1
|
Chang CW, Chin YH, Liu MS, Shen YC, Yan SJ. High sugar diet promotes tumor progression paradoxically through aberrant upregulation of pepck1. Cell Mol Life Sci 2024; 81:396. [PMID: 39261338 PMCID: PMC11390995 DOI: 10.1007/s00018-024-05438-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/16/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
High dietary sugar (HDS), a contemporary dietary concern due to excessive intake of added sugars and carbohydrates, escalates the risk of metabolic disorders and concomitant cancers. However, the molecular mechanisms underlying HDS-induced cancer progression are not completely understood. We found that phosphoenolpyruvate carboxykinase 1 (PEPCK1), a pivotal enzyme in gluconeogenesis, is paradoxically upregulated in tumors by HDS, but not by normal dietary sugar (NDS), during tumor progression. Targeted knockdown of pepck1, but not pepck2, specifically in tumor tissue in Drosophila in vivo, not only attenuates HDS-induced tumor growth but also significantly improves the survival of Ras/Src tumor-bearing animals fed HDS. Interestingly, HP1a-mediated heterochromatin interacts directly with the pepck1 gene and downregulates pepck1 gene expression in wild-type Drosophila. Mechanistically, we demonstrated that, under HDS conditions, pepck1 knockdown reduces both wingless and TOR signaling, decreases evasion of apoptosis, reduces genome instability, and suppresses glucose uptake and trehalose levels in tumor cells in vivo. Moreover, rational pharmacological inhibition of PEPCK1, using hydrazinium sulfate, greatly improves the survival of tumor-bearing animals with pepck1 knockdown under HDS. This study is the first to show that elevated levels of dietary sugar induce aberrant upregulation of PEPCK1, which promotes tumor progression through altered cell signaling, evasion of apoptosis, genome instability, and reprogramming of carbohydrate metabolism. These findings contribute to our understanding of the complex relationship between diet and cancer at the molecular, cellular, and organismal levels and reveal PEPCK1 as a potential target for the prevention and treatment of cancers associated with metabolic disorders.
Collapse
Affiliation(s)
- Che-Wei Chang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan City, Taiwan
- Department of Physiology, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan City, Taiwan
| | - Yu-Hshun Chin
- Department of Physiology, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan City, Taiwan
| | - Meng-Syuan Liu
- Department of Physiology, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan City, Taiwan
| | - Yu-Chia Shen
- Department of Physiology, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan City, Taiwan
| | - Shian-Jang Yan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan City, Taiwan.
- Department of Physiology, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan City, Taiwan.
| |
Collapse
|
2
|
Su X, Li T, Zhu X, Zheng P, Pan H, Guo H. Exploring the impact of nonylphenol exposure on Litopenaeus vannamei at the histological and molecular levels. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116475. [PMID: 38781889 DOI: 10.1016/j.ecoenv.2024.116475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Nonylphenol (NP) is one of the common pollutants in the environment that have toxic effects on aquatic animals. Nevertheless, little is known about the possible toxicity mechanism of NP on the hepatopancreas of Litopenaeus vannamei. In the present study, the detrimental effects of NP on the hepatopancreas of the L. vannamei were explored at the histological and transcriptomic levels. The findings indicated that after NP exposed for 3, 12, and 48 h, the hepatopancreas histology was changed significantly. Transcriptomic analysis showed that a total of 4302, 3651, and 4830 differentially expressed genes (DEGs) were identified at 3, 12, and 48 h following NP exposure. All these DEGs were classified into 12 clusters according to the expression patterns at different time points. GO and KEGG enrichment analyses of DEGs were also performed, immunological, metabolic, and inflammatory related pathways, including arachidonic acid metabolism (ko00590), the PPAR signaling pathway (ko03320), and the regulation of TRP channels by inflammatory mediators (ko04750) were significantly enriched. Six DEGs were selected for validation by quantitative real-time PCR (qRT-PCR) and the results confirmed the reliability of transcriptome data. All results indicated that NP is toxic to L. vannamei by damaging the histopathological structure and disrupting the biological function. The findings would provide a theoretical framework for lowering or limiting the detrimental impacts of NP on aquaculture and help us to further study the molecular toxicity of NP in crustaceans.
Collapse
Affiliation(s)
- Xianbin Su
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, People's Republic of China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang 524025, People's Republic of China
| | - Teng Li
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, People's Republic of China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang 524025, People's Republic of China; Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, People's Republic of China
| | - Xiaowen Zhu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, People's Republic of China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang 524025, People's Republic of China
| | - Peihua Zheng
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, People's Republic of China
| | - Huakang Pan
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, People's Republic of China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang 524025, People's Republic of China
| | - Hui Guo
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, People's Republic of China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang 524025, People's Republic of China.
| |
Collapse
|
3
|
Rojas BE, Iglesias AA. Integrating multiple regulations on enzyme activity: the case of phospho enolpyruvate carboxykinases. AOB PLANTS 2023; 15:plad053. [PMID: 37608926 PMCID: PMC10441589 DOI: 10.1093/aobpla/plad053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 07/27/2023] [Indexed: 08/24/2023]
Abstract
Data on protein post-translational modifications (PTMs) increased exponentially in the last years due to the refinement of mass spectrometry techniques and the development of databases to store and share datasets. Nevertheless, these data per se do not create comprehensive biochemical knowledge. Complementary studies on protein biochemistry are necessary to fully understand the function of these PTMs at the molecular level and beyond, for example, designing rational metabolic engineering strategies to improve crops. Phosphoenolpyruvate carboxykinases (PEPCKs) are critical enzymes for plant metabolism with diverse roles in plant development and growth. Multiple lines of evidence showed the complex regulation of PEPCKs, including PTMs. Herein, we present PEPCKs as an example of the integration of combined mechanisms modulating enzyme activity and metabolic pathways. PEPCK studies strongly advanced after the production of the recombinant enzyme and the establishment of standardized biochemical assays. Finally, we discuss emerging open questions for future research and the challenges in integrating all available data into functional biochemical models.
Collapse
Affiliation(s)
- Bruno E Rojas
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Santa Fe, Argentina
| | - Alberto A Iglesias
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Santa Fe, Argentina
| |
Collapse
|
4
|
Lu K, Wu J, Zhang Y, Zhuang W, Liang XF. Role of phosphoenolpyruvate carboxykinase 1 (pck1) in mediating nutrient metabolism in zebrafish. Funct Integr Genomics 2023; 23:67. [PMID: 36840800 DOI: 10.1007/s10142-023-00993-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 02/26/2023]
Abstract
Carbohydrates are the most economical source of energy in fish feeds, but most fish have limited ability to utilize carbohydrates. It has been reported that phosphoenolpyruvate carboxykinase 1 (pck1) is involved in carbohydrate metabolism, lipid metabolism, and other metabolic processes. However, direct evidence is lacking to fully understand the relationship between pck1 and glucose and lipid metabolism. Here, we generated a pck1 knockout zebrafish by CRISPR/cas9 system, and a high-carbohydrate diet was provided to 60 days post-fertilization (dpf) for 8 weeks. We found that pck1-deficient zebrafish displayed decreased plasma glucose, elevated mRNA levels of glycolysis-related genes (gck, pfk, pk), and reduced the transcriptional levels of gluconeogenic genes (pck1, fbp1a) in liver. We also found decreased triglyceride, total cholesterol, and lipid accumulation and in pck1-/- zebrafish, along with downregulation of genes for lipolysis (acaca) and lipogenesis (cpt1). In addition, the observation of HE staining revealed that the total muscle area of pck1-/- was substantially less than that of WT zebrafish and real-time PCR suggested that GH/IGF-1 signaling (ulk2, stat1b) may be suppressed in pck1-deficient fish. Taken together, these findings suggested that pck1 may play an important role in the high-carbohydrate diet utilization of fish and significantly affected lipid metabolism and protein synthesis in zebrafish. pck1 knockout mutant line could facilitate a further mechanism study of pck1-associated metabolic regulation and provide new information for improving carbohydrate utilization traits.
Collapse
Affiliation(s)
- Ke Lu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Wuhan, 430070, Hubei Province, China.,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Jiaqi Wu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Wuhan, 430070, Hubei Province, China.,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Yanpeng Zhang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Wuhan, 430070, Hubei Province, China.,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Wuyuan Zhuang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Wuhan, 430070, Hubei Province, China.,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Xu-Fang Liang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Wuhan, 430070, Hubei Province, China. .,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China.
| |
Collapse
|
5
|
Koendjbiharie JG, van Kranenburg R, Kengen SWM. The PEP-pyruvate-oxaloacetate node: variation at the heart of metabolism. FEMS Microbiol Rev 2021; 45:fuaa061. [PMID: 33289792 PMCID: PMC8100219 DOI: 10.1093/femsre/fuaa061] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/18/2020] [Indexed: 12/15/2022] Open
Abstract
At the junction between the glycolysis and the tricarboxylic acid cycle-as well as various other metabolic pathways-lies the phosphoenolpyruvate (PEP)-pyruvate-oxaloacetate node (PPO-node). These three metabolites form the core of a network involving at least eleven different types of enzymes, each with numerous subtypes. Obviously, no single organism maintains each of these eleven enzymes; instead, different organisms possess different subsets in their PPO-node, which results in a remarkable degree of variation, despite connecting such deeply conserved metabolic pathways as the glycolysis and the tricarboxylic acid cycle. The PPO-node enzymes play a crucial role in cellular energetics, with most of them involved in (de)phosphorylation of nucleotide phosphates, while those responsible for malate conversion are important redox enzymes. Variations in PPO-node therefore reflect the different energetic niches that organisms can occupy. In this review, we give an overview of the biochemistry of these eleven PPO-node enzymes. We attempt to highlight the variation that exists, both in PPO-node compositions, as well as in the roles that the enzymes can have within those different settings, through various recent discoveries in both bacteria and archaea that reveal deviations from canonical functions.
