1
|
Hartl L, Duitman J, Aberson HL, Medema JP, Bijlsma MF, Spek CA. Identification of C/EBPδ-Modifying Compounds as Potential Anticancer Agents Using a High-Throughput Drug Screen. J Cell Mol Med 2025; 29:e70287. [PMID: 39887610 PMCID: PMC11783153 DOI: 10.1111/jcmm.70287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 02/01/2025] Open
Abstract
CCAAT/enhancer-binding protein delta (C/EBPδ) has been shown to promote tumour growth, drug resistance and metastasis formation in some cancers, whereas we have shown that its re-expression limits the features of tumour progression in pancreatic ductal adenocarcinoma (PDAC). The pharmacological targeting-either activation or inhibition-of C/EBPδ may therefore harbour clinical relevance and is desirable for preclinical studies on C/EBPδ in different contexts. Regrettably, to date, only few molecules have been identified that modify C/EBPδ. Here, we present a high-throughput compound screen in conjunction with a novel eGFP reporter to identify further compounds that either increase or decrease C/EBPδ transcriptional activity. Of 1402 small molecule inhibitors, we identified a total of 22 potent inducers and 18 inhibitors of C/EBPδ-mediated eGFP fluorescence. Using pathway enrichment analysis, we found that, generally, inhibition of the cell cycle elicits an increase in C/EBPδ activity whereas PI3K/Akt/mTOR-targeting compounds reduce C/EBPδ activity. We confirmed the potential importance of cell cycle-mediated regulation of C/EBPδ by showing that four of the most potent C/EBPδ activators-R547, PHA793387, AZD5438 and AT7519, all multi-cyclin-dependent kinase (CDK) inhibitors-limited the clonal expansion of PDAC cells. Next to providing a valuable selection of C/EBPδ-modulating compounds for the use in preclinical studies, this report contributes to our understanding of the molecular regulatory mechanisms of C/EBPδ in general and in PDAC in particular.
Collapse
Affiliation(s)
- Leonie Hartl
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular MedicineAmsterdam UMC Location University of AmsterdamAmsterdamThe Netherlands
- Cancer Biology and ImmunologyCancer Center AmsterdamAmsterdamThe Netherlands
| | - JanWillem Duitman
- Department of Pulmonary MedicineAmsterdam UMC Location University of AmsterdamAmsterdamThe Netherlands
- Department of Experimental ImmunologyAmsterdam UMC Location University of AmsterdamAmsterdamThe Netherlands
- Inflammatory DiseasesAmsterdam Infection & ImmunityAmsterdamThe Netherlands
| | - Hella L. Aberson
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular MedicineAmsterdam UMC Location University of AmsterdamAmsterdamThe Netherlands
- Cancer Biology and ImmunologyCancer Center AmsterdamAmsterdamThe Netherlands
| | - Jan Paul Medema
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular MedicineAmsterdam UMC Location University of AmsterdamAmsterdamThe Netherlands
- Cancer Biology and ImmunologyCancer Center AmsterdamAmsterdamThe Netherlands
| | - Maarten F. Bijlsma
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular MedicineAmsterdam UMC Location University of AmsterdamAmsterdamThe Netherlands
- Cancer Biology and ImmunologyCancer Center AmsterdamAmsterdamThe Netherlands
| | - C. Arnold Spek
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular MedicineAmsterdam UMC Location University of AmsterdamAmsterdamThe Netherlands
- Cancer Biology and ImmunologyCancer Center AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
2
|
Chen N, Xu Y, Liu Y, Zhao H, Liu R, Zhang Z. CEBPD aggravates apoptosis and oxidative stress of neuron after ischemic stroke by Nrf2/HO-1 pathway. Exp Cell Res 2024; 440:114127. [PMID: 38857839 DOI: 10.1016/j.yexcr.2024.114127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/12/2024]
Abstract
CCAAT enhancer binding protein delta (CEBPD) is a transcription factor and plays an important role in apoptosis and oxidative stress, which are the main pathogenesis of ischemic stroke. However, whether CEBPD regulates ischemic stroke through targeting apoptosis and oxidative stress is unclear. Therefore, to answer this question, rat middle cerebral artery occlusion (MCAO) reperfusion model and oxygen-glucose deprivation/reoxygenation (OGD/R) primary cortical neuron were established to mimic ischemic reperfusion injury. We found that CEBPD was upregulated and accompanied with increased neurological deficit scores and infarct size, and decreased neuron in MCAO rats. The siRNA targeted CEBPD inhibited CEBPD expression in rats, and meanwhile lentivirus system was used to blocked CEBPD expression in primary neuron. CEBPD degeneration decreased neurological deficit scores, infarct size and brain water content of MCAO rats. Knockdown of CEBPD enhanced cell viability and reduced apoptosis as well as oxidative stress in vivo and in vitro. CEBPD silencing promoted the translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) to the nucleus and the expression of heme oxygenase 1 (HO-1). Newly, CEBPD facilitated the transcription of cullin 3 (CUL3), which intensified ischemic stroke through Nrf2/HO-1 pathway that was proposed by our team in the past. In conclusion, targeting CEBPD-CUL3-Nrf2/HO-1 axis may be contributed to cerebral ischemia therapy.
Collapse
Affiliation(s)
- Nan Chen
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Yuanqi Xu
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Yushuang Liu
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Hanshu Zhao
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Ruijia Liu
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Zhongling Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China.
| |
Collapse
|
3
|
Mei X, Huang T, Chen A, Liu W, Jiang L, Zhong S, Shen D, Qiao P, Zhao Q. BmC/EBPZ gene is essential for the larval growth and development of silkworm, Bombyx mori. Front Physiol 2024; 15:1298869. [PMID: 38523808 PMCID: PMC10959570 DOI: 10.3389/fphys.2024.1298869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/19/2024] [Indexed: 03/26/2024] Open
Abstract
The genetic male sterile line (GMS) of the silkworm Bombyx mori is a recessive mutant that is naturally mutated from the wild-type 898WB strain. One of the major characteristics of the GMS mutant is its small larvae. Through positional cloning, candidate genes for the GMS mutant were located in a region approximately 800.5 kb long on the 24th linkage group of the silkworm. One of the genes was Bombyx mori CCAAT/enhancer-binding protein zeta (BmC/EBPZ), which is a member of the basic region-leucine zipper transcription factor family. Compared with the wild-type 898WB strain, the GMS mutant features a 9 bp insertion in the 3'end of open reading frame sequence of BmC/EBPZ gene. Moreover, the high expression level of the BmC/EBPZ gene in the testis suggests that the gene is involved in the regulation of reproduction-related genes. Using the CRISPR/Cas9-mediated knockout system, we found that the BmC/EBPZ knockout strains had the same phenotypes as the GMS mutant, that is, the larvae were small. However, the larvae of BmC/EBPZ knockout strains died during the development of the third instar. Therefore, the BmC/EBPZ gene was identified as the major gene responsible for GMS mutation.
Collapse
Affiliation(s)
- Xinglin Mei
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Tianchen Huang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Anli Chen
- Key Sericultural Laboratory of Shaanxi, Ankang University, Ankang, Shaanxi, China
| | - Weibin Liu
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Li Jiang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Shanshan Zhong
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Dongxu Shen
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Peitong Qiao
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Qiaoling Zhao
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| |
Collapse
|
4
|
Lai HY, Tsai HH, Yen CJ, Hung LY, Yang CC, Ho CH, Liang HY, Chen FW, Li CF, Wang JM. Metformin Resensitizes Sorafenib-Resistant HCC Cells Through AMPK-Dependent Autophagy Activation. Front Cell Dev Biol 2021; 8. [DOI: 10.3389/fcell.2021.596655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025] Open
Abstract
Despite the activation of autophagy may enable residual cancer cells to survive and allow tumor relapse, excessive activation of autophagy may eventually lead to cell death. However, the details of the association of autophagy with primary resistance in hepatocellular carcinoma (HCC) remain less clear. In this study, cohort analysis revealed that HCC patients receiving sorafenib with HBV had higher mortality risk. We found that high epidermal growth factor receptor (EGFR) expression and activity may be linked to HBV-induced sorafenib resistance. We further found that the resistance of EGFR-overexpressed liver cancer cells to sorafenib is associated with low activity of AMP-activated protein kinase (AMPK) and CCAAT/enhancer binding protein delta (CEBPD) as well as insufficient autophagic activation. In response to metformin, the AMPK/cAMP-response element binding protein (CREB) pathway contributes to CEBPD activation, which promotes autophagic cell death. Moreover, treatment with metformin can increase sorafenib sensitivity through AMPK activation in EGFR-overexpressed liver cancer cells. This study suggests that AMPK/CEBPD-activated autophagy could be a potent strategy for improving the efficacy of sorafenib in HCC patients.
Collapse
|
5
|
Lai HY, Tsai HH, Yen CJ, Hung LY, Yang CC, Ho CH, Liang HY, Chen FW, Li CF, Wang JM. Metformin Resensitizes Sorafenib-Resistant HCC Cells Through AMPK-Dependent Autophagy Activation. Front Cell Dev Biol 2021; 8:596655. [PMID: 33681180 PMCID: PMC7931828 DOI: 10.3389/fcell.2020.596655] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/22/2020] [Indexed: 12/23/2022] Open
Abstract
Despite the activation of autophagy may enable residual cancer cells to survive and allow tumor relapse, excessive activation of autophagy may eventually lead to cell death. However, the details of the association of autophagy with primary resistance in hepatocellular carcinoma (HCC) remain less clear. In this study, cohort analysis revealed that HCC patients receiving sorafenib with HBV had higher mortality risk. We found that high epidermal growth factor receptor (EGFR) expression and activity may be linked to HBV-induced sorafenib resistance. We further found that the resistance of EGFR-overexpressed liver cancer cells to sorafenib is associated with low activity of AMP-activated protein kinase (AMPK) and CCAAT/enhancer binding protein delta (CEBPD) as well as insufficient autophagic activation. In response to metformin, the AMPK/cAMP-response element binding protein (CREB) pathway contributes to CEBPD activation, which promotes autophagic cell death. Moreover, treatment with metformin can increase sorafenib sensitivity through AMPK activation in EGFR-overexpressed liver cancer cells. This study suggests that AMPK/CEBPD-activated autophagy could be a potent strategy for improving the efficacy of sorafenib in HCC patients.
Collapse
Affiliation(s)
- Hong-Yue Lai
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.,Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Hsin-Hwa Tsai
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.,Department of Pathology, Chi Mei Medical Center, Tainan, Taiwan
| | - Chia-Jui Yen
- Department of Oncology, National Cheng Kung University Hospital, Tainan, Taiwan.,College of Medicine, National Cheng Kung University, Taipei, Taiwan
| | - Liang-Yi Hung
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.,College of Medicine, National Cheng Kung University, Taipei, Taiwan.,College of Medicine, Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Chieh Yang
- Department of Radiation Oncology, Chi-Mei Medical Center, Tainan, Taiwan.,Department of Pharmacy, Chia-Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Chung-Han Ho
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan.,Department of Hospital and Health Care Administration, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Hsin-Yin Liang
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.,International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
| | - Feng-Wei Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Feng Li
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan.,Department of Pathology, Chi Mei Medical Center, Tainan, Taiwan.,National Institute of Cancer Research, National Health Research Institute, Tainan, Taiwan.,Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Ju-Ming Wang
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.,College of Medicine, Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan.,College of Medical Science and Technology, Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
6
|
CCAAT/Enhancer-Binding Protein Delta (C/EBPδ): A Previously Unrecognized Tumor Suppressor that Limits the Oncogenic Potential of Pancreatic Ductal Adenocarcinoma Cells. Cancers (Basel) 2020; 12:cancers12092546. [PMID: 32906832 PMCID: PMC7564797 DOI: 10.3390/cancers12092546] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Here we show that a protein called C/EBPδ is present in healthy pancreas tissue but almost absent in pancreas tumors. Patients with less C/EBPδ in their tumors had the most metastases and the worst survival chances, showing that C/EBPδ has tumor-suppressive properties in pancreatic cancer. In this study, we reactivated C/EBPδ in pancreatic cancer cells in vitro and observed a reduction in cell proliferation in a 2-dimentional and 3-dimensional space. This implies that tumor cells grow slower when C/EBPδ is activated and they are likely also less capable to escape the primary tumor in order to form metastases. Conversely, when we deleted C/EBPδ in pancreatic cancer cells, we observed accelerated growth. We suggest that reactivating C/EBPδ can suppress tumor growth and formation of metastases, thereby improving patient survival. Abstract CCAAT/enhancer-binding protein δ (C/EBPδ) is a transcription factor involved in growth arrest and differentiation, which has consequently been suggested to harbor tumor suppressive activities. However, C/EBPδ over-expression correlates with poor prognosis in glioblastoma and promotes genomic instability in cervical cancer, hinting at an oncogenic role of C/EBPδ in these contexts. Here, we explore the role of C/EBPδ in pancreatic cancer. We determined C/EBPδ expression in biopsies from pancreatic cancer patients using public gene-expression datasets and in-house tissue microarrays. We found that C/EBPδ is highly expressed in healthy pancreatic ductal cells but lost in pancreatic ductal adenocarcinoma. Furthermore, loss of C/EBPδ correlated with increased lymph node involvement and shorter overall survival in pancreatic ductal adenocarcinoma patients. In accordance with this, in vitro experiments showed reduced clonogenic capacity and proliferation of pancreatic ductal adenocarcinoma cells following C/EBPδ re-expression, concurrent with decreased sphere formation capacity in soft agar assays. We thus report a previously unrecognized but important tumor suppressor role of C/EBPδ in pancreatic ductal adenocarcinoma. This is of particular interest since only few tumor suppressors have been identified in the context of pancreatic cancer. Moreover, our findings suggest that restoration of C/EBPδ activity could hold therapeutic value in pancreatic ductal adenocarcinoma, although the latter claim needs to be substantiated in future studies.
