1
|
Wu J, Bu M, Zong Y, Tu Z, Cheng Y, Li H. Overexpression of the Liriodendron tulipifera TPS32 gene in tobacco enhances terpenoid compounds synthesis. FRONTIERS IN PLANT SCIENCE 2024; 15:1445103. [PMID: 39354939 PMCID: PMC11442295 DOI: 10.3389/fpls.2024.1445103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/21/2024] [Indexed: 10/03/2024]
Abstract
Liriodendron, a relic genus from the Magnoliaceae family, comprises two species, L. tulipifera and L. chinense. L. tulipifera is distinguished by its extensive natural distribution in Eastern North America. Conversely, L. chinense is nearing endangerment due to its low regeneration rate. A pivotal aspect in the difference of these species involves terpenoids, which play crucial roles in plant growth and attracting pollinators. However, the complex molecular mechanisms underlying terpenoid roles in Liriodendron are not well understood. Terpene Synthases (TPS) genes are widely reported to play a role in terpenoid biosynthesis, hence, this study centers on TPS genes in Liriodendron spp. Employing multiple bioinformatics methods, a differential expression gene in L. tulipifera, LtuTPS32, was discerned for further functional analysis. Subcellular localization results reveal the involvement of LtuTPS32 in chloroplast-associated processes, hence participate in terpenoid biosynthesis within chloroplasts. Heterologous transformation of the LtuTPS32 gene into tobacco significantly elevates the levels of common terpenoid compounds, including chlorophyll, gibberellin, and carotenoids. Collectively, these findings not only underscore the role of the LtuTPS32 gene in the biosynthesis of terpenoids but also lay a foundation for future research on interspecific differences in Liriodendron.
Collapse
Affiliation(s)
- Junpeng Wu
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Manli Bu
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Yaxian Zong
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Zhonghua Tu
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Yanli Cheng
- College of architecture, Anhui Science and Technology University, Bengbu, Anhui, China
| | - Huogen Li
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
2
|
Réthoré E, Pelletier S, Balliau T, Zivy M, Avelange-Macherel MH, Macherel D. Multi-scale analysis of heat stress acclimation in Arabidopsis seedlings highlights the primordial contribution of energy-transducing organelles. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:300-331. [PMID: 38613336 DOI: 10.1111/tpj.16763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/08/2024] [Accepted: 03/14/2024] [Indexed: 04/14/2024]
Abstract
Much progress has been made in understanding the molecular mechanisms of plant adaptation to heat stress. However, the great diversity of models and stress conditions, and the fact that analyses are often limited to a small number of approaches, complicate the picture. We took advantage of a liquid culture system in which Arabidopsis seedlings are arrested in their development, thus avoiding interference with development and drought stress responses, to investigate through an integrative approach seedlings' global response to heat stress and acclimation. Seedlings perfectly tolerate a noxious heat shock (43°C) when subjected to a heat priming treatment at a lower temperature (38°C) the day before, displaying a thermotolerance comparable to that previously observed for Arabidopsis. A major effect of the pre-treatment was to partially protect energy metabolism under heat shock and favor its subsequent rapid recovery, which was correlated with the survival of seedlings. Rapid recovery of actin cytoskeleton and mitochondrial dynamics were another landmark of heat shock tolerance. The omics confirmed the role of the ubiquitous heat shock response actors but also revealed specific or overlapping responses to priming, heat shock, and their combination. Since only a few components or functions of chloroplast and mitochondria were highlighted in these analyses, the preservation and rapid recovery of their bioenergetic roles upon acute heat stress do not require extensive remodeling of the organelles. Protection of these organelles is rather integrated into the overall heat shock response, thus allowing them to provide the energy required to elaborate other cellular responses toward acclimation.
Collapse
Affiliation(s)
- Elise Réthoré
- Univ Angers, Institut Agro Rennes-Angers, INRAE, IRHS-UMR 1345, F-49000, Angers, France
| | - Sandra Pelletier
- Univ Angers, Institut Agro Rennes-Angers, INRAE, IRHS-UMR 1345, F-49000, Angers, France
| | - Thierry Balliau
- INRAE, PAPPSO, UMR/UMR Génétique Végétale, Gif sur Yvette, France
| | - Michel Zivy
- INRAE, PAPPSO, UMR/UMR Génétique Végétale, Gif sur Yvette, France
| | | | - David Macherel
- Univ Angers, Institut Agro Rennes-Angers, INRAE, IRHS-UMR 1345, F-49000, Angers, France
| |
Collapse
|
3
|
Bergman ME, Kortbeek RWJ, Gutensohn M, Dudareva N. Plant terpenoid biosynthetic network and its multiple layers of regulation. Prog Lipid Res 2024; 95:101287. [PMID: 38906423 DOI: 10.1016/j.plipres.2024.101287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
Terpenoids constitute one of the largest and most chemically diverse classes of primary and secondary metabolites in nature with an exceptional breadth of functional roles in plants. Biosynthesis of all terpenoids begins with the universal five‑carbon building blocks, isopentenyl diphosphate (IPP) and its allylic isomer dimethylallyl diphosphate (DMAPP), which in plants are derived from two compartmentally separated but metabolically crosstalking routes, the mevalonic acid (MVA) and methylerythritol phosphate (MEP) pathways. Here, we review the current knowledge on the terpenoid precursor pathways and highlight the critical hidden constraints as well as multiple regulatory mechanisms that coordinate and homeostatically govern carbon flux through the terpenoid biosynthetic network in plants.
Collapse
Affiliation(s)
- Matthew E Bergman
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States; Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Ruy W J Kortbeek
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States; Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Michael Gutensohn
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, United States
| | - Natalia Dudareva
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States; Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States; Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
4
|
Wei G, Chen Y, Wang J, Feng L. Molecular cloning and characterization of farnesyl diphosphate synthase from Rosa rugosa Thunb associated with salinity stress. PeerJ 2024; 12:e16929. [PMID: 38435988 PMCID: PMC10909355 DOI: 10.7717/peerj.16929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/22/2024] [Indexed: 03/05/2024] Open
Abstract
Rosa rugosa, a renowned ornamental plant, is cultivated for its essential oil containing valuable monoterpenes, sesquiterpenes, and other compounds widely used in the floriculture industry. Farnesyl diphosphate synthase (FPPS) is a key enzyme involved in the biosynthesis of sesquiterpenes and triterpenes for abiotic or biotic stress. In this study, we successfully cloned and characterized a full-length FPPS- encoding cDNA identified as RrFPPS1 using RT-PCR from R. rugosa. Phylogenetic analysis showed that RrFPPS1 belonged to the angiosperm-FPPS clade. Transcriptomic and RT-qPCR analyses revealed that the RrFPPS1 gene had tissue-specific expression patterns. Subcellular localization analysis using Nicotiana benthamiana leaves showed that RrFPPS1 was a cytoplasmic protein. In vitro enzymatic assays combined with GC-MS analysis showed that RrFPPS1 produced farnesyl diphosphate (FPP) using isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) as substrates to provide a precursor for sesquiterpene and triterpene biosynthesis in the plant. Additionally, our research found that RrFPPS1 was upregulated under salt treatment. These substantial findings contribute to an improved understanding of terpene biosynthesis in R. rugosa and open new opportunities for advancements in horticultural practices and fragrance industries by overexpression of the RrFPPS1 gene in vivo increased FPP production and subsequently led to elevated sesquiterpene yields in the future. The knowledge gained from this study can potentially lead to the development of enhanced varieties of R. rugosa with improved aroma, medicinal properties, and resilience to environmental stressors.
Collapse
Affiliation(s)
- Guo Wei
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Yudie Chen
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Jianwen Wang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Liguo Feng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| |
Collapse
|
5
|
Hassani D, Lu Y, Ni B, Zhu RL, Zhao Q. The endomembrane system: how does it contribute to plant secondary metabolism? TRENDS IN PLANT SCIENCE 2023; 28:1222-1236. [PMID: 37211450 DOI: 10.1016/j.tplants.2023.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/23/2023]
Abstract
New organelle acquisition through neofunctionalization of the endomembrane system (ES) with respect to plant secondary metabolism is a key evolutionary strategy for plant adaptation, which is overlooked due to the complexity of angiosperms. Bryophytes produce a broad range of plant secondary metabolites (PSMs), and their simple cellular structures, including unique organelles, such as oil bodies (OBs), highlight them as suitable model to investigate the contribution of the ES to PSMs. In this opinion, we review latest findings on the contribution of the ES to PSM biosynthesis, with a specific focus on OBs, and propose that the ES provides organelles and trafficking routes for PSM biosynthesis, transportation, and storage. Therefore, future research on ES-derived organelles and trafficking routes will provide essential knowledge for synthetic applications.
Collapse
Affiliation(s)
- Danial Hassani
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Yi Lu
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Bing Ni
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Rui-Liang Zhu
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Qiong Zhao
- School of Life Sciences, East China Normal University, Shanghai, China; Institute of Eco-Chongming, Shanghai, China.
| |
Collapse
|
6
|
Biosynthesis of α-Bisabolol by Farnesyl Diphosphate Synthase and α-Bisabolol Synthase and Their Related Transcription Factors in Matricaria recutita L. Int J Mol Sci 2023; 24:ijms24021730. [PMID: 36675248 PMCID: PMC9864331 DOI: 10.3390/ijms24021730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
The essential oil of German chamomile (Matricaria recutita L.) is widely used in food, cosmetics, and the pharmaceutical industry. α-Bisabolol is the main active substance in German chamomile. Farnesyl diphosphate synthase (FPS) and α-bisabolol synthase (BBS) are key enzymes related to the α-bisabolol biosynthesis pathway. However, little is known about the α-bisabolol biosynthesis pathway in German chamomile, especially the transcription factors (TFs) related to the regulation of α-bisabolol synthesis. In this study, we identified MrFPS and MrBBS and investigated their functions by prokaryotic expression and expression in hairy root cells of German chamomile. The results suggest that MrFPS is the key enzyme in the production of sesquiterpenoids, and MrBBS catalyzes the reaction that produces α-bisabolol. Subcellular localization analysis showed that both MrFPS and MrBBS proteins were located in the cytosol. The expression levels of both MrFPS and MrBBS were highest in the extension period of ray florets. Furthermore, we cloned and analyzed the promoters of MrFPS and MrBBS. A large number of cis-acting elements related to light responsiveness, hormone response elements, and cis-regulatory elements that serve as putative binding sites for specific TFs in response to various biotic and abiotic stresses were identified. We identified and studied TFs related to MrFPS and MrBBS, including WRKY, AP2, and MYB. Our findings reveal the biosynthesis and regulation of α-bisabolol in German chamomile and provide novel insights for the production of α-bisabolol using synthetic biology methods.
Collapse
|
7
|
Tian L, Shi J, Yang L, Wei A. Molecular Cloning and Functional Analysis of DXS and FPS Genes from Zanthoxylum bungeanum Maxim. Foods 2022; 11:foods11121746. [PMID: 35741944 PMCID: PMC9223008 DOI: 10.3390/foods11121746] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 02/04/2023] Open
Abstract
Zanthoxylum bungeanum Maxim. (Z. bungeanum) has attracted attention for its rich aroma. The aroma of Z. bungeanum is mainly volatile terpenes synthesized by plant terpene metabolic pathways. However, there is little information on Z. bungeanum terpene metabolic gene. In this study, the coding sequence of 1-deoxy-D-xylulose-5-phosphate synthase (DXS) and farnesyl pyrophosphate synthase (FPS) were cloned from Z. bungeanum cv. 'Fengxiandahongpao.' ZbDXS and ZbFPS genes from Z. bungeanum with CDS lengths of 2172 bp and 1029 bp, respectively. The bioinformatics results showed that Z. bungeanum was closely related to citrus, and it was deduced that ZbFPS were hydrophilic proteins without the transmembrane domain. Subcellular localization prediction indicated that ZbDXS was most likely to be located in chloroplasts, and ZbFPS was most likely to be in mitochondria. Meanwhile, the 3D protein structure showed that ZbDXS and ZbFPS were mainly composed of α-helices, which were folded into a single domain. In vitro enzyme activity experiments showed that purified proteins ZbDXS and ZbFPS had the functions of DXS enzyme and FPS enzyme. Transient expression of ZbDXS and ZbFPS in tobacco significantly increased tobacco's terpene content. Moreover, ZbDXS and ZbFPS were expressed in different tissues of Z. bungeanum, and the relative expression of the two genes was the highest in fruits. Therefore, this suggests that ZbDXS and ZbFPS are positively related to terpene synthesis. This study could provide reference genes for improving Z. bungeanum breeding as well as for the Rutaceae research.