Collapse
Affiliation(s)
- Jeroen G Koendjbiharie
- Laboratory of Microbiology, Wageningen University, Stippeneng4, 6708 WE Wageningen, The Netherlands
| | - Richard van Kranenburg
- Laboratory of Microbiology, Wageningen University, Stippeneng4, 6708 WE Wageningen, The Netherlands
- Corbion, Arkelsedijk 46, 4206 AC Gorinchem, The Netherlands
| | - Servé W M Kengen
- Laboratory of Microbiology, Wageningen University, Stippeneng4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
6
|
Rojas BE, Hartman MD, Figueroa CM, Iglesias AA. Proteolytic cleavage of Arabidopsis thaliana phosphoenolpyruvate carboxykinase-1 modifies its allosteric regulation. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2514-2524. [PMID: 33315117 DOI: 10.1093/jxb/eraa583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Phosphoenolpyruvate carboxykinase (PEPCK) plays a crucial role in gluconeogenesis. In this work, we analyze the proteolysis of Arabidopsis thaliana PEPCK1 (AthPEPCK1) in germinating seedlings. We found that the amount of AthPEPCK1 protein peaks at 24-48 h post-imbibition. Concomitantly, we observed shorter versions of AthPEPCK1, putatively generated by metacaspase-9 (AthMC9). To study the impact of AthMC9 cleavage on the kinetic and regulatory properties of AthPEPCK1, we produced truncated mutants based on the reported AthMC9 cleavage sites. The Δ19 and Δ101 truncated mutants of AthPEPCK1 showed similar kinetic parameters and the same quaternary structure as the wild type. However, activation by malate and inhibition by glucose 6-phosphate were abolished in the Δ101 mutant. We propose that proteolysis of AthPEPCK1 in germinating seedlings operates as a mechanism to adapt the sensitivity to allosteric regulation during the sink-to-source transition.
Collapse
Affiliation(s)
- Bruno E Rojas
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Santa Fe, Argentina
| | - Matías D Hartman
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Santa Fe, Argentina
| | - Carlos M Figueroa
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Santa Fe, Argentina
| | - Alberto A Iglesias
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Santa Fe, Argentina
| |
Collapse
|
7
|
Oliveira LN, Lima PDS, Araújo DS, Portis IG, Santos Júnior ADCMD, Coelho ASG, de Sousa MV, Ricart CAO, Fontes W, Soares CMDA. iTRAQ-based proteomic analysis of Paracoccidioides brasiliensis in response to hypoxia. Microbiol Res 2021; 247:126730. [PMID: 33662850 DOI: 10.1016/j.micres.2021.126730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 01/29/2021] [Accepted: 02/13/2021] [Indexed: 02/06/2023]
Abstract
Aerobic organisms require oxygen for energy. In the course of the infection, adaptation to hypoxia is crucial for survival of human pathogenic fungi. Members of the Paracoccidioides complex face decreased oxygen tensions during the life cycle stages. In Paracoccidioides brasiliensis proteomic responses to hypoxia have not been investigated and the regulation of the adaptive process is still unknown, and this approach allowed the identification of 216 differentially expressed proteins in hypoxia using iTRAQ-labelling. Data suggest that P. brasiliensis reprograms its metabolism when submitted to hypoxia. The fungus reduces its basal metabolism and general transport proteins. Energy and general metabolism were more representative and up regulated. Glucose is apparently directed towards glycolysis or the production of cell wall polymers. Plasma membrane/cell wall are modulated by increasing ergosterol and glucan, respectively. In addition, molecules such as ethanol and acetate are produced by this fungus indicating that alternative carbon sources probably are activated to obtain energy. Also, detoxification mechanisms are activated. The results were compared with label free proteomics data from Paracoccidioides lutzii. Biochemical pathways involved with acetyl-CoA, pyruvate and ergosterol synthesis were up-regulated in both fungi. On the other hand, proteins from TCA, transcription, protein fate/degradation, cellular transport, signal transduction and cell defense/virulence processes presented different profiles between species. Particularly, proteins related to methylcitrate cycle and those involved with acetate and ethanol synthesis were increased in P. brasiliensis proteome, whereas GABA shunt were accumulated only in P. lutzii. The results emphasize metabolic adaptation processes for distinct Paracoccidioides species.
Collapse
Affiliation(s)
- Lucas Nojosa Oliveira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia, Goiás, Brazil.
| | - Patrícia de Sousa Lima
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia, Goiás, Brazil.
| | - Danielle Silva Araújo
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia, Goiás, Brazil.
| | - Igor Godinho Portis
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia, Goiás, Brazil.
| | | | | | - Marcelo Valle de Sousa
- Departmento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Campus Darcy Ribeiro, Asa Norte, 70910-900, Brasília, DF, Brazil.
| | - Carlos André Ornelas Ricart
- Departmento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Campus Darcy Ribeiro, Asa Norte, 70910-900, Brasília, DF, Brazil.
| | - Wagner Fontes
- Departmento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Campus Darcy Ribeiro, Asa Norte, 70910-900, Brasília, DF, Brazil.
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia, Goiás, Brazil.
| |
Collapse
|
8
|
Xiong B, Zhu Y, Tian D, Jiang S, Fan X, Ma Q, Wu H, Xie X. Flux redistribution of central carbon metabolism for efficient production of l-tryptophan in Escherichia coli. Biotechnol Bioeng 2021; 118:1393-1404. [PMID: 33399214 DOI: 10.1002/bit.27665] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/24/2020] [Accepted: 12/30/2020] [Indexed: 01/22/2023]
Abstract
Microbial production of l-tryptophan (l-trp) has received considerable attention because of its diverse applications in food additives and pharmaceuticals. Overexpression of rate-limiting enzymes and blockage of competing pathways can effectively promote microbial production of l-trp. However, the biosynthetic process remains suboptimal due to imbalanced flux distribution between central carbon and tryptophan metabolism, presenting a major challenge to further improvement of l-trp yield. In this study, we redistributed central carbon metabolism to improve phosphoenolpyruvate (PEP) and erythrose-4-phosphate (E4P) pools in an l-trp producing strain of Escherichia coli for efficient l-trp synthesis. To do this, a phosphoketolase from Bifidobacterium adolescentis was introduced to strengthen E4P formation, and the l-trp titer and yield increased to 10.8 g/L and 0.148 g/g glucose, respectively. Next, the phosphotransferase system was substituted with PEP-independent glucose transport, meditated by a glucose facilitator from Zymomonas mobilis and native glucokinase. This modification improved l-trp yield to 0.164 g/g glucose, concomitant with 58% and 40% decreases of acetate and lactate accumulation, respectively. Then, to channel more central carbon flux to the tryptophan biosynthetic pathway, several metabolic engineering strategies were applied to rewire the PEP-pyruvate-oxaloacetate node. Finally, the constructed strain SX11 produced 41.7 g/L l-trp with an overall yield of 0.227 g/g glucose after 40 h fed-batch fermentation in 5-L bioreactor. This is the highest overall yield of l-trp ever reported from a rationally engineered strain. Our results suggest the flux redistribution of central carbon metabolism to maintain sufficient supply of PEP and E4P is a promising strategy for efficient l-trp biosynthesis, and this strategy would likely also increase the production of other aromatic amino acids and derivatives.
Collapse
Affiliation(s)
- Bo Xiong
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science & Technology, Tianjin, China.,College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Yongduo Zhu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science & Technology, Tianjin, China.,College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Daoguang Tian
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science & Technology, Tianjin, China.,College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Shuai Jiang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science & Technology, Tianjin, China.,College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Xiaoguang Fan
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science & Technology, Tianjin, China.,College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Qian Ma
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science & Technology, Tianjin, China.,College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Heyun Wu
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Xixian Xie
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science & Technology, Tianjin, China.,College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| |
Collapse
|
9
|
do Amaral BS, da Silva LRG, Valverde AL, de Sousa LRF, Severino RP, de Souza DHF, Cass QB. Phosphoenolpyruvate carboxykinase from T. cruzi magnetic beads affinity-based screening assays on crude plant extracts from Brazilian Cerrado. J Pharm Biomed Anal 2020; 193:113710. [PMID: 33166842 DOI: 10.1016/j.jpba.2020.113710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/08/2020] [Accepted: 10/14/2020] [Indexed: 01/05/2023]
Abstract
In T. cruzi, a causative agent of Chagas disease, phosphoenolpyruvate carboxykinase (TcPEPCK) is associated with carbohydrate catabolism. Due to its importance in the metabolism of the parasite, it has become a promising target for the development of new drugs against Chagas disease. Aiming to investigate different approaches for ligands screening, TcPEPCK was immobilized on amine-terminated magnetic beads (TcPEPCK-MB) and kinetically characterized by liquid chromatography tandem mass spectrometry activity assay with a KMapp value of 10 ± 1 μM to oxaloacetate as substrate. Natural products library affords highly diverse molecular frameworks through their secondary metabolites, herein a ligand fishing TcPEPCK-MB assay is described for prospecting ligands in four ethanolic extracts of Brazilian Cerrado plants: Qualea grandiflora (Vochysiaceae), Diospyros burchellii (Ebenaceae), Anadenanthera falcata (Fabaceae) and Byrsonima coccolobifolia (Malpighiaceae). The chemical characterization of eleven identified ligands was carried out by liquid chromatography tandem high-resolution mass spectrometry experiments. Senecic acid, syneilesinolide A, phytosphingosine and vanillic acid 4-glucopyranoside are herein reported for the first time for Q. grandiflora, D. burchellii, A. falcata, respectively. In addition, the specificity of the assay was observed since only catechin was fished out from the ethanolic extract of B. coccolobifolia leaves, despite the presence of epicatechin epimer.
