induce reporter gene expression. In contrast, all three zfARNT2 proteins induce reporter gene activity under control of hypoxia responsive elements when cotransfected with the zebrafish endothelial specific PAS protein 1. DNA gel shift analysis suggests that the decreased function of zfARNT2a is due to inefficient binding of zfARNT2a/zfAhR2 complexes to dioxin responsive elements. These results also indicate that alternative mRNA splicing results in formation of ARNT proteins with distinct functional properties.
Collapse
Affiliation(s)
- R L Tanguay
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Health Sciences Center, Denver 80262, USA.
| | | | | | | |
Collapse
|
39
|
Gu YZ, Hogenesch JB, Bradfield CA. The PAS superfamily: sensors of environmental and developmental signals. Annu Rev Pharmacol Toxicol 2000; 40:519-61. [PMID: 10836146 DOI: 10.1146/annurev.pharmtox.40.1.519] [Citation(s) in RCA: 756] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Over the past decade, PAS domains have been identified in dozens of signal transduction molecules and various forms have been found in animals, plants, and prokaryotes. In this review, we summarize this rapidly expanding research area by providing a detailed description of three signal transduction pathways that utilize PAS protein heterodimers to drive their transcriptional output. It is hoped that these model pathways can provide a framework for use in understanding the biology of the less well-understood members of this emerging superfamily, as well as of those to be characterized in the days to come. We use this review to develop the idea that most eukaryotic PAS proteins can be classified by functional similarities, as well as by predicted phylogenetic relationships. We focus on the alpha-class proteins, which often act as sensors of environmental signals, and the beta-class proteins, which typically act as broad-spectrum partners that target these heterodimers to their genomic targets.
Collapse
Affiliation(s)
- Y Z Gu
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine, Madison 53706, USA.
| | | | | |
Collapse
|
40
|
Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA, Rodriguez AM, Schumacker PT. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. J Biol Chem 2000; 275:25130-8. [PMID: 10833514 DOI: 10.1074/jbc.m001914200] [Citation(s) in RCA: 1500] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
During hypoxia, hypoxia-inducible factor-1alpha (HIF-1alpha) is required for induction of a variety of genes including erythropoietin and vascular endothelial growth factor. Hypoxia increases mitochondrial reactive oxygen species (ROS) generation at Complex III, which causes accumulation of HIF-1alpha protein responsible for initiating expression of a luciferase reporter construct under the control of a hypoxic response element. This response is lost in cells depleted of mitochondrial DNA (rho(0) cells). Overexpression of catalase abolishes hypoxic response element-luciferase expression during hypoxia. Exogenous H(2)O(2) stabilizes HIF-1alpha protein during normoxia and activates luciferase expression in wild-type and rho(0) cells. Isolated mitochondria increase ROS generation during hypoxia, as does the bacterium Paracoccus denitrificans. These findings reveal that mitochondria-derived ROS are both required and sufficient to initiate HIF-1alpha stabilization during hypoxia.
Collapse
Affiliation(s)
- N S Chandel
- Department of Medicine, The University of Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Pollenz RS, Barbour ER. Analysis of the complex relationship between nuclear export and aryl hydrocarbon receptor-mediated gene regulation. Mol Cell Biol 2000; 20:6095-104. [PMID: 10913191 PMCID: PMC86085 DOI: 10.1128/mcb.20.16.6095-6104.2000] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) contains signals for both nuclear import and nuclear export (NES). The purpose of the studies in this report was to determine the relationship between the nuclear export of the AHR and AHR-mediated gene regulation. Blockage of nuclear export in HepG2 cells with leptomycin B (LMB) resulted in increased levels of AHR-AHR nuclear translocator (ARNT) complex in the nucleus and correlative reductions in agonist-stimulated AHR degradation. However, LMB exposure inhibited agonist-mediated induction of numerous AHR-responsive reporter genes by 75 to 89% and also inhibited induction of endogenous CYP1A1. LMB did not transform the AHR to a ligand binding species or affect activation by TCDD (2, 3,7,8-tetrachlorodibenzo-p-dioxin). Mutagenesis of leucines 66 and 71 of the putative AHR NES resulted in a protein with reduced function in dimerization to ARNT and binding to DNA, while alanine substitution at leucine 69 (AHR(A69)) resulted in an AHR that bound with ARNT and associated with DNA. AHR(A69) protein injected directly into the nuclei of E36 cells remained nuclear following 6 h of agonist stimulation. In transient-transfection assays, AHR(A69) accumulated within the nucleus was not degraded efficiently following agonist exposure. Finally, AHR(A69) supported induction of AHR-responsive reporter genes in an agonist-dependent manner. These findings show that it is possible to generate an AHR protein defective in nuclear export that is functional in agonist-mediated gene induction. This implies that the negative effect of LMB on agonist-mediated gene induction is independent of the nuclear export of the AHR.
