1
|
Jakovljević A, Stamenković V, Poleksić J, Hamad MIK, Reiss G, Jakovcevski I, Andjus PR. The Role of Tenascin-C on the Structural Plasticity of Perineuronal Nets and Synaptic Expression in the Hippocampus of Male Mice. Biomolecules 2024; 14:508. [PMID: 38672524 PMCID: PMC11047978 DOI: 10.3390/biom14040508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Neuronal plasticity is a crucial mechanism for an adapting nervous system to change. It is shown to be regulated by perineuronal nets (PNNs), the condensed forms of the extracellular matrix (ECM) around neuronal bodies. By assessing the changes in the number, intensity, and structure of PNNs, the ultrastructure of the PNN mesh, and the expression of inhibitory and excitatory synaptic inputs on these neurons, we aimed to clarify the role of an ECM glycoprotein, tenascin-C (TnC), in the dorsal hippocampus. To enhance neuronal plasticity, TnC-deficient (TnC-/-) and wild-type (TnC+/+) young adult male mice were reared in an enriched environment (EE) for 8 weeks. Deletion of TnC in TnC-/- mice showed an ultrastructural reduction of the PNN mesh and an increased inhibitory input in the dentate gyrus (DG), and an increase in the number of PNNs with a rise in the inhibitory input in the CA2 region. EE induced an increased inhibitory input in the CA2, CA3, and DG regions; in DG, the change was also followed by an increased intensity of PNNs. No changes in PNNs or synaptic expression were found in the CA1 region. We conclude that the DG and CA2 regions emerged as focal points of alterations in PNNs and synaptogenesis with EE as mediated by TnC.
Collapse
Affiliation(s)
- Ana Jakovljević
- Center for Laser Microscopy, Institute for Physiology and Biochemistry “Jean Giaja”, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia;
| | - Vera Stamenković
- Center for Integrative Brain Research, Seattle Children’s Research Institute, 1900 9th Ave, Seattle, WA 98125, USA;
| | - Joko Poleksić
- Institute of Anatomy “Niko Miljanic”, School of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Mohammad I. K. Hamad
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Gebhard Reiss
- Institut für Anatomie und Klinische Morphologie, Universität Witten/Herdecke, 58455 Witten, Germany;
| | - Igor Jakovcevski
- Institut für Anatomie und Klinische Morphologie, Universität Witten/Herdecke, 58455 Witten, Germany;
| | - Pavle R. Andjus
- Center for Laser Microscopy, Institute for Physiology and Biochemistry “Jean Giaja”, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia;
| |
Collapse
|
2
|
Sinha A, Kawakami J, Cole KS, Ladutska A, Nguyen MY, Zalmai MS, Holder BL, Broerman VM, Matthews RT, Bouyain S. Protein-protein interactions between tenascin-R and RPTPζ/phosphacan are critical to maintain the architecture of perineuronal nets. J Biol Chem 2023; 299:104952. [PMID: 37356715 PMCID: PMC10371798 DOI: 10.1016/j.jbc.2023.104952] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/09/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023] Open
Abstract
Neural plasticity, the ability to alter the structure and function of neural circuits, varies throughout the age of an individual. The end of the hyperplastic period in the central nervous system coincides with the appearance of honeycomb-like structures called perineuronal nets (PNNs) that surround a subset of neurons. PNNs are a condensed form of neural extracellular matrix that include the glycosaminoglycan hyaluronan and extracellular matrix proteins such as aggrecan and tenascin-R (TNR). PNNs are key regulators of developmental neural plasticity and cognitive functions, yet our current understanding of the molecular interactions that help assemble them remains limited. Disruption of Ptprz1, the gene encoding the receptor protein tyrosine phosphatase RPTPζ, altered the appearance of nets from a reticulated structure to puncta on the surface of cortical neuron bodies in adult mice. The structural alterations mirror those found in Tnr-/- mice, and TNR is absent from the net structures that form in dissociated cultures of Ptprz1-/- cortical neurons. These findings raised the possibility that TNR and RPTPζ cooperate to promote the assembly of PNNs. Here, we show that TNR associates with the RPTPζ ectodomain and provide a structural basis for these interactions. Furthermore, we show that RPTPζ forms an identical complex with tenascin-C, a homolog of TNR that also regulates neural plasticity. Finally, we demonstrate that mutating residues at the RPTPζ-TNR interface impairs the formation of PNNs in dissociated neuronal cultures. Overall, this work sets the stage for analyzing the roles of protein-protein interactions that underpin the formation of nets.
Collapse
Affiliation(s)
- Ashis Sinha
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Jessica Kawakami
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Kimberly S Cole
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Aliona Ladutska
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Mary Y Nguyen
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Mary S Zalmai
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Brandon L Holder
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Victor M Broerman
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Russell T Matthews
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, New York, USA.
| | - Samuel Bouyain
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, USA.
| |
Collapse
|
3
|
Fu Z, Zhu G, Luo C, Chen Z, Dou Z, Chen Y, Zhong C, Su S, Liu F. Matricellular protein tenascin C: Implications in glioma progression, gliomagenesis, and treatment. Front Oncol 2022; 12:971462. [PMID: 36033448 PMCID: PMC9413079 DOI: 10.3389/fonc.2022.971462] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/25/2022] [Indexed: 11/24/2022] Open
Abstract
Matricellular proteins are nonstructural extracellular matrix components that are expressed at low levels in normal adult tissues and are upregulated during development or under pathological conditions. Tenascin C (TNC), a matricellular protein, is a hexameric and multimodular glycoprotein with different molecular forms that is produced by alternative splicing and post-translational modifications. Malignant gliomas are the most common and aggressive primary brain cancer of the central nervous system. Despite continued advances in multimodal therapy, the prognosis of gliomas remains poor. The main reasons for such poor outcomes are the heterogeneity and adaptability caused by the tumor microenvironment and glioma stem cells. It has been shown that TNC is present in the glioma microenvironment and glioma stem cell niches, and that it promotes malignant properties, such as neovascularization, proliferation, invasiveness, and immunomodulation. TNC is abundantly expressed in neural stem cell niches and plays a role in neurogenesis. Notably, there is increasing evidence showing that neural stem cells in the subventricular zone may be the cells of origin of gliomas. Here, we review the evidence regarding the role of TNC in glioma progression, propose a potential association between TNC and gliomagenesis, and summarize its clinical applications. Collectively, TNC is an appealing focus for advancing our understanding of gliomas.
Collapse
Affiliation(s)
- Zaixiang Fu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ganggui Zhu
- Department of Neurosurgery, Hangzhou First People’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chao Luo
- Department of Neurosurgery, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Zihang Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhangqi Dou
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yike Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chen Zhong
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sheng Su
- Department of Neurosurgery, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China
| | - Fuyi Liu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Fuyi Liu,
| |
Collapse
|
4
|
Structural and Functional Modulation of Perineuronal Nets: In Search of Important Players with Highlight on Tenascins. Cells 2021; 10:cells10061345. [PMID: 34072323 PMCID: PMC8230358 DOI: 10.3390/cells10061345] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/18/2021] [Accepted: 05/26/2021] [Indexed: 12/30/2022] Open
Abstract
The extracellular matrix (ECM) of the brain plays a crucial role in providing optimal conditions for neuronal function. Interactions between neurons and a specialized form of ECM, perineuronal nets (PNN), are considered a key mechanism for the regulation of brain plasticity. Such an assembly of interconnected structural and regulatory molecules has a prominent role in the control of synaptic plasticity. In this review, we discuss novel ways of studying the interplay between PNN and its regulatory components, particularly tenascins, in the processes of synaptic plasticity, mechanotransduction, and neurogenesis. Since enhanced neuronal activity promotes PNN degradation, it is possible to study PNN remodeling as a dynamical change in the expression and organization of its constituents that is reflected in its ultrastructure. The discovery of these subtle modifications is enabled by the development of super-resolution microscopy and advanced methods of image analysis.