Collapse
|
7
|
Lan XO, Wang HX, Qi RQ, Xu YY, Yu YJ, Yang Y, Guo H, Gao XH, Geng L. Shikonin inhibits CEBPD downregulation in IL‑17‑treated HaCaT cells and in an imiquimod‑induced psoriasis model. Mol Med Rep 2020; 22:2263-2272. [PMID: 32705251 PMCID: PMC7411367 DOI: 10.3892/mmr.2020.11315] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 06/08/2020] [Indexed: 01/16/2023] Open
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by well-defined scaly papules and plaques. Interleukin (IL)-17 is involved in its pathogenesis and promotes the proliferation of epidermal keratinocytes through signal transducer and activator of transcription 3 (STAT3) activation. Shikonin, a natural naphthoquinone isolated from Lithospermum erythrorhizon, possesses anti-inflammatory and immunosuppressive properties and can suppress IL-17-induced vascular endothelial growth factor expression by inhibiting the JAK/STAT3 pathway. In the present study, MTS, iCELLigence and RT-qPCR were used to determine the optimal concentration and duration of IL-17 or shikonin acting on HaCaT cells. The changes in the expression levels of genes associated with the IL-6/STAT3 pathway in differentially treated cells were analyzed via RT2Profiler™ PCR Array. Small interfering RNA was used to silence the expression levels of the target gene CCAAT/enhancer-binding protein δ (CEBPD). Western blotting and immunohistochemistry were used to evaluate the effect of shikonin on imiquimod-induced psoriasis in mice and the expression levels of CEBPD. Shikonin reversed IL-17-mediated downregulation of the tumor suppressor CEBPD in HaCaT cells. Moreover, low levels of CEBPD in the imiquimod-induced mouse model of psoriasis were restored by shikonin treatment, which ameliorated excessive keratinocyte proliferation. Taken together, these findings suggest that CEBPD plays a key role in the pathogenesis of psoriasis and can be targeted by shikonin as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Xiao-Ou Lan
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - He-Xiao Wang
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Rui-Qun Qi
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yuan-Yuan Xu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Ya-Jie Yu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yang Yang
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Hao Guo
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xing-Hua Gao
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Long Geng
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
8
|
Priya Dharshini LC, Vishnupriya S, Sakthivel KM, Rasmi RR. Oxidative stress responsive transcription factors in cellular signalling transduction mechanisms. Cell Signal 2020; 72:109670. [PMID: 32418887 DOI: 10.1016/j.cellsig.2020.109670] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 11/18/2022]
Abstract
Oxidative stress results from the imbalances in the development of reactive oxygen species (ROS) and antioxidants defence system resulting in tissue injury. A key issue resulting in the modulation of ROS is that it alters hosts molecular, structural and functional properties which is accomplished via various signalling pathways which either activate or inhibit numerous transcription factors (TFs). Some of the regulators include Nuclear erythroid-2 related factors (Nrf-2), CCAAT/enhancer-binding protein delta (CEBPD), Activator Protein-1 (AP-1), Hypoxia-inducible factor 1(HIF-1), Nuclear factor κB (NF-κB), Specificity Protein-1 (SP-1) and Forkhead Box class O (FoxO) transcription factors. The expression of these transcription factors are dependent upon the stress signal and are sometimes interlinked. They are highly specific having their own regulation cellular events. Depending upon the transcription factors and better knowledge on the type of the oxidative stress help researchers develop safe, novel targets which can serve as efficient therapeutic targets for several disease conditions.
Collapse
Affiliation(s)
| | - Selvaraj Vishnupriya
- Department of Biotechnology, PSG College of Arts & Science, Civil Aerodrome Post, Coimbatore, Tamil Nadu 641 014, India
| | - Kunnathur Murugesan Sakthivel
- Department of Biochemistry, PSG College of Arts & Science, Civil Aerodrome Post, Coimbatore, Tamil Nadu 641 014, India
| | - Rajan Radha Rasmi
- Department of Biotechnology, PSG College of Arts & Science, Civil Aerodrome Post, Coimbatore, Tamil Nadu 641 014, India.
| |
Collapse
|
9
|
Shikonin induces apoptosis and suppresses growth in keratinocytes via CEBP-δ upregulation. Int Immunopharmacol 2019; 72:511-521. [DOI: 10.1016/j.intimp.2019.04.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/19/2019] [Accepted: 04/23/2019] [Indexed: 12/25/2022]
|
10
|
Quezada-Ramírez M, Castañeda-Arellano R, Pérez-Sánchez G, Hernández-Soto J, Segovia J. The Growth arrest specific 1 ( Gas1 ) gene is transcriptionally regulated by NeuroD1 via two distal E-boxes. Exp Cell Res 2018; 363:332-341. [DOI: 10.1016/j.yexcr.2018.01.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 01/23/2018] [Accepted: 01/24/2018] [Indexed: 12/13/2022]
|
11
|
Rizzo P, Novelli R, Benigni A, Remuzzi G. Inhibiting angiotensin-converting enzyme promotes renal repair by modulating progenitor cell activation. Pharmacol Res 2016; 108:16-22. [PMID: 27095084 DOI: 10.1016/j.phrs.2016.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/13/2016] [Indexed: 11/18/2022]
Abstract
Independently of the initial insult, activation and accumulation of parietal progenitor cells within the Bowman's space is a peculiar feature of proliferative chronic kidney diseases. Clinical and experimental studies demonstrated that, in the presence of extensive renal damage, progenitor cells proliferate excessively in the failed attempt to replace the injured podocytes, contributing to the development of crescentic lesions. Inhibiting angiotensin-converting enzyme (ACE) halts crescent formation and promotes the restoration of normal glomerular architecture by limiting progenitor cell proliferation and migration towards the glomerular tuft. Among the mediators involved in the dysregulated response of renal precursors, the angiotensin II (ang II)/ang II type-1 (AT1) receptor/CXCR4 pathway have been demonstrated to be crucial in proliferative diseases. Understanding the mechanisms underlying the formation of crescentic lesions could be instrumental to developing new therapies, which can be more effective and more targeted to molecular mediators than the currently used cytotoxic agents.
Collapse
Affiliation(s)
- Paola Rizzo
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Rubina Novelli
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Ariela Benigni
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy.
| | - Giuseppe Remuzzi
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy; Unit of Nephrology and Dialysis, Azienda Ospedaliera Papa Giovanni XXIII, Bergamo, Italy; Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| |
Collapse
|
12
|
Induction of apoptosis through ER stress and TP53 in MCF-7 cells by the nanoparticle [Gd@C82(OH)22]n: A systems biology study. Methods 2014; 67:394-406. [DOI: 10.1016/j.ymeth.2014.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 12/10/2013] [Accepted: 01/05/2014] [Indexed: 01/20/2023] Open
|
13
|
Duitman J, Borensztajn KS, Pulskens WPC, Leemans JC, Florquin S, Spek CA. CCAAT-enhancer binding protein delta (C/EBPδ) attenuates tubular injury and tubulointerstitial fibrogenesis during chronic obstructive nephropathy. J Transl Med 2014; 94:89-97. [PMID: 24247561 DOI: 10.1038/labinvest.2013.127] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/02/2013] [Accepted: 10/08/2013] [Indexed: 12/30/2022] Open
Abstract
CCAAT-enhancer-binding protein delta (C/EBPδ) is a transcription factor mainly known for its role in inflammation and apoptosis/proliferation. Considering that these are key processes in renal fibrosis, we hypothesized that C/EBPδ would potentiate renal fibrosis. In line with this hypothesis, C/EBPδ has recently been suggested to regulate the fibrotic response during glomerulonephritis. Here we determined the importance of C/EBPδ in the development of renal tubulointerstitial fibrosis by subjecting 8- to 12-week-old C/EBPδ-deficient mice and age- and sex-matched wild-type controls to the unilateral ureteral obstruction model. Mice were killed at 1, 3, or 7 days post surgery, and renal tissues were obtained for RNA, protein, and immunohistochemical analysis. We show that C/EBPδ deficiency resulted in a more profound fibrotic response as evident from enhanced tubular injury, collagen deposition in the interstitial area, and higher expression of transforming growth factor-β. Moreover, we show that the increase in renal fibrosis in C/EBPδ-deficient mice does not depend on an altered proliferation/apoptosis balance or on a differential inflammatory response in the obstructed kidney. In conclusion, our study provides direct evidence that C/EBPδ is a novel mediator of renal fibrosis. Modulating C/EBPδ expression could consequently be a potential antifibrotic strategy in patients with chronic kidney disease.
Collapse
Affiliation(s)
- JanWillem Duitman
- Center for Experimental and Molecular Medicine (CEMM), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Keren S Borensztajn
- Unité INSERM 700, Physiopathologie et Epidémiologie de l'Insuffisance Respiratoire, Faculté de Médecine Xavier Bichat, Paris, France
| | - Willem P C Pulskens
- Department of Physiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Jaklien C Leemans
- Department of Pathology; Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Sandrine Florquin
- 1] Department of Pathology; Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands [2] Department of Pathology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - C Arnold Spek
- Center for Experimental and Molecular Medicine (CEMM), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Genomic analysis of the role of transcription factor C/EBPδ in the regulation of cell behaviour on nanometric grooves. Biomaterials 2012; 34:1967-79. [PMID: 23245923 PMCID: PMC3543902 DOI: 10.1016/j.biomaterials.2012.11.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 11/20/2012] [Indexed: 01/08/2023]
Abstract
C/EBPδ is a tumour suppressor transcription factor that induces gene expression involved in suppressing cell migration. Here we investigate whether C/EBPδ-dependent gene expression also affects cell responses to nanometric topology. We found that ablation of the C/EBPδ gene in mouse embryonal fibroblasts (MEFs) decreased cell size, adhesion and cytoskeleton spreading on 240 nm and 540 nm nanometric grooves. ChIP-SEQ and cDNA microarray analyses demonstrated that many binding sites for C/EBPδ, and the closely related C/EBPβ, exist throughout the mouse genome and control the upregulation or downregulation of many adjacent genes. We also identified a group of C/EBPδ-dependent, trans-regulated genes, whose promoters contained no C/EBPδ binding sites and yet their activity was regulated in a C/EBPδ-dependent manner. These genes include signalling molecules (e.g. SOCS3), cytoskeletal components (Tubb2, Krt16 and Krt20) and cytoskeletal regulators (ArhGEF33 and Rnd3) and are possibly regulated by cis-regulated diffusible mediators, such as IL6. Of particular note, SOCS3 was shown to be absolutely required for efficient cell spreading and contact guidance on 240 nm and 540 nm nanometric grooves. C/EBPδ is therefore involved in the complex regulation of multiple genes, including cytoskeletal components and signalling mediators, which influence the nature of cell interactions with nanometric topology.
Collapse
|
15
|
Site-specific CpG methylation in the CCAAT/enhancer binding protein delta (CEBPδ) CpG island in breast cancer is associated with metastatic relapse. Br J Cancer 2012; 107:732-8. [PMID: 22782348 PMCID: PMC3419957 DOI: 10.1038/bjc.2012.308] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background: The CCAAT/enhancer binding protein delta (CEBPδ) is a member of a highly conserved family of basic region leucine zipper transcription factors. It has properties consistent with a tumour suppressor; however, other data suggest that CEBPδ may be involved in the metastatic process. Methods: We analysed the expression of CEBPδ and the methylation status of the CpG island in human breast cancer cell lines, in 107 archival cases of primary breast cancer and in two series of metastatic breast cancers using qPCR and pyrosequencing. Results: Expression of CEBPδ is downregulated in primary breast cancer by site-specific methylation in the CEBPδ CpG island. Expression is also downregulated in 50% of cases during progression from primary carcinoma to metastatic lesions. The CEBPδ CpG island is methylated in 81% metastatic breast cancer lesions, while methylation in the CEBPδ CpG island in primary cancers is associated with increased risk of relapse and metastasis. Conclusion: CCAAT/enhancer binding protein delta CpG island methylation is associated with metastasis in breast cancer. Detection of methylated CEBPδ genomic DNA may have utility as an epigenetic biomarker of primary breast carcinomas at increased risk of relapse and metastasis.
