1
|
Fenster JA, Azzinaro PA, Dinhobl M, Borca MV, Spinard E, Gladue DP. African Swine Fever Virus Protein-Protein Interaction Prediction. Viruses 2024; 16:1170. [PMID: 39066332 PMCID: PMC11281715 DOI: 10.3390/v16071170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/05/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
The African swine fever virus (ASFV) is an often deadly disease in swine and poses a threat to swine livestock and swine producers. With its complex genome containing more than 150 coding regions, developing effective vaccines for this virus remains a challenge due to a lack of basic knowledge about viral protein function and protein-protein interactions between viral proteins and between viral and host proteins. In this work, we identified ASFV-ASFV protein-protein interactions (PPIs) using artificial intelligence-powered protein structure prediction tools. We benchmarked our PPI identification workflow on the Vaccinia virus, a widely studied nucleocytoplasmic large DNA virus, and found that it could identify gold-standard PPIs that have been validated in vitro in a genome-wide computational screening. We applied this workflow to more than 18,000 pairwise combinations of ASFV proteins and were able to identify seventeen novel PPIs, many of which have corroborating experimental or bioinformatic evidence for their protein-protein interactions, further validating their relevance. Two protein-protein interactions, I267L and I8L, I267L__I8L, and B175L and DP79L, B175L__DP79L, are novel PPIs involving viral proteins known to modulate host immune response.
Collapse
Affiliation(s)
- Jacob A. Fenster
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37830, USA;
- Plum Island Animal Disease Center, Foreign Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Orient, NY 11957, USA; (P.A.A.); (M.D.); (E.S.)
- National Bio and Agro-Defense Facility, Foreign Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Manhattan, KS 66502, USA
| | - Paul A. Azzinaro
- Plum Island Animal Disease Center, Foreign Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Orient, NY 11957, USA; (P.A.A.); (M.D.); (E.S.)
- National Bio and Agro-Defense Facility, Foreign Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Manhattan, KS 66502, USA
| | - Mark Dinhobl
- Plum Island Animal Disease Center, Foreign Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Orient, NY 11957, USA; (P.A.A.); (M.D.); (E.S.)
- National Bio and Agro-Defense Facility, Foreign Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Manhattan, KS 66502, USA
| | - Manuel V. Borca
- Plum Island Animal Disease Center, Foreign Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Orient, NY 11957, USA; (P.A.A.); (M.D.); (E.S.)
- National Bio and Agro-Defense Facility, Foreign Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Manhattan, KS 66502, USA
| | - Edward Spinard
- Plum Island Animal Disease Center, Foreign Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Orient, NY 11957, USA; (P.A.A.); (M.D.); (E.S.)
- National Bio and Agro-Defense Facility, Foreign Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Manhattan, KS 66502, USA
| | - Douglas P. Gladue
- Plum Island Animal Disease Center, Foreign Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Orient, NY 11957, USA; (P.A.A.); (M.D.); (E.S.)
- National Bio and Agro-Defense Facility, Foreign Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Manhattan, KS 66502, USA
| |
Collapse
|
2
|
Liu X, Chen H, Ye G, Liu H, Feng C, Chen W, Hu L, Zhou Q, Zhang Z, Li J, Zhang X, He X, Guan Y, Wu Z, Zhao D, Bu Z, Weng C, Huang L. African swine fever virus pB318L, a trans-geranylgeranyl-diphosphate synthase, negatively regulates cGAS-STING and IFNAR-JAK-STAT signaling pathways. PLoS Pathog 2024; 20:e1012136. [PMID: 38620034 PMCID: PMC11018288 DOI: 10.1371/journal.ppat.1012136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/18/2024] [Indexed: 04/17/2024] Open
Abstract
African swine fever (ASF) is an acute, hemorrhagic, and severe infectious disease caused by the ASF virus (ASFV). ASFV has evolved multiple strategies to escape host antiviral immune responses. Here, we reported that ASFV pB318L, a trans-geranylgeranyl-diphosphate synthase, reduced the expression of type I interferon (IFN-I) and IFN-stimulated genes (ISGs). Mechanically, pB318L not only interacted with STING to reduce the translocation of STING from the endoplasmic reticulum to the Golgi apparatus but also interacted with IFN receptors to reduce the interaction of IFNAR1/TYK2 and IFNAR2/JAK1. Of note, ASFV with interruption of B318L gene (ASFV-intB318L) infected PAMs produces more IFN-I and ISGs than that in PAMs infected with its parental ASFV HLJ/18 at the late stage of infection. Consistently, the pathogenicity of ASFV-intB318L is attenuated in piglets compared with its parental virus. Taken together, our data reveal that B318L gene may partially affect ASFV pathogenicity by reducing the production of IFN-I and ISGs. This study provides a clue to design antiviral agents or live attenuated vaccines to prevent and control ASF.