Collapse
Affiliation(s)
- R S Pollenz
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA.
| | | |
Collapse
|
42
|
Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA, Rodriguez AM, Schumacker PT. Reactive Oxygen Species Generated at Mitochondrial Complex III Stabilize Hypoxia-inducible Factor-1α during Hypoxia. J Biol Chem 2000. [DOI: 10.1074/jbc.m001914200 m001914200 [pii]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
43
|
Whyte JJ, Jung RE, Schmitt CJ, Tillitt DE. Ethoxyresorufin-O-deethylase (EROD) activity in fish as a biomarker of chemical exposure. Crit Rev Toxicol 2000; 30:347-570. [PMID: 10955715 DOI: 10.1080/10408440091159239] [Citation(s) in RCA: 477] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
This review compiles and evaluates existing scientific information on the use, limitations, and procedural considerations for EROD activity (a catalytic measurement of cytochrome P4501A induction) as a biomarker in fish. A multitude of chemicals induce EROD activity in a variety of fish species, the most potent inducers being structural analogs of 2,3,7,8-tetracholordibenzo-p-dioxin. Although certain chemicals may inhibit EROD induction/activity, this interference is generally not a drawback to the use of EROD induction as a biomarker. The various methods of EROD analysis currently in use yield comparable results, particularly when data are expressed as relative rates of EROD activity. EROD induction in fish is well characterized, the most important modifying factors being fish species, reproductive status and age, all of which can be controlled through proper study design. Good candidate species for biomonitoring should have a wide range between basal and induced EROD activity (e.g., common carp, channel catfish, and mummichog). EROD activity has proven value as a biomarker in a number of field investigations of bleached kraft mill and industrial effluents, contaminated sediments, and chemical spills. Research on mechanisms of CYP1A-induced toxicity suggests that EROD activity may not only indicate chemical exposure, but also may also precede effects at various levels of biological organization. A current research need is the development of chemical exposure-response relationships for EROD activity in fish. In addition, routine reporting in the literature of EROD activity in standard positive and negative control material will enhance confidence in comparing results from different studies using this biomarker.
Collapse
Affiliation(s)
- J J Whyte
- U.S. Geological Survey (USGS) Cooperative Fish and Wildlife Research Unit, University of Missouri-Columbia, Columbia Environmetal Research Center (CERC), 65201, USA
| | | | | | | |
Collapse
|
44
|
Powell WH, Hahn ME. The evolution of aryl hydrocarbon signaling proteins: diversity of ARNT isoforms among fish species. MARINE ENVIRONMENTAL RESEARCH 2000; 50:39-44. [PMID: 11460724 DOI: 10.1016/s0141-1136(00)00046-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The aryl hydrocarbon receptor nuclear translocator (ARNT) mediates aryl hydrocarbon signaling and toxicity by dimerizing with the ligand-activated aryl hydrocarbon receptor (AHR), forming a complex that binds specific DNA elements and alters transcription of target genes. Two genes encode different forms of ARNT in rodents: ARNT1, which is widely expressed, and ARNT2, which exhibits a very restricted expression pattern. In an effort to characterize aryl hydrocarbon signaling mechanisms in fishes, we previously isolated an ARNT cDNA from Fundulus heteroclitus and discovered that this species expresses ARNT2 ubiquitously. This situation differs not only from mammals, but also from rainbow trout, which expresses a divergent ARNT gene that we hypothesized was peculiar to salmonids (rtARNTa/b). In this communication, we examine the ARNT sequences of multiple fish species, including a newly isolated cDNA from scup (Stenotomus chrysops). Our phylogenetic analysis demonstrates that zebrafish ARNT, like the Fundulus protein, is an ARNT2. Contrary to expectations, the scup ARNT is closely related to the rainbow trout protein, demonstrating that the existence of this ARNT isoform predates the divergence of salmonids from the other teleosts. Thus, different species of fish express distinct and highly conserved isoforms of ARNT. The number, type, and expression pattern of ARNT proteins may contribute to interspecies differences in aryl hydrocarbon toxicity, possibly through distinct interactions with additional PAS-family proteins.