Collapse
|
16
|
Chakraborty A, Bodipati N, Demonacos MK, Peddinti R, Ghosh K, Roy P. Long term induction by pterostilbene results in autophagy and cellular differentiation in MCF-7 cells via ROS dependent pathway. Mol Cell Endocrinol 2012; 355:25-40. [PMID: 22273805 DOI: 10.1016/j.mce.2012.01.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 12/20/2011] [Accepted: 01/10/2012] [Indexed: 01/28/2023]
Abstract
This study shows the effect of pterostilbene on intracellular neutral lipid accumulation in MCF-7 breast cancer cells leading to growth arrest and autophagy. On exposing the breast cancer cells with 30 μM pterostilbene for 72 h there was almost 2-folds increase in neutral lipids and triglycerides. Also the phytochemical caused a 4-folds increase in the expression of adipogenic differentiation marker c/EBPα. Further, pterostilbene inhibited 3β-hydroxylsterol-Δ(7)-reductase, the enzyme which catalyzes the last step conversion of 7-dehydrocholesterol to cholesterol, and thereby causes the intracellular accumulation of the former sterol. These results were associated with over-expression of oxysterol binding protein homologue and liver X receptor (LXR) by ~7-folds. Pterostilbene also caused a simultaneous increase in the expression autophagic marker proteins Beclin 1 and LC3 II (microtubule-associated protein 1 light chain 3) by approximately 6-folds, which leads to an alternative pathway of autophagy. These effects were observed in association with the loss of mitotic and metastatic potential of MCF-7 cells which was abolished in the presence of catalase (ROS scavenger) or 3MA (autophagic inhibitor). Thus the present data shows that the long term exposure to pterostilbene causes growth arrest in MCF-7 cells which may be due to differentiation of the mammary carcinoma cells into normal epithelial cell like morphology and activation of autophagy.
Collapse
Affiliation(s)
- Ajanta Chakraborty
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand, India
| | | | | | | | | | | |
Collapse
|
17
|
Benigni A, Morigi M, Rizzo P, Gagliardini E, Rota C, Abbate M, Ghezzi S, Remuzzi A, Remuzzi G. Inhibiting angiotensin-converting enzyme promotes renal repair by limiting progenitor cell proliferation and restoring the glomerular architecture. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:628-38. [PMID: 21718676 DOI: 10.1016/j.ajpath.2011.04.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 03/16/2011] [Accepted: 04/22/2011] [Indexed: 11/18/2022]
Abstract
We previously reported that angiotensin-converting enzyme inhibitor (ACEi) renoprotection in Munich Wistar Frömter (MWF) rats, which develop progressive glomerular injury, was associated with podocyte repopulation and preservation of glomerular architecture. Here, we studied the time course of the lesions, their cellular components, and the effect of ACEi. Early glomerular lesions were synechiae, followed by extracapillary crescents and glomerulosclerosis. The majority of cells forming crescents were claudin1(+) parietal epithelial cells and, to a lesser extent, WT1(+) podocytes, both in active proliferation. In crescents, cells expressing the metanephric mesenchyme marker NCAM were also found. Three distinct populations of parietal epithelial cells were identified in the rat Bowman's capsule: NCAM(+)WT1(-) cells, also expressing progenitor cell marker CD24, and NCAM(+)WT1(+) and NCAM(-)WT1(+) cells, the latter population representing parietal podocytes. After exposure to inductive medium, cultured parietal epithelial cells that were obtained by capsulated glomeruli generated podocytes, documenting their progenitor nature. Mitotic activity of cultured renal progenitors was induced by angiotensin II through the down-regulation of cell cycle inhibitor C/EBPδ expression. Treatment with ACEi reduced number and extension of crescents and glomerulosclerosis in MWF rats. Renoprotection was accomplished through the limitation of NCAM(+) progenitor proliferation via the modulation of C/EBPδ. Thus, chaotic migration and proliferation of the Bowman's capsule progenitor cells pave the way to crescent formation and subsequent sclerosis. ACEi, by moderating progenitor cell activation, restores glomerular architecture and prevents renal disease progression.
Collapse
Affiliation(s)
- Ariela Benigni
- Mario Negri Institute for Pharmacological Research, Centro Anna Maria Astori, Bergamo, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Chen SY, Hayashida Y, Chen MY, Xie HT, Tseng SCG. A new isolation method of human limbal progenitor cells by maintaining close association with their niche cells. Tissue Eng Part C Methods 2011; 17:537-48. [PMID: 21175372 DOI: 10.1089/ten.tec.2010.0609] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In human corneal epithelium, self-renewal and fate decision of stem cells are highly regulated in a niche microenvironment called palisades of Vogt in the limbus. Herein, we discovered that digestion with dispase, which cleaves off the basement membrane, did not remove the entire basal epithelial progenitor cells. In contrast, digestion with collagenase isolated on cluster consisting of not only entire epithelial progenitor cells but also their closely associated mesenchymal cells because of better preservation of some basement membrane matrix. Collagenase isolated more basal epithelial progenitor cells, which were p63α+ and small in the size (8 μm in diameter), and generated significantly more holoclones and meroclones on 3T3 fibroblast feeder layers than dispase. Further, collagenase isolated more small pan-cytokeratin-/p63α-/vimentin+ cells with the size as small as 5 μm in diameter and heterogeneously expressing vimentin, Oct4, Sox2, Nanog, Rex1, Nestin, N-cadherin, SSEA4, and CD34. Maintenance of close association between them led to clonal growth in a serum-free, low-calcium medium, whereas disruption of such association by trypsin/EDTA resulted in no clonal growth unless cocultured with 3T3 fibroblast feeder layers. Similarly, on epithelially denuded amniotic membrane, maintenance of such association led to consistent and robust epithelial outgrowth, which was also abolished by trypsin/EDTA. Epithelial outgrowth generated by collagenase-isolated clusters was significantly larger in diameter and its single cells yielded more holoclones on 3T3 fibroblast feeder layers than that from dispase-isolated sheets. This new isolation method can be used for exploring how limbal epithelial stem cells are regulated by their native niche cells.
Collapse
Affiliation(s)
- Szu-Yu Chen
- Ocular Surface Center, TissueTech, Inc., Miami, Florida 33173, USA
| | | | | | | | | |
Collapse
|
19
|
Yu X, Si J, Zhang Y, Dewille JW. CCAAT/Enhancer Binding Protein-delta (C/EBP-delta) regulates cell growth, migration and differentiation. Cancer Cell Int 2010; 10:48. [PMID: 21143913 PMCID: PMC3004888 DOI: 10.1186/1475-2867-10-48] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Accepted: 12/09/2010] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND CCAAT/enhancer binding protein-delta (C/EBP-delta) is a member of the highly conserved C/EBP family of basic region leucine zipper transcription factors. C/EBP family members regulate cell growth and differentiation and "loss of function" alterations in C/EBPs have been reported in a variety of human cancers. C/EBP-delta gene expression is upregulated by G0 growth arrest, IL-6 family cytokines and endotoxin treatments. C/EBP-delta exhibits properties of a tumor suppressor gene, including reduced expression and promoter methylation-induced silencing in transformed cell lines and primary tumors. In addition, C/EBP-delta gene expression is repressed by c-Myc, an oncogene that is over-expressed in a wide range of human cancers. "ChIP-chip" studies demonstrated that C/EBP-delta functions as a transcriptional activator of target genes that function in intracellular signal transduction, transcription, DNA binding/repair, cell cycle control, cell adhesion, and apoptosis. Despite progress in determining the biochemical functions of C/EBP-delta, the specific cellular defects that are induced by C/EBP-delta "loss of function" alterations are poorly understood. This study investigated the impact of C/EBP-delta "loss of function" alterations on growth arrest, migration/invasion and differentiation in nontransformed mouse mammary epithelial cells (MECs) and primary mouse embryo fibroblasts (MEFs). RESULTS C/EBP-delta siRNA transfected MECs exhibited ~90% reduction in C/EBP-delta mRNA and protein levels. C/EBP-delta siRNA treatment resulted in defective growth arrest as demonstrated by persistently elevated BrdU labeling, 3H-thymidine incorporation and cyclin D1 levels in response to growth arrest treatments. C/EBP-delta siRNA treatment also resulted in increased migration/invasion and defective differentiation. C/EBP-delta knockout MEFs exhibited defective growth arrest and increased proliferation/migration. Re-introduction of C/EBP-delta expression restored the growth arrest response of C/EBP-delta knockout MEFs. Finally, deletion of the C/EBP-delta DNA binding domain or the C/EBP-delta bZIP domain resulted in the loss of C/EBP-delta growth inhibition in clonogenic assays. CONCLUSIONS This study demonstrates that C/EBP-delta functions in the regulation of critical cell fate determining programs such as growth arrest, migration, and differentiation. These results support the tumor suppressor function of C/EBP-delta and identify potential mechanisms in which "loss of function" alterations in C/EBP-delta could promote cell transformation and tumorigenesis.
Collapse
Affiliation(s)
- Xueyan Yu
- Department of Veterinary Biosciences, Ohio State University College of Veterinary Medicine and OSU Comprehensive Cancer Center, 1925 Coffey Road, Columbus Ohio, 43210, USA.
| | | | | | | |
Collapse
|
20
|
Borrelli S, Fanoni D, Dolfini D, Alotto D, Ravo M, Grober OMV, Weisz A, Castagnoli C, Berti E, Vigano MA, Mantovani R. C/EBPδ gene targets in human keratinocytes. PLoS One 2010; 5:e13789. [PMID: 21072181 PMCID: PMC2970548 DOI: 10.1371/journal.pone.0013789] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 10/08/2010] [Indexed: 11/19/2022] Open
Abstract
C/EBPs are a family of B-Zip transcription factors -TFs- involved in the regulation of differentiation in several tissues. The two most studied members -C/EBPα and C/EBPβ- play important roles in skin homeostasis and their ablation reveals cells with stem cells signatures. Much less is known about C/EBPδ which is highly expressed in the granular layer of interfollicular epidermis and is a direct target of p63, the master regular of multilayered epithelia. We identified C/EBPδ target genes in human primary keratinocytes by ChIP on chip and profiling of cells functionally inactivated with siRNA. Categorization suggests a role in differentiation and control of cell-cycle, particularly of G2/M genes. Among positively controlled targets are numerous genes involved in barrier function. Functional inactivation of C/EBPδ as well as overexpressions of two TF targets -MafB and SOX2- affect expression of markers of keratinocyte differentiation. We performed IHC on skin tumor tissue arrays: expression of C/EBPδ is lost in Basal Cell Carcinomas, but a majority of Squamous Cell Carcinomas showed elevated levels of the protein. Our data indicate that C/EBPδ plays a role in late stages of keratinocyte differentiation.
Collapse
Affiliation(s)
- Serena Borrelli
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Milano, Italy
| | - Daniele Fanoni
- Istituto di Scienze Dermatologiche, IRCCS Fondazione Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Università degli Studi di Milano, Milano, Italy
| | - Diletta Dolfini
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Milano, Italy
| | - Daniela Alotto
- Dipartimento di Chirurgia Plastica - Banca della Cute, Ospedale CTO, Torino, Italy
| | - Maria Ravo
- Dipartimento di Patologia Generale and Centro Grandi Apparecchiature, Seconda Università di Napoli, Napoli, Italy
| | - Olì Maria Victoria Grober
- Dipartimento di Patologia Generale and Centro Grandi Apparecchiature, Seconda Università di Napoli, Napoli, Italy
| | - Alessandro Weisz
- Dipartimento di Patologia Generale and Centro Grandi Apparecchiature, Seconda Università di Napoli, Napoli, Italy
- AIRC Naples Oncogenomics Centre, c/o CEINGE Biotecnologie Avanzate, Napoli, Italy
| | - Carlotta Castagnoli
- Dipartimento di Chirurgia Plastica - Banca della Cute, Ospedale CTO, Torino, Italy
| | - Emilio Berti
- Istituto di Scienze Dermatologiche, IRCCS Fondazione Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Università degli Studi di Milano, Milano, Italy
- Università di Milano-Bicocca, Milano, Italy
| | - M. Alessandra Vigano
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Milano, Italy
| | - Roberto Mantovani
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Milano, Italy
- * E-mail:
| |
Collapse
|
21
|
Pan YC, Li CF, Ko CY, Pan MH, Chen PJ, Tseng JT, Wu WC, Chang WC, Huang AM, Sterneck E, Wang JM. CEBPD reverses RB/E2F1-mediated gene repression and participates in HMDB-induced apoptosis of cancer cells. Clin Cancer Res 2010; 16:5770-80. [PMID: 20971808 DOI: 10.1158/1078-0432.ccr-10-1025] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE Recent evidence indicates that a tumor suppressor gene CEBPD (CCAAT/enhancer-binding protein delta) is downregulated in many cancers including cervical cancer, which provides a therapeutic potential associated with its reactivation. However, little is known for CEBPD activators and the effect of reactivation of CEBPD transcription upon anticancer drug treatment. In this study, we identified a novel CEBPD activator, 1-(2-hydroxy-5-methylphenyl)-3-phenyl-1,3-propanedione (HMDB). The purpose of this study is to characterize the mechanism of HMDB-induced CEBPD activation and its potential effect in cancer therapy. EXPERIMENTAL DESIGN Methylation-specific PCR assay, reporter assay, and chromatin immunoprecipitation (ChIP) assay were performed to dissect the signaling pathway of HMDB-induced CEBPD transcription. Furthermore, a consequence of HMDB-induced CEBPD expression was linked with E2F1 and retinoblastoma (RB), which discloses the scenario of CEBPD, E2F1, and RB bindings and transcriptional regulation on the promoters of proapoptotic genes, PPARG2 and GADD153. Finally, the anticancer effect of HMDB was examined in xenograft mice. RESULTS We demonstrate that CEBPD plays an essential role in HMDB-mediated apoptosis of cancer cells. HMDB up-regulates CEBPD transcription through the p38/CREB pathway, thus leading to transcriptional activation of PPARG2 and GADD153. Furthermore, increased level of CEBPD attenuates E2F1-induced cancer cell proliferation and partially rescues RB/E2F1-mediated repression of PPARG2 and GADD153 transcription. Moreover, HMDB treatment attenuates the growth of A431 xenografts in severe combined immunodeficient mice mice. CONCLUSIONS These results clearly demonstrate that HMDB kills cancer cells through activation of CEBPD pathways and suggest that HMDB can serve as a superior chemotherapeutic agent with limited potential for adverse side effects.