Collapse
Affiliation(s)
- Lu Tian
- College of Forestry, Northwest A&F University, Yangling, Xianyang 712100, China; (L.T.); (J.S.); (L.Y.)
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang 712100, China
| | - Jingwei Shi
- College of Forestry, Northwest A&F University, Yangling, Xianyang 712100, China; (L.T.); (J.S.); (L.Y.)
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang 712100, China
| | - Lin Yang
- College of Forestry, Northwest A&F University, Yangling, Xianyang 712100, China; (L.T.); (J.S.); (L.Y.)
| | - Anzhi Wei
- College of Forestry, Northwest A&F University, Yangling, Xianyang 712100, China; (L.T.); (J.S.); (L.Y.)
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang 712100, China
- Correspondence: ; Tel.: +86-029-8708-2211
| |
Collapse
|
8
|
Bergman ME, Bhardwaj M, Phillips MA. Cytosolic geraniol and citronellol biosynthesis require a Nudix hydrolase in rose-scented geranium (Pelargonium graveolens). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:493-510. [PMID: 33949016 DOI: 10.1111/tpj.15304] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/12/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Geraniol, citronellol and their esters are high-value acyclic monoterpenes used in food technology, perfumery and cosmetics. A major source of these compounds is the essential oil of rose-scented geraniums of the genus Pelargonium. We provide evidence that their biosynthesis mainly takes place in the cytosol of glandular trichomes via geranyl monophosphate (GP) through the action of a Nudix hydrolase. Protein preparations could convert geranyl diphosphate (GDP) to geraniol in in vitro assays, a process which could be blocked by inorganic phosphatase inhibitors, suggesting a two-step conversion of GDP to geraniol. Pelargonium graveolens chemotypes enriched in either geraniol or (-)-citronellol accumulate GP or citronellyl monophosphate (CP), respectively, the presumed precursors to their monoterpenoid end products. Geranyl monophosphate was highly enriched in isolated glandular trichomes of lines producing high amounts of geraniol. In contrast, (-)-isomenthone-rich lines are depleted in these prenyl monophosphates and monoterpene alcohols and instead feature high levels of GDP, the precursor to plastidic p-menthane biosynthesis. A Nudix hydrolase cDNA from Pelargonium glandular trichomes, dubbed PgNdx1, encoded a cytosolic protein capable of hydrolyzing GDP to GP with a KM of about 750 nm but is only weakly active towards farnesyl diphosphate. In citronellol-rich lines, GDP, GP and CP were detected in nearly equimolar amounts, while citronellyl diphosphate was absent, suggesting that citronellol biosynthesis may proceed by reduction of GP to CP in this species. These findings highlight the cytosol as a compartment that supports monoterpene biosynthesis and expands the roles of Nudix hydrolases in the biosynthesis of plant volatiles.
Collapse
Affiliation(s)
- Matthew E Bergman
- Department of Cellular and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
| | - Mridula Bhardwaj
- Department of Biology, University of Toronto-Mississauga, Mississauga, ON, L5L 1C6, Canada
| | - Michael A Phillips
- Department of Cellular and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
- Department of Biology, University of Toronto-Mississauga, Mississauga, ON, L5L 1C6, Canada
| |
Collapse
|
9
|
Li W, Wang L, Zhou F, Li C, Ma W, Chen H, Wang G, Pickett JA, Zhou JJ, Lin Y. Overexpression of the homoterpene synthase gene, OsCYP92C21, increases emissions of volatiles mediating tritrophic interactions in rice. PLANT, CELL & ENVIRONMENT 2021; 44:948-963. [PMID: 33099790 DOI: 10.1111/pce.13924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/12/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
Plant defence homoterpenes can be used to attract pest natural enemies. However, the biosynthetic pathway of homoterpenes is still unknown in rice, and the practical application of such indirect defence systems suffers from inherent limitations due to their low emissions from plants. Here, we demonstrated that the protein OsCYP92C21 is responsible for homoterpene biosynthesis in rice. We also revealed that the ability of rice to produce homoterpenes is dependent on the subcellular precursor pools. By increasing the precursor pools through specifically subcellular targeting expression, genetic transformation and genetic introgression, we significantly enhanced homoterpene biosynthesis in rice. The final introgressed GM rice plants exhibited higher homoterpene emissions than the wild type rice and the highest homoterpene emission reported so far for such GM plants even without the induction of herbivore attack. As a result, these GM rice plants demonstrated strong attractiveness to the parasitic wasp Cotesia chilonis. This study discovered the homoterpene biosynthesis pathway in rice, and lays the foundation for the utilisation of plant indirect defence mechanism in the "push-pull" strategy of integrated pest management through increasing precursor pools in the subcellular compartments and overexpressing homoterpene synthase by genetic transformation.
Collapse
Affiliation(s)
- Wei Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Lingnan Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Fei Zhou
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Changyan Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Weihua Ma
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hao Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Jing-Jiang Zhou
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Gansu Agricultural University, Lanzhou, China
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
10
|
Kajiura H, Yoshizawa T, Tokumoto Y, Suzuki N, Takeno S, Takeno KJ, Yamashita T, Tanaka SI, Kaneko Y, Fujiyama K, Matsumura H, Nakazawa Y. Structure-function studies of ultrahigh molecular weight isoprenes provide key insights into their biosynthesis. Commun Biol 2021; 4:215. [PMID: 33594248 PMCID: PMC7887238 DOI: 10.1038/s42003-021-01739-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 12/24/2020] [Indexed: 12/03/2022] Open
Abstract
Some plant trans-1,4-prenyltransferases (TPTs) produce ultrahigh molecular weight trans-1,4-polyisoprene (TPI) with a molecular weight of over 1.0 million. Although plant-derived TPI has been utilized in various industries, its biosynthesis and physiological function(s) are unclear. Here, we identified three novel Eucommia ulmoides TPT isoforms—EuTPT1, 3, and 5, which synthesized TPI in vitro without other components. Crystal structure analysis of EuTPT3 revealed a dimeric architecture with a central hydrophobic tunnel. Mutation of Cys94 and Ala95 on the central hydrophobic tunnel no longer synthesizd TPI, indicating that Cys94 and Ala95 were essential for forming the dimeric architecture of ultralong-chain TPTs and TPI biosynthesis. A spatiotemporal analysis of the physiological function of TPI in E. ulmoides suggested that it is involved in seed development and maturation. Thus, our analysis provides functional and mechanistic insights into TPI biosynthesis and uncovers biological roles of TPI in plants. Kajiura and Yoshizawa et al. identify three new prenyltransferases in the tree Eucommia ulmoides that synthesize exceptionally high molecular weight trans-1,4-polyisoprene (TPI). Through crystal structure and mutational analyses, they identify key residues required for TPI synthesis and reveal its functional importance in seed development.
Collapse
Affiliation(s)
- Hiroyuki Kajiura
- International Center for Biotechnology, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan.,Technical Research Institute, Hitachi Zosen Corporation, 2-2-11 Funamachi, Taisyo, Osaka, 551-0022, Japan.,Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Takuya Yoshizawa
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Yuji Tokumoto
- Technical Research Institute, Hitachi Zosen Corporation, 2-2-11 Funamachi, Taisyo, Osaka, 551-0022, Japan.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Nobuaki Suzuki
- Technical Research Institute, Hitachi Zosen Corporation, 2-2-11 Funamachi, Taisyo, Osaka, 551-0022, Japan
| | - Shinya Takeno
- Technical Research Institute, Hitachi Zosen Corporation, 2-2-11 Funamachi, Taisyo, Osaka, 551-0022, Japan
| | - Kanokwan Jumtee Takeno
- Technical Research Institute, Hitachi Zosen Corporation, 2-2-11 Funamachi, Taisyo, Osaka, 551-0022, Japan
| | - Takuya Yamashita
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Shun-Ichi Tanaka
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Yoshinobu Kaneko
- Yeast Genetic Resources Lab, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Kazuhito Fujiyama
- International Center for Biotechnology, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Hiroyoshi Matsumura
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga, 525-8577, Japan.
| | - Yoshihisa Nakazawa
- Technical Research Institute, Hitachi Zosen Corporation, 2-2-11 Funamachi, Taisyo, Osaka, 551-0022, Japan. .,Faculty of Bioscience and Bioindustry, Tokushima University, 2-1 Minami-josanjima, Tokushima, 770-8513, Japan.
| |
Collapse
|
11
|
Lange I, Lange BM, Navarre DA. Altering potato isoprenoid metabolism increases biomass and induces early flowering. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4109-4124. [PMID: 32296842 DOI: 10.1093/jxb/eraa185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
Isoprenoids constitute the largest class of plant natural products and have diverse biological functions including in plant growth and development. In potato (Solanum tuberosum), the regulatory mechanism underlying the biosynthesis of isoprenoids through the mevalonate pathway is unclear. We assessed the role of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) homologs in potato development and in the metabolic regulation of isoprenoid biosynthesis by generating transgenic lines with down-regulated expression (RNAi-hmgr) or overexpression (OE) of one (StHMGR1 or StHMGR3) or two genes, HMGR and farnesyl diphosphate synthase (FPS; StHMGR1/StFPS1 or StHMGR3/StFPS1). Levels of sterols, steroidal glycoalkaloids (SGAs), and plastidial isoprenoids were elevated in the OE-HMGR1, OE-HMGR1/FPS1, and OE-HMGR3/FPS1 lines, and these plants exhibited early flowering, increased stem height, increased biomass, and increased total tuber weight. However, OE-HMGR3 lines showed dwarfism and had the highest sterol amounts, but without an increase in SGA levels, supporting a rate-limiting role for HMGR3 in the accumulation of sterols. Potato RNAi-hmgr lines showed inhibited growth and reduced cytosolic isoprenoid levels. We also determined the relative importance of transcriptional control at regulatory points of isoprenoid precursor biosynthesis by assessing gene-metabolite correlations. These findings provide novel insights into specific end-products of the sterol pathway and could be important for crop yield and bioenergy crops.
Collapse
Affiliation(s)
- Iris Lange
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, Washington State University, Pullman, WA, USA
| | - B Markus Lange
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, Washington State University, Pullman, WA, USA
| | - Duroy A Navarre
- Washington State University/IAREC, Prosser, WA, USA
- USDA/Agricultural Research Service, Prosser, WA, USA
| |
Collapse
|
12
|
Nagegowda DA, Gupta P. Advances in biosynthesis, regulation, and metabolic engineering of plant specialized terpenoids. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 294:110457. [PMID: 32234216 DOI: 10.1016/j.plantsci.2020.110457] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 02/18/2020] [Accepted: 02/22/2020] [Indexed: 05/28/2023]
Abstract
Plant specialized terpenoids are natural products that have no obvious role in growth and development, but play many important functional roles to improve the plant's overall fitness. Besides, plant specialized terpenoids have immense value to humans due to their applications in fragrance, flavor, cosmetic, and biofuel industries. Understanding the fundamental aspects involved in the biosynthesis and regulation of these high-value molecules in plants not only paves the path to enhance plant traits, but also facilitates homologous or heterologous engineering for overproduction of target molecules of importance. Recent developments in functional genomics and high-throughput analytical techniques have led to unraveling of several novel aspects involved in the biosynthesis and regulation of plant specialized terpenoids. The knowledge thus derived has been successfully utilized to produce target specialized terpenoids of plant origin in homologous or heterologous host systems by metabolic engineering and synthetic biology approaches. Here, we provide an overview and highlights on advances related to the biosynthetic steps, regulation, and metabolic engineering of plant specialized terpenoids.