Collapse
Affiliation(s)
- Xiaohong Liu
- National African Swine Fever Para-reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hefeng Chen
- National African Swine Fever Para-reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Guangqiang Ye
- National African Swine Fever Para-reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongyang Liu
- National African Swine Fever Para-reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chunying Feng
- National African Swine Fever Para-reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Weiye Chen
- National African Swine Fever Para-reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Liang Hu
- National African Swine Fever Para-reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qiongqiong Zhou
- National African Swine Fever Para-reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhaoxia Zhang
- National African Swine Fever Para-reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, China
| | - Jiangnan Li
- National African Swine Fever Para-reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, China
| | - Xianfeng Zhang
- National African Swine Fever Para-reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xijun He
- National African Swine Fever Para-reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuntao Guan
- National African Swine Fever Para-reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhengshuang Wu
- National African Swine Fever Para-reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Dongming Zhao
- National African Swine Fever Para-reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhigao Bu
- National African Swine Fever Para-reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Changjiang Weng
- National African Swine Fever Para-reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, China
| | - Li Huang
- National African Swine Fever Para-reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, China
| |
Collapse
|
3
|
Cackett G, Sýkora M, Portugal R, Dulson C, Dixon L, Werner F. Transcription termination and readthrough in African swine fever virus. Front Immunol 2024; 15:1350267. [PMID: 38545109 PMCID: PMC10965686 DOI: 10.3389/fimmu.2024.1350267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/30/2024] [Indexed: 04/13/2024] Open
Abstract
Introduction African swine fever virus (ASFV) is a nucleocytoplasmic large DNA virus (NCLDV) that encodes its own host-like RNA polymerase (RNAP) and factors required to produce mature mRNA. The formation of accurate mRNA 3' ends by ASFV RNAP depends on transcription termination, likely enabled by a combination of sequence motifs and transcription factors, although these are poorly understood. The termination of any RNAP is rarely 100% efficient, and the transcriptional "readthrough" at terminators can generate long mRNAs which may interfere with the expression of downstream genes. ASFV transcriptome analyses reveal a landscape of heterogeneous mRNA 3' termini, likely a combination of bona fide termination sites and the result of mRNA degradation and processing. While short-read sequencing (SRS) like 3' RNA-seq indicates an accumulation of mRNA 3' ends at specific sites, it cannot inform about which promoters and transcription start sites (TSSs) directed their synthesis, i.e., information about the complete and unprocessed mRNAs at nucleotide resolution. Methods Here, we report a rigorous analysis of full-length ASFV transcripts using long-read sequencing (LRS). We systematically compared transcription termination sites predicted from SRS 3' RNA-seq with 3' ends mapped by LRS during early and late infection. Results Using in-vitro transcription assays, we show that recombinant ASFV RNAP terminates transcription at polyT stretches in the non-template strand, similar to the archaeal RNAP or eukaryotic RNAPIII, unaided by secondary RNA structures or predicted viral termination factors. Our results cement this T-rich motif (U-rich in the RNA) as a universal transcription termination signal in ASFV. Many genes share the usage of the same terminators, while genes can also use a range of terminators to generate transcript isoforms varying enormously in length. A key factor in the latter phenomenon is the highly abundant terminator readthrough we observed, which is more prevalent during late compared with early infection. Discussion This indicates that ASFV mRNAs under the control of late gene promoters utilize different termination mechanisms and factors to early promoters and/or that cellular factors influence the viral transcriptome landscape differently during the late stages of infection.