Collapse
Affiliation(s)
- Yen-Chun Pan
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Pawar SA, Sarkar TR, Balamurugan K, Sharan S, Wang J, Zhang Y, Dowdy SF, Huang AM, Sterneck E. C/EBP{delta} targets cyclin D1 for proteasome-mediated degradation via induction of CDC27/APC3 expression. Proc Natl Acad Sci U S A 2010; 107:9210-5. [PMID: 20439707 PMCID: PMC2889124 DOI: 10.1073/pnas.0913813107] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The transcription factor CCAAT/enhancer binding protein delta (C/EBPdelta, CEBPD, NFIL-6beta) has tumor suppressor function; however, the molecular mechanism(s) by which C/EBPdelta exerts its effect are largely unknown. Here, we report that C/EBPdelta induces expression of the Cdc27 (APC3) subunit of the anaphase promoting complex/cyclosome (APC/C), which results in the polyubiquitination and degradation of the prooncogenic cell cycle regulator cyclin D1, and also down-regulates cyclin B1, Skp2, and Plk-1. In C/EBPdelta knockout mouse embryo fibroblasts (MEF) Cdc27 levels were reduced, whereas cyclin D1 levels were increased even in the presence of activated GSK-3beta. Silencing of C/EBPdelta, Cdc27, or the APC/C coactivator Cdh1 (FZR1) in MCF-10A breast epithelial cells increased cyclin D1 protein expression. Like C/EBPdelta, and in contrast to cyclin D1, Cdc27 was down-regulated in several breast cancer cell lines, suggesting that Cdc27 itself may be a tumor suppressor. Cyclin D1 is a known substrate of polyubiquitination complex SKP1/CUL1/F-box (SCF), and our studies show that Cdc27 directs cyclin D1 to alternative degradation by APC/C. These findings shed light on the role and regulation of APC/C, which is critical for most cellular processes.
Collapse
Affiliation(s)
- Snehalata A. Pawar
- Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201; and
| | - Tapasree Roy Sarkar
- Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201; and
| | - Kuppusamy Balamurugan
- Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201; and
| | - Shikha Sharan
- Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201; and
| | - Jun Wang
- Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201; and
| | - Youhong Zhang
- Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201; and
| | - Steven F. Dowdy
- Department of Cellular and Molecular Medicine, Howard Hughes Medical Institute, University of California, San Diego School of Medicine, La Jolla, CA 92093-0686
| | - A-Mei Huang
- Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201; and
| | - Esta Sterneck
- Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201; and
| |
Collapse
|
23
|
Si J, Yu X, Zhang Y, DeWille JW. Myc interacts with Max and Miz1 to repress C/EBPdelta promoter activity and gene expression. Mol Cancer 2010; 9:92. [PMID: 20426839 PMCID: PMC2879254 DOI: 10.1186/1476-4598-9-92] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 04/28/2010] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND "Loss of function" alterations in CCAAT/Enhancer Binding Proteindelta (C/EBPdelta) have been reported in a number of human cancers including breast, prostate and cervical cancer, hepatocellular carcinoma and acute myeloid leukemia. C/EBPdelta gene transcription is induced during cellular quiescence and repressed during active cell cycle progression. C/EBPdelta exhibits tumor suppressor gene properties including reduced expression in cancer cell lines and tumors and promoter methylation silencing. We previously reported that C/EBPdelta expression is inversely correlated with c-Myc (Myc) expression. Aberrant Myc expression is common in cancer and transcriptional repression is a major mechanism of Myc oncogenesis. A number of tumor suppressor genes are targets of Myc transcriptional repression including C/EBPalpha, p15INK4, p21CIP1, p27KIP1 and p57KIP2. This study investigated the mechanisms underlying Myc repression of C/EBPdelta expression. RESULTS Myc represses C/EBPdelta promoter activity in nontransformed mammary epithelial cells in a dose-dependent manner that requires Myc Box II, Basic Region and HLH/LZ domains. Chromatin Immunoprecipitation (ChIP) assays demonstrate that Myc, Miz1 and Max are associated with the C/EBPdelta promoter in proliferating cells, when C/EBPdelta expression is repressed. EMSAs demonstrate that Miz1 binds to a 30 bp region (-100 to -70) of the C/EBPdelta promoter which contains a putative transcription initiator (Inr) element. Miz1 functions exclusively as a repressor of C/EBPdelta promoter activity. Miz1 siRNA expression or expression of a Miz1 binding deficient Myc (MycV394D) construct reduces Myc repression of C/EBPdelta promoter activity. Max siRNA expression, or expression of a Myc construct lacking the HLH/LZ (Max interacting) region, also reduces Myc repression of C/EBPdelta promoter activity. Miz1 and Max siRNA treatments attenuate Myc repression of endogenous C/EBPdelta expression. Myc Box II interacting proteins RuvBl1 (Pontin, TIP49) and RuvBl2 (Reptin, TIP48) enhances Myc repression of C/EBPdelta promoter activity. CONCLUSION Myc represses C/EBPdelta expression by associating with the C/EBPdelta proximal promoter as a transient component of a repressive complex that includes Max and Miz1. RuvBl1 and RuvBl2 enhance Myc repression of C/EBPdelta promoter activity. These results identify protein interactions that mediate Myc repression of C/EBPdelta, and possibly other tumor suppressor genes, and suggest new therapeutic targets to block Myc transcriptional repression and oncogenic function.
Collapse
Affiliation(s)
- Junling Si
- Department of Veterinary Biosciences, Ohio State University College of Veterinary Medicine, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
24
|
Barresi V, Vitarelli E, Cerasoli S, Barresi G. The cell growth inhibitory transcription factor C/EBPdelta is expressed in human meningiomas in association with low histological grade and proliferation index. J Neurooncol 2009; 97:233-40. [PMID: 19806320 DOI: 10.1007/s11060-009-0024-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Accepted: 09/21/2009] [Indexed: 12/23/2022]
Abstract
CCAAT/enhancer binding protein (C/EBP) delta is a transcription factor which has been demonstrated to mediate the growth arrest of mammary and prostate cancer cell lines. It is induced by several stimuli including inflammatory cytokines. In this study, C/EBPdelta immunohistochemical expression was assessed in 49 meningiomas of different histotype and grade and correlated with a variety of clinico-pathological data and with the overall and recurrence-free survival of the patients. Positive staining was observed in the nuclei of neoplastic cells in 22 out of the 49 cases analyzed. C/EBPdelta expression was significantly associated with a low histological grade and proliferation index, reflected by low Ki-67 labeling index (LI) and mitotic activity, and with the presence of intra-tumoral inflammatory infiltrate and the absence of necrosis. In addition, the absence of C/EBPdelta was significantly correlated with a shorter disease-free interval. Our findings suggest that C/EBPdelta expression may prevent the development of recurrences by inhibition of neoplastic growth in meningiomas. If further studies confirm its induction by inflammatory mediators, this might be exploited in novel therapies to prevent recurrences in meningiomas.
Collapse
Affiliation(s)
- V Barresi
- Department of Human Pathology, University of Messina, Messina, Italy.
| | | | | | | |
Collapse
|
25
|
Kundu JK, Hwang DM, Lee JC, Chang EJ, Shin YK, Fujii H, Sun B, Surh YJ. Inhibitory effects of oligonol on phorbol ester-induced tumor promotion and COX-2 expression in mouse skin: NF-kappaB and C/EBP as potential targets. Cancer Lett 2008; 273:86-97. [PMID: 18848748 DOI: 10.1016/j.canlet.2008.07.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2008] [Revised: 05/15/2008] [Accepted: 07/28/2008] [Indexed: 12/18/2022]
Abstract
Plant polyphenols possess anti-oxidant and anti-inflammatory activities and are hence potential candidates for preventing cancer. The present study was aimed at evaluating the anti-inflammatory and anti-tumor promoting activity of oligonol, a formulation of catechin-type oligomers, in mouse skin stimulated with a proto-type tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA). Pretreatment of mouse skin with oligonol significantly inhibited TPA-induced expression of cyclooxygenase-2 (COX-2). Oligonol diminished nuclear translocation and DNA binding of nuclear factor-kappaB (NF-kappaB) via blockade of phosphorylation and subsequent degradation of IkappaB alpha in TPA-treated mouse skin. Moreover, oligonol suppressed TPA-induced DNA binding of CCAAT/enhancer-binding protein (C/EBP) in mouse skin. Oligonol pretreatment also attenuated the phosphorylation and/or catalytic activities of extracellular signal-regulated protein kinase-1/2 (ERK1/2) and p38 mitogen-activated protein (MAP) kinase. Moreover, p38 MAP kinase inhibitor SB203580, but not the MEK inhibitor U0126, negated TPA-induced DNA binding of C/EBP. In addition, oligonol reduced the incidence and the multiplicity of papillomas and squamous cell carcinomas in 7,12-dimethylbenz[a]anthracene (DMBA)-initiated and TPA-promoted mouse skin, and prolonged the survival of tumor-bearing mice. Pretreatment with oligonol diminished the levels of proliferating cell nuclear antigen and expression of COX-2 in papillomas and carcinomas, respectively, as compared to DMBA plus TPA treatment alone. Taken together, the above findings suggest that oligonol inhibits TPA-induced COX-2 expression by blocking the activation of NF-kappaB and C/EBP via modulation of MAP kinases and suppresses chemically induced mouse skin tumorigenesis.
Collapse
Affiliation(s)
- Joydeb Kumar Kundu
- National Research Laboratory of Molecular Carcinogenesis and Chemoprevention, College of Pharmacy, Seoul National University, Shillim-dong, Kwanak-ku, Seoul 151-742, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Zhang Y, Liu T, Yan P, Huang T, DeWille J. Identification and characterization of CCAAT/Enhancer Binding proteindelta (C/EBPdelta) target genes in G0 growth arrested mammary epithelial cells. BMC Mol Biol 2008; 9:83. [PMID: 18828910 PMCID: PMC2576343 DOI: 10.1186/1471-2199-9-83] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Accepted: 10/01/2008] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND CCAAT/Enhancer Binding Proteindelta (C/EBPdelta) is a member of the highly conserved C/EBP family of leucine zipper (bZIP) proteins. C/EBPdelta is highly expressed in G0 growth arrested mammary epithelial cells (MECs) and "loss of function" alterations in C/EBPdelta have been associated with impaired contact inhibition, increased genomic instability and increased cell migration. Reduced C/EBPdelta expression has also been reported in breast cancer and acute myeloid leukemia (AML). C/EBPdelta functions as a transcriptional activator, however, only a limited number of C/EBPdelta target genes have been reported. As a result, the role of C/EBPdelta in growth control and the potential mechanisms by which "loss of function" alterations in C/EBPdelta contribute to tumorigenesis are poorly understood. The goals of the present study were to identify C/EBPdelta target genes using Chromatin Immunoprecipitation coupled with a CpG Island (HCG12K) Array gene chip ("ChIP-chip") assay and to assess the expression and potential functional roles of C/EBPdelta target genes in growth control. RESULTS ChIP-chip assays identified approximately 100 C/EBPdelta target gene loci which were classified by gene ontology (GO) into cell adhesion, cell cycle regulation, apoptosis, signal transduction, intermediary metabolism, gene transcription, DNA repair and solute transport categories. Conventional ChIP assays validated the ChIP-chip results and demonstrated that 14/14 C/EBPdelta target loci were bound by C/EBPdelta in G0 growth arrested MCF-12A MECs. Gene-specific RT-PCR analysis also demonstrated C/EBPdelta-inducible expression of 14/14 C/EBPdelta target genes in G0 growth arrested MCF-12A MECs. Finally, expression of endogenous C/EBPdelta and selected C/EBPdelta target genes was also demonstrated in contact-inhibited G0 growth arrested nontransformed human MCF-10A MECs and in mouse HC11 MECs. The results demonstrate consistent activation and downstream function of C/EBPdelta in growth arrested human and murine MECs. CONCLUSION C/EBPdelta target genes were identified by a global gene array approach and classified into functional categories that are consistent with biological contexts in which C/EBPdelta is induced, such as contact-mediated G0 growth arrest, apoptosis, metabolism and inflammation. The identification and validation of C/EBPdelta target genes provides new insights into the mechanistic role of C/EBPdelta in mammary epithelial cell biology and sheds new light on the potential impact of "loss of function" alterations in C/EBPdelta in tumorigenesis.