Collapse
Affiliation(s)
- Bruno S do Amaral
- Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, Campus Pirituba, 05110-000, São Paulo, SP, Brazil; Departamento de Química, Universidade Federal de São Carlos, Rodovia Washington Luís, km 235, 13565-905, São Carlos, SP, Brazil
| | - Larissa R G da Silva
- Departamento de Química, Universidade Federal de São Carlos, Rodovia Washington Luís, km 235, 13565-905, São Carlos, SP, Brazil; Instituto de Química, Programa de Pós-Graduação em Química, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Alessandra L Valverde
- Instituto de Química, Programa de Pós-Graduação em Química, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Lorena R F de Sousa
- Unidade Acadêmica Especial de Química, Universidade Federal de Goiás, Regional Catalão, 75704-020, Catalão, GO, Brazil
| | - Richele P Severino
- Unidade Acadêmica Especial de Química, Universidade Federal de Goiás, Regional Catalão, 75704-020, Catalão, GO, Brazil
| | - Dulce H F de Souza
- Departamento de Química, Universidade Federal de São Carlos, Rodovia Washington Luís, km 235, 13565-905, São Carlos, SP, Brazil
| | - Quezia B Cass
- Departamento de Química, Universidade Federal de São Carlos, Rodovia Washington Luís, km 235, 13565-905, São Carlos, SP, Brazil.
| |
Collapse
|
10
|
Biochemical characterization of phosphoenolpyruvate carboxykinases from Arabidopsis thaliana. Biochem J 2020; 476:2939-2952. [PMID: 31548269 DOI: 10.1042/bcj20190523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 01/01/2023]
Abstract
ATP-dependent phosphoenolpyruvate carboxykinases (PEPCKs, EC 4.1.1.49) from C4 and CAM plants have been widely studied due to their crucial role in photosynthetic CO2 fixation. However, our knowledge on the structural, kinetic and regulatory properties of the enzymes from C3 species is still limited. In this work, we report the recombinant production and biochemical characterization of two PEPCKs identified in Arabidopsis thaliana: AthPEPCK1 and AthPEPCK2. We found that both enzymes exhibited high affinity for oxaloacetate and ATP, reinforcing their role as decarboxylases. We employed a high-throughput screening for putative allosteric regulators using differential scanning fluorometry and confirmed their effect on enzyme activity by performing enzyme kinetics. AthPEPCK1 and AthPEPCK2 are allosterically modulated by key intermediates of plant metabolism, namely succinate, fumarate, citrate and α-ketoglutarate. Interestingly, malate activated and glucose 6-phosphate inhibited AthPEPCK1 but had no effect on AthPEPCK2. Overall, our results demonstrate that the enzymes involved in the critical metabolic node constituted by phosphoenolpyruvate are targets of fine allosteric regulation.
Collapse
|
11
|
Yang Y, Wang P, Jin B, Dong Z, Chen G, Liu D. Screening of Potential Key Transcripts Involved in Planarian Regeneration and Analysis of Its Regeneration Patterns by PacBio Long-Read Sequencing. Front Genet 2020; 11:580. [PMID: 32612637 PMCID: PMC7308552 DOI: 10.3389/fgene.2020.00580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/11/2020] [Indexed: 12/30/2022] Open
Abstract
Dugesia japonica is an excellent animal model for studying the regeneration mechanism due to its characteristics of rapid regeneration and easy breeding. PacBio sequencing was performed on the intact planarians (In) and regenerating planarians of 1 day (1d), 3 days (3d), and 5 days (5d) after amputation. The aim of this study is to deeply profile the transcriptome of D. japonica and to evaluate its regenerate changes. Using robust statistical analysis, we identified 5931, 5115, and 4669 transcripts differentially expressed between 1d and In, 3d and In, 5d and In, respectively. A total of 63 key transcripts were screened from these DETs. These key transcripts enhance the expression in different regenerate stages respectively to regulate specific processes including signal transduction, mitosis, protein synthesis, transport and degradation, apoptosis, neural development, and energy cycling. Finally, according to the biological processes involved in these potential key transcripts, we propose a hypothesis of head regeneration model about D. japonica. In addition, the weighted gene co-expression network analysis provides a new way to screen key transcripts from large amounts of data. Together, these analyses identify a number of potential key regulators controlling proliferation, differentiation, apoptosis, and signal transduction. What's more, this study provides a powerful data foundation for further research on planarians regeneration.
Collapse
Affiliation(s)
- Yibo Yang
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Peizheng Wang
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Baijie Jin
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Zimei Dong
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Guangwen Chen
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Dezeng Liu
- College of Life Science, Henan Normal University, Xinxiang, China
| |
Collapse
|
12
|
Kinetic and structural analysis of Escherichia coli phosphoenolpyruvate carboxykinase mutants. Biochim Biophys Acta Gen Subj 2020; 1864:129517. [DOI: 10.1016/j.bbagen.2020.129517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/07/2019] [Accepted: 01/02/2020] [Indexed: 11/16/2022]
|
13
|
Tang B, Yang C, Hu S, Sun W, Pan Z, Li L, Wang J. Molecular Characterization of Goose Phosphoenolpyruvate Carboxylase Kinase 1 (Pepck) Gene and Its Potential Role in Hepatic Steatosis Induced by Overfeeding. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2020. [DOI: 10.1590/1806-9061-2019-1128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- B Tang
- Sichuan Agricultural University, China
| | - C Yang
- Sichuan Animal Science Academy, P.R. China
| | - S Hu
- Sichuan Agricultural University, China
| | - W Sun
- Sichuan Agricultural University, China
| | - Z Pan
- Sichuan Agricultural University, China
| | - L Li
- Sichuan Agricultural University, China
| | - J Wang
- Sichuan Agricultural University, China
| |
Collapse
|
14
|
Chiba Y, Miyakawa T, Shimane Y, Takai K, Tanokura M, Nozaki T. Structural comparisons of phosphoenolpyruvate carboxykinases reveal the evolutionary trajectories of these phosphodiester energy conversion enzymes. J Biol Chem 2019; 294:19269-19278. [PMID: 31662435 DOI: 10.1074/jbc.ra119.010920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/24/2019] [Indexed: 11/06/2022] Open
Abstract
Inorganic pyrophosphate (PPi) consists of two phosphate molecules and can act as an energy and phosphate donor in cellular reactions, similar to ATP. Several kinases use PPi as a substrate, and these kinases have recently been suggested to have evolved from ATP-dependent functional homologs, which have significant amino acid sequence similarity to PPi-utilizing enzymes. In contrast, phosphoenolpyruvate carboxykinase (PEPCK) can be divided into three types according to the phosphate donor (ATP, GTP, or PPi), and the amino acid sequence similarity of these PEPCKs is too low to confirm that they share a common ancestor. Here we solved the crystal structure of a PPi-PEPCK homolog from the bacterium Actinomyces israelii at 2.6 Å resolution and compared it with previously reported structures from ATP- and GTP-specific PEPCKs to assess the degrees of similarities and divergences among these PEPCKs. These comparisons revealed that they share a tertiary structure with significant value and that amino acid residues directly contributing to substrate recognition, except for those that recognize purine moieties, are conserved. Furthermore, the order of secondary structural elements between PPi-, ATP-, and GTP-specific PEPCKs was strictly conserved. The structure-based comparisons of the three PEPCK types provide key insights into the structural basis of PPi specificity and suggest that all of these PEPCKs are derived from a common ancestor.
Collapse
Affiliation(s)
- Yoko Chiba
- Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15, Natsushima-cho, Yokosuka-city, Kanagawa, 237-0061, Japan
| | - Takuya Miyakawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yasuhiro Shimane
- Super-Cutting-Edge Grand and Advanced Research Program, Institute for Extra-Cutting-Edge Science and Technology Avant-Garde, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15, Natsushima-cho, Yokosuka-city, Kanagawa, 237-0061, Japan
| | - Ken Takai
- Super-Cutting-Edge Grand and Advanced Research Program, Institute for Extra-Cutting-Edge Science and Technology Avant-Garde, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15, Natsushima-cho, Yokosuka-city, Kanagawa, 237-0061, Japan
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
15
|
Tang HYH, Shin DS, Hura GL, Yang Y, Hu X, Lightstone FC, McGee MD, Padgett HS, Yannone SM, Tainer JA. Structural Control of Nonnative Ligand Binding in Engineered Mutants of Phosphoenolpyruvate Carboxykinase. Biochemistry 2018; 57:6688-6700. [PMID: 30376300 PMCID: PMC6642699 DOI: 10.1021/acs.biochem.8b00963] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein engineering to alter recognition underlying ligand binding and activity has enormous potential. Here, ligand binding for Escherichia coli phosphoenolpyruvate carboxykinase (PEPCK), which converts oxaloacetate into CO2 and phosphoenolpyruvate as the first committed step in gluconeogenesis, was engineered to accommodate alternative ligands as an exemplary system with structural information. From our identification of bicarbonate binding in the PEPCK active site at the supposed CO2 binding site, we probed binding of nonnative ligands with three oxygen atoms arranged to resemble the bicarbonate geometry. Crystal structures of PEPCK and point mutants with bound nonnative ligands thiosulfate and methanesulfonate along with strained ATP and reoriented oxaloacetate intermediates and unexpected bicarbonate were determined and analyzed. The mutations successfully altered the bound ligand position and orientation and its specificity: mutated PEPCKs bound either thiosulfate or methanesulfonate but never both. Computational calculations predicted a methanesulfonate binding mutant and revealed that release of the active site ordered solvent exerts a strong influence on ligand binding. Besides nonnative ligand binding, one mutant altered the Mn2+ coordination sphere: instead of the canonical octahedral ligand arrangement, the mutant in question had an only five-coordinate arrangement. From this work, critical features of ligand binding, position, and metal ion cofactor geometry required for all downstream events can be engineered with small numbers of mutations to provide insights into fundamental underpinnings of protein-ligand recognition. Through structural and computational knowledge, the combination of designed and random mutations aids in the robust design of predetermined changes to ligand binding and activity to engineer protein function.
Collapse
Affiliation(s)
- Henry Y. H. Tang
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - David S. Shin
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Greg L. Hura
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Biochemistry and Chemistry, University of California, Santa Cruz, California 95064, United States
| | - Yue Yang
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Xiaoyu Hu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Felice C. Lightstone
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | | | - Hal S. Padgett
- Novici Biotech LLC, Vacaville, California 95688, United States
| | - Steven M. Yannone
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - John A. Tainer
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, United States
| |
Collapse
|
16
|
Cortés R, Teles M, Oliveira M, Fierro-Castro C, Tort L, Cerdá-Reverter JM. Effects of acute handling stress on short-term central expression of orexigenic/anorexigenic genes in zebrafish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:257-272. [PMID: 29071448 DOI: 10.1007/s10695-017-0431-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 10/17/2017] [Indexed: 06/07/2023]
Abstract
Physiological mechanisms driving stress response in vertebrates are evolutionarily conserved. These mechanisms involve the activation of both the hypothalamic-sympathetic-chromaffin cell (HSC) and the hypothalamic-pituitary-adrenal (HPA) axes. In fish, the reduction of food intake levels is a common feature of the behavioral response to stress but the central mechanisms coordinating the energetic response are not well understood yet. In this work, we explore the effects of acute stress on key central systems regulating food intake in fish as well as on total body cortisol and glucose levels. We show that acute stress induced a rapid increase in total body cortisol with no changes in body glucose, at the same time promoting a prompt central response by activating neuronal pathways. All three orexigenic peptides examined, i.e., neuropeptide y (npy), agouti-related protein (agrp), and ghrelin, increased their central expression level suggesting that these neuronal systems are not involved in the short-term feeding inhibitory effects of acute stress. By contrast, the anorexigenic precursors tested, i.e., cart peptides and pomc, exhibited increased expression after acute stress, suggesting their involvement in the anorexigenic effects.