Collapse
Affiliation(s)
- Gwenny Cackett
- Institute for Structural and Molecular Biology, University College London, London, United Kingdom
| | - Michal Sýkora
- Institute for Structural and Molecular Biology, University College London, London, United Kingdom
| | | | - Christopher Dulson
- Institute for Structural and Molecular Biology, University College London, London, United Kingdom
| | - Linda Dixon
- Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - Finn Werner
- Institute for Structural and Molecular Biology, University College London, London, United Kingdom
| |
Collapse
|
4
|
Zhao H, Zhang H, She Z, Gao Z, Wang Q, Geng Z, Dong Y. Exploring AlphaFold2's Performance on Predicting Amino Acid Side-Chain Conformations and Its Utility in Crystal Structure Determination of B318L Protein. Int J Mol Sci 2023; 24:2740. [PMID: 36769074 PMCID: PMC9916901 DOI: 10.3390/ijms24032740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 02/04/2023] Open
Abstract
Recent technological breakthroughs in machine-learning-based AlphaFold2 (AF2) are pushing the prediction accuracy of protein structures to an unprecedented level that is on par with experimental structural quality. Despite its outstanding structural modeling capability, further experimental validations and performance assessments of AF2 predictions are still required, thus necessitating the development of integrative structural biology in synergy with both computational and experimental methods. Focusing on the B318L protein that plays an essential role in the African swine fever virus (ASFV) for viral replication, we experimentally demonstrate the high quality of the AF2 predicted model and its practical utility in crystal structural determination. Structural alignment implies that the AF2 model shares nearly the same atomic arrangement as the B318L crystal structure except for some flexible and disordered regions. More importantly, side-chain-based analysis at the individual residue level reveals that AF2's performance is likely dependent on the specific amino acid type and that hydrophobic residues tend to be more accurately predicted by AF2 than hydrophilic residues. Quantitative per-residue RMSD comparisons and further molecular replacement trials suggest that AF2 has a large potential to outperform other computational modeling methods in terms of structural determination. Additionally, it is numerically confirmed that the AF2 model is accurate enough so that it may well potentially withstand experimental data quality to a large extent for structural determination. Finally, an overall structural analysis and molecular docking simulation of the B318L protein are performed. Taken together, our study not only provides new insights into AF2's performance in predicting side-chain conformations but also sheds light upon the significance of AF2 in promoting crystal structural determination, especially when the experimental data quality of the protein crystal is poor.
Collapse
Affiliation(s)
- Haifan Zhao
- School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Heng Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhun She
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zengqiang Gao
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Wang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Geng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhui Dong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Netherton CL, Shimmon GL, Hui JYK, Connell S, Reis AL. African Swine Fever Virus Host-Pathogen Interactions. Subcell Biochem 2023; 106:283-331. [PMID: 38159232 DOI: 10.1007/978-3-031-40086-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
African swine fever virus is a complex double-stranded DNA virus that exhibits tropism for cells of the mononuclear phagocytic system. Virus replication is a multi-step process that involves the nucleus of the host cell as well the formation of large perinuclear sites where progeny virions are assembled prior to transport to, and budding through, the plasma membrane. Like many viruses, African swine fever virus reorganises the cellular architecture to facilitate its replication and has evolved multiple mechanisms to avoid the potential deleterious effects of host cell stress response pathways. However, how viral proteins and virus-induced structures trigger cellular stress pathways and manipulate the subsequent responses is still relatively poorly understood. African swine fever virus alters nuclear substructures, modulates autophagy, apoptosis and the endoplasmic reticulum stress response pathways. The viral genome encodes for at least 150 genes, of which approximately 70 are incorporated into the virion. Many of the non-structural genes have not been fully characterised and likely play a role in host range and modifying immune responses. As the field moves towards approaches that take a broader view of the effect of expression of individual African swine fever genes, we summarise how the different steps in virus replication interact with the host cell and the current state of knowledge on how it modulates the resulting stress responses.