Collapse
Affiliation(s)
- W H Powell
- Biology Department, MS#32, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | | |
Collapse
|
45
|
Carvan MJ, Solis WA, Gedamu L, Nebert DW. Activation of transcription factors in zebrafish cell cultures by environmental pollutants. Arch Biochem Biophys 2000; 376:320-7. [PMID: 10775418 DOI: 10.1006/abbi.2000.1727] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many classes of environmental pollutants are found at significant levels in the aquatic environment. We are designing a fish model as an inexpensive and efficient system for the assessment of aquatic pollution. Three classes of environmental pollutants-halogenated and nonhalogenated aromatic hydrocarbons, heavy metals, and potent electrophiles-are known to upregulate particular mammalian genes via the activation of specific DNA motifs called aromatic hydrocarbon (AHREs), heavy metal (MREs), and electrophile (EPREs) response elements, respectively. We have made plasmid constructs, using these mammalian or trout response elements to drive the luciferase reporter gene. Here we show that transient transfection of the zebrafish ZEM2S cell line with these reporter constructs imparts dose-dependent gene induction upon exposure to a variety of chemicals within each of these three classes of inducers: [a] (AHRE-mediated) 2,3,7,8-tetrachlorodibenzo-p-dioxin, 3-methylcholanthrene, 3,4,5,3',4',5'-hexabromobiphenyl, Aroclor 1254, and benzo[a]pyrene; [b] (MRE-mediated) Cd(2+), Zn(2+), Hg(2+), and Al(3+); and [c] (EPRE-mediated) tert-butylhydroquinone, Hg(2+), Pb(2+), As(3+), Cu(2+), and Cd(2+). As expected, some agents gave a response to only one of the three classes, whereas others gave a mixed (AHRE- plus EPRE-mediated or MRE- plus EPRE-mediated) response. In response to several environmental agents, we found that differences in the electrophoretic mobility shift assay, using the AHRE or MRE as probe, were consistent with the degree of transcriptional activation seen with the reporter constructs. Our data suggest that these reporter constructs might be valuable for the generation of transgenic zebrafish in order to carry out mechanistic and developmental studies of transcriptional activation by environmental contaminants; moreover, such transgenic zebrafish lines might be useful as a sentinel for assessing aquatic pollution.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Cells, Cultured
- DNA Probes
- Dose-Response Relationship, Drug
- Electrons
- Enhancer Elements, Genetic/genetics
- Genes, Reporter/genetics
- Genetic Vectors/genetics
- Halogens/metabolism
- Hydrocarbons, Aromatic/metabolism
- Hydrocarbons, Aromatic/pharmacology
- Hydrogen Peroxide/pharmacology
- Hydroquinones/pharmacology
- Ligands
- Metals, Heavy/pharmacology
- Promoter Regions, Genetic/genetics
- Receptors, Aryl Hydrocarbon/metabolism
- Response Elements/genetics
- Transcription Factors/metabolism
- Transcriptional Activation/drug effects
- Water Pollutants/pharmacology
- Zebrafish
Collapse
Affiliation(s)
- M J Carvan
- Center for Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, Ohio 45267-0056, USA.
| | | | | | | |
Collapse
|
46
|
Gothié E, Richard DE, Berra E, Pagès G, Pouysségur J. Identification of alternative spliced variants of human hypoxia-inducible factor-1alpha. J Biol Chem 2000; 275:6922-7. [PMID: 10702253 DOI: 10.1074/jbc.275.10.6922] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mammalian cells are able to sense oxygen and regulate a number of genes in response to hypoxia. The transcription factor Hypoxia Inducible Factor-1 (HIF-1) was identified as an important key component of the hypoxia signaling pathway. HIF-1 is a heterodimer composed of two members of the basic helix-loop-helix transcription factor superfamily containing a PAS (PER-ARNT-SIM) domain: HIF-1alpha and HIF-1beta/ARNT. During the cloning by reverse transcriptase-polymerase chain reaction of the human HIF-1alpha subunit, we isolated two cDNA clones which corresponded to alternative splicing of the HIF-1alpha gene. Polymerase chain reaction analysis and sequencing revealed that both clones possessed three additional base pairs between exons 1 and 2. Also, one of them lacked 127 base pairs corresponding to exon 14. We demonstrate that the mRNA of this truncated form is expressed in several human cells lines and human skin but apparently not in rodents. When transfected in HEK 293 cells, the corresponding 736 amino acid protein (HIF-1alpha(736)) is regulated by hypoxia in a similar manner as the full-length HIF-1alpha (HIF-1alpha(FL)). In luciferase transfection assays, both recombinant proteins HIF-1alpha(736) and HIF-1alpha(FL) dimerize with HIF-1beta/ARNT and activate the VEGF promoter upon hypoxia. However, the shorter HIF-1alpha isoform is 3-fold less active than HIF-1alpha(FL), a result consistent with the lack of the C-terminal transactivation domain. As expected, this small isoform can compete with the endogenous and transfected full-length HIF-1alpha. Altogether, these results suggest that the HIF-1alpha(736) isoform modulates gene expression upon hypoxia.