Collapse
Affiliation(s)
- Raul Cortés
- Deparment of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Torre la Sal s/n 12595, Ribera de Cabanes, Castellón, Spain
- Universidad Bernardo O'Higgins, Centro de Investigación en Recursos Naturales y Sustentabilidad, Fábrica1990, Santiago, Chile
| | - Mariana Teles
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | - Miguel Oliveira
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Camino Fierro-Castro
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | - Lluis Tort
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | - José Miguel Cerdá-Reverter
- Deparment of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Torre la Sal s/n 12595, Ribera de Cabanes, Castellón, Spain.
| |
Collapse
|
17
|
Abstract
Phosphoenolpyruvate carboxykinase (PCK) is the key enzyme to initiate the gluconeogenic pathway in vertebrates, yeast, plants and most bacteria. Nucleotide specificity divided all PCKs into two groups. All the eukaryotic mammalian and most archaeal PCKs are GTP-specific. Bacterial and fungal PCKs can be ATP-or GTP-specific but all plant PCKs are ATP-specific. Amino acid sequence alignment of PCK enzymes shows that the nucleotide binding sites are somewhat conserved within each class with few exceptions that do not have any clear ATP- or GTP-specific binding motif. Although the active site residues are mostly conserved in all PCKs, not much significant sequence homology persists between ATP- and GTP-dependent PCK enzymes. There is only one planctomycetes PCK enzyme (from Cadidatus Kuenenia stuttgartiensis) that shows sequence homology with both ATP-and GTP-dependent PCKs. Phylogenetic studies have been performed to understand the evolutionary relationship of various PCKs from different sources. Based on this study a flowchart of the evolution of PCK has been proposed.
Collapse
Affiliation(s)
- Sanjukta Aich
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | - Louis T.J. Delbaere
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E5, Canada
| |
Collapse
|
18
|
Comparative proteome analysis of the hepatopancreas from the Pacific white shrimp Litopenaeus vannamei under long-term low salinity stress. J Proteomics 2017; 162:1-10. [DOI: 10.1016/j.jprot.2017.04.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/09/2016] [Accepted: 04/04/2017] [Indexed: 01/12/2023]
|
19
|
El Maddah F, Kehraus S, Nazir M, Almeida C, König GM. Insights into the Biosynthetic Origin of 3-(3-Furyl)alanine in Stachylidium sp. 293 K04 Tetrapeptides. JOURNAL OF NATURAL PRODUCTS 2016; 79:2838-2845. [PMID: 27786475 DOI: 10.1021/acs.jnatprod.6b00601] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The marine-sponge-derived fungus Stachylidium sp. 293 K04 produces the N-methylated peptides endolide A (1) and endolide B (2), showing affinity for the vasopressin receptor 1A and serotonin receptor 5HT2B, respectively. Both peptides feature the rare amino acid 3-(3-furyl)alanine. Isotope labeling experiments, employing several 13C-enriched precursors, revealed that this unprecedented heterocyclic amino acid moiety in endolide A (1) is synthesized from a cyclic intermediate of the shikimate pathway, but not from phenylalanine. Two new tetrapeptide analogues, endolides C and D (3 and 4), were characterized, as well as the previously described hirsutide (5).
Collapse
Affiliation(s)
- Fayrouz El Maddah
- Institute for Pharmaceutical Biology, University of Bonn , Nussallee 6, D-53115 Bonn, Germany
- Department of Pharmacognosy and Tissue Culture, National Organization for Drug Control and Research , Cairo, Egypt
| | - Stefan Kehraus
- Institute for Pharmaceutical Biology, University of Bonn , Nussallee 6, D-53115 Bonn, Germany
| | - Mamona Nazir
- Institute for Pharmaceutical Biology, University of Bonn , Nussallee 6, D-53115 Bonn, Germany
| | - Celso Almeida
- Institute for Pharmaceutical Biology, University of Bonn , Nussallee 6, D-53115 Bonn, Germany
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa , Caparica 2829-516, Portugal
| | - Gabriele M König
- Institute for Pharmaceutical Biology, University of Bonn , Nussallee 6, D-53115 Bonn, Germany
| |
Collapse
|
20
|
Gleich A, Kaiser B, Schumann J, Fuhrmann H. Establishment and characterisation of a novel bovine SV40 large T-antigen-transduced foetal hepatocyte-derived cell line. In Vitro Cell Dev Biol Anim 2016; 52:662-72. [DOI: 10.1007/s11626-016-0018-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/16/2016] [Indexed: 12/12/2022]
|
21
|
Biocomputational analysis of phosphoenolpyruvate carboxykinase from Raillietina echinobothrida, a cestode parasite, and its interaction with possible modulators. Parasitology 2015; 143:300-13. [PMID: 26690489 DOI: 10.1017/s0031182015001742] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Phosphoenolpyruvate carboxykinase (PEPCK) involved in gluconeogenesis in higher vertebrates opposedly plays a significant role in glucose oxidation of the cestode parasite, Raillietina echinobothrida. Considering the importance of the enzyme in the parasite and lack of its structural details, there exists an urgent need for understanding the molecular details and development of possible modulators. Hence, in this study, PEPCK gene was obtained using rapid amplification of cDNA ends, and various biocomputational analyses were performed. Homology model of the enzyme was generated, and docking simulations were executed with its substrate, co-factor, and modulators. Computer hits were generated after structure- and ligand-based screening using Discovery Studio 4.1 software; the predicted interactions were compared with those of the existing structural information of PEPCK. In order to evaluate the docking simulation results of the modulators, PEPCK gene was cloned and the overexpressed protein was purified for kinetic studies. Enzyme kinetics and in vitro studies revealed that out of the modulators tested, tetrahydropalmatine (THP) inhibited the enzyme with lowest inhibition constant value of 93 nm. Taking the results together, we conclude that THP could be a potential inhibitor for PEPCK in the parasite.
Collapse
|
22
|
Sosa MH, Giordana L, Nowicki C. Exploring biochemical and functional features of Leishmania major phosphoenolpyruvate carboxykinase. Arch Biochem Biophys 2015; 583:120-9. [PMID: 26271440 DOI: 10.1016/j.abb.2015.07.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 07/20/2015] [Accepted: 07/22/2015] [Indexed: 10/23/2022]
Abstract
This work reports the first functional characterization of leishmanial PEPCK. The recombinant Leishmania major enzyme (Lmj_PEPCK) exhibits equivalent kcat values for the phosphoenolpyruvate (PEP) and oxaloacetate (OAA) forming reactions. The apparent Km towards OAA is 10-fold lower than that for PEP, while the Km values for ADP and ATP are equivalent. Mutagenesis studies showed that D241, D242 and H205 of Lmj_PEPCK like the homologous residues of all known PEPCKs are implicated in metal ions binding. In contrast, the replacement of R43 for Q nearly abolishes Lmj_PEPCK activity. Moreover, the Y180F variant exhibits unchanged Km values for PEP, Mn(2+), and [Formula: see text] , being the kcat for PEP- but not that for OAA-forming reaction more notably decreased. Instead, the Y180A mutant displays an increase in the Km value towards Mn(2+). Therefore in Lmj_PEPCK, Y180 seems to exert different functions to those of the analogous residue in ATP- and GTP-dependant enzymes. Besides, the guanidinium group of R43 appears to play an essential but yet unknown role. These findings promote the need for further structural studies to disclose whether Y180 and R43 participate in the catalytic mechanism or/and in the transitions between the open and the catalytically competent (closed) forms of Lmj_PEPCK.
Collapse
Affiliation(s)
- Máximo Hernán Sosa
- Instituto de Química y Fisicoquímica Biológica IQUIFIB-CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD, Buenos Aires, Argentina
| | - Lucila Giordana
- Instituto de Química y Fisicoquímica Biológica IQUIFIB-CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD, Buenos Aires, Argentina
| | - Cristina Nowicki
- Instituto de Química y Fisicoquímica Biológica IQUIFIB-CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD, Buenos Aires, Argentina.
| |
Collapse
|
23
|
Chiba Y, Kamikawa R, Nakada-Tsukui K, Saito-Nakano Y, Nozaki T. Discovery of PPi-type Phosphoenolpyruvate Carboxykinase Genes in Eukaryotes and Bacteria. J Biol Chem 2015; 290:23960-70. [PMID: 26269598 DOI: 10.1074/jbc.m115.672907] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Indexed: 01/15/2023] Open
Abstract
Phosphoenolpyruvate carboxykinase (PEPCK) is one of the pivotal enzymes that regulates the carbon flow of the central metabolism by fixing CO2 to phosphoenolpyruvate (PEP) to produce oxaloacetate or vice versa. Whereas ATP- and GTP-type PEPCKs have been well studied, and their protein identities are established, inorganic pyrophosphate (PPi)-type PEPCK (PPi-PEPCK) is poorly characterized. Despite extensive enzymological studies, its protein identity and encoding gene remain unknown. In this study, PPi-PEPCK has been identified for the first time from a eukaryotic human parasite, Entamoeba histolytica, by conventional purification and mass spectrometric identification of the native enzyme, followed by demonstration of its enzymatic activity. A homolog of the amebic PPi-PEPCK from an anaerobic bacterium Propionibacterium freudenreichii subsp. shermanii also exhibited PPi-PEPCK activity. The primary structure of PPi-PEPCK has no similarity to the functional homologs ATP/GTP-PEPCKs and PEP carboxylase, strongly suggesting that PPi-PEPCK arose independently from the other functional homologues and very likely has unique catalytic sites. PPi-PEPCK homologs were found in a variety of bacteria and some eukaryotes but not in archaea. The molecular identification of this long forgotten enzyme shows us the diversity and functional redundancy of enzymes involved in the central metabolism and can help us to understand the central metabolism more deeply.