Collapse
|
6
|
Li Z, Chen W, Qiu Z, Li Y, Fan J, Wu K, Li X, Zhao M, Ding H, Fan S, Chen J. African Swine Fever Virus: A Review. Life (Basel) 2022; 12:1255. [PMID: 36013434 PMCID: PMC9409812 DOI: 10.3390/life12081255] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
African swine fever (ASF) is a viral disease with a high fatality rate in both domestic pigs and wild boars. ASF has greatly challenged pig-raising countries and also negatively impacted regional and national trade of pork products. To date, ASF has spread throughout Africa, Europe, and Asia. The development of safe and effective ASF vaccines is urgently required for the control of ASF outbreaks. The ASF virus (ASFV), the causative agent of ASF, has a large genome and a complex structure. The functions of nearly half of its viral genes still remain to be explored. Knowledge on the structure and function of ASFV proteins, the mechanism underlying ASFV infection and immunity, and the identification of major immunogenicity genes will contribute to the development of an ASF vaccine. In this context, this paper reviews the available knowledge on the structure, replication, protein function, virulence genes, immune evasion, inactivation, vaccines, control, and diagnosis of ASFV.
Collapse
Affiliation(s)
- Zhaoyao Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Wenxian Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Zilong Qiu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yuwan Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Jindai Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Keke Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Xiaowen Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Hongxing Ding
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| |
Collapse
|
7
|
Transcriptome view of a killer: African swine fever virus. Biochem Soc Trans 2021; 48:1569-1581. [PMID: 32725217 PMCID: PMC7458399 DOI: 10.1042/bst20191108] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 02/07/2023]
Abstract
African swine fever virus (ASFV) represents a severe threat to global agriculture with the world's domestic pig population reduced by a quarter following recent outbreaks in Europe and Asia. Like other nucleocytoplasmic large DNA viruses, ASFV encodes a transcription apparatus including a eukaryote-like RNA polymerase along with a combination of virus-specific, and host-related transcription factors homologous to the TATA-binding protein (TBP) and TFIIB. Despite its high impact, the molecular basis and temporal regulation of ASFV transcription is not well understood. Our lab recently applied deep sequencing approaches to characterise the viral transcriptome and gene expression during early and late ASFV infection. We have characterised the viral promoter elements and termination signatures, by mapping the RNA-5' and RNA-3' termini at single nucleotide resolution. In this review, we discuss the emerging field of ASFV transcripts, transcription, and transcriptomics.
Collapse
|
8
|
The L83L ORF of African swine fever virus strain Georgia encodes for a non-essential gene that interacts with the host protein IL-1β. Virus Res 2018; 249:116-123. [PMID: 29605728 DOI: 10.1016/j.virusres.2018.03.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 01/01/2023]
Abstract
African swine fever virus (ASFV) causes a contagious and frequently lethal disease of pigs causing significant economic consequences to the swine industry. The ASFV genome encodes for more than 150 genes, but only a few of them have been studied in detail. Here we report the characterization of open reading frame L83L which encodes a highly conserved protein across all ASFV isolates. A recombinant ASFV harboring a HA tagged L83L protein was developed (ASFV-G-L83L-HA) and used to demonstrate that L83L is a transiently expressed early virus protein. A recombinant ASFV lacking the L83L gene (ASFV-G-ΔL83L) was developed from the highly virulent field isolate Georgia2007 (ASFV-G) and was used to show that L83L is a non-essential gene. ASFV-G-ΔL83L had similar replication in primary swine macrophage cells when compared to its parental virus ASFV-G. Analysis of host-protein interactions for L83L identified IL-1β as its host ligand. Experimental infection of domestic pigs showed that ASFV-G-ΔL83L is as virulent as the parental virus ASFV-G.