Collapse
Affiliation(s)
- Yingjie Zhang
- Department of Veterinary Biosciences, Ohio State University, 1925 Coffey Road, Columbus, OH 43210, USA
| | - Tong Liu
- Department of Veterinary Biosciences, Ohio State University, 1925 Coffey Road, Columbus, OH 43210, USA
| | - Pearlly Yan
- Department of Molecular Virology, Immunology and Medical Genetics, Ohio State University, 1645 Neil Avenue, Columbus, OH 43210, USA
| | - Tim Huang
- Department of Molecular Virology, Immunology and Medical Genetics, Ohio State University, 1645 Neil Avenue, Columbus, OH 43210, USA
- Molecular Biology and Cancer Genetics Program, Ohio State University, Comprehensive Cancer Center, Columbus, OH, USA
| | - Jim DeWille
- Department of Veterinary Biosciences, Ohio State University, 1925 Coffey Road, Columbus, OH 43210, USA
- Molecular Biology and Cancer Genetics Program, Ohio State University, Comprehensive Cancer Center, Columbus, OH, USA
| |
Collapse
|
27
|
Mamillapalli R, VanHouten J, Zawalich W, Wysolmerski J. Switching of G-protein usage by the calcium-sensing receptor reverses its effect on parathyroid hormone-related protein secretion in normal versus malignant breast cells. J Biol Chem 2008; 283:24435-47. [PMID: 18621740 PMCID: PMC2528989 DOI: 10.1074/jbc.m801738200] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 05/26/2008] [Indexed: 12/20/2022] Open
Abstract
The calcium-sensing receptor (CaR) is a G-protein-coupled receptor that signals in response to extracellular calcium and regulates parathyroid hormone secretion. The CaR is also expressed on normal mammary epithelial cells (MMECs), where it has been shown to inhibit secretion of parathyroid hormone-related protein (PTHrP) and participate in the regulation of calcium and bone metabolism during lactation. In contrast to normal breast cells, the CaR has been reported to stimulate PTHrP production by breast cancer cells. In this study, we confirmed that the CaR inhibits PTHrP production by MMECs but stimulates PTHrP production by Comma-D cells (immortalized murine mammary cells) and MCF-7 human breast cancer cells. We found that changes in intracellular cAMP, but not phospholipase C or MAPK signaling, correlated with the opposing effects of the CaR on PTHrP production. Pharmacologic stimulation of cAMP accumulation increased PTHrP production by normal and transformed breast cells. Inhibition of protein kinase A activity mimicked the effects of CaR activation on inhibiting PTHrP secretion by MMECs and blocked the effects of the CaR on stimulating PTHrP production in Comma-D and MCF-7 cells. We found that the CaR coupled to Galphai in MMECs but coupled to Galphas in Comma-D and MCF-7 cells. Thus, the opposing effects of the CaR on PTHrP production are because of alternate G-protein coupling of the receptor in normal versus transformed breast cells. Because PTHrP contributes to hypercalcemia and bone metastases, switching of G-protein usage by the CaR may contribute to the pathogenesis of breast cancer.
Collapse
Affiliation(s)
- Ramanaiah Mamillapalli
- Section of Endocrinology and Metabolism,
Department of Internal Medicine, School of Medicine and
School of Nursing, Yale University, New Haven,
Connecticut 06520
| | - Joshua VanHouten
- Section of Endocrinology and Metabolism,
Department of Internal Medicine, School of Medicine and
School of Nursing, Yale University, New Haven,
Connecticut 06520
| | - Walter Zawalich
- Section of Endocrinology and Metabolism,
Department of Internal Medicine, School of Medicine and
School of Nursing, Yale University, New Haven,
Connecticut 06520
| | - John Wysolmerski
- Section of Endocrinology and Metabolism,
Department of Internal Medicine, School of Medicine and
School of Nursing, Yale University, New Haven,
Connecticut 06520
| |
Collapse
|
28
|
Zhou S, Si J, Liu T, DeWille JW. PIASy represses CCAAT/enhancer-binding protein delta (C/EBPdelta) transcriptional activity by sequestering C/EBPdelta to the nuclear periphery. J Biol Chem 2008; 283:20137-48. [PMID: 18477566 PMCID: PMC2459298 DOI: 10.1074/jbc.m801307200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Revised: 05/01/2008] [Indexed: 12/21/2022] Open
Abstract
CCAAT/enhancer binding proteindelta (C/EBPdelta) plays a key role in mammary epithelial cell G(0) growth arrest, and "loss of function" alterations in C/EBPdelta have been reported in breast cancer and acute myeloid leukemia. C/EBPdelta is regulated at the transcriptional, post-transcriptional, and post-translational levels, suggesting tight control of C/EBPdelta content and function. Protein inhibitors of activated STATs (PIASs) regulate a growing number of transcription factors, including C/EBPs. HC11 nontransformed mammary epithelial cells express PIAS3, PIASxbeta, and PIASy, and all three PIAS family members repress C/EBPdelta transcriptional activity. PIASy is the most potent, however, repressing C/EBPdelta transcriptional activity by >80%. PIASy repression of C/EBPdelta transcriptional activity is dependent upon interaction between the highly conserved PIASy N-terminal nuclear matrix binding domain (SAPD) and the C/EBPdelta transactivation domain (TAD). PIASy repression of C/EBPdelta transcriptional activity is independent of histone deacetylase activity, PIASy E3 SUMO ligase activity, and C/EBPdelta sumoylation status. PIASy expression is associated with C/EBPdelta translocation from nuclear foci, where C/EBPdelta co-localizes with p300, to the nuclear periphery. PIASy-mediated translocation of C/EBPdelta is dependent upon the PIASy SAPD and C/EBPdelta TAD. PIASy reduces the expression of C/EBPdelta adhesion-related target genes and enhances repopulation of open areas within a cell monolayer in the in vitro "scratch" assay. These results demonstrate that PIASy represses C/EBPdelta by a mechanism that requires interaction between the PIASy SAPD and C/EBPdelta TAD and does not require PIASy SUMO ligase activity or C/EBPdelta sumoylation. PIASy alters C/EBPdelta nuclear localization, reduces C/EBPdelta transcriptional activity, and enhances cell proliferation/migration.
Collapse
Affiliation(s)
- Shanggen Zhou
- Ohio State Biochemistry Program, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
29
|
Zhang Y, Sif S, DeWille J. The mouse C/EBPdelta gene promoter is regulated by STAT3 and Sp1 transcriptional activators, chromatin remodeling and c-Myc repression. J Cell Biochem 2008; 102:1256-70. [PMID: 17471507 DOI: 10.1002/jcb.21356] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
CCAAT/enhancer binding proteindelta (C/EBPdelta) gene transcription is highly induced in G(0) growth arrested mammary epithelial cells and "loss of function" alterations in C/EBPdelta have been reported in human breast cancer. To gain a better understanding of the positive and negative factors that control C/EBPdelta gene expression we investigated the role of transcriptional activators, coactivators, repressors, histone modifications, chromatin remodeling and basal transcriptional machinery components in growing and growth arrested HC11 mouse mammary epithelial cells. Growth arrest treatments result in increased STAT3 activation (pSTAT3) and increased C/EBPdelta expression. Co-immunoprecipitation and chromatin immunoprecipitation (ChIP) assays demonstrated that pSTAT3 and Sp1 interact and bind to the transcriptionally active C/EBPdelta promoter. ChIP assays performed under exponentially growing (C/EBPdelta non-expressing) conditions demonstrated that the C/EBPdelta promoter is preloaded with transcriptional activators (Sp1 and CREB) and transcriptional machinery components (TBP and RNA Pol II). In contrast, under G(0) growth arrest (C/EBPdelta expressing) conditions ChIP analysis detected pSTAT3, Sp1, NCoA/SRC1, CBP/p300, pCREB, TBP, and serine 2 phosphorylated Pol II (pPol II) in association with the C/EBPdelta proximal promoter. C/EBPdelta promoter-associated histone post-translational modification analysis revealed histone H3 and H4 acetylation and methylation patterns consistent with a constitutively "open" chromatin conformation. Chromatin remodeling experiments demonstrated that BRG1, the ATPase component of the SWI/SNF chromatin remodeling complex, is required for C/EBPdelta transcription. Finally, C/EBPdelta expression is repressed in proliferating mammary epithelial cells by c-Myc via a mechanism that involves the binding of c-Myc:Max dimers to C/EBPdelta promoter-bound Miz-1. These results provide a molecular model of C/EBPdelta transcriptional regulation under G(0) growth arrest conditions.
Collapse
Affiliation(s)
- Yingjie Zhang
- Department of Veterinary Biosciences, Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
30
|
Li B, Si J, DeWille JW. Ultraviolet radiation (UVR) activates p38 MAP kinase and induces post-transcriptional stabilization of the C/EBPδ mRNA in G0 growth arrested mammary epithelial cells. J Cell Biochem 2008; 103:1657-69. [PMID: 17902160 DOI: 10.1002/jcb.21554] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The G(0) growth arrest (quiescent) state is highly conserved in evolution to promote survival under adverse environmental conditions. To maintain viability, G(0) growth arrested cells limit gene expression to essential growth control and pro-survival genes. CCAAT enhancer binding protein delta (C/EBPdelta), a member of the C/EBP family of nuclear proteins, is highly expressed in G(0) growth arrested mammary epithelial cells (MECs). Although C/EBPdelta gene transcription is elevated during G(0) growth arrest, C/EBPdelta mRNA and protein are relatively short lived, suggesting tight control of the cellular C/EBPdelta content in unstressed, quiescent cells. Treatment of G(0) growth arrested MECs with ultraviolet radiation (UVR) dramatically increases the C/EBPdelta mRNA half-life (approximately 4-fold) and protein content (approximately 3-fold). The mRNA stabilizing effects of UVR treatment are mediated by the C/EBPdelta mRNA 3'untranslated region, which contains an AU rich element. UVR increased p38 MAP kinase (MAPK) activation and SB203580, a p38 MAPK inhibitor, blocked UVR-induced C/EBPdelta mRNA stabilization. UVR increased the nuclear to cytoplasmic translocation of HuR, an ARE-binding protein that functions in mRNA stabilization. Finally, HuR siRNA treatment blocked UVR-induced stabilization of the C/EBPdelta and C/EBPbeta mRNAs but had no effect on C/EBPzeta (CHOP) mRNA stability. In summary, G(0) growth arrested MECs respond to UVR treatment by activating p38 MAPK, increasing HuR translocation and HuR/C/EBPdelta mRNA binding and stabilizing the C/EBPdelta mRNA. These results identify post-transcriptional stabilization of the C/EBPdelta mRNA as a mechanism to increase C/EBPdelta levels in the stress response of quiescent cells to UVR.
Collapse
Affiliation(s)
- Bin Li
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
31
|
Borrelli S, Testoni B, Callari M, Alotto D, Castagnoli C, Romano RA, Sinha S, Viganò AM, Mantovani R. Reciprocal regulation of p63 by C/EBP delta in human keratinocytes. BMC Mol Biol 2007; 8:85. [PMID: 17903252 PMCID: PMC2148061 DOI: 10.1186/1471-2199-8-85] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Accepted: 09/28/2007] [Indexed: 01/28/2023] Open
Abstract
Background Genetic experiments have clarified that p63 is a key transcription factor governing the establishment and maintenance of multilayered epithelia. Key to our understanding of p63 strategy is the identification of target genes. We perfomed an RNAi screening in keratinocytes for p63, followed by profiling analysis. Results C/EBPδ, member of a family with known roles in differentiation pathways, emerged as a gene repressed by p63. We validated C/EBPδ as a primary target of ΔNp63α by RT-PCR and ChIP location analysis in HaCaT and primary cells. C/EBPδ is differentially expressed in stratification of human skin and it is up-regulated upon differentiation of HaCaT and primary keratinocytes. It is bound to and activates the ΔNp63 promoter. Overexpression of C/EBPδ leads to alteration in the normal profile of p63 isoforms, with the emergence of ΔNp63β and γ, and of the TA isoforms, with different kinetics. In addition, there are changes in the expression of most p63 targets. Inactivation of C/EBPδ leads to gene expression modifications, in part due to the concomitant repression of ΔNp63α. Finally, C/EBPδ is found on the p63 targets in vivo by ChIP analysis, indicating that coregulation is direct. Conclusion Our data highlight a coherent cross-talk between these two transcription factors in keratinocytes and a large sharing of common transcriptional targets.