Collapse
|
5
|
Tucić M, Stamenković V, Andjus P. The Extracellular Matrix Glycoprotein Tenascin C and Adult Neurogenesis. Front Cell Dev Biol 2021; 9:674199. [PMID: 33996833 PMCID: PMC8117239 DOI: 10.3389/fcell.2021.674199] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/09/2021] [Indexed: 11/13/2022] Open
Abstract
Tenascin C (TnC) is a glycoprotein highly expressed in the extracellular matrix (ECM) during development and in the adult central nervous system (CNS) in regions of active neurogenesis, where neuron development is a tightly regulated process orchestrated by extracellular matrix components. In addition, newborn cells also communicate with glial cells, astrocytes and microglia, indicating the importance of signal integration in adult neurogenesis. Although TnC has been recognized as an important molecule in the regulation of cell proliferation and migration, complete regulatory pathways still need to be elucidated. In this review we discuss the formation of new neurons in the adult hippocampus and the olfactory system with specific reference to TnC and its regulating functions in this process. Better understanding of the ECM signaling in the niche of the CNS will have significant implications for regenerative therapies.
Collapse
Affiliation(s)
- Milena Tucić
- Center for Laser Microscopy, Institute for Physiology and Biochemistry "Jean Giaja", Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Vera Stamenković
- Center for Laser Microscopy, Institute for Physiology and Biochemistry "Jean Giaja", Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Pavle Andjus
- Center for Laser Microscopy, Institute for Physiology and Biochemistry "Jean Giaja", Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
6
|
Extracellular Matrix Remodeling in the Retina and Optic Nerve of a Novel Glaucoma Mouse Model. BIOLOGY 2021; 10:biology10030169. [PMID: 33668263 PMCID: PMC7996343 DOI: 10.3390/biology10030169] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/14/2021] [Accepted: 02/16/2021] [Indexed: 12/23/2022]
Abstract
Simple Summary Glaucoma is a leading cause of blindness worldwide, and increased age and intraocular pressure (IOP) are the major risk factors. Glaucoma is characterized by the death of nerve cells and the loss of optic nerve fibers. Recently, evidence has accumulated indicating that proteins in the environment of nerve cells, called the extracellular matrix (ECM), play an important role in glaucomatous neurodegeneration. Depending on its constitution, the ECM can influence either the survival or the death of nerve cells. Thus, the aim of our study was to comparatively explore alterations of various ECM molecules in the retina and optic nerve of aged control and glaucomatous mice with chronic IOP elevation. Interestingly, we observed elevated levels of blood vessel and glial cell-associated ECM components in the glaucomatous retina and optic nerve, which could be responsible for various pathological processes. A better understanding of the underlying signaling mechanisms may help to develop new diagnostic and therapeutic strategies for glaucoma patients. Abstract Glaucoma is a neurodegenerative disease that is characterized by the loss of retinal ganglion cells (RGC) and optic nerve fibers. Increased age and intraocular pressure (IOP) elevation are the main risk factors for developing glaucoma. Mice that are heterozygous (HET) for the mega-karyocyte protein tyrosine phosphatase 2 (PTP-Meg2) show chronic and progressive IOP elevation, severe RGCs loss, and optic nerve damage, and represent a valuable model for IOP-dependent primary open-angle glaucoma (POAG). Previously, evidence accumulated suggesting that glaucomatous neurodegeneration is associated with the extensive remodeling of extracellular matrix (ECM) molecules. Unfortunately, little is known about the exact ECM changes in the glaucomatous retina and optic nerve. Hence, the goal of the present study was to comparatively explore ECM alterations in glaucomatous PTP-Meg2 HET and control wild type (WT) mice. Due to their potential relevance in glaucomatous neurodegeneration, we specifically analyzed the expression pattern of the ECM glycoproteins fibronectin, laminin, tenascin-C, and tenascin-R as well as the proteoglycans aggrecan, brevican, and members of the receptor protein tyrosine phosphatase beta/zeta (RPTPβ/ζ) family. The analyses were carried out in the retina and optic nerve of glaucomatous PTP-Meg2 HET and WT mice using quantitative real-time PCR (RT-qPCR), immunohistochemistry, and Western blot. Interestingly, we observed increased fibronectin and laminin levels in the glaucomatous HET retina and optic nerve compared to the WT group. RT-qPCR analyses of the laminins α4, β2 and γ3 showed an altered isoform-specific regulation in the HET retina and optic nerve. In addition, an upregulation of tenascin-C and its interaction partner RPTPβ/ζ/phosphacan was found in glaucomatous tissue. However, comparable protein and mRNA levels for tenascin-R as well as aggrecan and brevican were observed in both groups. Overall, our study showed a remodeling of various ECM components in the glaucomatous retina and optic nerve of PTP-Meg2 HET mice. This dysregulation could be responsible for pathological processes such as neovascularization, inflammation, and reactive gliosis in glaucomatous neurodegeneration.
Collapse
|
7
|
Hanmin C, Xiangyue Z, Lenahan C, Ling W, Yibo O, Yue H. Pleiotropic Role of Tenascin-C in Central Nervous System Diseases: From Basic to Clinical Applications. Front Neurol 2020; 11:576230. [PMID: 33281711 PMCID: PMC7691598 DOI: 10.3389/fneur.2020.576230] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/05/2020] [Indexed: 12/16/2022] Open
Abstract
The extracellular matrix is composed of a variety of macromolecular substances secreted by cells, which form a complex network that supports and connects tissue structures, regulates the morphogenesis of tissues, and maintains the physiological activities of cells. Tenascin-C, a secreted extracellular matrix glycoprotein, is abundantly expressed after exposure to pathological stimuli. It plays an important regulatory role in brain tumors, vascular diseases, and neurodegenerative diseases by mediating inflammatory responses, inducing brain damage, and promoting cell proliferation, migration, and angiogenesis through multiple signaling pathways. Therefore, tenascin-C may become a potential therapeutic target for intracranial diseases. Here, we review and discuss the latest literature regarding tenascin-C, and we comprehensively explain the role and clinical significance of tenascin-C in intracranial diseases.
Collapse
Affiliation(s)
- Chen Hanmin
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhou Xiangyue
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cameron Lenahan
- Burrell College of Osteopathic Medicine, Las Cruces, NM, United States
| | - Wang Ling
- Department of Operating Room, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ou Yibo
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - He Yue
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Krishnaswamy VR, Benbenishty A, Blinder P, Sagi I. Demystifying the extracellular matrix and its proteolytic remodeling in the brain: structural and functional insights. Cell Mol Life Sci 2019; 76:3229-3248. [PMID: 31197404 PMCID: PMC11105229 DOI: 10.1007/s00018-019-03182-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 12/29/2022]
Abstract
The extracellular matrix (ECM) plays diverse roles in several physiological and pathological conditions. In the brain, the ECM is unique both in its composition and in functions. Furthermore, almost all the cells in the central nervous system contribute to different aspects of this intricate structure. Brain ECM, enriched with proteoglycans and other small proteins, aggregate into distinct structures around neurons and oligodendrocytes. These special structures have cardinal functions in the normal functioning of the brain, such as learning, memory, and synapse regulation. In this review, we have compiled the current knowledge about the structure and function of important ECM molecules in the brain and their proteolytic remodeling by matrix metalloproteinases and other enzymes, highlighting the special structures they form. In particular, the proteoglycans in brain ECM, which are essential for several vital functions, are emphasized in detail.