Collapse
|
9
|
Alonso C, Galindo I, Cuesta-Geijo MA, Cabezas M, Hernaez B, Muñoz-Moreno R. African swine fever virus-cell interactions: from virus entry to cell survival. Virus Res 2012; 173:42-57. [PMID: 23262167 PMCID: PMC7114420 DOI: 10.1016/j.virusres.2012.12.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 12/01/2012] [Accepted: 12/04/2012] [Indexed: 11/28/2022]
Abstract
Viruses have adapted to evolve complex and dynamic interactions with their host cell. The viral entry mechanism determines viral tropism and pathogenesis. The entry of African swine fever virus (ASFV) is dynamin-dependent and clathrin-mediated, but other pathways have been described such as macropinocytosis. During endocytosis, ASFV viral particles undergo disassembly in various compartments that the virus passes through en route to the site of replication. This disassembly relies on the acid pH of late endosomes and on microtubule cytoskeleton transport. ASFV interacts with several regulatory pathways to establish an optimal environment for replication. Examples of these pathways include small GTPases, actin-related signaling, and lipid signaling. Cellular cholesterol, the entire cholesterol biosynthesis pathway, and phosphoinositides are central molecular networks required for successful infection. Here we report new data on the conformation of the viral replication site or viral factory and the remodeling of the subcellular structures. We review the virus-induced regulation of ER stress, apoptosis and autophagy as key mechanisms of cell survival and determinants of infection outcome. Finally, future challenges for the development of new preventive strategies against this virus are proposed on the basis of current knowledge about ASFV-host interactions.
Collapse
Affiliation(s)
- Covadonga Alonso
- Dpto. de Biotecnología, INIA, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Ctra. de Coruña Km 7.5, 28040 Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
10
|
Dixon LK, Chapman DAG, Netherton CL, Upton C. African swine fever virus replication and genomics. Virus Res 2012; 173:3-14. [PMID: 23142553 DOI: 10.1016/j.virusres.2012.10.020] [Citation(s) in RCA: 441] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 10/19/2012] [Accepted: 10/19/2012] [Indexed: 01/03/2023]
Abstract
African swine fever virus (ASFV) is a large icosahedral DNA virus which replicates predominantly in the cytoplasm of infected cells. The ASFV double-stranded DNA genome varies in length from about 170 to 193 kbp depending on the isolate and contains between 150 and 167 open reading frames. These are closely spaced and read from both DNA strands. The virus genome termini are covalently closed by imperfectly base-paired hairpin loops that are present in two forms that are complimentary and inverted with respect to each other. Adjacent to the termini are inverted arrays of different tandem repeats. Head to head concatemeric genome replication intermediates have been described. A similar mechanism of replication to Poxviruses has been proposed for ASFV. Virus genome transcription occurs independently of the host RNA polymerase II and virus particles contain all of the enzymes and factors required for early gene transcription. DNA replication begins in perinuclear factory areas about 6h post-infection although an earlier stage of nuclear DNA synthesis has been reported. The virus genome encodes enzymes required for transcription and replication of the virus genome and virion structural proteins. Enzymes that are involved in a base excision repair pathway may be an adaptation to enable virus replication in the oxidative environment of the macrophage cytoplasm. Other ASFV genes encode factors involved in evading host defence systems and modulating host cell function. Variation between the genomes of different ASFV isolates is most commonly due to gain or loss of members of multigene families, MGFs 100, 110, 300, 360, 505/530 and family p22. These are located within the left terminal 40kbp and right terminal 20kbp. ASFV is the only member of the Asfarviridae, which is one of the families within the nucleocytoplasmic large DNA virus superfamily.
Collapse
Affiliation(s)
- Linda K Dixon
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, United Kingdom.
| | | | | | | |
Collapse
|
11
|
Rodríguez JM, Salas ML. African swine fever virus transcription. Virus Res 2012; 173:15-28. [PMID: 23041356 DOI: 10.1016/j.virusres.2012.09.014] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 09/21/2012] [Indexed: 10/27/2022]
Abstract
African swine fever virus (ASFV), a large, enveloped, icosahedral dsDNA virus, is currently the only known DNA-containing arbovirus and the only recognized member of the family Asfarviridae. Its genome encodes more than 150 open reading frames that are densely distributed, separated by short intergenic regions. ASFV gene expression follows a complex temporal programming. Four classes of mRNAs have been identified by its distinctive accumulation kinetics. Gene transcription is coordinated with DNA replication that acts as the main switch on ASFV gene expression. Immediate early and early genes are expressed before the onset of DNA replication, whereas intermediate and late genes are expressed afterwards. ASFV mRNAs have a cap 1 structure at its 5'-end and a short poly(A) tail on its 3'-end. Transcription initiation and termination occurs at very precise positions within the genome, producing transcripts of definite length throughout the expression program. ASFV devotes approximately 20% of its genome to encode the 20 genes currently considered to be involved in the transcription and modification of its mRNAs. This transcriptional machinery gives to ASFV a remarkable independence from its host and an accurate positional and temporal control of its gene expression. Here, we review the components of the ASFV transcriptional apparatus, its expression strategies and the relevant data about the transcriptional cis-acting control sequences.