Collapse
Affiliation(s)
- Serena Borrelli
- Dipartimento di Scienze Biomolecolari e Biotecnologie. U. di Milano. Via Celoria 26, 20133 Milano, Italy
| | - Barbara Testoni
- Dipartimento di Scienze Biomolecolari e Biotecnologie. U. di Milano. Via Celoria 26, 20133 Milano, Italy
| | - Maurizio Callari
- Dipartimento di Scienze Biomolecolari e Biotecnologie. U. di Milano. Via Celoria 26, 20133 Milano, Italy
| | - Daniela Alotto
- Dipartimento di Chirurgia Plastica-Banca della Cute, Ospedale CTO, Torino, Italy
| | - Carlotta Castagnoli
- Dipartimento di Chirurgia Plastica-Banca della Cute, Ospedale CTO, Torino, Italy
| | | | | | - Alessandra M Viganò
- Dipartimento di Scienze Biomolecolari e Biotecnologie. U. di Milano. Via Celoria 26, 20133 Milano, Italy
| | - Roberto Mantovani
- Dipartimento di Scienze Biomolecolari e Biotecnologie. U. di Milano. Via Celoria 26, 20133 Milano, Italy
| |
Collapse
|
32
|
Zhou S, DeWille J. Proteasome-mediated CCAAT/enhancer-binding protein delta (C/EBPdelta) degradation is ubiquitin-independent. Biochem J 2007; 405:341-9. [PMID: 17373909 PMCID: PMC1904515 DOI: 10.1042/bj20070082] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
C/EBPdelta (CCAAT/enhancer-binding protein delta) is a member of the C/EBP family of nuclear proteins that function in the control of cell growth, survival, differentiation and apoptosis. We previously demonstrated that C/EBPdelta gene transcription is highly induced in G(0) growth-arrested mammary epithelial cells but the C/EBPdelta protein exhibits a t(1/2) of only approximately 120 min. The goal of the present study was to investigate the role of C/EBPdelta modification by ubiquitin and C/EBPdelta proteasome-mediated degradation. Structural and mutational analyses demonstrate that an intact leucine zipper is required for C/EBPdelta ubiquitination; however, the leucine zipper does not provide lysine residues for ubiquitin conjugation. C/EBPdelta ubiquitination is not required for proteasome-mediated C/EBPdelta degradation and the presence of ubiquitin does not increase C/EBPdelta degradation by the proteasome. Instead, the leucine zipper stabilizes the C/EBPdelta protein by forming homodimers that are poor substrates for proteasome degradation. To investigate the cellular conditions associated with C/EBPdelta ubiquitination we treated G(0) growth-arrested mammary epithelial cells with DNA-damage- and oxidative-stress-inducing agents and found that C/EBPdelta ubiquitination is induced in response to H2O2. However, C/EBPdelta protein stability is not influenced by H2O2 treatment. In conclusion, our results demonstrate that proteasome-mediated protein degradation of C/EBPdelta is ubiquitin-independent.
Collapse
Affiliation(s)
- Shanggen Zhou
- The Ohio State Biochemistry Program, Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH 43210-1093, U.S.A
| | - James W. DeWille
- The Ohio State Biochemistry Program, Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH 43210-1093, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
33
|
Tang D, Sivko GS, DeWille JW. Promoter methylation reduces C/EBPdelta (CEBPD) gene expression in the SUM-52PE human breast cancer cell line and in primary breast tumors. Breast Cancer Res Treat 2005; 95:161-70. [PMID: 16322893 DOI: 10.1007/s10549-005-9061-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2005] [Indexed: 11/25/2022]
Abstract
CCAAT/Enhancer Binding Proteins (C/EBPs) are a highly conserved family of leucine zipper proteins that regulate cell growth and differentiation. C/EBPdelta functions in the initiation and maintenance of mammary epithelial cell G(0) growth arrest and 'loss of function' alterations in C/EBPdelta gene expression have been reported in human breast cancer and in rodent carcinogen-induced mammary tumors. The molecular mechanism underlying reduced C/EBPdelta gene expression in mammary tumorigenesis, however, is unknown. In this report we demonstrate that C/EBPdelta gene expression is undetectable in the SUM-52PE human breast cancer cell line and that silencing of SUM-52PE C/EBPdelta gene expression is due to epigenetic promoter hypermethylation (26/27 CpGs methylated). The hypermethylated SUM-52PE C/EBPdelta gene promoter is associated with reduced levels of acetylated Histone H4, consistent with a closed, transcriptionally inactive chromatin conformation. Treatment with 5'-aza-cytidine and trichostatin A (TSA) re-activates cytokine-induced SUM-52PE C/EBPdelta gene expression. C/EBPdelta gene expression is reduced to virtually undetectable levels in 32% (18/57) of primary human breast tumors. Site-specific CpG methylation was observed in 33% (6/18) of the low C/EBPdelta expressing primary breast tumors. CpG methylation adjacent to the C/EBPdelta proximal promoter Sp1 site was associated with reduced C/EBPdelta expression in a primary breast cancer sample. Electromobility shift assays (EMSA) demonstrated a significant reduction in binding to oligos containing the CpG methylation 5' to the Sp1 binding site. These results demonstrate a direct link between C/EBPdelta gene promoter hyper- and site specific-methylation and reduced C/EBPdelta gene expression in breast cancer cell lines and primary breast tumors.
Collapse
Affiliation(s)
- D Tang
- Department of Veterinary Biosciences and Ohio State Comprehensive Cancer Center, Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
34
|
Ding L, Stilwell J, Zhang T, Elboudwarej O, Jiang H, Selegue JP, Cooke PA, Gray JW, Chen FF. Molecular characterization of the cytotoxic mechanism of multiwall carbon nanotubes and nano-onions on human skin fibroblast. NANO LETTERS 2005; 5:2448-64. [PMID: 16351195 PMCID: PMC2733876 DOI: 10.1021/nl051748o] [Citation(s) in RCA: 302] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The increasing use of nanotechnology in consumer products and medical applications underlies the importance of understanding its potential toxic effects to people and the environment. Although both fullerene and carbon nanotubes have been demonstrated to accumulate to cytotoxic levels within organs of various animal models and cell types and carbon nanomaterials have been exploited for cancer therapies, the molecular and cellular mechanisms for cytotoxicity of this class of nanomaterial are not yet fully apparent. To address this question, we have performed whole genome expression array analysis and high content image analysis based phenotypic measurements on human skin fibroblast cell populations exposed to multiwall carbon nano-onions (MWCNOs) and multiwall carbon nanotubes (MWCNTs). Here we demonstrate that exposing cells to MWCNOs and MWCNTs at cytotoxic doses induces cell cycle arrest and increases apoptosis/necrosis. Expression array analysis indicates that multiple cellular pathways are perturbed after exposure to these nanomaterials at these doses, with material-specific toxigenomic profiles observed. Moreover, there are also distinct qualitative and quantitative differences in gene expression profiles, with each material at different dosage levels (6 and 0.6 microg/mL for MWCNO and 0.6 and 0.06 microg/mL for MWCNT). MWCNO and MWCNT exposure activates genes involved in cellular transport, metabolism, cell cycle regulation, and stress response. MWCNTs induce genes indicative of a strong immune and inflammatory response within skin fibroblasts, while MWCNO changes are concentrated in genes induced in response to external stimuli. Promoter analysis of the microarray results demonstrate that interferon and p38/ERK-MAPK cascades are critical pathway components in the induced signal transduction contributing to the more adverse effects observed upon exposure to MWCNTs as compared to MWCNOs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Fanqing Frank Chen
- To whom correspondence should be addressed at: Life Sciences Division, Lawrence Berkley National Laboratory, MS 977R0225A, 1 Cyclotron Rd., Berkeley, CA 94720. Phone: (510) 495-2444. Fax: (510) 486-5586. E-mail:
| |
Collapse
|
35
|
Johnson PF. Molecular stop signs: regulation of cell-cycle arrest by C/EBP transcription factors. J Cell Sci 2005; 118:2545-55. [PMID: 15944395 DOI: 10.1242/jcs.02459] [Citation(s) in RCA: 223] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The CCAAT/enhancer-binding protein (C/EBP) family of transcription factors plays an important role in controlling cell proliferation and differentiation. C/EBPalpha is a particularly potent regulator of cell-cycle exit and is induced in terminally differentiating adipocytes and myeloid cells, where it also activates differentiation-specific genes. The growth-inhibiting activity of C/EBPalpha suppresses tumorigenesis in myeloid cells and possibly other tissues. In addition, recent work has identified C/EBPalpha as a component of the p53-regulated growth arrest response elicited by DNA damage in epidermal keratinocytes. Several studies have explored the mechanism by which C/EBPalpha blocks cell-cycle progression at the G1-S boundary, and several models have been proposed but no universally accepted mechanism has emerged. Controversial issues include whether C/EBPalpha acts through an 'off-DNA' mechanism to inhibit cyclin-dependent kinases, and whether and how it functions with the RB-E2F system to repress transcription of S-phase genes. Other C/EBP-family members have also been implicated in positive and negative control of cell proliferation, and the mechanisms underlying their growth-regulatory activities are beginning to be elucidated.
Collapse
Affiliation(s)
- Peter F Johnson
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, NCI-Frederick, MD 21702-1201, USA.
| |
Collapse
|
36
|
Sivko GS, Sanford DC, Dearth LD, Tang D, DeWille JW. CCAAT/Enhancer binding protein delta (c/EBPdelta) regulation and expression in human mammary epithelial cells: II. Analysis of activating signal transduction pathways, transcriptional, post-transcriptional, and post-translational control. J Cell Biochem 2005; 93:844-56. [PMID: 15389878 DOI: 10.1002/jcb.20224] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
CCAAT/enhancer binding protein delta (C/EBPdelta) plays a key role in mammary epithelial cell G0 growth arrest. C/EBPdelta gene expression is down-regulated in rodent mammary tumorigenesis and in human breast cancer, suggesting that "loss of function" alterations in C/EBPdelta gene expression are common in mammary gland malignancies. The goal of this study was to systematically investigate the mechanisms controlling C/EBPdelta gene expression in MCF-10A and MCF-12A human mammary epithelial cell lines. The results demonstrate that G0 growth arrest conditions (i.e., serum and growth factor withdrawal or Oncostatin M (OSM) treatment) result in the activation of JAK1, JAK2, and Tyk 2, members of the Janus kinase family of non-receptor tyrosine kinases, in MCF-10A and MCF-12A cells. Growth arrest or OSM treatment also specifically increases activated (phosphorylated) signal transduction and activators of transcription 3 (STAT3) levels, demonstrating that STAT3, not STAT1 or STAT5, is the downstream target of the activated Janus kinases in MCF-10A and MCF-12A cells. Whole cell lysates from G0 growth arrested (GA) and OSM-treated MCF-12A cells exhibit increased acute phase response element (APRE) binding compared to lysates from growing (GR) MCF-12A cells. Transient transfection using C/EBPdelta promoter-luciferase constructs demonstrated that the APRE (STAT3) consensus binding site is essential for growth arrest or OSM induction of the C/EBPdelta promoter. Mutation of the C/EBPdelta promoter STAT3 site or expression of a dominant negative STAT3 construct (STAT3delta) reduces C/EBPdelta promoter activity in response to growth arrest conditions. The human C/EBPdelta promoter also contains an Sp1 site at -61 bp (relative to the transcriptional start site) which is required for basal transcriptional activation. Mutation or deletion of the Sp1 site decreases promoter activity in response to growth arrest conditions. Treatment with the transcriptional inhibitor actinomycin D demonstrated that the C/EBPdelta mRNA exhibits a relatively short half-life (approximately 40 min). Similarly, treatment with the translational inhibitor anisomysin demonstrated that the C/EBPdelta protein half-life was also relatively short (approximately 160 min). These results indicate that the human C/EBPdelta gene is controlled at multiple levels, consistent with a role for C/EBPdelta in cell cycle control and/or cell fate determination.
Collapse
Affiliation(s)
- G S Sivko
- Department of Veterinary Biosciences and Division of Molecular Biology and Cancer Genetics, Ohio State Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | | | | | | | | |
Collapse
|
37
|
Sivko GS, DeWille JW. CCAAT/Enhancer binding protein delta (c/EBPdelta) regulation and expression in human mammary epithelial cells: I. "Loss of function" alterations in the c/EBPdelta growth inhibitory pathway in breast cancer cell lines. J Cell Biochem 2005; 93:830-43. [PMID: 15389879 DOI: 10.1002/jcb.20223] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
"Loss of function" alterations in growth inhibitory signal transduction pathways are common in cancer cells. In this study, we show that growth arrest (GA) treatments--serum and growth factor withdrawal and growth inhibitory IL-6 family cytokines (Interleukin-6 and Oncostatin M (OSM))--increase STAT3 phosphorylation (pSTAT3), increase CCAAT enhancer binding protein delta (C/EBPdelta) gene expression and induce GA of primary, finite-lifespan human mammary epithelial cells (HMECs), and immortalized breast cell lines (MCF-10A and MCF-12A). In contrast, serum and growth factor withdrawal from human breast cancer cell lines (MCF-7, SK-BR-3, T-47D, and MDA-MB-231) for up to 48 h induced a relatively modest increase in pSTAT3 levels and C/EBPdelta gene expression and resulted in varying levels of GA. In most breast cancer cell lines, IL-6 family cytokine treatment increased pSTAT3 levels and C/EBPdelta gene expression, however, growth inhibition was cell line dependent. In addition to "loss of function" alterations in growth inhibitory pathways, breast cancer cell lines also exhibit "gain of function" alterations in growth signaling pathways. The Akt growth/ survival pathway is constitutively activated in T-47D and MCF-7 breast cancer cells. The Akt inhibitor LY 294,002 significantly enhanced T-47D growth inhibition by serum and growth factor withdrawal or IL-6 family cytokine treatment. Finally, we show that activation of the pSTAT3/C/EBPdelta growth control pathway is independent of estrogen receptor status. These results demonstrate that "loss of function" alterations in the pSTAT3/C/EBPdelta growth inhibitory signal transduction pathway are relatively common in human breast cancer cell lines. Defective activation of the pSTAT3/ C/EBPdelta growth inhibitory signal transduction pathway, in conjunction with constitutive activation of the Akt growth stimulatory pathway, may play a synergistic role in the etiology or progression of breast cancer.