Collapse
Affiliation(s)
| | - Amit Benbenishty
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Pablo Blinder
- Neurobiology, Biochemistry and Biophysics School, Tel Aviv University, Tel Aviv, Israel
- Sagol School for Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
9
|
Roll L, Faissner A. Tenascins in CNS lesions. Semin Cell Dev Biol 2019; 89:118-124. [DOI: 10.1016/j.semcdb.2018.09.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/03/2018] [Accepted: 09/27/2018] [Indexed: 02/06/2023]
|
10
|
Bekku Y, Oohashi T. Under the ECM Dome: The Physiological Role of the Perinodal Extracellular Matrix as an Ion Diffusion Barrier. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1190:107-122. [DOI: 10.1007/978-981-32-9636-7_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Reinhard J, Roll L, Faissner A. Tenascins in Retinal and Optic Nerve Neurodegeneration. Front Integr Neurosci 2017; 11:30. [PMID: 29109681 PMCID: PMC5660115 DOI: 10.3389/fnint.2017.00030] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/03/2017] [Indexed: 02/04/2023] Open
Abstract
Tenascins represent key constituents of the extracellular matrix (ECM) with major impact on central nervous system (CNS) development. In this regard, several studies indicate that they play a crucial role in axonal growth and guidance, synaptogenesis and boundary formation. These functions are not only important during development, but also for regeneration under several pathological conditions. Additionally, tenascin-C (Tnc) represents a key modulator of the immune system and inflammatory processes. In the present review article, we focus on the function of Tnc and tenascin-R (Tnr) in the diseased CNS, specifically after retinal and optic nerve damage and degeneration. We summarize the current view on both tenascins in diseases such as glaucoma, retinal ischemia, age-related macular degeneration (AMD) or diabetic retinopathy. In this context, we discuss their expression profile, possible functional relevance, remodeling of the interacting matrisome and tenascin receptors, especially under pathological conditions.
Collapse
Affiliation(s)
- Jacqueline Reinhard
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| | - Lars Roll
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
12
|
Foley K, Muth S, Jaffee E, Zheng L. Hedgehog signaling stimulates Tenascin C to promote invasion of pancreatic ductal adenocarcinoma cells through Annexin A2. Cell Adh Migr 2017; 11:514-523. [PMID: 28152318 PMCID: PMC5810754 DOI: 10.1080/19336918.2016.1259057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/01/2016] [Accepted: 11/04/2016] [Indexed: 01/17/2023] Open
Abstract
Pancreatic adenocarcinoma (PDA) is characterized by a dense desmoplastic reaction that comprises 60-90% of the tumor, while only 10-40% of the tumor is composed of malignant epithelial cells. This desmoplastic reaction is composed of stromal fibroblast cells, extracellular matrix proteins, and immune cells. Accumulating evidence has suggested that the stromal and epithelial cell compartments interact during the pathogenesis of this disease. Therefore, it is important to identify the signaling pathways responsible for this interaction to better understand the mechanisms by which PDA invades and metastasizes. Here, we show that secreted stromal factors induce invasion of PDA cells. Specifically, hedgehog signaling from the tumor cells induces tenascin C (TnC) secretion from the stromal cells that acts back upon the tumor cells in a paracrine fashion to induce the invasion of PDA cells through its' receptor annexin A2 (AnxA2). Therefore, blocking the interaction between TnC and AnxA2 has the potential to prevent liver metastasis in PDA.
Collapse
Affiliation(s)
- Kelly Foley
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Pancreatic Cancer, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stephen Muth
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Pancreatic Cancer, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth Jaffee
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Pancreatic Cancer, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lei Zheng
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Pancreatic Cancer, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
13
|
Stamenkovic V, Milenkovic I, Galjak N, Todorovic V, Andjus P. Enriched environment alters the behavioral profile of tenascin-C deficient mice. Behav Brain Res 2017; 331:241-253. [DOI: 10.1016/j.bbr.2017.05.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 05/13/2017] [Accepted: 05/17/2017] [Indexed: 12/01/2022]
|
14
|
Viloria K, Hill NJ. Embracing the complexity of matricellular proteins: the functional and clinical significance of splice variation. Biomol Concepts 2017; 7:117-32. [PMID: 27135623 DOI: 10.1515/bmc-2016-0004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/24/2016] [Indexed: 01/02/2023] Open
Abstract
Matricellular proteins influence wide-ranging fundamental cellular processes including cell adhesion, migration, growth and differentiation. They achieve this both through interactions with cell surface receptors and regulation of the matrix environment. Many matricellular proteins are also associated with diverse clinical disorders including cancer and diabetes. Alternative splicing is a precisely regulated process that can produce multiple isoforms with variable functions from a single gene. To date, the expression of alternate transcripts for the matricellular family has been reported for only a handful of genes. Here we analyse the evidence for alternative splicing across the matricellular family including the secreted protein acidic and rich in cysteine (SPARC), thrombospondin, tenascin and CCN families. We find that matricellular proteins have double the average number of splice variants per gene, and discuss the types of domain affected by splicing in matricellular proteins. We also review the clinical significance of alternative splicing for three specific matricellular proteins that have been relatively well characterised: osteopontin (OPN), tenascin-C (TNC) and periostin. Embracing the complexity of matricellular splice variants will be important for understanding the sometimes contradictory function of these powerful regulatory proteins, and for their effective clinical application as biomarkers and therapeutic targets.
Collapse
|
15
|
Stamenkovic V, Stamenkovic S, Jaworski T, Gawlak M, Jovanovic M, Jakovcevski I, Wilczynski GM, Kaczmarek L, Schachner M, Radenovic L, Andjus PR. The extracellular matrix glycoprotein tenascin-C and matrix metalloproteinases modify cerebellar structural plasticity by exposure to an enriched environment. Brain Struct Funct 2017; 222:393-415. [PMID: 27089885 DOI: 10.1007/s00429-016-1224-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 04/04/2016] [Indexed: 02/05/2023]
Abstract
The importance of the extracellular matrix (ECM) glycoprotein tenascin-C (TnC) and the ECM degrading enzymes, matrix metalloproteinases (MMPs) -2 and -9, in cerebellar histogenesis is well established. This study aimed to examine whether there is a functional relationship between these molecules in regulating structural plasticity of the lateral deep cerebellar nucleus. To this end, starting from postnatal day 21, TnC- or MMP-9-deficient mice were exposed to an enriched environment (EE). We show that 8 weeks of exposure to EE leads to reduced lectin-based staining of perineuronal nets (PNNs), reduction in the size of GABAergic and increase in the number and size of glutamatergic synaptic terminals in wild-type mice. Conversely, TnC-deficient mice showed reduced staining of PNNs compared to wild-type mice maintained under standard conditions, and exposure to EE did not further reduce, but even slightly increased PNN staining. EE did not affect the densities of the two types of synaptic terminals in TnC-deficient mice, while the size of inhibitory, but not excitatory synaptic terminals was increased. In the time frame of 4-8 weeks, MMP-9, but not MMP-2, was observed to influence PNN remodeling and cerebellar synaptic plasticity as revealed by measurement of MMP-9 activity and colocalization with PNNs and synaptic markers. These findings were supported by observations on MMP-9-deficient mice. The present study suggests that TnC contributes to the regulation of structural plasticity in the cerebellum and that interactions between TnC and MMP-9 are likely to be important for these processes to occur.