Collapse
Affiliation(s)
- Javier M Rodríguez
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo, Km 2.2, Majadahonda, 28220 Madrid, Spain.
| | | |
Collapse
|
12
|
Small rho GTPases and cholesterol biosynthetic pathway intermediates in African swine fever virus infection. J Virol 2011; 86:1758-67. [PMID: 22114329 DOI: 10.1128/jvi.05666-11] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The integrity of the cholesterol biosynthesis pathway is required for efficient African swine fever virus (ASFV) infection. Incorporation of prenyl groups into Rho GTPases plays a key role in several stages of ASFV infection, since both geranylgeranyl and farnesyl pyrophosphates are required at different infection steps. We found that Rho GTPase inhibition impaired virus morphogenesis and resulted in an abnormal viral factory size with the accumulation of envelope precursors and immature virions. Furthermore, abundant defective virions reached the plasma membrane, and filopodia formation in exocytosis was abrogated. Rac1 was activated at early ASFV infection stages, coincident with microtubule acetylation, a process that stabilizes microtubules for virus transport. Rac1 inhibition did not affect the viral entry step itself but impaired subsequent virus production. We found that specific Rac1 inhibition impaired viral induced microtubule acetylation and viral intracellular transport. These findings highlight that viral infection is the result of a carefully orchestrated modulation of Rho family GTPase activity within the host cell; this modulation results critical for virus morphogenesis and in turn, triggers cytoskeleton remodeling, such as microtubule stabilization for viral transport during early infection.
Collapse
|
13
|
Abstract
African swine fever virus (ASFV) is a large, intracytoplasmically-replicating DNA arbovirus and the sole member of the family Asfarviridae. It is the etiologic agent of a highly lethal hemorrhagic disease of domestic swine and therefore extensively studied to elucidate the structures, genes, and mechanisms affecting viral replication in the host, virus-host interactions, and viral virulence. Increasingly apparent is the complexity with which ASFV replicates and interacts with the host cell during infection. ASFV encodes novel genes involved in host immune response modulation, viral virulence for domestic swine, and in the ability of ASFV to replicate and spread in its tick vector. The unique nature of ASFV has contributed to a broader understanding of DNA virus/host interactions.
Collapse
Affiliation(s)
- E R Tulman
- Department of Pathobiology and Veterinary Science, Center of Excellence for Vaccine Research, University of Connecticut, Storrs 06269, USA.
| | | | | | | |
Collapse
|
14
|
Chapman DAG, Tcherepanov V, Upton C, Dixon LK. Comparison of the genome sequences of non-pathogenic and pathogenic African swine fever virus isolates. J Gen Virol 2008; 89:397-408. [PMID: 18198370 DOI: 10.1099/vir.0.83343-0] [Citation(s) in RCA: 214] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The genomic coding sequences, apart from the inverted terminal repeats and cross-links, have been determined for two African swine fever virus (ASFV) isolates from the same virus genotype, a non-pathogenic isolate from Portugal, OURT88/3, and a highly pathogenic isolate from West Africa, Benin 97/1. These genome sequences were annotated and compared with that of a tissue culture-adapted isolate, BA71V. The genomes range in length between 170 and 182 kbp and encode between 151 and 157 open reading frames (ORFs). Compared to the Benin 97/1 isolate, the OURT88/3 and BA71V isolates have deletions of 8-10 kbp that encode six copies of the multigene family (MGF) 360 and either one MGF 505/530 copy in the BA71V or two copies in the OURT88/3 isolate. The BA71V isolate has a deletion, close to the right end of the genome, of 3 kbp compared with the other isolates. The five ORFs in this region include an additional copy of an ORF similar to that encoding the p22 virus structural protein. The OURT88/3 isolate has interruptions in ORFs that encode a CD2-like and a C-type lectin protein. Variation between the genomes is observed in the number of copies of five different MGFs. The 109 non-duplicated ORFs conserved in the three genomes encode proteins involved in virus replication, virus assembly and modulation of the host's defences. These results provide information concerning the genetic variability of African swine fever virus isolates that differ in pathogenicity.