Collapse
Affiliation(s)
- Dinesh A Nagegowda
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru, 560065, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India.
| | - Priyanka Gupta
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru, 560065, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| |
Collapse
|
13
|
Functional Gene Network of Prenyltransferases in Arabidopsis thaliana. Molecules 2019; 24:molecules24244556. [PMID: 31842481 PMCID: PMC6943727 DOI: 10.3390/molecules24244556] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/17/2022] Open
Abstract
Prenyltransferases (PTs) are enzymes that catalyze prenyl chain elongation. Some are highly similar to each other at the amino acid level. Therefore, it is difficult to assign their function based solely on their sequence homology to functional orthologs. Other experiments, such as in vitro enzymatic assay, mutant analysis, and mutant complementation are necessary to assign their precise function. Moreover, subcellular localization can also influence the functionality of the enzymes within the pathway network, because different isoprenoid end products are synthesized in the cytosol, mitochondria, or plastids from prenyl diphosphate (prenyl-PP) substrates. In addition to in vivo functional experiments, in silico approaches, such as co-expression analysis, can provide information about the topology of PTs within the isoprenoid pathway network. There has been huge progress in the last few years in the characterization of individual Arabidopsis PTs, resulting in better understanding of their function and their topology within the isoprenoid pathway. Here, we summarize these findings and present the updated topological model of PTs in the Arabidopsis thaliana isoprenoid pathway.
Collapse
|
14
|
Yu X, Jia D, Duan P. Plasmid engineering of aphid alarm pheromone in tobacco seedlings affects the preference of aphids. PLANT SIGNALING & BEHAVIOR 2019; 14:e1588669. [PMID: 30849285 PMCID: PMC6512937 DOI: 10.1080/15592324.2019.1588669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 02/22/2019] [Indexed: 06/09/2023]
Abstract
Plants producing sufficient amount of aphid alarm pheromone by expressing (E)-β-Farnesene (EβF) synthase gene may contribute to plant protection by reducing aphid populations. However, terpene biosynthesis varies among plant species and developmental stages. In the present study, volatile headspace analysis of tobacco seedlings with MaβFS1 (an EβF synthase from the Asian peppermint Mentha asiatica) failed to generate EβF. We further targeted MaβFS1 to the tobacco plastid, using a chloroplast targeting sequence, either with or without the AtFPS1 gene for the biosynthesis of the precursor farnesyl diphosphate. When both MaβFS1 and AtFPS1 genes were targeted to the chloroplast, low levels of EβF were detected in stably transformed tobacco seedlings; resulting in specific repellence of the green peach aphid, Myzus persicae. These data indicate that redirecting the EβF biosynthetic pathway from its natural cytosolic location to the chloroplast is a valid strategy. This redirecting strategy may be very useful for other crop plants that do not naturally produce EβF or other repellent volatiles.
Collapse
Affiliation(s)
- Xiudao Yu
- School of Agricultural Engineering/Henan Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project, Nanyang Normal University, Nanyang, Henan, China
| | - Dianyong Jia
- School of Agricultural Engineering/Henan Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project, Nanyang Normal University, Nanyang, Henan, China
| | - Pengfei Duan
- School of Agricultural Engineering/Henan Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project, Nanyang Normal University, Nanyang, Henan, China
| |
Collapse
|
15
|
Wang X, Gao Y, Chen Z, Li J, Huang J, Cao J, Cui M, Ban L. (E)-β-farnesene synthase gene affects aphid behavior in transgenic Medicago sativa. PEST MANAGEMENT SCIENCE 2019; 75:622-631. [PMID: 30051587 DOI: 10.1002/ps.5153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/14/2018] [Accepted: 07/23/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Pea aphid (Acyrthosiphon pisum Harris) is one of the major pests in alfalfa crops, causing significant yield losses. (E)-β-farnesene (EβF), an alarm pheromone released by pea aphid, is generic to many species of aphids, and is used to minimize potential danger from predators and parasitoids by avoiding the source of the pheromone. RESULTS In this study, EβF synthase gene was constructed into a plant expression vector, and overexpressed in alfalfa (Medicago sativa L.), with expression among transgenic lines confirmed by qRT-PCR. Subcellular localization analysis showed that EβF synthase gene was expressed in the plasma membrane and nucleus of the leaf. GC/MS of extraction from transgenic alfalfa indicated emission of EβF ranging from 5.92 to 13.09 ng day-1 g-1 fresh tissue. Behavior assays in Y-olfactometers demonstrated that transgenic alfalfa expressing AaEβF gene could repel pea aphids, with aphids taking a significantly longer time to select a transgenic line compared with the control line (P < 0.01). CONCLUSION We have demonstrated a potentially valuable strategy of using EβF synthase genes for aphid control in alfalfa. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xuemin Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuhao Gao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Animal Science and Technology, China Agricultural University, Beijing, China
- The Affiliated High School of Peking University, Beijing, China
| | - Zhihong Chen
- National Animal Husbandry Service, Ministry of Agriculture, Beijing, China
| | - Jindong Li
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jianping Huang
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jiangbo Cao
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Miaomiao Cui
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liping Ban
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
16
|
Qian Y, Lynch JH, Guo L, Rhodes D, Morgan JA, Dudareva N. Completion of the cytosolic post-chorismate phenylalanine biosynthetic pathway in plants. Nat Commun 2019. [PMID: 30604768 DOI: 10.1038/s41467-018-07969-7962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
In addition to being a vital component of proteins, phenylalanine is also a precursor of numerous aromatic primary and secondary metabolites with broad physiological functions. In plants phenylalanine is synthesized predominantly via the arogenate pathway in plastids. Here, we describe the structure, molecular players and subcellular localization of a microbial-like phenylpyruvate pathway for phenylalanine biosynthesis in plants. Using a reverse genetic approach and metabolic flux analysis, we provide evidence that the cytosolic chorismate mutase is responsible for directing carbon flux towards cytosolic phenylalanine production via the phenylpyruvate pathway. We also show that an alternative transcription start site of a known plastidial enzyme produces a functional cytosolic prephenate dehydratase that catalyzes the conversion of prephenate to phenylpyruvate, the intermediate step between chorismate mutase and phenylpyruvate aminotransferase. Thus, our results complete elucidation of phenylalanine biosynthesis via phenylpyruvate in plants, showing that this pathway splits from the known plastidial arogenate pathway at chorismate, instead of prephenate as previously thought, and the complete pathway is localized in the cytosol.
Collapse
Affiliation(s)
- Yichun Qian
- Department of Horticulture and Landscape Architecture, Purdue University, 625 Agriculture Mall Dr., West Lafayette, IN, 47907-2010, USA
| | - Joseph H Lynch
- Department of Biochemistry, Purdue University, 175 South University St., West Lafayette, IN, 47907-2063, USA
| | - Longyun Guo
- Department of Biochemistry, Purdue University, 175 South University St., West Lafayette, IN, 47907-2063, USA
| | - David Rhodes
- Department of Horticulture and Landscape Architecture, Purdue University, 625 Agriculture Mall Dr., West Lafayette, IN, 47907-2010, USA
| | - John A Morgan
- Department of Biochemistry, Purdue University, 175 South University St., West Lafayette, IN, 47907-2063, USA
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Dr., West Lafayette, IN, 47907-2100, USA
| | - Natalia Dudareva
- Department of Horticulture and Landscape Architecture, Purdue University, 625 Agriculture Mall Dr., West Lafayette, IN, 47907-2010, USA.
- Department of Biochemistry, Purdue University, 175 South University St., West Lafayette, IN, 47907-2063, USA.
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
17
|
Qian Y, Lynch JH, Guo L, Rhodes D, Morgan JA, Dudareva N. Completion of the cytosolic post-chorismate phenylalanine biosynthetic pathway in plants. Nat Commun 2019; 10:15. [PMID: 30604768 PMCID: PMC6318282 DOI: 10.1038/s41467-018-07969-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 12/05/2018] [Indexed: 01/10/2023] Open
Abstract
In addition to being a vital component of proteins, phenylalanine is also a precursor of numerous aromatic primary and secondary metabolites with broad physiological functions. In plants phenylalanine is synthesized predominantly via the arogenate pathway in plastids. Here, we describe the structure, molecular players and subcellular localization of a microbial-like phenylpyruvate pathway for phenylalanine biosynthesis in plants. Using a reverse genetic approach and metabolic flux analysis, we provide evidence that the cytosolic chorismate mutase is responsible for directing carbon flux towards cytosolic phenylalanine production via the phenylpyruvate pathway. We also show that an alternative transcription start site of a known plastidial enzyme produces a functional cytosolic prephenate dehydratase that catalyzes the conversion of prephenate to phenylpyruvate, the intermediate step between chorismate mutase and phenylpyruvate aminotransferase. Thus, our results complete elucidation of phenylalanine biosynthesis via phenylpyruvate in plants, showing that this pathway splits from the known plastidial arogenate pathway at chorismate, instead of prephenate as previously thought, and the complete pathway is localized in the cytosol.
Collapse
Affiliation(s)
- Yichun Qian
- Department of Horticulture and Landscape Architecture, Purdue University, 625 Agriculture Mall Dr., West Lafayette, IN, 47907-2010, USA
| | - Joseph H Lynch
- Department of Biochemistry, Purdue University, 175 South University St., West Lafayette, IN, 47907-2063, USA
| | - Longyun Guo
- Department of Biochemistry, Purdue University, 175 South University St., West Lafayette, IN, 47907-2063, USA
| | - David Rhodes
- Department of Horticulture and Landscape Architecture, Purdue University, 625 Agriculture Mall Dr., West Lafayette, IN, 47907-2010, USA
| | - John A Morgan
- Department of Biochemistry, Purdue University, 175 South University St., West Lafayette, IN, 47907-2063, USA.,Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Dr., West Lafayette, IN, 47907-2100, USA
| | - Natalia Dudareva
- Department of Horticulture and Landscape Architecture, Purdue University, 625 Agriculture Mall Dr., West Lafayette, IN, 47907-2010, USA. .,Department of Biochemistry, Purdue University, 175 South University St., West Lafayette, IN, 47907-2063, USA. .,Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
18
|
Abbas F, Ke Y, Yu R, Fan Y. Functional characterization and expression analysis of two terpene synthases involved in floral scent formation in Lilium 'Siberia'. PLANTA 2019; 249:71-93. [PMID: 30218384 DOI: 10.1007/s00425-018-3006-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 09/06/2018] [Indexed: 05/22/2023]
Abstract
Floral scent formation in Lilium 'Siberia' is mainly due to monoterpene presence in the floral profile. LoTPS1 and LoTPS3 are responsible for the formation of (±)-linalool and β-ocimene in Lilium 'Siberia'. Lilium 'Siberia' is a perennial herbaceous plant belonging to Liliaceae family, cultivated both as a cut flower and garden plant. The snowy white flower emits a pleasant aroma which is mainly caused by monoterpenes present in the floral volatile profile. Previously terpene synthase (TPS) genes have been isolated and characterized from various plant species but less have been identified from Liliaceae family. Here, two terpene synthase genes (LoTPS1 and LoTPS3), which are highly expressed in sepals and petals of Lilium 'Siberia' flower were functionally characterized recombinant LoTPS1 specifically catalyzes the formation of (Z)-β-ocimene and (±)-linalool as its main volatile compounds from geranyl pyrophosphate (GPP), whereas LoTPS3 is a promiscuous monoterpene synthase which utilizes both GPP and farnesyl pyrophosphate (FPP) as a substrate to generate (±)-linalool and cis-nerolidol, respectively. Transcript levels of both genes were prominent in flowering parts, especially in sepals and petals which are the main source of floral scent production. The gas chromatography-mass spectrometry (GC-MS) and quantitative real-time PCR analysis revealed that the compounds were emitted throughout the day, prominently during the daytime and lower levels at night following a strong circadian rhythm in their emission pattern. Regarding mechanical wounding, both genes showed considerable involvement in floral defense by inducing the emission of (Z)-β-ocimene and (±)-linalool, elevating the transcript accumulation of LoTPS1 and LoTPS3. Furthermore, the subcellular localization experiment revealed that LoTPS1 was localized in plastids, whilst LoTPS3 in mitochondria. Our findings on these two TPSs characterized from Lilium 'Siberia' provide new insights into molecular mechanisms of terpene biosynthesis in this species and also provide an opportunity for biotechnological modification of floral scent profile of Lilium.