Collapse
Affiliation(s)
- Vera Stamenkovic
- Center for Laser Microscopy, Department of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, 11000, Belgrade, Serbia
| | - Stefan Stamenkovic
- Center for Laser Microscopy, Department of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, 11000, Belgrade, Serbia
| | - Tomasz Jaworski
- Laboratory of Neurobiology, Nencki Institute of Experimental Biology, 02-093, Warsaw, Poland
| | - Maciej Gawlak
- Laboratory of Physiology and Pathophysiology, Center for Preclinical Research and Technology, The Medical University of Warsaw, 02-097, Warsaw, Poland
| | - Milos Jovanovic
- Center for Laser Microscopy, Department of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, 11000, Belgrade, Serbia
| | - Igor Jakovcevski
- Experimental Neurophysiology, University Hospital Cologne, 50931, Cologne, Germany
- Experimental Neurophysiology, German Center for Neurodegenerative Diseases, 53175, Bonn, Germany
| | - Grzegorz M Wilczynski
- Laboratory of Neuromorphology, Nencki Institute of Experimental Biology, 02-093, Warsaw, Poland
| | - Leszek Kaczmarek
- Laboratory of Neurobiology, Nencki Institute of Experimental Biology, 02-093, Warsaw, Poland
| | - Melitta Schachner
- Department of Cell Biology and Neuroscience, W. M. Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China
| | - Lidija Radenovic
- Center for Laser Microscopy, Department of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, 11000, Belgrade, Serbia
| | - Pavle R Andjus
- Center for Laser Microscopy, Department of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, 11000, Belgrade, Serbia.
| |
Collapse
|
16
|
Cheah M, Andrews MR, Chew DJ, Moloney EB, Verhaagen J, Fässler R, Fawcett JW. Expression of an Activated Integrin Promotes Long-Distance Sensory Axon Regeneration in the Spinal Cord. J Neurosci 2016; 36:7283-97. [PMID: 27383601 PMCID: PMC4938867 DOI: 10.1523/jneurosci.0901-16.2016] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/05/2016] [Accepted: 05/30/2016] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED After CNS injury, axon regeneration is blocked by an inhibitory environment consisting of the highly upregulated tenascin-C and chondroitin sulfate proteoglycans (CSPGs). Tenascin-C promotes growth of axons if they express a tenascin-binding integrin, particularly α9β1. Additionally, integrins can be inactivated by CSPGs, and this inhibition can be overcome by the presence of a β1-binding integrin activator, kindlin-1. We examined the synergistic effect of α9 integrin and kindlin-1 on sensory axon regeneration in adult rat spinal cord after dorsal root crush and adeno-associated virus transgene expression in dorsal root ganglia. After 12 weeks, axons from C6-C7 dorsal root ganglia regenerated through the tenascin-C-rich dorsal root entry zone into the dorsal column up to C1 level and above (>25 mm axon length) through a normal pathway. Animals also showed anatomical and electrophysiological evidence of reconnection to the dorsal horn and behavioral recovery in mechanical pressure, thermal pain, and ladder-walking tasks. Expression of α9 integrin or kindlin-1 alone promoted much less regeneration and recovery. SIGNIFICANCE STATEMENT The study demonstrates that long-distance sensory axon regeneration over a normal pathway and with sensory and sensory-motor recovery can be achieved. This was achieved by expressing an integrin that recognizes tenascin-C, one of the components of glial scar tissue, and an integrin activator. This enabled extensive long-distance (>25 mm) regeneration of both myelinated and unmyelinated sensory axons with topographically correct connections in the spinal cord. The extent of growth and recovery we have seen would probably be clinically significant. Restoration of sensation to hands, perineum, and genitalia would be a significant improvement for a spinal cord-injured patient.
Collapse
Affiliation(s)
- Menghon Cheah
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge CB2 0PY, United Kingdom
| | - Melissa R Andrews
- School of Medicine, University of St. Andrews, St. Andrews KY16 9TF, United Kingdom,
| | - Daniel J Chew
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge CB2 0PY, United Kingdom
| | - Elizabeth B Moloney
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, 1105 BA, Amsterdam, The Netherlands, and
| | - Joost Verhaagen
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, 1105 BA, Amsterdam, The Netherlands, and
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - James W Fawcett
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge CB2 0PY, United Kingdom,
| |
Collapse
|
17
|
Abstract
Tenascin-C (TNC) is highly expressed in cancer tissues. Its cellular sources are cancer and stromal cells, including fibroblasts/myofibroblasts, and also vascular cells. TNC expressed in cancer tissues dominantly contains large splice variants. Deposition of the stroma promotes the epithelial-mesenchymal transition, proliferation, and migration of cancer cells. It also facilitates the formation of cancer stroma including desmoplasia and angiogenesis. Integrin receptors that mediate the signals of TNC have also been discussed.
Collapse
Key Words
- CAF, cancer-associated fibroblasts
- ECM, extracellular matrix
- EDA, extra domain A
- EMT, epithelial-mesenchymal transition
- FAK, focal adhesion kinase
- FBG, fibrinogen-like globe
- FN, fibronectin
- FNIII, fibronectin type III-like
- HS, heparan sulfate
- ISH, in situ hybridization
- LAP, latency-associated peptide
- MMPs, matrix metalloproteinases
- OPN, osteopontin
- PDGF, platelet-derived growth factor
- RPTP, receptor protein-tyrosine phosphatase
- Stromal cell
- TGF, transforming growth factor
- TNC, tenascin-C
- VN, vitronectin
- cancer cell
- integrins
- splice variant
- tenascin-C
Collapse
Affiliation(s)
- Toshimichi Yoshida
- a Department of Pathology and Matrix Biology ; Mie University Graduate School of Medicine
| | | | | |
Collapse
|
18
|
Abstract
Tenascin-C (TNC) is highly expressed in cancer tissues. Its cellular sources are cancer and stromal cells, including fibroblasts/myofibroblasts, and also vascular cells. TNC expressed in cancer tissues dominantly contains large splice variants. Deposition of the stroma promotes the epithelial-mesenchymal transition, proliferation, and migration of cancer cells. It also facilitates the formation of cancer stroma including desmoplasia and angiogenesis. Integrin receptors that mediate the signals of TNC have also been discussed.