Collapse
Affiliation(s)
- Yoko Chiba
- From the Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan, the Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan, and
| | - Ryoma Kamikawa
- the Graduate School of Environmental Studies, Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsu cho, Kyoto, Kyoto 606-8501, Japan
| | - Kumiko Nakada-Tsukui
- the Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan, and
| | - Yumiko Saito-Nakano
- the Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan, and
| | - Tomoyoshi Nozaki
- From the Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan, the Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan, and
| |
Collapse
|
24
|
Machová I, Snášel J, Dostál J, Brynda J, Fanfrlík J, Singh M, Tarábek J, Vaněk O, Bednárová L, Pichová I. Structural and functional studies of phosphoenolpyruvate carboxykinase from Mycobacterium tuberculosis. PLoS One 2015; 10:e0120682. [PMID: 25798914 PMCID: PMC4370629 DOI: 10.1371/journal.pone.0120682] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 02/05/2015] [Indexed: 12/04/2022] Open
Abstract
Tuberculosis, the second leading infectious disease killer after HIV, remains a top public health priority. The causative agent of tuberculosis, Mycobacterium tuberculosis (Mtb), which can cause both acute and clinically latent infections, reprograms metabolism in response to the host niche. Phosphoenolpyruvate carboxykinase (Pck) is the enzyme at the center of the phosphoenolpyruvate-pyruvate-oxaloacetate node, which is involved in regulating the carbon flow distribution to catabolism, anabolism, or respiration in different states of Mtb infection. Under standard growth conditions, Mtb Pck is associated with gluconeogenesis and catalyzes the metal-dependent formation of phosphoenolpyruvate. In non-replicating Mtb, Pck can catalyze anaplerotic biosynthesis of oxaloacetate. Here, we present insights into the regulation of Mtb Pck activity by divalent cations. Through analysis of the X-ray structure of Pck-GDP and Pck-GDP-Mn2+ complexes, mutational analysis of the GDP binding site, and quantum mechanical (QM)-based analysis, we explored the structural determinants of efficient Mtb Pck catalysis. We demonstrate that Mtb Pck requires presence of Mn2+ and Mg2+ cations for efficient catalysis of gluconeogenic and anaplerotic reactions. The anaplerotic reaction, which preferably functions in reducing conditions that are characteristic for slowed or stopped Mtb replication, is also effectively activated by Fe2+ in the presence of Mn2+ or Mg2+ cations. In contrast, simultaneous presence of Fe2+ and Mn2+ or Mg2+ inhibits the gluconeogenic reaction. These results suggest that inorganic ions can contribute to regulation of central carbon metabolism by influencing the activity of Pck. Furthermore, the X-ray structure determination, biochemical characterization, and QM analysis of Pck mutants confirmed the important role of the Phe triad for proper binding of the GDP-Mn2+ complex in the nucleotide binding site and efficient catalysis of the anaplerotic reaction.
Collapse
Affiliation(s)
- Iva Machová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jan Snášel
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jiří Dostál
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jiří Brynda
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jindřich Fanfrlík
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Mahavir Singh
- LIONEX diagnostics & Therapeutics, Braunschweig, Germany
| | - Ján Tarábek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Ondřej Vaněk
- Department of Biochemistry, Faculty of Sciences, Charles University in Prague, Prague, Czech Republic
| | - Lucie Bednárová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Iva Pichová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
25
|
Characterization of ten heterotetrameric NDP-dependent acyl-CoA synthetases of the hyperthermophilic archaeon Pyrococcus furiosus. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2014; 2014:176863. [PMID: 24669200 PMCID: PMC3942289 DOI: 10.1155/2014/176863] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 12/09/2013] [Indexed: 12/03/2022]
Abstract
The hyperthermophilic archaeon Pyrococcus furiosus grows by fermenting peptides and carbohydrates to organic acids. In the terminal step, acyl-CoA synthetase (ACS) isoenzymes convert acyl-CoA derivatives to the corresponding acid and conserve energy in the form of ATP. ACS1 and ACS2 were previously purified from P. furiosus and have α2β2 structures but the genome contains genes encoding three additional α-subunits. The ten possible combinations of α and β genes were expressed in E. coli and each resulted in stable and active α2β2 isoenzymes. The α-subunit of each isoenzyme determined CoA-based substrate specificity and between them they accounted for the CoA derivatives of fourteen amino acids. The β-subunit determined preference for adenine or guanine nucleotides. The GTP-generating isoenzymes are proposed to play a role in gluconeogenesis by producing GTP for GTP-dependent phosphoenolpyruvate carboxykinase and for other GTP-dependent processes. Transcriptional and proteomic data showed that all ten isoenzymes are constitutively expressed indicating that both ATP and GTP are generated from the metabolism of most of the amino acids. A phylogenetic analysis showed that the ACSs of P. furiosus and other members of the Thermococcales are evolutionarily distinct from those found throughout the rest of biology, including those of other hyperthermophilic archaea.
Collapse
|
26
|
Proteomic approach for identifying gonad differential proteins in the oyster (Crassostrea angulata) following food-chain contamination with HgCl2. J Proteomics 2013; 94:37-53. [DOI: 10.1016/j.jprot.2013.08.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 08/17/2013] [Accepted: 08/20/2013] [Indexed: 12/17/2022]
|
27
|
Kugathas S, Runnalls TJ, Sumpter JP. Metabolic and reproductive effects of relatively low concentrations of beclomethasone dipropionate, a synthetic glucocorticoid, on fathead minnows. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:9487-9495. [PMID: 23869980 DOI: 10.1021/es4019332] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Pharmaceuticals present in the aquatic environment could adversely affect aquatic organisms. Synthetic glucocorticoids (GC) are used in large quantities as anti-inflammatory drugs and have been reported to be present in river water. In order to assess the impact of environmental concentrations of GCs, an in vivo experiment was conducted with adult fathead minnows. Fish were exposed to 0.1 μg/L, 1 μg/L, or 10 μg/L beclomethasone dipropionate (BCMD) via a flow-through system over a period of 21 days. Similar duplicate tanks served as control, with no chemical added. There was a concentration-related increase in plasma glucose concentration and a decrease in blood lymphocyte count. Induction of male secondary sexual characters and a decreasing trend in plasma vitellogenin (Vtg) concentrations in female fish were observed with increasing exposure concentration of BCMD. Expression profiles of selected genes (phosphoenolpyruvate carboxykinase - PEPCK, glucocorticoid receptor - GR, and Vtg) in liver also demonstrated concentration-related effects at all three tested concentrations. The results suggest that GCs could cause effects in lower micrograms per liter concentrations that could be environmentally relevant for total GCs present in the environment. Therefore, studies to determine the environmental concentrations of GCs and no effect concentrations are needed to assess if GCs pose a risk to the aquatic environment.
Collapse
Affiliation(s)
- Subramaniam Kugathas
- Institute for the Environment, Brunel University , Uxbridge, Middlesex UB8 3PH, United Kingdom.
| | | | | |
Collapse
|
28
|
Lee HJ, Kim HJ, Seo J, Na YA, Lee J, Lee JY, Kim P. Estimation of phosphoenolpyruvate carboxylation mediated by phosphoenolpyruvate carboxykinase (PCK) in engineered Escherichia coli having high ATP. Enzyme Microb Technol 2013; 53:13-7. [PMID: 23683699 DOI: 10.1016/j.enzmictec.2013.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 03/29/2013] [Accepted: 04/01/2013] [Indexed: 01/09/2023]
Abstract
We have previously reported that phosphoenolpyruvate carboxykinase (PCK) overexpression under glycolytic conditions enables Escherichia coli to harbor a high intracellular ATP pool resulting in enhanced recombinant protein synthesis. To estimate how much PCK-mediated phosphoenolpyruvate (PEP) carboxylation is contributed to the ATP increase under engineered conditions, the kinetics of PEP carboxylation by PCK and substrate competing phosphoenolpyruvate carboxylase (PPC) were measured using recombinant enzymes. The PEP carboxylation catalytic efficiency (kcat/Km) of the recombinant PCK was 660mM(-1)min(-1), whereas that of the recombinant PPC was 1500mM(-1)min(-1). Under the presence of known allosteric effectors (fructose 1,6-bisphosphate, acetyl-CoA, ATP, malate, and aspartate) close to in vivo conditions, the catalytic efficiency of PCK-mediated PEP carboxylation (84mM(-1)min(-1)) was 28-folds lower than that of PPC (2370mM(-1)min(-1)). To verify the above results, an E. coli strain expressing native PCK and PPC under control of identical promoter was constructed by replacing PCK promoter region with that of PPC in chromosome. The native PCK activity (33nmol/mg-proteinmin) was 5-folds lower than PPC activity (160nmol/mg-proteinmin) in the cell extract from the promoter-exchanged strain. Intracellular modifications of ATP concentration by PCK activity and the consequences for biotechnology are further discussed.
Collapse
Affiliation(s)
- Hyo Jung Lee
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi 420-743, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Mycobacterium tuberculosis is a difficult pathogen to combat and the first-line drugs currently in use are 40-60 years old. The need for new TB drugs is urgent, but the time to identify, develop and ultimately advance new drug regimens onto the market has been excruciatingly slow. On the other hand, the drugs currently in clinical development, and the recent gains in knowledge of the pathogen and the disease itself give us hope for finding new drug targets and new drug leads. In this article we highlight the unique biology of the pathogen and several possible ways to identify new TB chemical leads. The Global Alliance for TB Drug Development (TB Alliance) is a not-for-profit organization whose mission is to accelerate the discovery and development of new TB drugs. The organization carries out research and development in collaboration with many academic laboratories and pharmaceutical companies around the world. In this perspective we will focus on the early discovery phases of drug development and try to provide snapshots of both the current status and future prospects.