Collapse
Affiliation(s)
- Farhat Abbas
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
- Department of Horticulture, College of Agriculture, University of Sargodha, Punjab, Pakistan
| | - Yanguo Ke
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Rangcai Yu
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Yanping Fan
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
19
|
Qin X, Li W, Liu Y, Tan M, Ganal M, Chetelat RT. A farnesyl pyrophosphate synthase gene expressed in pollen functions in S-RNase-independent unilateral incompatibility. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:417-430. [PMID: 29206320 DOI: 10.1111/tpj.13796] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/22/2017] [Accepted: 11/24/2017] [Indexed: 05/25/2023]
Abstract
Multiple independent and overlapping pollen rejection pathways contribute to unilateral interspecific incompatibility (UI). In crosses between tomato species, pollen rejection usually occurs when the female parent is self-incompatible (SI) and the male parent self-compatible (SC) (the 'SI × SC rule'). Additional, as yet unknown, UI mechanisms are independent of self-incompatibility and contribute to UI between SC species or populations. We identified a major quantitative trait locus on chromosome 10 (ui10.1) which affects pollen-side UI responses in crosses between cultivated tomato, Solanum lycopersicum, and Solanum pennelliiLA0716, both of which are SC and lack S-RNase, the pistil determinant of S-specificity in Solanaceae. Here we show that ui10.1 is a farnesyl pyrophosphate synthase gene (FPS2) expressed in pollen. Expression is about 18-fold higher in pollen of S. pennellii than in S. lycopersicum. Pollen with the hypomorphic S. lycopersicum allele is selectively eliminated on pistils of the F1 hybrid, leading to transmission ratio distortion in the F2 progeny. CRISPR/Cas9-generated knockout mutants (fps2) in S. pennelliiLA0716 are self-sterile due to pollen rejection, but mutant pollen is fully functional on pistils of S. lycopersicum. F2 progeny of S. lycopersicum × S. pennellii (fps2) show reversed transmission ratio distortion due to selective elimination of pollen bearing the knockout allele. Overexpression of FPS2 in S. lycopersicum pollen rescues the pollen elimination phenotype. FPS2-based pollen selectivity does not involve S-RNase and has not been previously linked to UI. Our results point to an entirely new mechanism of interspecific pollen rejection in plants.
Collapse
Affiliation(s)
- Xiaoqiong Qin
- Department of Plant Sciences (ms #3), One Shields Ave., University of California, Davis, CA, 95616, USA
| | - Wentao Li
- Department of Plant Sciences (ms #3), One Shields Ave., University of California, Davis, CA, 95616, USA
| | - Yang Liu
- Department of Plant Sciences (ms #3), One Shields Ave., University of California, Davis, CA, 95616, USA
| | - Meilian Tan
- Department of Plant Sciences (ms #3), One Shields Ave., University of California, Davis, CA, 95616, USA
| | - Martin Ganal
- Trait Genetics GmbH, Am Schwabeplan 1B, 06466, Gatersleben, Germany
| | - Roger T Chetelat
- Department of Plant Sciences (ms #3), One Shields Ave., University of California, Davis, CA, 95616, USA
| |
Collapse
|
20
|
Andrade P, Manzano D, Ramirez-Estrada K, Caudepon D, Arro M, Ferrer A, Phillips MA. Nerolidol production in agroinfiltrated tobacco: Impact of protein stability and membrane targeting of strawberry (Fragraria ananassa) NEROLIDOL SYNTHASE1. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 267:112-123. [PMID: 29362090 DOI: 10.1016/j.plantsci.2017.11.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 11/11/2017] [Accepted: 11/17/2017] [Indexed: 06/07/2023]
Abstract
The sesquiterpene alcohol nerolidol, synthesized from farnesyl diphosphate (FDP), mediates plant-insect interactions across multiple trophic levels with major implications for pest management in agriculture. We compared nerolidol engineering strategies in tobacco using agroinfiltration to transiently express strawberry (Fragraria ananassa) linalool/nerolidol synthase (FaNES1) either at the endoplasmic reticulum (ER) or in the cytosol as a soluble protein. Using solid phase microextraction and gas chromatography-mass spectrometry (SPME-GCMS), we have determined that FaNES1 directed to the ER via fusion to the transmembrane domain of squalene synthase or hydroxymethylglutaryl - CoA reductase displayed significant improvements in terms of transcript levels, protein accumulation, and volatile production when compared to its cytosolic form. However, the highest levels of nerolidol production were observed when FaNES1 was fused to GFP and expressed in the cytosol. This SPME-GCMS method afforded a limit of detection and quantification of 1.54 and 5.13 pg, respectively. Nerolidol production levels, which ranged from 0.5 to 3.0 μg/g F.W., correlated more strongly to the accumulation of recombinant protein than transcript level, the former being highest in FaNES-GFP transfected plants. These results indicate that while the ER may represent an enriched source of FDP that can be exploited in metabolic engineering, protein accumulation is a better predictor of sesquiterpene production.
Collapse
Affiliation(s)
- Paola Andrade
- Plant Metabolism and Metabolic Engineering Program, Center for Research in Agricultural Genomics, (CRAG) (CSIC-IRTA-UAB-UB), Campus UAB, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain.
| | - David Manzano
- Plant Metabolism and Metabolic Engineering Program, Center for Research in Agricultural Genomics, (CRAG) (CSIC-IRTA-UAB-UB), Campus UAB, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain; Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.
| | - Karla Ramirez-Estrada
- Plant Metabolism and Metabolic Engineering Program, Center for Research in Agricultural Genomics, (CRAG) (CSIC-IRTA-UAB-UB), Campus UAB, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain; Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Daniel Caudepon
- Plant Metabolism and Metabolic Engineering Program, Center for Research in Agricultural Genomics, (CRAG) (CSIC-IRTA-UAB-UB), Campus UAB, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain; Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.
| | - Montserrat Arro
- Plant Metabolism and Metabolic Engineering Program, Center for Research in Agricultural Genomics, (CRAG) (CSIC-IRTA-UAB-UB), Campus UAB, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain; Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.
| | - Albert Ferrer
- Plant Metabolism and Metabolic Engineering Program, Center for Research in Agricultural Genomics, (CRAG) (CSIC-IRTA-UAB-UB), Campus UAB, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain; Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.
| | - Michael A Phillips
- Department of Biology, University of Toronto - Mississauga, Mississauga, Ontario, L5L 1C6, Canada; Department of Cellular and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada.
| |
Collapse
|
21
|
Kajiura H, Suzuki N, Tokumoto Y, Yoshizawa T, Takeno S, Fujiyama K, Kaneko Y, Matsumura H, Nakazawa Y. Two Eucommia farnesyl diphosphate synthases exhibit distinct enzymatic properties leading to end product preferences. Biochimie 2017; 139:95-106. [PMID: 28478108 DOI: 10.1016/j.biochi.2017.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 04/22/2017] [Accepted: 05/01/2017] [Indexed: 01/06/2023]
Abstract
Farnesyl diphosphate synthase (FPS) is an essential enzyme in the biosynthesis of prenyl precursors for the production of primary and secondary metabolites, including sterols, dolichols, carotenoids and ubiquinones, and for the modification of proteins. Here we identified and characterized two FPSs (EuFPS1 and EuFPS2) from the plant Eucommia ulmoides. The EuFPSs had seven highly conserved prenyltransferase-specific domains that are critical for activity. Complementation and biochemical analyses using bacterially produced recombinant EuFPS isoforms showed that the EuFPSs had FPP synthesis activities both in vivo and in vitro. In addition to the typical reaction mechanisms of FPS, EuFPSs utilized farnesyl diphosphate (FPP) as an allylic substrate and participated in further elongation of the isoprenyl chain, resulting in the synthesis of geranylgeranyl diphosphate. However, despite the high amino acid similarities between the two EuFPS isozymes, their specific activities, substrate preferences, and final reaction products were different. The use of dimethylallyl diphosphate (DMAPP) as an allylic substrate highlighted the differences between the two enzymes: depending on the pH, the metal ion cofactor, and the cofactor concentration, EuFPS2 accumulated geranyl diphosphate as an intermediate product at a constant rate, whereas EuFPS1 synthesized little geranyl diphosphate. The reaction kinetics of the EuFPSs demonstrated that isopentenyl diphosphate and DMAPP were used both as substrates and as inhibitors of EuFPS activity. Taken together, the results indicate that the biosynthesis of FPP is highly regulated by various factors indispensable for EuFPS reactions in plants.
Collapse
Affiliation(s)
- Hiroyuki Kajiura
- Technical Research Institute, Hitachi Zosen Corporation, 2-2-11 Funamachi, Taisyo, Osaka, 551-0022, Japan
| | - Nobuaki Suzuki
- Technical Research Institute, Hitachi Zosen Corporation, 2-2-11 Funamachi, Taisyo, Osaka, 551-0022, Japan
| | - Yuji Tokumoto
- Technical Research Institute, Hitachi Zosen Corporation, 2-2-11 Funamachi, Taisyo, Osaka, 551-0022, Japan; Laboratory of Forest Ecology & Physiology, Graduate School of Bioagricultural Science, Nagoya University, E1-1 (300), Furo, Chikusa, Nagoya, Aichi, 464-8601, Japan
| | - Takuya Yoshizawa
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Shinya Takeno
- Technical Research Institute, Hitachi Zosen Corporation, 2-2-11 Funamachi, Taisyo, Osaka, 551-0022, Japan
| | - Kazuhito Fujiyama
- International Center for Biotechnology, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Yoshinobu Kaneko
- Yeast Genetic Resources Lab, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Hiroyoshi Matsumura
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Yoshihisa Nakazawa
- Technical Research Institute, Hitachi Zosen Corporation, 2-2-11 Funamachi, Taisyo, Osaka, 551-0022, Japan.
| |
Collapse
|
22
|
Pazouki L, Niinemets Ü. Multi-Substrate Terpene Synthases: Their Occurrence and Physiological Significance. FRONTIERS IN PLANT SCIENCE 2016; 7:1019. [PMID: 27462341 PMCID: PMC4940680 DOI: 10.3389/fpls.2016.01019] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/28/2016] [Indexed: 05/21/2023]
Abstract
Terpene synthases are responsible for synthesis of a large number of terpenes in plants using substrates provided by two distinct metabolic pathways, the mevalonate-dependent pathway that is located in cytosol and has been suggested to be responsible for synthesis of sesquiterpenes (C15), and 2-C-methyl-D-erythritol-4-phosphate pathway located in plastids and suggested to be responsible for the synthesis of hemi- (C5), mono- (C10), and diterpenes (C20). Recent advances in characterization of genes and enzymes responsible for substrate and end product biosynthesis as well as efforts in metabolic engineering have demonstrated existence of a number of multi-substrate terpene synthases. This review summarizes the progress in the characterization of such multi-substrate terpene synthases and suggests that the presence of multi-substrate use might have been significantly underestimated. Multi-substrate use could lead to important changes in terpene product profiles upon substrate profile changes under perturbation of metabolism in stressed plants as well as under certain developmental stages. We therefore argue that multi-substrate use can be significant under physiological conditions and can result in complicate modifications in terpene profiles.