Collapse
Key Words
- CAF, cancer-associated fibroblasts
- ECM, extracellular matrix
- EDA, extra domain A
- EMT, epithelial-mesenchymal transition
- FAK, focal adhesion kinase
- FBG, fibrinogen-like globe
- FN, fibronectin
- FNIII, fibronectin type III-like
- HS, heparan sulfate
- ISH, in situ hybridization
- LAP, latency-associated peptide
- MMPs, matrix metalloproteinases
- OPN, osteopontin
- PDGF, platelet-derived growth factor
- RPTP, receptor protein-tyrosine phosphatase
- Stromal cell
- TGF, transforming growth factor
- TNC, tenascin-C
- VN, vitronectin
- cancer cell
- integrins
- splice variant
- tenascin-C
Collapse
Affiliation(s)
- Toshimichi Yoshida
- a Department of Pathology and Matrix Biology ; Mie University Graduate School of Medicine
| | | | | |
Collapse
|
19
|
Marx G, Gilon C. The molecular basis of memory. Part 2: chemistry of the tripartite mechanism. ACS Chem Neurosci 2013; 4:983-93. [PMID: 23419130 DOI: 10.1021/cn300237r] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
We propose a tripartite mechanism to describe the processing of cognitive information (cog-info), comprising the (1) neuron, (2) surrounding neural extracellular matrix (nECM), and (3) numerous "trace" metals distributed therein. The neuron is encased in a polyanionic nECM lattice doped with metals (>10), wherein it processes (computes) and stores cog-info. Each [nECM:metal] complex is the molecular correlate of a cognitive unit of information (cuinfo), similar to a computer "bit". These are induced/sensed by the neuron via surface iontophoretic and electroelastic (piezoelectric) sensors. The generic cuinfo are used by neurons to biochemically encode and store cog-info in a rapid, energy efficient, but computationally expansive manner. Here, we describe chemical reactions involved in various processes that underline the tripartite mechanism. In addition, we present novel iconographic representations of various types of cuinfo resulting from"tagging" and cross-linking reactions, essential for the indexing cuinfo for organized retrieval and storage of memory.
Collapse
Affiliation(s)
| | - Chaim Gilon
- Institute of Chemistry, Hebrew University, Jerusalem, Israel
| |
Collapse
|
20
|
Lord MS, Whitelock JM. Recombinant production of proteoglycans and their bioactive domains. FEBS J 2013; 280:2490-510. [DOI: 10.1111/febs.12197] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 02/04/2013] [Accepted: 02/15/2013] [Indexed: 12/11/2022]
Affiliation(s)
- Megan S. Lord
- Graduate School of Biomedical Engineering; The University of New South Wales; Sydney; NSW; Australia
| | - John M. Whitelock
- Graduate School of Biomedical Engineering; The University of New South Wales; Sydney; NSW; Australia
| |
Collapse
|
21
|
Pacharra S, Hanisch FG, Mühlenhoff M, Faissner A, Rauch U, Breloy I. The Lecticans of Mammalian Brain Perineural Net Are O-Mannosylated. J Proteome Res 2013; 12:1764-71. [DOI: 10.1021/pr3011028] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sandra Pacharra
- Institute of Biochemistry II, Medical Faculty, University of Cologne, Köln, Germany
| | - Franz-Georg Hanisch
- Institute of Biochemistry II, Medical Faculty, University of Cologne, Köln, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Köln, Germany
| | | | - Andreas Faissner
- Department for Cell Morphology and Molecular
Neurobiology, Ruhr-University Bochum, Bochum,
Germany
| | - Uwe Rauch
- Department of Experimental
Medical Science, Biomedical Center B12, Lund University, Lund, Sweden
| | - Isabelle Breloy
- Institute of Biochemistry II, Medical Faculty, University of Cologne, Köln, Germany
| |
Collapse
|
22
|
Jakovcevski I, Miljkovic D, Schachner M, Andjus PR. Tenascins and inflammation in disorders of the nervous system. Amino Acids 2012; 44:1115-27. [DOI: 10.1007/s00726-012-1446-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 12/10/2012] [Indexed: 12/20/2022]
|
23
|
Besser M, Jagatheaswaran M, Reinhard J, Schaffelke P, Faissner A. Tenascin C regulates proliferation and differentiation processes during embryonic retinogenesis and modulates the de-differentiation capacity of Müller glia by influencing growth factor responsiveness and the extracellular matrix compartment. Dev Biol 2012; 369:163-76. [DOI: 10.1016/j.ydbio.2012.05.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 05/15/2012] [Accepted: 05/18/2012] [Indexed: 01/18/2023]
|
24
|
Marx G, Gilon C. The molecular basis of memory. ACS Chem Neurosci 2012; 3:633-42. [PMID: 23050060 DOI: 10.1021/cn300097b] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Accepted: 07/17/2012] [Indexed: 11/28/2022] Open
Abstract
We propose a tripartite biochemical mechanism for memory. Three physiologic components are involved, namely, the neuron (individual and circuit), the surrounding neural extracellular matrix, and the various trace metals distributed within the matrix. The binding of a metal cation affects a corresponding nanostructure (shrinking, twisting, expansion) and dielectric sensibility of the chelating node (address) within the matrix lattice, sensed by the neuron. The neural extracellular matrix serves as an electro-elastic lattice, wherein neurons manipulate multiple trace metals (n > 10) to encode, store, and decode coginive information. The proposed mechanism explains brains low energy requirements and high rates of storage capacity described in multiples of Avogadro number (N(A) = 6 × 10(23)). Supportive evidence correlates memory loss to trace metal toxicity or deficiency, or breakdown in the delivery/transport of metals to the matrix, or its degradation. Inherited diseases revolving around dysfunctional trace metal metabolism and memory dysfunction, include Alzheimer's disease (Al, Zn, Fe), Wilson's disease (Cu), thalassemia (Fe), and autism (metallothionein). The tripartite mechanism points to the electro-elastic interactions of neurons with trace metals distributed within the neural extracellular matrix, as the molecular underpinning of "synaptic plasticity" affecting short-term memory, long-term memory, and forgetting.
Collapse
Affiliation(s)
| | - Chaim Gilon
- Institute of Chemistry, Hebrew University, Jerusalem, Israel
| |
Collapse
|
25
|
Burgess JK, Weckmann M. Matrikines and the lungs. Pharmacol Ther 2012; 134:317-37. [PMID: 22366287 DOI: 10.1016/j.pharmthera.2012.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 02/03/2012] [Indexed: 01/09/2023]
Abstract
The extracellular matrix is a complex network of fibrous and nonfibrous molecules that not only provide structure to the lung but also interact with and regulate the behaviour of the cells which it surrounds. Recently it has been recognised that components of the extracellular matrix proteins are released, often through the action of endogenous proteases, and these fragments are termed matrikines. Matrikines have biological activities, independent of their role within the extracellular matrix structure, which may play important roles in the lung in health and disease pathology. Integrins are the primary cell surface receptors, characterised to date, which are used by the matrikines to exert their effects on cells. However, evidence is emerging for the need for co-factors and other receptors for the matrikines to exert their effects on cells. The potential for matrikines, and peptides derived from these extracellular matrix protein fragments, as therapeutic agents has recently been recognised. The natural role of these matrikines (including inhibitors of angiogenesis and possibly inflammation) make them ideal targets to mimic as therapies. A number of these peptides have been taken forward into clinical trials. The focus of this review will be to summarise our current understanding of the role, and potential for highly relevant actions, of matrikines in lung health and disease.