Collapse
Affiliation(s)
- G S Sivko
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
38
|
Ikezoe T, Gery S, Yin D, O'Kelly J, Binderup L, Lemp N, Taguchi H, Koeffler HP. CCAAT/Enhancer-Binding Protein δ: A Molecular Target of 1,25-Dihydroxyvitamin D3 in Androgen-Responsive Prostate Cancer LNCaP Cells. Cancer Res 2005; 65:4762-8. [PMID: 15930295 DOI: 10.1158/0008-5472.can-03-3619] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
1,25-Dihydroxyvitamin D3 [1,25(OH)2D3], the active metabolite of vitamin D3, inhibits the proliferation of prostate cancer cells. However, the molecular mechanisms by which 1,25(OH)2D3 inhibits the proliferation of these cells remain to be fully elucidated. In this study, we used microarray technology to identify target genes of 1,25(OH)2D3 in androgen-responsive prostate cancer LNCaP cells. 1,25(OH)2D3 up-regulated CCAAT/enhancer-binding protein delta (C/EBPdelta) by approximately 5-fold in these cells. Knockdown of C/EBPdelta expression by RNA interference showed that C/EBPdelta is essential for the significant growth inhibition of LNCaP cells in response to 1,25(OH)2D3 treatment. Moreover, we found that 1,25(OH)2D3 induced C/EBPdelta in other cancer cells, including the estrogen receptor (ER)-expressing MCF-7 and T47D breast cancer cells that are sensitive to the growth inhibitory effects of 1,25(OH)2D3. On the other hand, 1,25(OH)2D3 was not able to induce C/EBPdelta in either androgen receptor-negative PC-3 and DU145 or ER-negative breast cancer MDA-MB-231 cells that were relatively resistant to growth inhibition by 1,25(OH)2D3. Furthermore, forced expression of C/EBPdelta in prostate cancer LNCaP as well as breast cancer MCF-7 and T47D cells dramatically reduced their clonal growth. Taken together, forced expression of C/EBPdelta in cancer cells may be a promising therapeutic strategy.
Collapse
Affiliation(s)
- Takayuki Ikezoe
- Division of Hematology/Oncology, Cedars-Sinai Medical Center, University of California at Los Angeles School of Medicine, Los Angeles, California, USA.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Wang JM, Tseng JT, Chang WC. Induction of human NF-IL6beta by epidermal growth factor is mediated through the p38 signaling pathway and cAMP response element-binding protein activation in A431 cells. Mol Biol Cell 2005; 16:3365-76. [PMID: 15901830 PMCID: PMC1165418 DOI: 10.1091/mbc.e05-02-0105] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The CCAAT/enhancer binding protein delta (C/EBPdelta, CRP3, CELF, NF-IL6beta) regulates gene expression and plays functional roles in many tissues, such as in acute phase response to inflammatory stimuli, adipocyte differentiation, and mammary epithelial cell growth control. In this study, we examined the expression of human C/EBPdelta (NF-IL6beta) gene by epidermal growth factor (EGF) stimulation in human epidermoid carcinoma A431 cells. NF-IL6beta was an immediate-early gene activated by the EGF-induced signaling pathways in cells. By using 5'-serial deletion reporter analysis, we showed that the region comprising the -347 to +9 base pairs was required for EGF response of the NF-IL6beta promoter. This region contains putative consensus binding sequences of Sp1 and cAMP response element-binding protein (CREB). The NF-IL6beta promoter activity induced by EGF was abolished by mutating the sequence of cAMP response element or Sp1 sites in the -347/+9 base pairs region. Both in vitro and in vivo DNA binding assay revealed that the CREB binding activity was low in EGF-starved cells, whereas it was induced within 30 min after EGF treatment of A431 cells. However, no change in Sp1 binding activity was found by EGF treatment. Moreover, the phosphatidylinositol 3 (PI3)-kinase inhibitor (wortmannin) and p38(MAPK) inhibitor (SB203580) inhibited the EGF-induced CREB phosphorylation and the expression of NF-IL6beta gene in cells. We also demonstrated that CREB was involved in regulating the NF-IL6beta gene transcriptional activity mediated by p38(MAPK). Our results suggested that PI3-kinase/p38(MAPK)/CREB pathway contributed to the EGF activation of NF-IL6beta gene expression.
Collapse
Affiliation(s)
- Ju-Ming Wang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | | | | |
Collapse
|
40
|
Sanford DC, DeWille JW. C/EBPdelta is a downstream mediator of IL-6 induced growth inhibition of prostate cancer cells. Prostate 2005; 63:143-54. [PMID: 15486993 DOI: 10.1002/pros.20159] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Although a number of reports have investigated the effects of IL-6 family cytokines on prostate cell growth, there is limited information available identifying IL-6 inducible downstream effector genes and their function in growth control. Previous studies have demonstrated that IL-6 treatment results in the activation of signal transducer and activator of transcription3 (STAT3) in prostate cancer cells. The goal of this study was to investigate the influence of IL-6 treatment and activation of the Jak/STAT signal transduction pathway on C/EBPdelta gene expression and growth inhibition of human prostate cancer cells. METHODS Expression of C/EBPdelta and STAT3 activation were assayed using Northern and Western blotting techniques. Proliferation was assessed by [(3)H] thymidine incorporation, flow cytometry, and colony formation analyses. The analysis of the transcriptional regulation of C/EBPdelta was performed using luciferase-reporter constructs. RESULTS In this report, we demonstrate that IL-6 treatment induces STAT3 activation (pSTAT3), pSTAT3 binds to the human C/EBPdelta gene promoter and induces its expression. We also demonstrate that C/EBPdelta over-expression is capable of suppressing prostate cancer cell growth. CONCLUSIONS These results demonstrate that C/EBPdelta gene expression is increased in IL-6 treated LNCaP cells. Increased C/EBPdelta gene expression plays an important role in IL-6/STAT3 mediated growth arrest of LNCaP prostate cancer cells. Ongoing studies are investigating the mechanism by which C/EBPdelta controls prostate cancer cell growth and the potential role of C/EBPdelta in the survival and chemo resistance of prostate cancer metastasis. (c) 2004 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Daniel C Sanford
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | | |
Collapse
|
41
|
Yoon K, Smart RC. C/EBPalpha is a DNA damage-inducible p53-regulated mediator of the G1 checkpoint in keratinocytes. Mol Cell Biol 2004; 24:10650-60. [PMID: 15572670 PMCID: PMC533967 DOI: 10.1128/mcb.24.24.10650-10660.2004] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The basic leucine zipper transcription factor, CCAAT/enhancer binding protein alpha (C/EBPalpha), is abundantly expressed in keratinocytes of the skin; however, its function in skin is poorly characterized. UVB radiation is responsible for the majority of human skin cancers. In response to UVB-induced DNA damage, keratinocytes activate cell cycle checkpoints that arrest cell cycle progression and prevent replication of damaged DNA, allowing time for DNA repair. We report here that UVB radiation is a potent inducer of C/EBPalpha in human and mouse keratinocytes, as well as in mouse skin in vivo. UVB irradiation of keratinocytes resulted in the transcriptional up-regulation of C/EBPalpha mRNA, producing a >70-fold increase in C/EBPalpha protein levels. N-Methyl-N'-nitro-N-nitrosoguanidine, etoposide, and bleomycin also induced C/EBPalpha. UVB-induced C/EBPalpha was accompanied by an increase in p53 protein and caffeine, an inhibitor of ataxia-telangiectasia-mutated kinase, and ataxia-telangiectasia-mutated and Rad3-related kinase inhibited UVB-induced increases in both C/EBPalpha and p53. UVB irradiation of p53-null or mutant p53-containing keratinocytes failed to induce C/EBPalpha. UVB irradiation of C/EBPalpha knockdown keratinocytes displayed a greatly diminished DNA damage G(1) checkpoint, and this was associated with increased sensitivity to UVB-induced apoptosis. Our results uncover a novel role for C/EBPalpha as a p53-regulated DNA damage-inducible gene that has a critical function in the DNA damage G(1) checkpoint response in keratinocytes.
Collapse
Affiliation(s)
- Kyungsil Yoon
- Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, NC 27695-7633, USA
| | | |
Collapse
|
42
|
Chun KS, Surh YJ. Signal transduction pathways regulating cyclooxygenase-2 expression: potential molecular targets for chemoprevention. Biochem Pharmacol 2004; 68:1089-100. [PMID: 15313405 DOI: 10.1016/j.bcp.2004.05.031] [Citation(s) in RCA: 300] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2004] [Accepted: 05/24/2004] [Indexed: 01/01/2023]
Abstract
Expression of cyclooxygenase-2 (COX-2) has been reported to be elevated in human colorectal adenocarcinoma and other tumors, including those of breast, cervical, prostate, and lung. Genetic knock-out or pharmacological inhibition of COX-2 has been shown to protect against experimentally-induced carcinogenesis. Results from epidemiological and laboratory studies indicate that regular intake of selective COX-2 inhibitors reduces the risk of several forms of human malignancies. Thus, it is conceivable that targeted inhibition of abnormally or improperly elevated COX-2 provides one of the most effective and promising strategies for cancer chemoprevention. The COX-2 promoter contains a TATA box and binding sites for several transcription factors including nuclear factor-kappaB (NF-kappaB), nuclear factor for interleukin-6/CCAAT enhancer-binding protein (NF-IL6/C/EBP) and cyclic AMP response element (CRE) binding protein. Upregulation of COX-2 is mediated by a variety of stimuli including tumor promoters, oncogenes, and growth factors. Stimulation of either protein kinase C (PKC) or Ras signaling enhances mitogen-activated protein kinase (MAPK) activity, which, in turn, activates transcription of cox-2. Celecoxib, the first US FDA approved selective COX-2 inhibitor, initially developed for the treatment of adult rheumatoid arthritis and osteoarthritis, has been reported to reduce the formation of polyps in patients with familial adenomatous polyposis. This COX-2 specific inhibitor also protects against experimentally-induced carcinogenesis, but the underlying molecular mechanisms are poorly understood. The present review covers the signal transduction pathways responsible for regulating COX-2 expression as novel molecular targets of chemopreventive agents with celecoxib as a specific example.
Collapse
Affiliation(s)
- Kyung-Soo Chun
- Laboratory of Biochemistry and Molecular Toxicology, College of Pharmacy, Seoul National University, 151-742, South Korea
| | | |
Collapse
|
43
|
Gagliardi M, Maynard S, Miyake T, Rodrigues N, Tjew SL, Cabannes E, Bedard PA. Opposing roles of C/EBPbeta and AP-1 in the control of fibroblast proliferation and growth arrest-specific gene expression. J Biol Chem 2003; 278:43846-54. [PMID: 12896981 DOI: 10.1074/jbc.m304085200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chicken embryo fibroblasts (CEF) express several growth arrest-specific (GAS) gene products in G0. In contact-inhibited cells, the expression of the most abundant of these proteins, the p20K lipocalin, is activated at the transcriptional level by C/EBPbeta. In this report, we describe the role of C/EBPbeta in CEF proliferation. We show that the expression of a dominant negative mutant of C/EBPbeta (designated Delta184-C/EBPbeta) completely inhibited p20K expression at confluence and stimulated the proliferation of CEF without inducing transformation. Mouse embryo fibroblasts nullizygous for C/EBPbeta had a proliferative advantage over cells with one or two functional copies of this gene. C/EBP inhibition enhanced the expression of the three major components of AP-1 in cycling CEF, namely c-Jun, JunD, and Fra-2, and stimulated AP-1 activity. In contrast, the over-expression of C/EBPbeta caused a dramatic reduction in the levels of AP-1 proteins. Therefore, C/EBPbeta is a negative regulator of AP-1 expression and activity in CEF. The expression of cyclin D1 and cell proliferation were stimulated by the dominant negative mutant of C/EBPbeta but not in the presence of TAM67, a dominant negative mutant of c-Jun and AP-1. CEF over-expressing c-Jun, and to a lesser extent JunD and Fra-2, did not growth arrest at high cell density and did not express p20K. Therefore, AP-1 interfered with the action of C/EBPbeta at high cell density, indicating that these factors play opposing roles in the control of GAS gene expression and CEF proliferation.