Collapse
Affiliation(s)
- Leila Pazouki
- Department of Plant Physiology, Institute of Agricultural and Environmental Sciences, Estonian University of Life SciencesTartu, Estonia
| | - Ülo Niinemets
- Department of Plant Physiology, Institute of Agricultural and Environmental Sciences, Estonian University of Life SciencesTartu, Estonia
- Estonian Academy of SciencesTallinn, Estonia
| |
Collapse
|
23
|
Kortbeek RWJ, Xu J, Ramirez A, Spyropoulou E, Diergaarde P, Otten-Bruggeman I, de Both M, Nagel R, Schmidt A, Schuurink RC, Bleeker PM. Engineering of Tomato Glandular Trichomes for the Production of Specialized Metabolites. Methods Enzymol 2016; 576:305-31. [PMID: 27480691 DOI: 10.1016/bs.mie.2016.02.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glandular trichomes are specialized tissues on the epidermis of many plant species. On tomato they synthesize, store, and emit a variety of metabolites such as terpenoids, which play a role in the interaction with insects. Glandular trichomes are excellent tissues for studying the biosynthesis of specialized plant metabolites and are especially suitable targets for metabolic engineering. Here we describe the strategy for engineering tomato glandular trichomes, first with a transient expression system to provide proof of trichome specificity of selected promoters. Using microparticle bombardment, the trichome specificity of a terpene-synthase promoter could be validated in a relatively fast way. Second, we describe a method for stable expression of genes of interest in trichomes. Trichome-specific expression of another terpene-synthase promoter driving the yellow-fluorescence protein-gene is presented. Finally, we describe a case of the overexpression of farnesyl diphosphate synthase (FPS), specifically in tomato glandular trichomes, providing an important precursor in the biosynthetic pathway of sesquiterpenoids. FPS was targeted to the plastid aiming to engineer sesquiterpenoid production, but interestingly leading to a loss of monoterpenoid production in the transgenic tomato trichomes. With this example we show that trichomes are amenable to engineering though, even with knowledge of a biochemical pathway, the result of such engineering can be unexpected.
Collapse
Affiliation(s)
- R W J Kortbeek
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - J Xu
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - A Ramirez
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - E Spyropoulou
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | - M de Both
- Keygene N.V., Wageningen, The Netherlands
| | - R Nagel
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - A Schmidt
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - R C Schuurink
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| | - P M Bleeker
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
24
|
Gabriel HB, de Azevedo MF, Palmisano G, Wunderlich G, Kimura EA, Katzin AM, Alves JMP. Single-target high-throughput transcription analyses reveal high levels of alternative splicing present in the FPPS/GGPPS from Plasmodium falciparum. Sci Rep 2015; 5:18429. [PMID: 26688062 PMCID: PMC4685265 DOI: 10.1038/srep18429] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 11/17/2015] [Indexed: 11/26/2022] Open
Abstract
Malaria is a tropical disease with significant morbidity and mortality. A better understanding of the metabolism of its most important etiological agent, Plasmodium falciparum, is paramount to the development of better treatment and other mitigation measures. Farnesyldiphosphate synthase/geranylgeranyldiphosphate synthase (FPPS/GGPPS) is a key enzyme in the synthesis of isoprenic chains present in many essential structures. In P. falciparum, as well as a handful of other organisms, FPPS/GGPPS has been shown to be a bifunctional enzyme. By genetic tagging and microscopy, we observed a changing localization of FPPS/GGPPS in blood stage parasites. Given the great importance of alternative splicing and other transcriptional phenomena in gene regulation and the generation of protein diversity, we have investigated the processing of the FPPS/GGPPS transcript in P. falciparum by high-throughput sequencing methods in four time-points along the intraerythrocytic cycle of P. falciparum. We have identified levels of transcript diversity an order of magnitude higher than previously observed in this organism, as well as a few stage-specific splicing events. Our data suggest that alternative splicing in P. falciparum is an important feature for gene regulation and the generation of protein diversity.
Collapse
Affiliation(s)
- Heloisa B Gabriel
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Mauro F de Azevedo
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Giuseppe Palmisano
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Gerhard Wunderlich
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Emília A Kimura
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Alejandro M Katzin
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - João M P Alves
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
25
|
Ahmad-Sohdi NAS, Seman-Kamarulzaman AF, Mohamed-Hussein ZA, Hassan M. Purification and Characterization of a Novel NAD(P)+-Farnesol Dehydrogenase from Polygonum minus Leaves. PLoS One 2015; 10:e0143310. [PMID: 26600471 PMCID: PMC4657912 DOI: 10.1371/journal.pone.0143310] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 11/03/2015] [Indexed: 11/18/2022] Open
Abstract
Juvenile hormones have attracted attention as safe and selective targets for the design and development of environmentally friendly and biorational insecticides. In the juvenile hormone III biosynthetic pathway, the enzyme farnesol dehydrogenase catalyzes the oxidation of farnesol to farnesal. In this study, farnesol dehydrogenase was extracted from Polygonum minus leaves and purified 204-fold to apparent homogeneity by ion-exchange chromatography using DEAE-Toyopearl, SP-Toyopearl, and Super-Q Toyopearl, followed by three successive purifications by gel filtration chromatography on a TSK-gel GS3000SW. The enzyme is a heterodimer comprised of subunits with molecular masses of 65 kDa and 70 kDa. The optimum temperature and pH were 35°C and pH 9.5, respectively. Activity was inhibited by sulfhydryl reagents, metal-chelating agents and heavy metal ions. The enzyme utilized both NAD+ and NADP+ as coenzymes with Km values of 0.74 mM and 40 mM, respectively. Trans, trans-farnesol was the preferred substrate for the P. minus farnesol dehydrogenase. Geometrical isomers of trans, trans-farnesol, cis, trans-farnesol and cis, cis-farnesol were also oxidized by the enzyme with lower activity. The Km values for trans, trans-farnesol, cis, trans-farnesol and cis, cis-farnesol appeared to be 0.17 mM, 0.33 mM and 0.42 mM, respectively. The amino acid sequences of 4 tryptic peptides of the enzyme were analyzed by MALDI-TOF/TOF-MS spectrometry, and showed no significant similarity to those of previously reported farnesol dehydrogenases. These results suggest that the purified enzyme is a novel NAD(P)+-dependent farnesol dehydrogenase. The purification and characterization established in the current study will serve as a basis to provide new information for recombinant production of the enzyme. Therefore, recombinant farnesol dehydrogenase may provide a useful molecular tool in manipulating juvenile hormone biosynthesis to generate transgenic plants for pest control.
Collapse
Affiliation(s)
| | | | - Zeti-Azura Mohamed-Hussein
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), 43600 UKM, Bangi, Selangor, Malaysia
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Maizom Hassan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), 43600 UKM, Bangi, Selangor, Malaysia
- * E-mail:
| |
Collapse
|
26
|
Guo D, Li HL, Peng SQ. Structure Conservation and Differential Expression of Farnesyl Diphosphate Synthase Genes in Euphorbiaceous Plants. Int J Mol Sci 2015; 16:22402-14. [PMID: 26389894 PMCID: PMC4613314 DOI: 10.3390/ijms160922402] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/01/2015] [Accepted: 09/06/2015] [Indexed: 02/06/2023] Open
Abstract
Farnesyl diphosphate synthase (FPS) is a key enzyme of isoprenoids biosynthesis. However, knowledge of the FPSs of euphorbiaceous species is limited. In this study, ten FPSs were identified in four euphorbiaceous plants. These FPSs exhibited similar exon/intron structure. The deduced FPS proteins showed close identities and exhibited the typical structure of plant FPS. The members of the FPS family exhibit tissue expression patterns that vary among several euphorbiaceous plant species under normal growth conditions. The expression profiles reveal spatial and temporal variations in the expression of FPSs of different tissues from Euphorbiaceous plants. Our results revealed wide conservation of FPSs and diverse expression in euphorbiaceous plants during growth and development.
Collapse
Affiliation(s)
- Dong Guo
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Hui-Liang Li
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Shi-Qing Peng
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| |
Collapse
|
27
|
Wang GP, Yu XD, Fan J, Wang CS, Xia LQ. Expressing an (E)-β-farnesene synthase in the chloroplast of tobacco affects the preference of green peach aphid and its parasitoid. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:770-82. [PMID: 25644472 DOI: 10.1111/jipb.12319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 12/04/2014] [Indexed: 06/04/2023]
Abstract
(E)-β-Farnesene (EβF) synthase catalyses the production of EβF, which for many aphids is the main or only component of the alarm pheromone causing the repellence of aphids and also functions as a kairomone for aphids' natural enemies. Many plants possess EβF synthase genes and can release EβF to repel aphids. In order to effectively recruit the plant-derived EβF synthase genes for aphid control, by using chloroplast transit peptide (CTP) of the small subunit of Rubisco (rbcS) from wheat (Triticum aestivum L.), we targeted AaβFS1, an EβF synthase gene from sweet wormwood (Artemisia annua L.), to the chloroplast of tobacco to generate CTP + AaβFS1 transgenic lines. The CTP + AaβFS1 transgenic tobacco plants could emit EβF at a level up to 19.25 ng/day per g fresh tissues, 4-12 fold higher than the AaβFS1 transgenic lines without chloroplast targeting. Furthermore, aphid/parasitoid behavioral bioassays demonstrated that the CTP + AaβFS1 transgenic tobacco showed enhanced repellence to green peach aphid (Myzus persicae) and attracted response of its parasitoid Diaeretiella rapae, thus affecting aphid infestation at two trophic levels. These data suggest that the chloroplast is an ideal subcellular compartment for metabolic engineering of plant-derived EβF synthase genes to generate a novel type of transgenic plant emitting an alarm pheromone for aphid control.
Collapse
Affiliation(s)
- Gen-Ping Wang
- College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling, 712100, China
- Institute of Crop Sciences, the Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Xiu-Dao Yu
- Institute of Crop Sciences, the Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
- School of Life Science and Technology, Nanyang Normal University, Nanyang, 473061, China
| | - Jia Fan
- Institute of Crop Protection, the Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Cheng-She Wang
- College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling, 712100, China
| | - Lan-Qin Xia
- Institute of Crop Sciences, the Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| |
Collapse
|
28
|
Richter A, Seidl-Adams I, Köllner TG, Schaff C, Tumlinson JH, Degenhardt J. A small, differentially regulated family of farnesyl diphosphate synthases in maize (Zea mays) provides farnesyl diphosphate for the biosynthesis of herbivore-induced sesquiterpenes. PLANTA 2015; 241:1351-61. [PMID: 25680349 DOI: 10.1007/s00425-015-2254-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 01/26/2015] [Indexed: 05/26/2023]
Abstract
Of the three functional FPPS identified in maize, fpps3 is induced by herbivory to produce FDP important for the formation of the volatile sesquiterpenes of plant defense. Sesquiterpenes are not only crucial for the growth and development of a plant but also for its interaction with the environment. The biosynthesis of sesquiterpenes proceeds over farnesyl diphosphate (FDP), which is either used as a substrate for protein prenylation, converted to squalene, or to volatile sesquiterpenes. To elucidate the regulation of sesquiterpene biosynthesis in maize, we identified and characterized the farnesyl diphosphate synthase (FPPS) gene family which consists of three genes. Synteny analysis indicates that fpps2 and fpps3 originate from a genome duplication in an ancient tetraploid ancestor. The three FPPSs encode active enzymes that produce predominantly FDP from the isopentenyl diphosphate and dimethylallyl diphosphate substrates. Only fpps1 and fpps3 are induced by elicitor treatment, but induced fpps1 levels are much lower and only increased to the amounts of fpps3 levels in intact leaves. Elicitor-induced fpps3 levels in leaves increase to more than 15-fold of background levels. In undamaged roots, transcript levels of fpps1 are higher than those of fpps3, but only fpps3 transcripts are induced in response to herbivory by Diabrotica virgifera virgifera. A kinetic of transcript abundance in response to herbivory in leaves provided further evidence that the regulation of fpps3 corresponds to that of tps23, a terpene synthase, that converts FDP to the volatile (E)-ß-caryophyllene. Our study indicates that the differential expression of fpps1 and fpps3 provides maize with FDP for both primary metabolism and terpene-based defenses. The expression of fpps3 seems to coincide with the herbivore-induced emission of volatile sesquiterpenes that were demonstrated to be important defense signals.