Collapse
Affiliation(s)
- Janette K Burgess
- Cell Biology, Woolcock Institute of Medical Research, Sydney, NSW, Australia.
| | | |
Collapse
|
26
|
Bartus K, James ND, Bosch KD, Bradbury EJ. Chondroitin sulphate proteoglycans: key modulators of spinal cord and brain plasticity. Exp Neurol 2011; 235:5-17. [PMID: 21871887 DOI: 10.1016/j.expneurol.2011.08.008] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 07/15/2011] [Accepted: 08/08/2011] [Indexed: 01/08/2023]
Abstract
Chondroitin sulphate proteoglycans (CSPGs) are a family of inhibitory extracellular matrix molecules that are highly expressed during development, where they are involved in processes of pathfinding and guidance. CSPGs are present at lower levels in the mature CNS, but are highly concentrated in perineuronal nets where they play an important role in maintaining stability and restricting plasticity. Whilst important for maintaining stable connections, this can have an adverse effect following insult to the CNS, restricting the capacity for repair, where enhanced synapse formation leading to new connections could be functionally beneficial. CSPGs are also highly expressed at CNS injury sites, where they can restrict anatomical plasticity by inhibiting sprouting and reorganisation, curbing the extent to which spared systems may compensate for the loss function of injured pathways. Modification of CSPGs, usually involving enzymatic degradation of glycosaminoglycan chains from the CSPG molecule, has received much attention as a potential strategy for promoting repair following spinal cord and brain injury. Pre-clinical studies in animal models have demonstrated a number of reparative effects of CSPG modification, which are often associated with functional recovery. Here we discuss the potential of CSPG modification to stimulate restorative plasticity after injury, reviewing evidence from studies in the brain, the spinal cord and the periphery.
Collapse
Affiliation(s)
- K Bartus
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London Bridge, SE1 1UL, UK.
| | | | | | | |
Collapse
|
27
|
Thomsen T, Schlosser A, Holmskov U, Sorensen GL. Ficolins and FIBCD1: soluble and membrane bound pattern recognition molecules with acetyl group selectivity. Mol Immunol 2011; 48:369-81. [PMID: 21071088 DOI: 10.1016/j.molimm.2010.09.019] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 09/30/2010] [Indexed: 12/27/2022]
Abstract
A network of molecules, which recognizes pathogens, work together to establish a quick and efficient immune response to infectious agents. Molecules containing a fibrinogen related domain in invertebrates and vertebrates have been implicated in immune responses against pathogens, and characterized as pattern recognition molecules. Ficolins are soluble oligomeric proteins composed of trimeric collagen-like regions linked to fibrinogen-related domains (FReDs) that have the ability to sense molecular patterns on both pathogens and apoptotic cell surfaces and activate the complement system. The ficolins have acetyl-binding properties, which have been localized to different binding sites in the FReD-region. A newly discovered tetrameric transmembrane protein, FIBCD1, likewise binds acetylated structures via the highly conserved FReD. This review presents current knowledge on acetyl binding FReD-containing molecules, and discusses structural resemblance but also diversity in recognition of acetylated ligands.
Collapse
Affiliation(s)
- Theresa Thomsen
- Institute of Molecular Medicine, University of Southern Denmark, Denmark
| | | | | | | |
Collapse
|
28
|
Glypican-1, phosphacan/receptor protein-tyrosine phosphatase-ζ/β and its ligand, tenascin-C, are expressed by neural stem cells and neural cells derived from embryonic stem cells. ASN Neuro 2010; 2:e00039. [PMID: 20689858 PMCID: PMC2914431 DOI: 10.1042/an20100001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 05/11/2010] [Accepted: 05/26/2010] [Indexed: 12/01/2022] Open
Abstract
The heparan sulfate proteoglycan glypican-1, the chondroitin sulfate proteoglycan
phosphacan/RPTP (receptor protein-tyrosine
phosphatase)-ζ/β and the extracellular matrix protein
tenascin-C were all found to be expressed by neural stem cells and by neural
cells derived from them. Expression of proteoglycans and tenascin-C increased
after retinoic acid induction of SSEA1-positive ES (embryonic stem) cells to
nestin-positive neural stem cells, and after neural differentiation,
proteoglycans and tenascin-C are expressed by both neurons and astrocytes, where
they surround cell bodies and processes and in certain cases show distinctive
expression patterns. With the exception of tenascin-C (whose expression may
decrease somewhat), expression levels do not change noticeably during the
following 2 weeks in culture. The significant expression, by neural stem cells
and neurons and astrocytes derived from them, of two major heparan sulfate and
chondroitin sulfate proteoglycans of nervous tissue and of tenascin-C, a
high-affinity ligand of phosphacan/RPTP-ζ/β, indicates
that an understanding of their specific functional roles in stem cell
neurobiology will be important for the therapeutic application of this new
technology in facilitating nervous tissue repair and regeneration.
Collapse
|
29
|
Afshari FT, Kwok JC, White L, Fawcett JW. Schwann cell migration is integrin-dependent and inhibited by astrocyte-produced aggrecan. Glia 2010; 58:857-69. [PMID: 20155822 DOI: 10.1002/glia.20970] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Schwann cells transplantation has considerable promise in spinal cord trauma to bridge the site of injury and for remyelination in demyelinating conditions. They support axonal regeneration and sprouting by secreting growth factors and providing a permissive surface and matrix molecules while shielding axons from the inhibitory environment of the central nervous system. However, following transplantation Schwann cells show limited migratory ability and they are unable to intermingle with the host astrocytes. This in turn leads to formation of a sharp boundary and an abrupt transition between the Schwann cell graft and the host tissue astrocytes, therefore preventing regenerating axons from exiting the graft. The objective of this study was to identify inhibitory elements on astrocytes involved in restricting Schwann cell migration. Using in vitro assays of cell migration, we show that aggrecan produced by astrocytes is involved in the inhibition of Schwann cell motility on astrocytic monolayers. Knockdown of this proteoglycan in astrocytes using RNAi or digestion of glycosaminglycan chains on aggrecan improves Schwann cell migration. We further show aggrecan mediates its effect by disruption of integrin function in Schwann cells, and that the inhibitory effects of aggrecan can overcome by activation of Schwann cell integrins.
Collapse
Affiliation(s)
- Fardad T Afshari
- Department of Clinical Neurosciences, Cambridge University Centre for Brain Repair, University of Cambridge, Cambridge CB2 0PY, United Kingdom
| | | | | | | |
Collapse
|
30
|
Dobbertin A, Czvitkovich S, Theocharidis U, Garwood J, Andrews MR, Properzi F, Lin R, Fawcett JW, Faissner A. Analysis of combinatorial variability reveals selective accumulation of the fibronectin type III domains B and D of tenascin-C in injured brain. Exp Neurol 2010; 225:60-73. [PMID: 20451518 DOI: 10.1016/j.expneurol.2010.04.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 04/23/2010] [Accepted: 04/30/2010] [Indexed: 10/19/2022]
Abstract
Tenascin-C (Tnc) is a multimodular extracellular matrix glycoprotein that is markedly upregulated in CNS injuries where it is primarily secreted by reactive astrocytes. Different Tnc isoforms can be generated by the insertion of variable combinations of one to seven (in rats) alternatively spliced distinct fibronectin type III (FnIII) domains to the smallest variant. Each spliced FnIII repeat mediates specific actions on neurite outgrowth, neuron migration or adhesion. Hence, different Tnc isoforms might differentially influence CNS repair. We explored the expression pattern of Tnc variants after cortical lesions and after treatment of astrocytes with various cytokines. Using RT-PCR, we observed a strong upregulation of Tnc transcripts containing the spliced FnIII domains B or D in injured tissue at 2-4 days post-lesion (dpl). Looking at specific combinations, we showed a dramatic increase of Tnc isoforms harboring the neurite outgrowth-promoting BD repeat with both the B and D domains being adjacent to each other. Isoforms containing only the axon growth-stimulating spliced domain D were also dramatically enhanced after injury. Injury-induced increase of Tnc proteins comprising the domain D was confirmed by Western Blotting and immunostaining of cortical lesions. In contrast, the FnIII modules C and AD1 were weakly modulated after injury. The growth cone repulsive A1A2A4 domains were poorly expressed in normal and injured tissue but the smallest isoform, which is also repellant, was highly expressed after injury. Expression of the shortest Tnc isoform and of variants containing B, D or BD, was strongly upregulated in cultured astrocytes after TGFbeta1 treatment, suggesting that TGFbeta1 could mediate, at least in part, the injury-induced upregulation of these isoforms. We identified complex injury-induced differential regulations of Tnc isoforms that may well influence axonal regeneration and repair processes in the damaged CNS.