Collapse
Affiliation(s)
- E Gothié
- Institute of Signaling, Developmental Biology and Cancer Research, CNRS UMR 6543, Centre Antoine Lacassagne, 33 Avenue Valombrose, 06189 Nice, France.
| | | | | | | | | |
Collapse
|
47
|
Davarinos NA, Pollenz RS. Aryl hydrocarbon receptor imported into the nucleus following ligand binding is rapidly degraded via the cytosplasmic proteasome following nuclear export. J Biol Chem 1999; 274:28708-15. [PMID: 10497241 DOI: 10.1074/jbc.274.40.28708] [Citation(s) in RCA: 215] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that dimerizes with the AHR nuclear translocator protein to mediate gene regulation. However, the AHR protein is rapidly depleted in vitro and in vivo following exposure to ligands. The purpose of the studies in this report was to characterize the mechanism of AHR degradation and determine the consequence of blocking the degradation process. Western blot and immunological analysis of rat smooth muscle (A7), murine Hepa-1, and human HepG2 cells show that ligand-induced degradation of AHR is blocked when the proteasome is inhibited by MG-132. AHR degradation is also blocked in Hepa-1 and HepG2 cells when nuclear export is inhibited with leptomycin B. Mutation of a putative nuclear export signal present in the AHR results in the accumulation of AHR in the nucleus and reduced levels of degradation following ligand exposure. In addition, inhibition of AHR degradation results in an increase in the concentration of AHR.AHR nuclear translocator complexes associated with DNA and extends the duration that the complex resides in the nucleus. These findings show that nuclear export and degradation of the AHR protein are two additional steps in the AHR-mediated signal transduction pathway and suggest novel areas for regulatory control.
Collapse
Affiliation(s)
- N A Davarinos
- Department of Biochemistry, Medical University of South Carolina, Charleston, South Carolina 29403, USA
| | | |
Collapse
|
48
|
Abnet CC, Tanguay RL, Heideman W, Peterson RE. Transactivation activity of human, zebrafish, and rainbow trout aryl hydrocarbon receptors expressed in COS-7 cells: greater insight into species differences in toxic potency of polychlorinated dibenzo-p-dioxin, dibenzofuran, and biphenyl congeners. Toxicol Appl Pharmacol 1999; 159:41-51. [PMID: 10448124 DOI: 10.1006/taap.1999.8719] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Transactivation assays were used to compare the potency and efficacy of polychlorinated dibenzo-p-dioxin (PCDD), dibenzofuran (PCDF), and biphenyl (PCB) congeners in activating aryl hydrocarbon receptors (AhRs) from rainbow trout (rtAhR2alpha and rtAhR2beta), zebrafish (zfAhR2), and human (huAhR), respectively. All AhRs were expressed with their species-specific AhR nuclear translocator (ARNT) in COS-7 cells. Transactivation activity was determined for two PCDD, two PCDF, and seven PCB congeners with each of the four AhR/ARNT pairs using prt1Aluc, a luciferase reporter driven by two dioxin-responsive enhancer elements (DREs) from the rainbow trout cyp1A gene. Maximal-fold induction, EC50, and relative potency values were calculated for congeners that exhibited dose-related activity in the assay. Of the four AhR/ARNT pairs tested with PCDD, PCDF, and non-ortho PCB congeners, three exhibited high activity (rainbow trout AhR2alpha, zebrafish AhR2, and human AhR), while rainbow trout AhR2beta had very weak or no activity. Comparisons between these AhRs showed that while mono-ortho PCBs were able to activate the human AhR, they were generally ineffective in activating rainbow trout and zebrafish AhR2s. This supports the hypothesis that structural differences between mammalian and fish AhRs may account for differences in relative potencies of the mono-ortho PCBs between mammals and fish. Another important finding was a significant difference in transactivation activity between the two rainbow trout AhR2 isoforms despite the fact that they are 95% identical at the amino acid level. For all PCDD, PCDF, and PCB agonists tested, rainbow trout AhR2alpha was significantly more active than AhR2beta. However, rainbow trout AhR2beta is active as a 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-activated transcription factor, with enhancer elements from the mouse cyp1A gene. This suggests that AhR2beta may have evolved to serve a different physiological function than AhR2alpha in salmonid fish species.