Collapse
Affiliation(s)
- Annett Richter
- Institute of Pharmacy, Martin Luther University Halle, Hoher Weg 8, 06120, Halle, Germany
| | | | | | | | | | | |
Collapse
|
29
|
Zhang Y, Li ZX, Yu XD, Fan J, Pickett JA, Jones HD, Zhou JJ, Birkett MA, Caulfield J, Napier JA, Zhao GY, Cheng XG, Shi Y, Bruce TJA, Xia LQ. Molecular characterization of two isoforms of a farnesyl pyrophosphate synthase gene in wheat and their roles in sesquiterpene synthesis and inducible defence against aphid infestation. THE NEW PHYTOLOGIST 2015; 206:1101-1115. [PMID: 25644034 DOI: 10.1111/nph.13302] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 12/16/2014] [Indexed: 05/09/2023]
Abstract
Aphids are important pests of wheat (Triticum aestivum) that affect crop production globally. Herbivore-induced emission of sesquiterpenes can repel pests, and farnesyl pyrophosphate synthase (FPS) is a key enzyme involved in sesquiterpene biosynthesis. However, fps orthologues in wheat and their functional roles in sesquiterpene synthesis and defence against aphid infestation are unknown. Here, two fps isoforms, Tafps1 and Tafps2, were identified in wheat. Quantitative real-time polymerase chain reaction (qRT-PCR) and in vitro catalytic activity analyses were conducted to investigate expression patterns and activity. Heterologous expression of these isoforms in Arabidopsis thaliana, virus-induced gene silencing (VIGS) in wheat and aphid behavioural assays were performed to understand the functional roles of these two isoforms. We demonstrated that Tafps1 and Tafps2 played different roles in induced responses to aphid infestation and in sesquiterpene synthesis. Heterologous expression in A. thaliana resulted in repulsion of the peach aphid (Myzus persicae). Wheat plants with these two isoforms transiently silenced were significantly attractive to grain aphid (Sitobion avenae). Our results provide new insights into induced defence against aphid herbivory in wheat, in particular, the different roles of the two Tafps isoforms in both sesquiterpene biosynthesis and defence against aphid infestation.
Collapse
Affiliation(s)
- Yan Zhang
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, 11 Keyuanjing 4 Road, Laoshan District, Qingdao, 266101, China
| | - Zhi-Xia Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Xiu-Dao Yu
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Jia Fan
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - John A Pickett
- Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Huw D Jones
- Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | | | | | - John Caulfield
- Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | | | - Guang-Yao Zhao
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Xian-Guo Cheng
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Yi Shi
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, 11 Keyuanjing 4 Road, Laoshan District, Qingdao, 266101, China
| | - Toby J A Bruce
- Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Lan-Qin Xia
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| |
Collapse
|
30
|
Singh B, Sharma RA. Plant terpenes: defense responses, phylogenetic analysis, regulation and clinical applications. 3 Biotech 2015; 5:129-151. [PMID: 28324581 PMCID: PMC4362742 DOI: 10.1007/s13205-014-0220-2] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 04/10/2014] [Indexed: 12/11/2022] Open
Abstract
The terpenoids constitute the largest class of natural products and many interesting products are extensively applied in the industrial sector as flavors, fragrances, spices and are also used in perfumery and cosmetics. Many terpenoids have biological activities and also used for medical purposes. In higher plants, the conventional acetate-mevalonic acid pathway operates mainly in the cytosol and mitochondria and synthesizes sterols, sesquiterpenes and ubiquinones mainly. In the plastid, the non-mevalonic acid pathway takes place and synthesizes hemi-, mono-, sesqui-, and diterpenes along with carotenoids and phytol tail of chlorophyll. In this review paper, recent developments in the biosynthesis of terpenoids, indepth description of terpene synthases and their phylogenetic analysis, regulation of terpene biosynthesis as well as updates of terpenes which have entered in the clinical studies are reviewed thoroughly.
Collapse
Affiliation(s)
- Bharat Singh
- AIB, Amity University Rajasthan, NH-11C, Kant Kalwar, Jaipur, 303 002, India.
| | - Ram A Sharma
- Department of Botany, University of Rajasthan, Jaipur, 302 055, India
| |
Collapse
|
31
|
Bhatia V, Maisnam J, Jain A, Sharma KK, Bhattacharya R. Aphid-repellent pheromone E-β-farnesene is generated in transgenic Arabidopsis thaliana over-expressing farnesyl diphosphate synthase2. ANNALS OF BOTANY 2015; 115:581-91. [PMID: 25538111 PMCID: PMC4343287 DOI: 10.1093/aob/mcu250] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
BACKGROUND AND AIMS Plant-synthesized sesquiterpenes play a pivotal role in chemotactic interactions with insects. Biosynthesis of functionally diverse sesquiterpenes is dependent on the availability of a pool of the precursor farnesyldiphosphate (FDP). In Arabidopsis thaliana, FPS2, encoding cytosolic farnesyldiphosphate synthase, is implicated in the synthesis of cytosolic FDP, but it is not known whether enhanced levels of FDP have a commensurate effect on sesquiterpene-mediated defence responses. This study examined transgenic arabidopsis plants generated to over-express FPS2 in order to determine if any effects could be observed in the response of aphids, Myzus persicae. METHODS Transgenic arabidopsis plants were generated to over-express FPS2 to produce FPS2 in either the cytosol or the chloroplasts. Morphochemical analyses of the transgenic plants were carried out to detremine growth responses of roots and shoots, and for GC-MS profiling of sesquiterpenes. Aphid response to hyrdo-distillate extracts and head-space volatiles from transgenic plants was assessed using a bioassay. KEY RESULTS Either over-expression of FPS2 in the cytosol or targetting of its translated product to chlorplasts resulted in stimulatory growth responses of transgenic arabidopsis at early and late developmental stages. GC-MS analysis of hydro-distillate extracts from aerial parts of the plants revealed biosynthesis of several novel sesquiterpenes, including E-β-farnesene, an alarm pheromone of aphids. Both entrapped volatiles and hydro-distillate extracts of the transgenic leaves triggered agitation in aphids, which was related to both time and dose of exposure. CONCLUSIONS Over-expression of FPS2 in the cytosol and targeting of its translated product to chloroplasts in arabidopsis led to synthesis of several novel sesquiterpenes, including E-β-farnesene, and induced alarm responses in M. persicae. The results suggest a potential for engineering aphid-resistant strains of arabidopsis.
Collapse
Affiliation(s)
- Varnika Bhatia
- National Research Center on Plant Biotechnology, Indian Agricultural Research Institute Campus, New Delhi-110012, India and All India Network Project on Pesticide Residues, Indian Agricultural Research Institute, New Delhi-110012, India
| | - Jaya Maisnam
- National Research Center on Plant Biotechnology, Indian Agricultural Research Institute Campus, New Delhi-110012, India and All India Network Project on Pesticide Residues, Indian Agricultural Research Institute, New Delhi-110012, India
| | - Ajay Jain
- National Research Center on Plant Biotechnology, Indian Agricultural Research Institute Campus, New Delhi-110012, India and All India Network Project on Pesticide Residues, Indian Agricultural Research Institute, New Delhi-110012, India
| | - Krishan Kumar Sharma
- National Research Center on Plant Biotechnology, Indian Agricultural Research Institute Campus, New Delhi-110012, India and All India Network Project on Pesticide Residues, Indian Agricultural Research Institute, New Delhi-110012, India
| | - Ramcharan Bhattacharya
- National Research Center on Plant Biotechnology, Indian Agricultural Research Institute Campus, New Delhi-110012, India and All India Network Project on Pesticide Residues, Indian Agricultural Research Institute, New Delhi-110012, India
| |
Collapse
|
32
|
Tholl D. Biosynthesis and biological functions of terpenoids in plants. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 148:63-106. [PMID: 25583224 DOI: 10.1007/10_2014_295] [Citation(s) in RCA: 273] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Terpenoids (isoprenoids) represent the largest and most diverse class of chemicals among the myriad compounds produced by plants. Plants employ terpenoid metabolites for a variety of basic functions in growth and development but use the majority of terpenoids for more specialized chemical interactions and protection in the abiotic and biotic environment. Traditionally, plant-based terpenoids have been used by humans in the food, pharmaceutical, and chemical industries, and more recently have been exploited in the development of biofuel products. Genomic resources and emerging tools in synthetic biology facilitate the metabolic engineering of high-value terpenoid products in plants and microbes. Moreover, the ecological importance of terpenoids has gained increased attention to develop strategies for sustainable pest control and abiotic stress protection. Together, these efforts require a continuous growth in knowledge of the complex metabolic and molecular regulatory networks in terpenoid biosynthesis. This chapter gives an overview and highlights recent advances in our understanding of the organization, regulation, and diversification of core and specialized terpenoid metabolic pathways, and addresses the most important functions of volatile and nonvolatile terpenoid specialized metabolites in plants.
Collapse
Affiliation(s)
- Dorothea Tholl
- Department of Biological Sciences, Virginia Tech, 409 Latham Hall, 24061, Blacksburg, VA, USA,
| |
Collapse
|
33
|
Yu X, Wang G, Huang S, Ma Y, Xia L. Engineering plants for aphid resistance: current status and future perspectives. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:2065-83. [PMID: 25151153 DOI: 10.1007/s00122-014-2371-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 07/25/2014] [Indexed: 05/19/2023]
Abstract
The current status of development of transgenic plants for improved aphid resistance, and the pros and cons of different strategies are reviewed and future perspectives are proposed. Aphids are major agricultural pests that cause significant yield losses of crop plants each year. Excessive dependence on insecticides for aphid control is undesirable because of the development of insecticide resistance, the potential negative effects on non-target organisms and environmental pollution. Transgenic plants engineered for resistance to aphids via a non-toxic mode of action could be an efficient alternative strategy. In this review, the distribution of major aphid species and their damages on crop plants, the so far isolated aphid-resistance genes and their applications in developments of transgenic plants for improved aphid resistance, and the pros and cons of these strategies are reviewed and future perspectives are proposed. Although the transgenic plants developed through expressing aphid-resistant genes, manipulating plant secondary metabolism and plant-mediated RNAi strategy have been demonstrated to confer improved aphid resistance to some degree. So far, no aphid-resistant transgenic crop plants have ever been commercialized. This commentary is intended to be a helpful insight into the generation and future commercialization of aphid-resistant transgenic crops in a global context.
Collapse
Affiliation(s)
- Xiudao Yu
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | | | | | | | | |
Collapse
|
34
|
Abstract
Farnesyl diphosphate synthase (FPS) catalyzes the sequential head-to-tail condensation of isopentenyl diphosphate (IPP, C5) with dimethylallyl diphosphate (DMAPP, C5) and geranyl diphosphate (GPP, C10) to produce farnesyl diphosphate (FPP, C15). This short-chain prenyl diphosphate constitutes a key branch-point of the isoprenoid biosynthetic pathway from which a variety of bioactive isoprenoids that are vital for normal plant growth and survival are produced. Here we describe a protocol to obtain highly purified preparations of recombinant FPS and a radiochemical assay method for measuring FPS activity in purified enzyme preparations and plant tissue extracts.