Collapse
Affiliation(s)
- David A G Chapman
- Institute for Animal Health, Pirbright Laboratory, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK
| | - Vasily Tcherepanov
- Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada
| | - Chris Upton
- Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada
| | - Linda K Dixon
- Institute for Animal Health, Pirbright Laboratory, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK
| |
Collapse
|
15
|
García-Escudero R, Viñuela E. Structure of African swine fever virus late promoters: requirement of a TATA sequence at the initiation region. J Virol 2000; 74:8176-82. [PMID: 10933729 PMCID: PMC112352 DOI: 10.1128/jvi.74.17.8176-8182.2000] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A number of mutations, including deletions, linker scan substitutions, and point mutations, were performed in the promoter of the late African swine fever virus (ASFV) gene coding for the capsid protein p72. The consequences of the mutations in terms of promoter activity were analyzed by luciferase assays using plasmids transfected into infected cells. The results showed that the promoter function is contained between nucleotides -36 and +5 relative to the transcription initiation site. Moreover, two major essential regions for promoter activity, centered at positions -13 and +3, were located along the 41-bp sequence, the latter mapping in the transcription start site. Sequence alignment with other ASFV late promoters showed homology in the region of transcriptional initiation, where the presence of the sequence TATA was observed in most of the promoters. Substitution of these four residues in three other late viral promoters strongly reduced their respective activities. These results show that cis-acting control elements of ASFV p72 gene transcription are restricted to a short sequence of about 40 bp and suggest that transcription of late genes is initiated around a TATA sequence that would function as an initiator element.
Collapse
Affiliation(s)
- R García-Escudero
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| | | |
Collapse
|
16
|
Alejo A, Andrés G, Viñuela E, Salas ML. The African swine fever virus prenyltransferase is an integral membrane trans-geranylgeranyl-diphosphate synthase. J Biol Chem 1999; 274:18033-9. [PMID: 10364254 DOI: 10.1074/jbc.274.25.18033] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In a previous study, it was shown that the protein encoded by the gene B318L of African swine fever virus (ASFV) is a trans-prenyltransferase that catalyzes in vitro the condensation of farnesyl diphosphate and isopentenyl diphosphate to synthesize geranylgeranyl diphosphate and longer chain prenyl diphosphates (Alejo, A., Yáñez, R. J., Rodríguez, J. M., Viñuela, E., and Salas, M. L. (1997) J. Biol. Chem. 272, 9417-9423). To investigate the in vivo function of the viral enzyme, we have determined, in this work, its subcellular localization and activity in cell extracts. Two systems were used in these studies: cells infected with ASFV and cells infected with a recombinant pseudo-Sindbis virus carrying the complete B318L gene. In this latter system, the trans-prenyltransferase was found to colocalize with the endoplasmic reticulum marker protein-disulfide isomerase, whereas in cells infected with ASFV, the viral enzyme was present in cytoplasmic viral assembly sites, associated with precursor viral membranes derived from the endoplasmic reticulum. In addition, after subcellular fractionation, the viral enzyme partitioned into the membrane fraction. Extraction of membrane proteins with alkaline carbonate and Triton X-114 indicated that the ASFV enzyme behaved as an integral membrane protein. The membrane enzyme synthesized predominantly all-trans-geranylgeranyl diphosphate from farnesyl diphosphate and isopentenyl diphosphate. These results indicate that the viral B318L protein is a trans-geranylgeranyl-diphosphate synthase, being the only enzyme of this type that is known to have a membrane localization.
Collapse
Affiliation(s)
- A Alejo
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|