Collapse
Affiliation(s)
- C C Abnet
- School of Pharmacy and Environmental Toxicology Center, University of Wisconsin, Madison, Wisconsin, 53706, USA
| | | | | | | |
Collapse
|
49
|
Abnet CC, Tanguay RL, Hahn ME, Heideman W, Peterson RE. Two forms of aryl hydrocarbon receptor type 2 in rainbow trout (Oncorhynchus mykiss). Evidence for differential expression and enhancer specificity. J Biol Chem 1999; 274:15159-66. [PMID: 10329723 PMCID: PMC2186364 DOI: 10.1074/jbc.274.21.15159] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two aryl hydrocarbon receptors (AhRs), rtAhR2alpha and rtAhR2beta, were cloned from rainbow trout (rt) cDNA libraries. The distribution of sequence differences, genomic Southern blot analysis, and the presence of both transcripts in all individual rainbow trout examined suggest that the two forms of rtAhR2 are derived from separate genes. The two rtAhR2s have significant sequence similarity with AhRs cloned from mammalian species, especially in the basic helix-loop-helix and PAS functional domains located in the amino-terminal 400 amino acids of the protein. In contrast, the Gln-rich transactivation domain found in the carboxyl-terminal half of mammalian AhRs is absent from both rtAhR2s. Both clones were expressed by in vitro transcription/translation and proteins of approximately 125 kDa were produced. These proteins bind 2,3,7, 8-tetrachlorodibenzo-p-dioxin (TCDD) and are able to bind dioxin response elements in gel shift assays. rtAhR2alpha and rtAhR2beta are expressed in a tissue-specific manner with the highest expression of rtAhR2beta in the heart. Expression of rtAhR2alpha and rtAhR2beta mRNAs is positively regulated by TCDD. Both rtAhR2alpha and rtAhR2beta produced TCDD-dependent activation of a reporter gene driven by dioxin response elements. Surprisingly, the two receptors showed distinct preferences for different enhancer sequences. These results suggest that the two receptor forms may regulate different sets of genes, and may play different roles in the toxic responses produced by AhR agonists such as TCDD.
Collapse
Affiliation(s)
- C C Abnet
- Environmental Toxicology Center, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
50
|
Necela B, Pollenz RS. Functional analysis of activation and repression domains of the rainbow trout aryl hydrocarbon receptor nuclear translocator (rtARNT) protein isoforms. Biochem Pharmacol 1999; 57:1177-90. [PMID: 11230806 DOI: 10.1016/s0006-2952(99)00036-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The aryl hydrocarbon receptor nuclear translocator (ARNT) protein is involved in many signaling pathways. Rainbow trout express isoforms of ARNT protein that are divergent in their C-terminal domains due to alternative RNA splicing. Rainbow trout ARNT(b) (rtARNT(b)) contains a C-terminal domain rich in glutamine and asparagine (QN), whereas the C-terminal domain of rtARNT(a) is rich in proline, serine, and threonine (PST). rtARNT(b) functions positively in AH receptor-mediated signaling, whereas rtARNT(a) functions negatively. Studies were performed to understand how changes in the C-terminal domains of the two rtARNT isoforms affect function. Deletion of the QN-rich C-terminal domain of rtARNT(b) did not affect function in aryl hydrocarbon receptor (AHR)-mediated signaling, whereas deletion of the PST-rich domain of rtARNT(a) restored function. Expression of the PST-rich domain on truncated rtARNT(b) or mouse ARNT (mARNT) reduced function of this protein by 50-80%. Gel shift assays revealed that the PST-rich domain affected AHR-mediated signaling by inhibiting DNA binding of the AHR*ARNT heterodimer. Gal4 transactivation assays revealed a potent transactivation domain in the QN-rich domain of rtARNT(b). In contrast, Gal4 proteins containing the PST-rich domain of rtARNT(a) did not transactivate because the proteins did not bind to DNA. Secondary structure analysis of the PST-rich domain revealed hydrophilic and hydrophobic regions. Truncation of the hydrophobic domain that spanned the final 20-40 amino acids of the rtARNT(a) restored function to the protein, suggesting that repressor function was related to protein misfolding or masking of the basic DNA binding domain. Functional diversity within the C-terminal domain is consistent with other negatively acting transcription factors and illustrates a common biological theme.
Collapse
Affiliation(s)
- B Necela
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | | |
Collapse
|