Collapse
Affiliation(s)
- Montserrat Arró
- Center for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
| | | | | |
Collapse
|
35
|
Molecular regulation of santalol biosynthesis in Santalum album L. Gene 2013; 527:642-8. [PMID: 23860319 DOI: 10.1016/j.gene.2013.06.080] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 06/19/2013] [Accepted: 06/20/2013] [Indexed: 11/24/2022]
Abstract
Santalum album L. commonly known as East-Indian sandal or chandan is a hemiparasitic tree of family santalaceae. Santalol is a bioprospecting molecule present in sandalwood and any effort towards metabolic engineering of this important moiety would require knowledge on gene regulation. Santalol is a sesquiterpene synthesized through mevalonate or non-mevalonate pathways. First step of santalol biosynthesis involves head to tail condensation of isopentenyl pyrophosphate (IPP) with its allylic co-substrate dimethyl allyl pyrophosphate (DMAPP) to produce geranyl pyrophosphate (GPP; C10 - a monoterpene). GPP upon one additional condensation with IPP produces farnesyl pyrophosphate (FPP; C15 - an open chain sesquiterpene). Both the reactions are catalyzed by farnesyl diphosphate synthase (FDS). Santalene synthase (SS), a terpene cyclase catalyzes cyclization of open ring FPP into a mixture of cyclic sesquiterpenes such as α-santalene, epi-β-santalene, β-santalene and exo bergamotene, the main constituents of sandal oil. The objective of the present work was to generate a comprehensive knowledge on the genes involved in santalol production and study their molecular regulation. To achieve this, sequences encoding farnesyl diphosphate synthase and santalene synthase were isolated from sandalwood using suppression subtraction hybridization and 2D gel electrophoresis technology. Functional characterization of both the genes was done through enzyme assays and tissue-specific expression of both the genes was studied. To our knowledge, this is the first report on studies on molecular regulation, and tissue-specific expression of the genes involved in santalol biosynthesis.
Collapse
|
36
|
Beck G, Coman D, Herren E, Ruiz-Sola MA, Rodríguez-Concepción M, Gruissem W, Vranová E. Characterization of the GGPP synthase gene family in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2013; 82:393-416. [PMID: 23729351 DOI: 10.1007/s11103-013-0070-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 05/05/2013] [Indexed: 05/06/2023]
Abstract
Geranylgeranyl diphosphate (GGPP) is a key precursor of various isoprenoids that have diverse functions in plant metabolism and development. The annotation of the Arabidopsis thaliana genome predicts 12 genes to encode geranylgeranyl diphosphate synthases (GGPPS). In this study we analyzed GGPPS activity as well as the subcellular localization and tissue-specific expression of the entire protein family in A. thaliana. GGPPS2 (At2g18620), GGPPS3 (At2g18640), GGPPS6 (At3g14530), GGPPS7 (At3g14550), GGPPS8 (At3g20160), GGPPS9 (At3g29430), GGPPS10 (At3g32040) and GGPPS11 (At4g36810) showed GGPPS activity in Escherichia coli, similar to activities reported earlier for GGPPS1 (At1g49530) and GGPPS4 (At2g23800) (Zhu et al. in Plant Cell Physiol 38(3):357-361, 1997a; Plant Mol Biol 35(3):331-341, b). GGPPS12 (At4g38460) did not produce GGPP in E. coli. Based on DNA sequence analysis we propose that GGPPS5 (At3g14510) is a pseudogene. GGPPS-GFP (green fluorescent protein) fusion proteins of the ten functional GGPP synthases localized to plastids, mitochondria and the endoplasmic reticulum, with the majority of the enzymes located in plastids. Gene expression analysis using quantitative real time-PCR, GGPPS promoter-GUS (β-glucuronidase) assays and publicly available microarray data revealed a differential spatio-temporal expression of GGPPS genes. The results suggest that plastids and mitochondria are key subcellular compartments for the synthesis of ubiquitous GGPP-derived isoprenoid species. GGPPS11 and GGPPS1 are the major isozymes responsible for their biosynthesis. All remaining paralogs, encoding six plastidial isozymes and two cytosolic isozymes, were expressed in specific tissues and/or at specific developmental stages, suggesting their role in developmentally regulated isoprenoid biosynthesis. Our results show that of the 12 predicted GGPPS encoded in the A. thaliana genome 10 are functional proteins that can synthesize GGPP. Their specific subcellular location and differential expression pattern suggest subfunctionalization in providing GGPP to specific tissues, developmental stages, or metabolic pathways.
Collapse
Affiliation(s)
- Gilles Beck
- Department of Biology, Plant Biotechnology, ETH Zurich, Zurich, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
37
|
Lange BM, Ahkami A. Metabolic engineering of plant monoterpenes, sesquiterpenes and diterpenes--current status and future opportunities. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:169-96. [PMID: 23171352 DOI: 10.1111/pbi.12022] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 10/05/2012] [Accepted: 10/08/2012] [Indexed: 05/03/2023]
Abstract
Terpenoids (a.k.a. isoprenoids) represent the most diverse class of natural products found in plants, with tens of thousands of reported structures. Plant-derived terpenoids have a multitude of pharmaceutical and industrial applications, but the natural resources for their extraction are often limited and, in many cases, synthetic routes are not commercially viable. Some of the most valuable terpenoids are not accumulated in model plants or crops, and genetic resources for breeding of terpenoid natural product traits are thus poorly developed. At present, metabolic engineering, either in the native producer or a heterologous host, is the only realistic alternative to improve yield and accessibility. In this review article, we will evaluate the state of the art of modulating the biosynthetic pathways for the production of mono-, sesqui- and diterpenes in plants.
Collapse
Affiliation(s)
- B Markus Lange
- Institute of Biological Chemistry and MJ Murdock Metabolomics Laboratory, Washington State University, Pullman, WA, USA.
| | | |
Collapse
|
38
|
Farnesyl pyrophosphate synthase: a key enzyme in isoprenoid biosynthetic pathway and potential molecular target for drug development. N Biotechnol 2013; 30:114-23. [DOI: 10.1016/j.nbt.2012.07.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 07/05/2012] [Accepted: 07/05/2012] [Indexed: 11/19/2022]
|
39
|
Houshyani B, Assareh M, Busquets A, Ferrer A, Bouwmeester HJ, Kappers IF. Three-step pathway engineering results in more incidence rate and higher emission of nerolidol and improved attraction of Diadegma semiclausum. Metab Eng 2013; 15:88-97. [DOI: 10.1016/j.ymben.2012.10.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 10/02/2012] [Accepted: 10/09/2012] [Indexed: 01/20/2023]
|
40
|
Lange BM, Turner GW. Terpenoid biosynthesis in trichomes--current status and future opportunities. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:2-22. [PMID: 22979959 DOI: 10.1111/j.1467-7652.2012.00737.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 07/24/2012] [Accepted: 07/31/2012] [Indexed: 05/19/2023]
Abstract
Glandular trichomes are anatomical structures specialized for the synthesis of secreted natural products. In this review we focus on the description of glands that accumulate terpenoid essential oils and oleoresins. We also provide an in-depth account of the current knowledge about the biosynthesis of terpenoids and secretion mechanisms in the highly specialized secretory cells of glandular trichomes, and highlight the implications for metabolic engineering efforts.
Collapse
Affiliation(s)
- B Markus Lange
- Institute of Biological Chemistry, M.J. Murdock Metabolomics Laboratory, Washington State University, Pullman, WA, USA.
| | | |
Collapse
|
41
|
Vranová E, Coman D, Gruissem W. Network analysis of the MVA and MEP pathways for isoprenoid synthesis. ANNUAL REVIEW OF PLANT BIOLOGY 2013; 64:665-700. [PMID: 23451776 DOI: 10.1146/annurev-arplant-050312-120116] [Citation(s) in RCA: 573] [Impact Index Per Article: 52.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Isoprenoid biosynthesis is essential for all living organisms, and isoprenoids are also of industrial and agricultural interest. All isoprenoids are derived from prenyl diphosphate (prenyl-PP) precursors. Unlike isoprenoid biosynthesis in other living organisms, prenyl-PP, as the precursor of all isoprenoids in plants, is synthesized by two independent pathways: the mevalonate (MVA) pathway in the cytoplasm and the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway in plastids. This review focuses on progress in our understanding of how the precursors for isoprenoid biosynthesis are synthesized in the two subcellular compartments, how the underlying pathway gene networks are organized and regulated, and how network perturbations impact each pathway and plant development. Because of the wealth of data on isoprenoid biosynthesis, we emphasize research in Arabidopsis thaliana and compare the synthesis of isoprenoid precursor molecules in this model plant with their synthesis in other prokaryotic and eukaryotic organisms.
Collapse
Affiliation(s)
- Eva Vranová
- Department of Biology, ETH Zurich, 8092 Zurich, Switzerland.
| | | | | |
Collapse
|
42
|
Farnesyl diphosphate synthase, the target for nitrogen-containing bisphosphonate drugs, is a peroxisomal enzyme in the model system Dictyostelium discoideum. Biochem J 2012; 447:353-61. [PMID: 22849378 PMCID: PMC3465988 DOI: 10.1042/bj20120750] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
NBP (nitrogen-containing bisphosphonate) drugs protect against excessive osteoclast-mediated bone resorption. After binding to bone mineral, they are taken up selectively by the osteoclasts and inhibit the essential enzyme FDPS (farnesyl diphosphate synthase). NBPs inhibit also growth of amoebae of Dictyostelium discoideum in which their target is again FDPS. A fusion protein between FDPS and GFP (green fluorescent protein) was found, in D. discoideum, to localize to peroxisomes and to confer resistance to the NBP alendronate. GFP was also directed to peroxisomes by a fragment of FDPS comprising amino acids 1–22. This contains a sequence of nine amino acids that closely resembles the nonapeptide PTS2 (peroxisomal targeting signal type 2): there is only a single amino acid mismatch between the two sequences. Mutation analysis confirmed that the atypical PTS2 directs FDPS into peroxisomes. Furthermore, expression of the D. discoideum FDPS–GFP fusion protein in strains of Saccharomyces cerevisiae defective in peroxisomal protein import demonstrated that import of FDPS into peroxisomes was blocked in a strain lacking the PTS2-dependent import pathway. The peroxisomal location of FDPS in D. discoideum indicates that NBPs have to cross the peroxisomal membrane before they can bind to their target.
Collapse
|
43
|
Heinig U, Gutensohn M, Dudareva N, Aharoni A. The challenges of cellular compartmentalization in plant metabolic engineering. Curr Opin Biotechnol 2012; 24:239-46. [PMID: 23246154 DOI: 10.1016/j.copbio.2012.11.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 11/13/2012] [Accepted: 11/16/2012] [Indexed: 12/21/2022]
Abstract
The complex metabolic networks in plants are highly compartmentalized and biochemical steps of a single pathway can take place in multiple subcellular locations. Our knowledge regarding reactions and precursor compounds in the various cellular compartments has increased in recent years due to innovations in tracking the spatial distribution of proteins and metabolites. Nevertheless, to date only few studies have integrated subcellular localization criteria in metabolic engineering attempts. Here, we highlight the crucial factors for subcellular-localization-based strategies in plant metabolic engineering including substrate availability, enzyme targeting, the role of transporters, and multigene transfer approaches. The availability of compartmentalized metabolic network models for plants in the near future will greatly advance the integration of localization constraints in metabolic engineering experiments and aid in predicting their outcomes.