Collapse
Affiliation(s)
- Mark Gagliardi
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | | | | | | | | | | | | |
Collapse
|
44
|
Walkley CR, Purton LE, Snelling HJ, Yuan YD, Nakajima H, Chambon P, Chandraratna RAS, McArthur GA. Identification of the molecular requirements for an RAR alpha-mediated cell cycle arrest during granulocytic differentiation. Blood 2003; 103:1286-95. [PMID: 14576045 DOI: 10.1182/blood-2003-07-2391] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Retinoids are potent inducers of cell cycle arrest and differentiation of numerous cell types, notably granulocytes. However the mechanisms by which retinoids mediate cell cycle arrest during differentiation remain unclear. We have used myeloid differentiation to characterize the molecular pathways that couple cell cycle withdrawal to terminal differentiation. Using primary cells from mice deficient for either the cyclin-dependent kinase inhibitor (CDKi) p27(Kip1), the Myc antagonist Mad1, or both Mad1 and p27(Kip1), we observed that signals mediated through retinoic acid receptor alpha (RAR alpha), but not RAR beta or gamma, required both Mad1 and p27(Kip1) to induce cell cycle arrest and to accelerate terminal differentiation of granulocytes. Although RAR alpha did not directly regulate Mad1 or p27(Kip1), the RAR alpha target gene C/EBP epsilon directly regulated transcription of Mad1. Induction of C/EBP epsilon activity in granulocytic cells led to rapid induction of Mad1 protein and transcript, with direct binding of C/EBP epsilon to the Mad1 promoter demonstrated through chromatin immunoprecipitation assay. These data demonstrate that cell cycle arrest in response to RAR alpha specifically requires Mad1 and p27(Kip1) and that Mad1 is transcriptionally activated by CCAAT/enhancer-binding protein epsilon (C/EBP epsilon). Moreover, these data demonstrate selectivity among the RARs for cell cycle arrest pathways and provide a direct mechanism to link differentiation induction and regulation of the Myc antagonist Mad1.
Collapse
Affiliation(s)
- Carl R Walkley
- Division of Research, Peter MacCallum Cancer Centre, St. Andrew's Place, East Melbourne, Victoria, 3002, Australia
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Bjerregaard MD, Jurlander J, Klausen P, Borregaard N, Cowland JB. The in vivo profile of transcription factors during neutrophil differentiation in human bone marrow. Blood 2003; 101:4322-32. [PMID: 12560239 DOI: 10.1182/blood-2002-03-0835] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In vivo distribution of myeloid transcription factors during granulopoiesis was investigated by Northern and Western blotting in 3 neutrophil precursor populations from human bone marrow: immature (myeloblasts [MBs] and promyelocytes [PMs]); intermediate mature (myelocytes [MCs] and metamyelocytes [MMs]); and mature neutrophil cells (band cells [BCs] and segmented neutrophil cells [SCs]). Nonneutrophil cells were removed with magnetic-bead-coupled antibodies against CD2, CD3, CD14, CD19, CD56, CD61, glycophorin-A, and CD49d (BCs/SCs) before RNA and protein extraction. Polymorphonuclear neutrophils (PMNs) from peripheral blood depleted with anti-CD49d antibodies were also included. Expression of acute myeloid leukemia 1b (AML-1b), c-myb, GATA-1, and CCAAT/enhancer binding protein gamma (C/EBP-gamma) was seen primarily in MBs/PMs, and little expression was found in more mature cells. The level of C/EBP-alpha was constant in the bone marrow-derived cells and decreased in PMNs. C/EBP-epsilon was found primarily in MCs/MMs and was almost absent in more mature cells. Expression of C/EBP-beta, C/EBP-delta, and C/EBP-zeta was observed from the MC/MM stage onward, with peak levels in the most mature cells. The amount of PU.1 increased throughout maturation whereas the level of Elf-1 reached a nadir in MCs/MMs The PU.1 coactivator c-jun and c-jun's dimerization partner c-fos were both detectable in MCs/MMs and increased in amount with maturity. CCAAT displacement protein (CDP) was found at comparable levels at all stages of differentiation. This demonstrates a highly individualized expression of the transcription factors, which can form the basis for the heterogeneous expression of granule proteins during granulopoiesis and cell cycle arrest in metamyelocytes.
Collapse
|
46
|
Dearth LR, DeWille J. An AU-rich element in the 3' untranslated region of the C/EBP delta mRNA is important for protein binding during G0 growth arrest. Biochem Biophys Res Commun 2003; 304:344-50. [PMID: 12711321 DOI: 10.1016/s0006-291x(03)00597-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Posttranscriptional regulation at the level of mRNA stability is becoming increasingly recognized as an important mechanism to control the levels of mRNAs that encode key cell fate determining proteins. Previous work from our laboratory demonstrated that C/EBPdelta is a highly unstable mRNA in G(0) growth arrested mammary epithelial cells. In this report we investigated trans-acting factor binding to the C/EBPdelta 3'-UTR and identified a cis-acting element important for this interaction. RNA electromobility shift assays (REMSAs) demonstrate that the C/EBPdelta mRNA 3'-UTR binds trans-acting factor(s) present in G(0) growth arrested mammary epithelial cell lysates. This binding was not detected in the presence of lysates from growing cells. UV-binding analysis detected a RNA/protein complex of approximately 35kDa following incubation of the full-length C/EBPdelta 3'UTR with lysates from G(0) growth arrested mammary epithelial cells. Competition assays indicate that a specific AU-rich region (U1) is necessary for trans-acting factor binding to the C/EBPdelta 3'-UTR. These studies have identified an AU-rich element located within the C/EBPdelta 3'-UTR that interacts with a putative G(0) growth arrest-specific trans-acting factor(s), which may regulate C/EBPdelta mRNA decay.
Collapse
Affiliation(s)
- Lawrence R Dearth
- Molecular, Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH 43210-1093, USA
| | | |
Collapse
|
47
|
Milde-Langosch K, Löning T, Bamberger AM. Expression of the CCAAT/enhancer-binding proteins C/EBPalpha, C/EBPbeta and C/EBPdelta in breast cancer: correlations with clinicopathologic parameters and cell-cycle regulatory proteins. Breast Cancer Res Treat 2003; 79:175-85. [PMID: 12825852 DOI: 10.1023/a:1023929504884] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Members of the CCAAT/enhancer-binding protein (C/EBP) family of transcription factors are involved in the regulation of proliferation and differentiation of the mammary gland. In order to investigate the role of C/EBPalpha, -beta and -delta in breast cancer, we performed western blot analysis and partly immunohistochemistry in 75 mammary carcinomas, 10 normal mammary tissue samples and four mammary cell lines. Expression levels of both C/EBPalpha isoforms, C/EBPbeta isoforms LAP1, LAP2 (liver-enriched transcriptional activating proteins), and LIP (liver-enriched transcriptional inhibitory protein), and C/EBPdelta in the tumors were correlated with clinicopathological tumor parameters, expression of estrogen and progesterone receptors (ER, PR), Ki67 immunostaining, and expression of seven cell-cycle regulatory proteins which had been analyzed before. High C/EBPalpha and -delta protein levels correlated significantly with expression of cell-cycle promoters (cyclin D1 and E) and cell-cycle inhibitory proteins (Rb, p27, p16), but with none of the established prognostic parameters. In contrast, statistically significant relationships of the full-length C/EBPbeta isoform LAP1 and a negative estrogen receptor status, high grading, nodal involvement, and high cyclin E and p16 expression were found. For the shorter isoform LIP, correlations with an ER-negative phenotype and high Ki67 immunostaining were detected, and high histological grading (G3) correlated with lower LAP/LIP ratio. These results suggest that high C/EBPbeta expression might be involved in tumor progression and indicative of an unfavorable prognosis.
Collapse
Affiliation(s)
- Karin Milde-Langosch
- Institute of Pathology, Department of Gynecopathology, University-Hospital Hamburg-Eppendorf (UKE), Hamburg, Germany.
| | | | | |
Collapse
|
48
|
Dearth LR, DeWille J. Posttranscriptional and posttranslational regulation of C/EBP delta in G0 growth-arrested mammary epithelial cells. J Biol Chem 2003; 278:11246-55. [PMID: 12554732 DOI: 10.1074/jbc.m207930200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Previous work from our laboratory demonstrated that CCAAT/enhancer-binding protein delta (C/EBP delta) functions in the initiation and maintenance of G(0) growth arrest in mouse mammary epithelial cells (MECs). In this report, we investigated the posttranscriptional and posttranslational regulation of C/EBP delta in G(0) growth-arrested mouse MECs. The results of transcriptional inhibitor studies demonstrated that the C/EBP delta mRNA exhibits a relatively short half-life in G(0) growth-arrested mouse MECs (t(1/2) approximately 35 min). In contrast, C/EBP delta mRNA has a longer half-life in G(0) growth-arrested mouse fibroblast cells (t(1/2) >100 min). Oligo/RNase H cleavage analysis and rapid amplification of cDNA ends-poly(A) test both confirmed the short C/EBP delta mRNA half-life observed in MECs and demonstrated that the C/EBP delta mRNA poly(A) tail is relatively short (approximately 100 nucleotides). In addition, the poly(A) tail length was not shortened during C/EBP delta mRNA degradation, which suggested a deadenylation-independent pathway. The C/EBP delta protein also exhibited a relatively short half-life in G(0) growth-arrested mouse MECs (t(1/2) approximately 120 min). The C/EBP delta protein was degraded in a ubiquitin-dependent manner, primarily in the nucleus, during G(0) growth arrest. In conclusion, these studies indicated that the C/EBP delta mRNA and protein content are under tight regulation in G(0) growth-arrested mouse MECs, despite the general concept that G(0) growth arrest is associated with a decrease in cellular activity.
Collapse
Affiliation(s)
- Lawrence R Dearth
- Molecular, Cellular, and Developmental Biology Graduate Program, the Ohio State University, Columbus, Ohio 43210-1093, USA
| | | |
Collapse
|
49
|
Gigliotti AP, Johnson PF, Sterneck E, DeWille JW. Nulliparous CCAAT/enhancer binding proteindelta (C/EBPdelta) knockout mice exhibit mammary gland ductal hyperlasia. Exp Biol Med (Maywood) 2003; 228:278-85. [PMID: 12626772 DOI: 10.1177/153537020322800306] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
CCAAT/Enhancer binding proteins (C/EBPs) are a family of nuclear proteins that function in the control of cell growth, death, and differentiation. We previously reported that C/EBPdelta plays a key role in mammary epithelial cell G(0) growth arrest. In this report, we investigated the role of C/EBPdelta in mammary gland development and function using female mice homozygous for a targeted deletion of C/EBPdelta (C/EBPdelta -/-). C/EBPdelta -/- females develop normally and exhibit normal reproductive and lactational performance. Adult nulliparous C/EBPdelta -/- females, however, exhibit mammary epithelial cell growth control defects. The mean number of mammary ductal branches is significantly higher in adult nulliparous C/EBPdelta -/- females compared with C/EBPdelta +/+ (wild-type control) females (66.8 +/- 5.2 vs 42.9 +/- 6.3 branch points/field, P < 0.01). In addition, the mean total mammary gland cellular volume occupied by epithelium is significantly higher in adult nulliparous C/EBPdelta -/- females compared with C/EBPdelta +/+ controls (29.0 +/- 1.4 vs 20.4 +/- 1.3, P < 0.001). Our results showed that the BrdU labeling index was significantly higher in mammary epithelial cells from nulliparous C/EBPdelta -/- females compared with C/EBPdelta +/+ controls during the proestrus/estrus (4.55 +/- 0.70 vs 2.14 +/- 0.43, P < 0.01) and metestrus/diestrus (6.92 +/- 0.75 vs 3.98 +/- 0.43 P < 0.01) phases of the estrus cycle. In contrast, the percentage of mammary epithelial cells undergoing apoptosis during both phases of the estrus cycle did not differ between C/EBPdelta -/- and C/EBPdelta +/+ females. The increased epithelial cell content and proliferative capacity was restricted to the nulliparous C/EBPdelta -/- females as no differences in mammary gland morphology, ductal branching or total epithelial content were observed between multiparous C/EBPdelta -/- and C/EBPdelta +/+ females. These results demonstrate that C/EBPdelta plays a novel role in mammary epithelial cell growth control that appears to be restricted to the nulliparous mammary gland.
Collapse
Affiliation(s)
- Andrew P Gigliotti
- Department of Veterinary Biosciences and Division of Molecular Biology and Cancer Genetics, Ohio State Comprehensive Cancer Center, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
50
|
Marchat LA, Pezet-Valdez M, López-Camarillo C, Orozco E. Entamoeba histolytica: expression and DNA binding of CCAAT/enhancer-binding proteins are regulated through the cell cycle. Exp Parasitol 2003; 103:82-7. [PMID: 12810051 DOI: 10.1016/s0014-4894(03)00064-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Laurence A Marchat
- Programa Institucional de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía del IPN, Guillermo Massieu Helguera #239 Fracc. La Escalera, Ticóman, CP 07320 07300, México, DF, Mexico.
| | | | | | | |
Collapse
|