Collapse
|
30
|
Pérez E, Cardemil E. Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase: the relevance of Glu299 and Leu460 for nucleotide binding. Protein J 2010; 29:299-305. [PMID: 20524049 DOI: 10.1007/s10930-010-9252-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A homology model of Saccharomyces cerevisiae phosphoenolpyruvate (PEP) carboxykinase (ATP + oxaloacetate right arrow over left arrow ADP + PEP + CO(2)) in complex with its substrates shows that the isobutyl group of Leu460 is in close proximity to the adenine ring of the nucleotide, while the carboxyl group of Glu299 is within hydrogen-bonding distance of the ribose 2'OH. The Leu460Ala mutation caused three-fold and seven-fold increases in the K (m) for ADPMn(-) and ATPMn(2-), respectively, while the Glu299Ala mutation had no effect. Binding studies showed losses of approximately 2 kcal mol(-1) in the nucleotide binding affinity due to the Leu460Ala mutation and no effect for the Glu299Ala mutation. PEP carboxykinase utilized 2'deoxyADP and 2'deoxyATP as substrates with kinetic and equilibrium dissociation constants very similar to those of ADP and ATP, respectively. These results show that the hydrophobic interaction between Leu460 and the adenine ring of the nucleotide significantly contributed to the nucleotide affinity of the enzyme. The 2'deoxy nucleotide studies and the lack of an effect of the Glu299Ala mutation in nucleotide binding suggest that the possible hydrogen bond contributed by Glu299 and the ribose 2'OH group may not be relevant for nucleotide binding.
Collapse
Affiliation(s)
- Estela Pérez
- Facultad de Química y Biología, Universidad de Santiago de Chile, Av. B. O'Higgins 3363, Santiago, Chile
| | | |
Collapse
|
31
|
Liu M, Girma E, Glicksman MA, Stein RL. Kinetic mechanistic studies of Cdk5/p25-catalyzed H1P phosphorylation: metal effect and solvent kinetic isotope effect. Biochemistry 2010; 49:4921-9. [PMID: 20491486 DOI: 10.1021/bi100244j] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cdk5/p25 is a member of the cyclin-dependent, Ser/Thr kinase family and has been identified as one of the principle Alzheimer's disease-associated kinases that promote the formation of hyperphosphorylated tau, the major component of neurofibrillary tangles. We and others have been developing inhibitors of cdk5/p25 as possible therapeutic agents for Alzheimer's disease (AD). In support of these efforts, we examine the metal effect and solvent kinetic isotope effect on cdk5/p25-catalyzed H1P (a histone H-1-derived peptide) phosphorylation. Here, we report that a second Mg(2+) in addition to the one forming the MgATP complex is required to bind to cdk5/p25 for its catalytic activity. It activates cdk5/p25 by demonstrating an increase in k(cat) and induces a conformational change that favors ATP binding but has no effect on the binding affinity for the H1P peptide substrate. The binding of the second Mg(2+) does not change the binding order of substrates. The reaction follows the same rapid equilibrium random mechanism in the presence or absence of the second Mg(2+) as evidenced by initial velocity analysis and substrate analogue and product inhibition studies. A linear proton inventory with a normal SKIE of 2.0 +/- 0.1 in the presence of the second Mg(2+) was revealed and suggested a single proton transfer in the rate-limiting phosphoryl transfer step. The pH profile revealed a residue with a pK(a) of 6.5 that is most likely the general acid-base catalyst facilitating the proton transfer.
Collapse
Affiliation(s)
- Min Liu
- Laboratory for Drug Discovery in Neurodegeneration, Harvard NeuroDiscovery Center, 65 Landsdowne Street, Fourth Floor, Cambridge, Massachusetts 02139, USA.
| | | | | | | |
Collapse
|
32
|
Gluconeogenic carbon flow of tricarboxylic acid cycle intermediates is critical for Mycobacterium tuberculosis to establish and maintain infection. Proc Natl Acad Sci U S A 2010; 107:9819-24. [PMID: 20439709 DOI: 10.1073/pnas.1000715107] [Citation(s) in RCA: 250] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Metabolic adaptation to the host niche is a defining feature of the pathogenicity of Mycobacterium tuberculosis (Mtb). In vitro, Mtb is able to grow on a variety of carbon sources, but mounting evidence has implicated fatty acids as the major source of carbon and energy for Mtb during infection. When bacterial metabolism is primarily fueled by fatty acids, biosynthesis of sugars from intermediates of the tricarboxylic acid cycle is essential for growth. The role of gluconeogenesis in the pathogenesis of Mtb however remains unaddressed. Phosphoenolpyruvate carboxykinase (PEPCK) catalyzes the first committed step of gluconeogenesis. We applied genetic analyses and (13)C carbon tracing to confirm that PEPCK is essential for growth of Mtb on fatty acids and catalyzes carbon flow from tricarboxylic acid cycle-derived metabolites to gluconeogenic intermediates. We further show that PEPCK is required for growth of Mtb in isolated bone marrow-derived murine macrophages and in mice. Importantly, Mtb lacking PEPCK not only failed to replicate in mouse lungs but also failed to survive, and PEPCK depletion during the chronic phase of infection resulted in mycobacterial clearance. Mtb thus relies on gluconeogenesis throughout the infection. PEPCK depletion also attenuated Mtb in IFNgamma-deficient mice, suggesting that this enzyme represents an attractive target for chemotherapy.
Collapse
|
33
|
Almonacid DE, Yera ER, Mitchell JBO, Babbitt PC. Quantitative comparison of catalytic mechanisms and overall reactions in convergently evolved enzymes: implications for classification of enzyme function. PLoS Comput Biol 2010; 6:e1000700. [PMID: 20300652 PMCID: PMC2837397 DOI: 10.1371/journal.pcbi.1000700] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 02/02/2010] [Indexed: 11/19/2022] Open
Abstract
Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation.
Collapse
Affiliation(s)
- Daniel E. Almonacid
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, United States of America
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
- California Institute for Quantitative Biosciences, University of California San Francisco, San Francisco, California, United States of America
| | - Emmanuel R. Yera
- Biological and Medical Informatics Graduate Program, University of California San Francisco, San Francisco, California, United States of America
| | - John B. O. Mitchell
- Centre for Biomolecular Sciences, University of St Andrews, St Andrews, United Kingdom
| | - Patricia C. Babbitt
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, United States of America
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
- California Institute for Quantitative Biosciences, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
34
|
Sepúlveda C, Poch A, Espinoza R, Cardemil E. Electrostatic interactions play a significant role in the affinity of Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase for Mn2+. Biochimie 2010; 92:814-9. [PMID: 20211682 DOI: 10.1016/j.biochi.2010.02.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 02/25/2010] [Indexed: 10/19/2022]
Abstract
Phosphoenolpyruvate (PEP) carboxykinases catalyse the reversible formation of oxaloacetate (OAA) and ATP (or GTP) from PEP, ADP (or GDP) and CO(2). They are activated by Mn(2+), a metal ion that coordinates to the protein through the epsilon-amino group of a lysine residue, the N(epsilon-2)-imidazole of a histidine residue, and the carboxylate from an aspartic acid residue. Neutrality in the epsilon-amino group of Lys213 of Saccharomyces cerevisiae PEP carboxykinase is expected to be favoured by the vicinity of ionised Lys212. Glu272 and Glu284, located close to Lys212, should, in turn, electrostatically stabilise its positive charge and hence assist in keeping the epsilon-amino group of Lys213 in a neutral state. The mutations Glu272Gln, Glu284Gln, and Lys212Met increased the activation constant for Mn(2+) in the main reaction of the enzyme up to seven-fold. The control mutation Lys213Gln increased this constant by ten-fold, as opposed to control mutation Lys212Arg, which did not affect the Mn(2+) affinity of the enzyme. These observations indicate a role for Glu272, Glu284, and Lys212 in assisting Lys213 to properly bind Mn(2+). In an unexpected result, the mutations Glu284Gln, Lys212Met and Lys213Gln changed the nucleotide-independent OAA decarboxylase activity of S. cerevisiae PEP carboxykinase into an ADP-requiring activity, implying an effect on the OAA binding characteristics of PEP carboxykinase.
Collapse
Affiliation(s)
- Carolina Sepúlveda
- Facultad de Química y Biología, Universidad de Santiago de Chile, Av. B. O'Higgins 3363, Santiago 9170022, Chile
| | | | | | | |
Collapse
|
35
|
Chapter 14 C4 Decarboxylases: Different Solutions for the Same Biochemical Problem, the Provision of CO2 to Rubisco in the Bundle Sheath Cells. C4 PHOTOSYNTHESIS AND RELATED CO2 CONCENTRATING MECHANISMS 2010. [DOI: 10.1007/978-90-481-9407-0_14] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
36
|
Wang D, Li Q, Li W, Xing J, Su Z. Improvement of succinate production by overexpression of a cyanobacterial carbonic anhydrase in Escherichia coli. Enzyme Microb Technol 2009. [DOI: 10.1016/j.enzmictec.2009.08.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Bruland N, Voss I, Brämer C, Steinbüchel A. Unravelling the C3/C4 carbon metabolism in Ralstonia eutropha H16. J Appl Microbiol 2009; 109:79-90. [PMID: 20002867 DOI: 10.1111/j.1365-2672.2009.04631.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS Detailed knowledge about the enzymes responsible for conversion of C(3) and C(4) compounds will be helpful to establish the bacterial strain Ralstonia eutropha as platform for the production of biotechnologically interesting compounds. Although various studies about these enzymes were accomplished in the past, some contradicting information about the enzyme pattern in this bacterium still exists. To resolve these discrepancies, the C(3) /C(4) metabolism was reinvestigated after the genome sequence of this bacterium became available. METHODS AND RESULTS In silico analysis of genome sequence revealed putative genes coding for NAD(P)(+) -dependent malic enzymes (Mae), phoshoenolpyruvate carboxykinase (Pck), phosphoenolpyruvate carboxylase (Ppc), phosphoenolpyruvate synthase (Pps) and pyruvate carboxylase (Pyc). Reverse transcription PCR revealed constitutive expression of mae and pck genes, whereas no transcripts of pyc and ppc were found. Expression of active NADP(+) -dependent MaeB and Pck and absence of Pyc and Ppc was confirmed by spectrophotometric enzyme assays. CONCLUSIONS The data reported in this study suggest that two enzymes, (i) MaeB and (ii) Pck, mediate between the C(3) and C(4) intermediates in R. eutropha H16. The enzymatic conversion of pyruvate into phosphoenolpyruvate (PEP) is catalysed by Pps, and an NADH(+) -dependent Mdh mediates the reversible conversion of malate and oxaloacetate. SIGNIFICANCE AND IMPACT OF THE STUDY An increased knowledge of the enzymes mediating between C(3) and C(4) intermediates in R. eutropha will facilitate metabolic engineering.