Collapse
Affiliation(s)
- Uwe Heinig
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
44
|
Keim V, Manzano D, Fernández FJ, Closa M, Andrade P, Caudepón D, Bortolotti C, Vega MC, Arró M, Ferrer A. Characterization of Arabidopsis FPS isozymes and FPS gene expression analysis provide insight into the biosynthesis of isoprenoid precursors in seeds. PLoS One 2012; 7:e49109. [PMID: 23145086 PMCID: PMC3492304 DOI: 10.1371/journal.pone.0049109] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 10/07/2012] [Indexed: 11/19/2022] Open
Abstract
Arabidopsis thaliana contains two genes encoding farnesyl diphosphate (FPP) synthase (FPS), the prenyl diphoshate synthase that catalyzes the synthesis of FPP from isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). In this study, we provide evidence that the two Arabidopsis short FPS isozymes FPS1S and FPS2 localize to the cytosol. Both enzymes were expressed in E. coli, purified and biochemically characterized. Despite FPS1S and FPS2 share more than 90% amino acid sequence identity, FPS2 was found to be more efficient as a catalyst, more sensitive to the inhibitory effect of NaCl, and more resistant to thermal inactivation than FPS1S. Homology modelling for FPS1S and FPS2 and analysis of the amino acid differences between the two enzymes revealed an increase in surface polarity and a greater capacity to form surface salt bridges of FPS2 compared to FPS1S. These factors most likely account for the enhanced thermostability of FPS2. Expression analysis of FPS::GUS genes in seeds showed that FPS1 and FPS2 display complementary patterns of expression particularly at late stages of seed development, which suggests that Arabidopsis seeds have two spatially segregated sources of FPP. Functional complementation studies of the Arabidopsis fps2 knockout mutant seed phenotypes demonstrated that under normal conditions FPS1S and FPS2 are functionally interchangeable. A putative role for FPS2 in maintaining seed germination capacity under adverse environmental conditions is discussed.
Collapse
Affiliation(s)
- Verónica Keim
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB), Campus UAB, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - David Manzano
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB), Campus UAB, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Francisco J. Fernández
- Department of Structural and Quantitative Biology, Centre for Biological Research (CIB-CSIC), Madrid, Spain
| | - Marta Closa
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Paola Andrade
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB), Campus UAB, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Daniel Caudepón
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB), Campus UAB, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Cristina Bortolotti
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB), Campus UAB, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - M. Cristina Vega
- Department of Structural and Quantitative Biology, Centre for Biological Research (CIB-CSIC), Madrid, Spain
| | - Montserrat Arró
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB), Campus UAB, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Albert Ferrer
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB), Campus UAB, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
45
|
Jin H, Song Z, Nikolau BJ. Reverse genetic characterization of two paralogous acetoacetyl CoA thiolase genes in Arabidopsis reveals their importance in plant growth and development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:1015-32. [PMID: 22332816 DOI: 10.1111/j.1365-313x.2012.04942.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Acetoacetyl CoA thiolase (AACT, EC 2.3.1.9) catalyzes the condensation of two acetyl CoA molecules to form acetoacetyl CoA. Two AACT-encoding genes, At5g47720 (AACT1) and At5g48230 (AACT2), were functionally identified in the Arabidopsis genome by direct enzymological assays and functional expression in yeast. Promoter::GUS fusion experiments indicated that AACT1 is primarily expressed in the vascular system and AACT2 is highly expressed in root tips, young leaves, top stems and anthers. Characterization of T-DNA insertion mutant alleles at each AACT locus established that AACT2 function is required for embryogenesis and for normal male gamete transmission. In contrast, plants lacking AACT1 function are completely viable and show no apparent growth phenotypes, indicating that AACT1 is functionally redundant with respect to AACT2 function. RNAi lines that express reduced levels of AACT2 show pleiotropic phenotypes, including reduced apical dominance, elongated life span and flowering duration, sterility, dwarfing, reduced seed yield and shorter root length. Microscopic analysis reveals that the reduced stature is caused by a reduction in cell size and fewer cells, and male sterility is caused by loss of the pollen coat and premature degeneration of the tapetal cells. Biochemical analyses established that the roots of AACT2 RNAi plants show quantitative and qualitative alterations in phytosterol profiles. These phenotypes and biochemical alterations are reversed when AACT2 RNAi plants are grown in the presence of mevalonate, which is consistent with the role of AACT2 in generating the bulk of the acetoacetyl CoA precursor required for the cytosol-localized, mevalonate-derived isoprenoid biosynthetic pathway.
Collapse
Affiliation(s)
- Huanan Jin
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, IA 50011, USA
| | | | | |
Collapse
|
46
|
Yu XD, Pickett J, Ma YZ, Bruce T, Napier J, Jones HD, Xia LQ. Metabolic engineering of plant-derived (E)-β-farnesene synthase genes for a novel type of aphid-resistant genetically modified crop plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:282-99. [PMID: 22348813 DOI: 10.1111/j.1744-7909.2012.01107.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Aphids are major agricultural pests that cause significant yield losses of crop plants each year. Excessive dependence on insecticides for long-term aphid control is undesirable because of the development of insecticide resistance, the potential negative effects on non-target organisms and environmental pollution. Transgenic crops engineered for resistance to aphids via a non-toxic mode of action could be an efficient alternative strategy. (E)-β-Farnesene (EβF) synthases catalyze the formation of EβF, which for many pest aphids is the main component of the alarm pheromone involved in the chemical communication within these species. EβF can also be synthesized by certain plants but is then normally contaminated with inhibitory compounds. Engineering of crop plants capable of synthesizing and emitting EβF could cause repulsion of aphids and also the attraction of natural enemies that use EβF as a foraging cue, thus minimizing aphid infestation. In this review, the effects of aphids on host plants, plants' defenses against aphid herbivory and the recruitment of natural enemies for aphid control in an agricultural setting are briefly introduced. Furthermore, the plant-derived EβF synthase genes cloned to date along with their potential roles in generating novel aphid resistance via genetically modified approaches are discussed.
Collapse
Affiliation(s)
- Xiu-Dao Yu
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | | | | | | | | | | | | |
Collapse
|
47
|
Lohr M, Schwender J, Polle JEW. Isoprenoid biosynthesis in eukaryotic phototrophs: a spotlight on algae. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 185-186:9-22. [PMID: 22325862 DOI: 10.1016/j.plantsci.2011.07.018] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 07/25/2011] [Accepted: 07/29/2011] [Indexed: 05/04/2023]
Abstract
Isoprenoids are one of the largest groups of natural compounds and have a variety of important functions in the primary metabolism of land plants and algae. In recent years, our understanding of the numerous facets of isoprenoid metabolism in land plants has been rapidly increasing, while knowledge on the metabolic network of isoprenoids in algae still lags behind. Here, current views on the biochemistry and genetics of the core isoprenoid metabolism in land plants and in the major algal phyla are compared and some of the most pressing open questions are highlighted. Based on the different evolutionary histories of the various groups of eukaryotic phototrophs, we discuss the distribution and regulation of the mevalonate (MVA) and the methylerythritol phosphate (MEP) pathways in land plants and algae and the potential consequences of the loss of the MVA pathway in groups such as the green algae. For the prenyltransferases, serving as gatekeepers to the various branches of terpenoid biosynthesis in land plants and algae, we explore the minimal inventory necessary for the formation of primary isoprenoids and present a preliminary analysis of their occurrence and phylogeny in algae with primary and secondary plastids. The review concludes with some perspectives on genetic engineering of the isoprenoid metabolism in algae.
Collapse
Affiliation(s)
- Martin Lohr
- Institut für Allgemeine Botanik, Johannes Gutenberg-Universität, 55099 Mainz, Germany.
| | | | | |
Collapse
|
48
|
Yu X, Jones HD, Ma Y, Wang G, Xu Z, Zhang B, Zhang Y, Ren G, Pickett JA, Xia L. (E)-β-farnesene synthase genes affect aphid (Myzus persicae) infestation in tobacco (Nicotiana tabacum). Funct Integr Genomics 2012; 12:207-13. [PMID: 21847661 DOI: 10.1007/s10142-011-0244-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 07/29/2011] [Accepted: 08/01/2011] [Indexed: 11/28/2022]
Abstract
Aphids are major agricultural pests which cause significant yield losses of the crop plants each year. (E)-β-farnesene (EβF) is the alarm pheromone involved in the chemical communication between aphids and particularly in the avoidance of predation. In the present study, two EβF synthase genes were isolated from sweet wormwood and designated as AaβFS1 and AaβFS2, respectively. Overexpression of AaβFS1 or AaβFS2 in tobacco plants resulted in the emission of EβF ranging from 1.55 to 4.65 ng/day/g fresh tissues. Tritrophic interactions involving the peach aphids (Myzus persicae), predatory lacewings (Chrysopa septempunctata) demonstrated that the transgenic tobacco expressing AaβFS1 and AaβFS2 could repel peach aphids, but not as strongly as expected. However, AaβFS1 and AaβFS2 lines exhibited strong and statistically significant attraction to lacewings. Further experiments combining aphids and lacewing larvae in an octagon arrangement showed transgenic tobacco plants could repel aphids and attract lacewing larvae, thus minimizing aphid infestation. Therefore, we demonstrated a potentially valuable strategy of using EβF synthase genes from sweet wormwood for aphid control in tobacco or other economic important crops in an environmentally benign way.
Collapse
Affiliation(s)
- Xiudao Yu
- Institute of Crop Science/The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Post J, van Deenen N, Fricke J, Kowalski N, Wurbs D, Schaller H, Eisenreich W, Huber C, Twyman RM, Prüfer D, Gronover CS. Laticifer-specific cis-prenyltransferase silencing affects the rubber, triterpene, and inulin content of Taraxacum brevicorniculatum. PLANT PHYSIOLOGY 2012; 158:1406-17. [PMID: 22238421 PMCID: PMC3291264 DOI: 10.1104/pp.111.187880] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Certain Taraxacum species, such as Taraxacum koksaghyz and Taraxacum brevicorniculatum, produce large amounts of high-quality natural rubber in their latex, the milky cytoplasm of specialized cells known as laticifers. This high-molecular mass biopolymer consists mainly of poly(cis-1,4-isoprene) and is deposited in rubber particles by particle-bound enzymes that carry out the stereospecific condensation of isopentenyl diphosphate units. The polymer configuration suggests that the chain-elongating enzyme (rubber transferase; EC 2.5.1.20) is a cis-prenyltransferase (CPT). Here, we present a comprehensive analysis of transgenic T. brevicorniculatum plants in which the expression of three recently isolated CPTs known to be associated with rubber particles (TbCPT1 to -3) was heavily depleted by laticifer-specific RNA interference (RNAi). Analysis of the CPT-RNAi plants by nuclear magnetic resonance, size-exclusion chromatography, and gas chromatography-mass spectrometry indicated a significant reduction in rubber biosynthesis and a corresponding 50% increase in the levels of triterpenes and the main storage carbohydrate, inulin. Transmission electron microscopy revealed that the laticifers in CPT-RNAi plants contained fewer and smaller rubber particles than wild-type laticifers. We also observed lower activity of hydroxymethylglutaryl-coenzyme A reductase, the key enzyme in the mevalonate pathway, reflecting homeostatic control of the isopentenyl diphosphate pool. To our knowledge, this is the first in planta demonstration of latex-specific CPT activity in rubber biosynthesis.
Collapse
|
50
|
Vranová E, Coman D, Gruissem W. Structure and dynamics of the isoprenoid pathway network. MOLECULAR PLANT 2012; 5:318-33. [PMID: 22442388 DOI: 10.1093/mp/sss015] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Isoprenoids are functionally and structurally the most diverse group of plant metabolites reported to date. They can function as primary metabolites, participating in essential plant cellular processes, and as secondary metabolites, of which many have substantial commercial, pharmacological, and agricultural value. Isoprenoid end products participate in plants in a wide range of physiological processes acting in them both synergistically, such as chlorophyll and carotenoids during photosynthesis, or antagonistically, such as gibberellic acid and abscisic acid during seed germination. It is therefore expected that fluxes via isoprenoid metabolic network are tightly controlled both temporally and spatially, and that this control occurs at different levels of regulation and in an orchestrated manner over the entire isoprenoid metabolic network. In this review, we summarize our current knowledge of the topology of the plant isoprenoid pathway network and its regulation at the gene expression level following diverse stimuli. We conclude by discussing agronomical and biotechnological applications emerging from the plant isoprenoid metabolism and provide an outlook on future directions in the systems analysis of the plant isoprenoid pathway network.
Collapse
Affiliation(s)
- Eva Vranová
- Department of Biology, Plant Biotechnology, ETH Zurich, Universitätstrasse 2, 8092 Zurich, Switzerland
| | | | | |
Collapse
|