Collapse
Affiliation(s)
- Alexandre Dobbertin
- Department of Cell Morphology and Molecular Neurobiology, Ruhr University of Bochum, 44780 Bochum, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Specific processing of tenascin-C by the metalloprotease meprinbeta neutralizes its inhibition of cell spreading. Matrix Biol 2009; 29:31-42. [PMID: 19748582 DOI: 10.1016/j.matbio.2009.08.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 07/17/2009] [Accepted: 08/28/2009] [Indexed: 11/21/2022]
Abstract
The metalloprotease meprin has been implicated in tissue remodelling due to its capability to degrade extracellular matrix components. Here, we investigated the susceptibility of tenascin-C to cleavage by meprinbeta and the functional properties of its proteolytic fragments. A set of monoclonal antibodies against chicken and human tenascin-C allowed the mapping of proteolytic fragments generated by meprinbeta. In chicken tenascin-C, meprinbeta processed all three major splicing variants by removal of 10kDa N-terminal and 38kDa C-terminal peptides, leaving a large central part of subunits intact. A similar cleavage pattern was found for large human tenascin-C variant where two N-terminal peptides (10 or 15kDa) and two C-terminal fragments (40 and 55kDa) were removed from the intact subunit. N-terminal sequencing revealed the exact amino acid positions of cleavage sites. In both chicken and human tenascin-C N-terminal cleavages occurred just before and/or after the heptad repeats involved in subunit oligomerization. In the human protein, an additional cleavage site was identified in the alternative fibronectin type III repeat D. Whereas all these sites are known to be attacked by several other proteases, a unique cleavage by meprinbeta was located to the 7th constant fibronectin type III repeat in both chicken and human tenascin-C, thereby removing the C-terminal domain involved in its anti-adhesive activity. In cell adhesion assays meprinbeta-digested human tenascin-C was not able to interfere with fibronectin-mediated cell spreading, confirming cleavage in the anti-adhesive domain. Whereas the expression of meprinbeta and tenascin-C does not overlap in normal colon tissue, inflamed lesions of the mucosa from patients with Crohn's disease exhibited many meprinbeta-positive leukocytes in regions where tenascin-C was strongly induced. Our data indicate that, at least under pathological conditions, meprinbeta might attack specific functional sites in tenascin-C that are important for its oligomerization and anti-adhesive activity.
Collapse
|
32
|
Besser M, Horvat-Bröcker A, Eysel UT, Faissner A. Differential expression of receptor protein tyrosine phosphatases accompanies the reorganisation of the retina upon laser lesion. Exp Brain Res 2009; 198:37-47. [PMID: 19639307 DOI: 10.1007/s00221-009-1932-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2008] [Accepted: 06/29/2009] [Indexed: 12/14/2022]
Abstract
The regulation of protein phosphorylation plays an essential role in virtually all aspects of eukaryotic development. Beginning with the regulation of the cell cycle to cellular proliferation and differentiation, the delicate balance between the phosphorylating activity of kinases and the dephosphorylation by phosphatases controls the outcome of many signal transduction cascades. The generation of cellular diversity occurs in an environment that is structured by the extracellular matrix (ECM) which forms a surrounding niche for stem and progenitor cells. Cell-cell and cell-matrix interactions elicit specific signaling pathways that control cellular behavior. In pathological situations such as neural degenerating diseases, gene expression patterns and finally the composition of the ECM change dramatically. This leads to changes of cell behavior and finally results in the failure of regeneration and functional restoration in the adult central nervous system. In order to study the roles of tyrosine phosphatases and ECM in this context, we analyzed the effects of laser-induced retinal injury on the regulation of the receptor protein tyrosine phosphatases (RPTP) RPTPBr7, Phogrin and RPTPbeta/zeta. The latter occurs in several isoforms, including the soluble released chondroitin sulfate proteoglycan phosphacan that is expressed in the developing retina. The receptor variants RPTPbeta/zeta(long) and RPTPbeta/zeta(short) may serve as receptors of tenascin-proteins and serve as modulators of cell intrinsic signaling in response to the ECM. Using quantitative real-time RT-PCR analysis, we show here a time-dependent pattern of gene expression of these molecules following laser lesions of the retina.
Collapse
Affiliation(s)
- Manuela Besser
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitaetsstr. 150, 44780 Bochum, Germany
| | | | | | | |
Collapse
|
33
|
Extracellular matrix of the central nervous system: from neglect to challenge. Histochem Cell Biol 2008; 130:635-53. [PMID: 18696101 DOI: 10.1007/s00418-008-0485-9] [Citation(s) in RCA: 306] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2008] [Indexed: 12/13/2022]
Abstract
The basic concept, that specialized extracellular matrices rich in hyaluronan, chondroitin sulfate proteoglycans (aggrecan, versican, neurocan, brevican, phosphacan), link proteins and tenascins (Tn-R, Tn-C) can regulate cellular migration and axonal growth and thus, actively participate in the development and maturation of the nervous system, has in recent years gained rapidly expanding experimental support. The swift assembly and remodeling of these matrices have been associated with axonal guidance functions in the periphery and with the structural stabilization of myelinated fiber tracts and synaptic contacts in the maturating central nervous system. Particular interest has been focused on the putative role of chondroitin sulfate proteoglycans in suppressing central nervous system regeneration after lesions. The axon growth inhibitory properties of several of these chondroitin sulfate proteoglycans in vitro, and the partial recovery of structural plasticity in lesioned animals treated with chondroitin sulfate degrading enzymes in vivo have significantly contributed to the increased awareness of this long time neglected structure.
Collapse
|
34
|
Li D, Graham LD. Epiphragmin, the major protein of epiphragm mucus from the vineyard snail, Cernuella virgata. Comp Biochem Physiol B Biochem Mol Biol 2007; 148:192-200. [PMID: 17604201 DOI: 10.1016/j.cbpb.2007.05.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 05/20/2007] [Accepted: 05/23/2007] [Indexed: 11/26/2022]
Abstract
The organic fraction of epiphragm mucus from the snail Cernuella virgata (Mollusca: Helicidae) consists predominantly of protein (17-23 dry wt.%) rather than carbohydrate (< or =0.4-2.0 dry wt.%), and the former underpins epiphragm membrane structure. The major protein ('epiphragmin') has an apparent molecular mass of approximately 86 kDa and is encoded by a cDNA (Genbank accession EF602752) which specifies a secreted protein of 81.2 kDa. The central region of the epiphragmin polypeptide is a coiled coil-forming region which is homologous to part of AglZ, a bacterial filament-forming protein. Coiled coil-driven self-assembly of epiphragmin probably underpins the formation of sheets in epiphragm membranes and the ability of epiphragm mucus to serve as an adhesive. The C-terminal region of epiphragmin is a fibrinogen-related domain (FReD) that is homologous to the fibrinogen-related proteins (FREPs) found in the hemolymph of freshwater snails. The material properties of epiphragm membranes resemble those of bovine ligament elastin. Wooden lap-joints bonded by rehydrated epiphragm fragments developed dry shear strength values of 1.4+/- 0.1 MPa.