Collapse
Affiliation(s)
- N Bruland
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
| | | | | | | |
Collapse
|
38
|
Lu S, Eiteman MA, Altman E. Effect of flue gas components on succinate production and CO2 fixation by metabolically engineered Escherichia coli. World J Microbiol Biotechnol 2009. [DOI: 10.1007/s11274-009-0185-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Markham GD, Takusagawa F, Dijulio AM, Bock CW. An investigation of the catalytic mechanism of S-adenosylmethionine synthetase by QM/MM calculations. Arch Biochem Biophys 2009; 492:82-92. [PMID: 19699176 DOI: 10.1016/j.abb.2009.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 08/14/2009] [Indexed: 12/12/2022]
Abstract
Catalysis by S-adenosylmethionine synthetase has been investigated by quantum mechanical/molecular mechanical calculations, exploiting structures of the active crystalline enzyme. The transition state energy of +19.1 kcal/mol computed for a nucleophilic attack of the methionyl sulfur on carbon-5' of the nucleotide was indistinguishable from the experimental (solution) value when the QM residues were an uncharged histidine that hydrogen bonds to the leaving oxygen-5' and an aspartate that chelates a Mg2+ ion, and was similar (+18.8 kcal/mol) when the QM region also included the active site arginine and lysines. The computed energy difference between reactant and product was also consistent with their equimolar abundance in co-crystals. The calculated geometrical changes support catalysis of a S(N)2 reaction through hydrogen bonding of the liberated oxygen-5' to the histidine, charge neutralization by the two Mg2+ ions, and stabilization of the product sulfonium cation through a close, non-bonded, contact between the sulfur and the ribose oxygen-4'.
Collapse
Affiliation(s)
- George D Markham
- Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA.
| | | | | | | |
Collapse
|
40
|
Lu S, Eiteman MA, Altman E. Effect of CO2 on succinate production in dual-phase Escherichia coli fermentations. J Biotechnol 2009; 143:213-23. [PMID: 19631242 DOI: 10.1016/j.jbiotec.2009.07.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 06/14/2009] [Accepted: 07/12/2009] [Indexed: 10/20/2022]
Abstract
Succinate production under different concentrations of carbon dioxide (CO(2)) was studied in Escherichia coli AFP111, which contains mutations in pyruvate formate lyase (pfl), lactate dehydrogenase (ldhA) and the phosphotransferase system glucosephosphotransferase enzyme II (ptsG). A series of two-phase fermentations were conducted in which an aerobic cell growth phase was followed by an anaerobic succinate production phase using several constant concentrations of CO(2). As the concentration of CO(2) in the gas phase increased from 0% to 50%, the succinate specific productivity increased from 1.9 mg/gh to 225 mg/gh, and the succinate yield increased from 0.04 g/g to 0.75 g/g. Above 50% CO(2), succinate production did not increase further. Intracellular fluxes were determined at three different CO(2) concentrations (3%, 10%, and 50%) using (13)C-label tracing coupled with LC-MS analysis. The fraction of carbon flux into the pentose phosphate pathway increased from 0.04 at 3% CO(2) to 0.17 at 50% CO(2). Also, the fractional flux through anaplerotic carboxylation at the phosphoenolpyruvate (PEP) node increased slightly from 0.53 at 3% CO(2) to 0.63 at 50% CO(2). The increased flux into the pentose phosphate pathway is attributed to an increased demand for reduced cofactors with elevated CO(2). A four-process explicit model to describe the CO(2) transfer and utilization was proposed. The model predicted that at CO(2) concentrations below about 30-40% the system becomes limited by gas phase CO(2), while at higher CO(2) concentrations the system is limited by PEP carboxylase enzyme kinetics.
Collapse
Affiliation(s)
- Shiying Lu
- Center for Molecular BioEngineering, University of Georgia, Athens, GA 30602, USA
| | | | | |
Collapse
|
41
|
Lin YY, Lu JY, Zhang J, Walter W, Dang W, Wan J, Tao SC, Qian J, Zhao Y, Boeke JD, Berger SL, Zhu H. Protein acetylation microarray reveals that NuA4 controls key metabolic target regulating gluconeogenesis. Cell 2009; 136:1073-84. [PMID: 19303850 DOI: 10.1016/j.cell.2009.01.033] [Citation(s) in RCA: 254] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 11/07/2008] [Accepted: 01/07/2009] [Indexed: 11/29/2022]
Abstract
Histone acetyltransferases (HATs) and histone deacetylases (HDACs) conduct many critical functions through nonhistone substrates in metazoans, but only chromatin-associated nonhistone substrates are known in Saccharomyces cerevisiae. Using yeast proteome microarrays, we identified and validated many nonchromatin substrates of the essential nucleosome acetyltransferase of H4 (NuA4) complex. Among these, acetylation sites (Lys19 and 514) of phosphoenolpyruvate carboxykinase (Pck1p) were determined by tandem mass spectrometry. Acetylation at Lys514 was crucial for enzymatic activity and the ability of yeast cells to grow on nonfermentable carbon sources. Furthermore, Sir2p deacetylated Pck1p both in vitro and in vivo. Loss of Pck1p activity blocked the extension of yeast chronological life span caused by water starvation. In human hepatocellular carcinoma (HepG2) cells, human Pck1 acetylation and glucose production were dependent on TIP60, the human homolog of ESA1. Our findings demonstrate a regulatory function for the NuA4 complex in glucose metabolism and life span by acetylating a critical metabolic enzyme.
Collapse
Affiliation(s)
- Yu-yi Lin
- High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Faced with changing food availability, organisms adapt metabolism to survive. In a recent issue of Cell, Lin et al. (2009) described the acetylation of an extranuclear enzyme being regulated by acetyl-CoA. This finding connects nutrient availability, energy status, and survival.
Collapse
Affiliation(s)
- Rafael de Cabo
- Laboratory of Experimental Gerontology, National Institute on Aging, NIH, Baltimore, MD 21224, USA.
| | | |
Collapse
|
43
|
Dharmarajan L, Case CL, Dunten P, Mukhopadhyay B. Tyr235 of human cytosolic phosphoenolpyruvate carboxykinase influences catalysis through an anion-quadrupole interaction with phosphoenolpyruvate carboxylate. FEBS J 2009; 275:5810-9. [PMID: 19021757 DOI: 10.1111/j.1742-4658.2008.06702.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tyr235 of GTP-dependent phosphoenolpyruvate (PEP) carboxykinase is a fully invariant residue. The aromatic ring of this residue establishes an energetically favorable weak anion-quadrupole interaction with PEP carboxylate. The role of Tyr235 in catalysis was investigated via kinetic analysis of site-directed mutagenesis-derived variants. The Y235F change lowered the apparent K(m) for PEP by about six-fold, raised the apparent K(m) for Mn(2+) by about 70-fold, and decreased oxaloacetate (OAA)-forming activity by about 10-fold. These effects were due to an enhanced anion-quadrupole interaction between the aromatic side chain at position 235, which now lacked a hydroxyl group, and PEP carboxylate, which probably increased the distance between PEP and Mn(2+) and consequently affected the phosphoryl transfer step and overall catalysis. For the Y235A and Y235S changes, an elimination of the favorable edge-on interaction increased the apparent K(m) for PEP by four- and six-fold, respectively, and the apparent K(m) for Mn(2+) by eight- and six-fold, respectively. The pyruvate kinase-like activity, representing the PEP dephosphorylation step of the OAA-forming reaction, was affected by the substitutions in a similar way to the complete reaction. These observations indicate that the aromatic ring of Tyr235 helps to position PEP in the active site and the hydroxyl group allows an optimal PEP-Mn(2+) distance for efficient phosphoryl transfer and overall catalysis. The Y235A and Y235S changes drastically reduced the PEP-forming and OAA decarboxylase activities, probably due to the elimination of the stabilizing interaction between Tyr235 and the respective products, PEP and pyruvate.
Collapse
Affiliation(s)
- Lakshmi Dharmarajan
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | | | | | | |
Collapse
|
44
|
Castillo D, Sepúlveda C, Cardemil E, Jabalquinto AM. Functional evaluation of serine 252 of Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase. Biochimie 2008; 91:295-9. [PMID: 18996167 DOI: 10.1016/j.biochi.2008.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Accepted: 10/10/2008] [Indexed: 11/29/2022]
Abstract
Saccharomyces cerevisiae phosphoenolpyruvate (PEP) carboxykinase mutant Ser252Ala, affecting the conserved Walker A serine residue, was characterized to elucidate the role of this serine residue. The substitution did not result in changes in the protein structure, as indicated by circular dichroism, intrinsic fluorescence spectroscopy, and gel-exclusion chromatography. Kinetic analysis of the mutated enzyme in both directions of the main reaction and in the two secondary reactions showed an approximately 50-fold increase in apparent K(m) for oxaloacetate with minor alterations in the other kinetic parameters. These results show that the hydroxyl group of serine 252 is required for proper oxaloacetate interaction.
Collapse
|
45
|
Pérez E, Espinoza R, Laiveniekcs M, Cardemil E. Stereochemistry of the carboxylation reaction catalyzed by the ATP-dependent phosphoenolpyruvate carboxykinases from Saccharomyces cerevisiae and Anaerobiospirillum succiniciproducens. Biochimie 2008; 90:1685-92. [PMID: 18675879 DOI: 10.1016/j.biochi.2008.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Accepted: 07/09/2008] [Indexed: 11/15/2022]
Abstract
The stereochemistry of CO(2) addition to phosphoenolpyruvate (PEP) to yield oxaloacetate catalyzed by ATP-dependent Saccharomyces cerevisiae and Anaerobiospirillum succiniciproducens PEP carboxykinases was determined using (Z)-3-fluorophosphoenolpyruvate ((Z)-F-PEP) as a substrate analog. A. succiniciproducens and S. cerevisiae PEP carboxykinases utilized (Z)-F-PEP with 1/14 and 1/47 the respective K(m) values for PEP. On the other hand, in the bacterial and yeast enzymes k(cat) was reduced to 1/67 and 1/48 the value with PEP, respectively. The binding affinity of pyridoxylphosphate-labeled S. cerevisiae and A. succiniciproducens PEP carboxykinases for PEP and (Z)-F-PEP was checked and found to be of similar magnitude for both substrates, suggesting that the lowered K(m) values for the fluorine-containing PEP analog are due to kinetic effects. The lowered k(cat) values when using (Z)-F-PEP as substrate suggest that the electron withdrawing effect of fluorine affects the nucleophilic attack of the double bond of (Z)-F-PEP to CO(2). For the stereochemical analyses, the carboxylation of (Z)-F-PEP was coupled to malate dehydrogenase to yield 3-fluoromalate, which was analyzed by (19)F NMR. The fluoromalate obtained was identified as (2R, 3R)-3-fluoromalate for both the A. succiniciproducens and S. cerevisiae PEP carboxykinases, thus indicating that CO(2) addition to (Z)-F-PEP, and hence PEP, takes place through the 2-si face of the double bond. These results, together with previously published data [Rose, I.A. et al. J. Biol. Chem. 244 (1969) 6130-6133; Hwang, S.H. and Nowak, T. Biochemistry 25 (1986) 5590-5595] indicate that PEP carboxykinases, no matter their nucleotide specificity, catalyze the carboxylation of PEP from the 2-si face of the double bond.
Collapse
Affiliation(s)
- Estela Pérez
- Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | | | | | | |
Collapse
|
46
|
Xie L, Bourne PE. Detecting evolutionary relationships across existing fold space, using sequence order-independent profile-profile alignments. Proc Natl Acad Sci U S A 2008; 105:5441-6. [PMID: 18385384 PMCID: PMC2291117 DOI: 10.1073/pnas.0704422105] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Indexed: 11/18/2022] Open
Abstract
Here, a scalable, accurate, reliable, and robust protein functional site comparison algorithm is presented. The key components of the algorithm consist of a reduced representation of the protein structure and a sequence order-independent profile-profile alignment (SOIPPA). We show that SOIPPA is able to detect distant evolutionary relationships in cases where both a global sequence and structure relationship remains obscure. Results suggest evolutionary relationships across several previously evolutionary distinct protein structure superfamilies. SOIPPA, along with an increased coverage of protein fold space afforded by the structural genomics initiative, can be used to further test the notion that fold space is continuous rather than discrete.
Collapse
Affiliation(s)
- Lei Xie
- *San Diego Supercomputer Center and
| | - Philip E. Bourne
- *San Diego Supercomputer Center and
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| |
Collapse
|
47
|
Le Moullac G, Bacca H, Huvet A, Moal J, Pouvreau S, Van Wormhoudt A. Transcriptional regulation of pyruvate kinase and phosphoenolpyruvate carboxykinase in the adductor muscle of the oyster Crassostrea gigas during prolonged hypoxia. ACTA ACUST UNITED AC 2008; 307:371-82. [PMID: 17486628 DOI: 10.1002/jez.390] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The response of Crassostrea gigas to prolonged hypoxia was investigated for the first time by analyzing the metabolic branch point formed by pyruvate kinase (PK) and hosphoenolpyruvate carboxykinase (PEPCK). PK and PEPCK cDNAs were cloned and sequenced. The main functional domains of the PK sequence, such as the binding sites for ADP/ATP and phosphoenolpyruvate (PEP), were identified whereas the PEPCK sequence showed the specific domain to bind PEP in addition to the kinase-1 and kinase-2 motifs to bind guanosine triphosphate (GTP) and Mg(2+), specific for all PEPCKs. A C-terminal extension was detected for the first time in eukaryota PK. Separation of mitochondrial and cytosolic fraction showed that more than 92% of the PEPCK enzyme activity was cytosolic in gills, digestive gland, mantle and muscle. PK and PEPCK mRNAs and enzyme activities have been measured in muscle during prolonged hypoxia for 20 days. Adaptation of PK in hypoxic muscle at transcriptional level occurred lately by decreasing significantly the PK mRNA level at day 20 while PK enzyme activity was inhibited by the high content of alanine. The PEPCK mRNA ratio in hypoxic muscle significantly increased at day 10 simultaneously to the PEPCK enzyme activity. Succinate accumulation observed at day 10 and day 20 confirmed the anaerobic pathway of muscle metabolism in oyster subjected to hypoxia. Regulation of C. gigas PEPCK in muscle occurred at gene transcription level while PK was first regulated at enzyme level with alanine as allosteric inhibitor, and then at molecular level under a fast effect of hypoxia.
Collapse
Affiliation(s)
- Gilles Le Moullac
- UMR 100 Physiologie et Ecophysiologie des Mollusques Marins, IFREMER, Site Expérimental d'Argenton, Presqu'île du Vivier, Argenton en Landunvez, France.
| | | | | | | | | | | |
Collapse
|
48
|
Tobar I, González-Nilo FD, Jabalquinto AM, Cardemil E. Relevance of Arg457 for the nucleotide affinity of Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase. Int J Biochem Cell Biol 2008; 40:1883-9. [PMID: 18346928 DOI: 10.1016/j.biocel.2008.01.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 12/19/2007] [Accepted: 01/23/2008] [Indexed: 12/16/2022]
Abstract
Phosphoenolpyruvate carboxykinases catalyze one of the first steps in the biosynthesis of glucose and depending on the enzyme origin, preferentially use adenine or guanine nucleotides as substrates. The Saccharomyces cerevisiae enzyme has a marked preference for ADP (or ATP) over other nucleotides. Homology models of the enzyme in complex with ADP or ATP show that the guanidinium group of Arg457 is close to the adenine base, suggesting that this group might be involved in the stabilization of the nucleotide substrate. To evaluate this we have performed the mutation Arg457Met, replacing the positively charged guanidinium group by a neutral residue. The mutated enzyme retained the structural characteristics of the wild-type protein. Fluorescence titration experiments showed that mutation causes a loss of 1.7 kcal mol(-1) in the binding affinity of the enzyme for ADPMn. Similarly, kinetic analyses of the mutated enzyme showed 50-fold increase in K(m) for ADPMn, with minor alterations in the other kinetic parameters. These results show that Arg457 is an important factor for nucleotide binding by S. cerevisiae PEP carboxykinase.
Collapse
Affiliation(s)
- Iván Tobar
- Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Santiago 33, Chile
| | | | | | | |
Collapse
|
49
|
Case CL, Mukhopadhyay B. Kinetic characterization of recombinant human cytosolic phosphoenolpyruvate carboxykinase with and without a His10-tag. Biochim Biophys Acta Gen Subj 2007; 1770:1576-84. [PMID: 17888579 DOI: 10.1016/j.bbagen.2007.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2007] [Revised: 07/14/2007] [Accepted: 07/19/2007] [Indexed: 11/21/2022]
Abstract
We report the first kinetic characterization of human liver cytosolic GTP-dependent phosphoenolpyruvate carboxykinase (GTP-PEPCK), which plays a major role in the development of type 2 diabetes in human. In this work two recombinant forms of the enzyme were studied. One form had a His10-tag and the other was His-tag-free, and with one exception, both exhibited similar kinetic properties. When Mn2+ was used as the sole divalent cation, the His10-tagged enzyme, but not the His-tag-free enzyme, was increasingly inhibited at Mn2+ concentrations greater than 0.7 mM. This inhibition did not pose any problem in kinetic analysis, for within the relevant Mn2+ concentration range the His-tagged human PEPCK behaved almost identically to the tag-free enzyme. This property will bring simplicity and speed to purifying and studying multiple structural variants of this important enzyme. Apparent Km values of tag-free enzyme for phosphoenolpyruvate, GDP and bicarbonate were 450, 79 and 20,600 microM, respectively, while those for oxaloacetate and GTP were 4 and 23 microM, respectively, emphasizing the enzyme's gluconeogenic character. Bicarbonate (>100 mM) inhibited OAA-forming activity, which was a new observation with a GTP-PEPCK. The apparent Km for Mn2+ in the PEP-forming direction was 30-fold lower than that for the OAA-forming direction. Mn2+ and bicarbonate or CO2 might regulate the enzyme in vivo.
Collapse
Affiliation(s)
- Christopher L Case
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | | |
Collapse
|
50
|
Choi CY, Min BH, Jo PG, Chang YJ. Molecular cloning of PEPCK and stress response of black porgy (Acanthopagrus schlegeli) to increased temperature in freshwater and seawater. Gen Comp Endocrinol 2007; 152:47-53. [PMID: 17418846 DOI: 10.1016/j.ygcen.2007.02.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Revised: 01/07/2007] [Accepted: 02/17/2007] [Indexed: 10/23/2022]
Abstract
Stress responses to increased temperature in black porgy reared in freshwater (FBP) and seawater (SBP) were examined via endocrinological and blood physiological methods. A rise in temperature increased plasma cortisol levels, which were significantly higher in FBP compared to SBP. The stimulated expression of phosphoenolpyruvate carboxykinase (PEPCK) mRNA in liver might result from the high cortisol level, and this explains the observed higher plasma glucose levels in FBP versus SBP. Full-length cDNA sequence for PEPCK was determined by 3' and 5' RACE procedures. PEPCK cDNA clone was found to contain 2563 nucleotides including an open reading frame that encodes 624 amino acids. While aspartate aminotransferase (AST) and alanine aminotransferase (ALT) of FBP increased with temperature, there was no change in SBP. In FBP, T(3) were 2.3+/-0.3 ng/ml at 20 degrees C and significantly decreased to 1.0+/-0.3 ng/ml at 30 degrees C. On the other hand, in SBP, it were 3.1+/-0.5 ng/ml at 20 degrees C but significantly increased to 5.2+/-0.4 ng/ml at 30 degrees C. When comparing osmolality at the temperature of 30 degrees C and of 20 degrees C, the difference was found to be greater for FBP than SBP. Accordingly, the results suggest that FBP suffers greater stress than SBP with increased temperature, and provide stress responses and osmoregulatory abilities against stressors in black porgy that could differ depending on salinities.
Collapse
Affiliation(s)
- Cheol Young Choi
- Division of Marine Environment & Bioscience, Korea Maritime University, Busan 606-791, Republic of Korea
| | | | | | | |
Collapse
|