Collapse
Affiliation(s)
- Dongmei Li
- CSIRO Molecular & Health Technologies, Sydney Laboratory, P.O.Box 184, North Ryde, NSW 1670, Australia
| | | |
Collapse
|
35
|
Galtrey CM, Fawcett JW. The role of chondroitin sulfate proteoglycans in regeneration and plasticity in the central nervous system. ACTA ACUST UNITED AC 2007; 54:1-18. [PMID: 17222456 DOI: 10.1016/j.brainresrev.2006.09.006] [Citation(s) in RCA: 442] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2006] [Revised: 07/24/2006] [Accepted: 09/11/2006] [Indexed: 01/09/2023]
Abstract
Chondroitin sulfate proteoglycans (CSPGs) consist of a core protein and glycosaminoglycan (GAG) chains. There is enormous structural diversity among CSPGs due to variation in the core protein, the number of GAG chains and the extent and position of sulfation. Most CSPGs are secreted from cells and participate in the formation of the extracellular matrix (ECM). CSPGs are able to interact with various growth-active molecules and this may be important in their mechanism of action. In the normal central nervous system (CNS), CSPGs have a role in development and plasticity during postnatal development and in the adult. Plasticity is greatest in the young, especially during critical periods. CSPGs are crucial components of perineuronal nets (PNNs). PNNs have a role in closure of the critical period and digestion of PNNs allows their re-opening. In the adult, CSPGs play a part in learning and memory and the hypothalamo-neurohypophysial system. CSPGs have an important role in CNS injuries and diseases. After CNS injury, CSPGs are the major inhibitory component of the glial scar. Removal of CSPGs improves axonal regeneration and functional recovery. CSPGs may also be involved in the pathological processes in diseases such as epilepsy, stroke and Alzheimer's disease. Several possible methods of manipulating CSPGs in the CNS have recently been identified. The development of methods to remove CSPGs has considerable therapeutic potential in a number of CNS disorders.
Collapse
Affiliation(s)
- Clare M Galtrey
- Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Robinson Way, Cambridge, CB2 2PY, UK
| | | |
Collapse
|
36
|
Faissner A, Heck N, Dobbertin A, Garwood J. DSD-1-Proteoglycan/Phosphacan and Receptor Protein Tyrosine Phosphatase-Beta Isoforms during Development and Regeneration of Neural Tissues. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 557:25-53. [PMID: 16955703 DOI: 10.1007/0-387-30128-3_3] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Interactions between neurons and glial cells play important roles in regulating key events of development and regeneration of the CNS. Thus, migrating neurons are partly guided by radial glia to their target, and glial scaffolds direct the growth and directional choice of advancing axons, e.g., at the midline. In the adult, reactive astrocytes and myelin components play a pivotal role in the inhibition of regeneration. The past years have shown that astrocytic functions are mediated on the molecular level by extracellular matrix components, which include various glycoproteins and proteoglycans. One important, developmentally regulated chondroitin sulfate proteoglycan is DSD-1-PG/phosphacan, a glial derived proteoglycan which represents a splice variant of the receptor protein tyrosine phosphatase (RPTP)-beta (also known as PTP-zeta). Current evidence suggests that this proteoglycan influences axon growth in development and regeneration, displaying inhibitory or stimulatory effects dependent on the mode of presentation, and the neuronal lineage. These effects seem to be mediated by neuronal receptors of the Ig-CAM superfamily.
Collapse
Affiliation(s)
- Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Ruhr-University, Bochum, Germany
| | | | | | | |
Collapse
|
37
|
Cattaruzza S, Perris R. Approaching theProteoglycome: Molecular Interactions of Proteoglycans and Their Functional Output. Macromol Biosci 2006; 6:667-80. [PMID: 16881045 DOI: 10.1002/mabi.200600100] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
[Image: see text] Through their diverse core protein modules and glycan/glycosaminoglycan moieties, proteoglycans may engage in numerous cellular and molecular interactions which are dispensable during embryogenesis, are essential for the maintenance of a healthy state and are prone to modulation in pathological conditions. Proteoglycan interactions may involve binding to other structural components of the ECM, to cell surface receptors, to membrane-associated components, and to soluble signaling molecules, which through this interaction may become entrapped in the ECM or sequestered at the cell surface. Understanding of these multiple interplays is therefore of paramount importance and requires a detailed mapping through what we define as the proteoglycome.
Collapse
Affiliation(s)
- Sabrina Cattaruzza
- Department of Evolutionary and Functional Biology, University of Parma, Viale delle Scienze 11/A, Parma (PR) 43100, Italy
| | | |
Collapse
|
38
|
Schweitzer J, Becker T, Lefebvre J, Granato M, Schachner M, Becker CG. Tenascin-C is involved in motor axon outgrowth in the trunk of developing zebrafish. Dev Dyn 2006; 234:550-66. [PMID: 16110513 DOI: 10.1002/dvdy.20525] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Motor axons in the trunk of the developing zebrafish exit from the ventral spinal cord in one ventral root per hemisegment and grow on a common path toward the region of the horizontal myoseptum, where they select their specific pathways. Tenascin-C, a component of the extracellular matrix, is concentrated in this choice region. Adaxial cells and other myotomal cells express tenascin-C mRNA, suggesting that these cells are the source of tenascin-C protein. Overexpressing an axon repellent fragment containing the cysteine-rich region and the epidermal growth factor-like repeats of tenascin-C led to retarded growth of ventral motor nerves between their spinal exit point and the horizontal myoseptum. Injection of a protein fragment containing the same part of tenascin-C also induced slower growth of motor nerves. Conversely, knock down of tenascin-C protein resulted in abnormal lateral branching of ventral motor nerves. In the zebrafish unplugged mutant, in which axons display pathfinding defects in the region of the horizontal myoseptum, tenascin-C immunoreactivity was not detectable in this region, indicating an abnormal extracellular matrix in unplugged. We conclude that tenascin-C is part of a specialized extracellular matrix in the region of the horizontal myoseptum that influences the growth of motor axons.
Collapse
|
39
|
Abstract
There are many proteins that bind to proteoglycans; they include proteins in extracellular matrices, growth factors or cytokines, plasma proteins, transmembrane proteins, and cytoplasmic proteins as listed in this chapter. Proteins that bind to a proteoglycan have been searched by using a proteoglycan as a ligand. Alternatively, a ligand protein has been used to find a proteoglycan as a binding partner. When the glycosaminoglycan (GAG) portion of a proteoglycan is responsible for the binding, a native proteoglycan is necessary for the analysis of binding. When the protein portion is responsible for the binding, a recombinant core protein without GAG chains may be used for analysis. This chapter describes experimental procedures dealing with two native proteoglycans, versican (PG-M) and syndecan-4 (ryudocan). Versican has been identified as a proteoglycan with binding capability to a growth factor, midkine. Purified syndecan-4 has been used to identify proteins that bind to the proteoglycan.
Collapse
Affiliation(s)
- Takashi Muramatsu
- Department of Health Science, Faculty of Psychological and Physical Sciences, Aichi Gakuin University, Aichi, Japan
| | | | | |
Collapse
|
40
|
Hayashi N, Mizusaki MJ, Kamei K, Harada S, Miyata S. Chondroitin sulfate proteoglycan phosphacan associates with parallel fibers and modulates axonal extension and fasciculation of cerebellar granule cells. Mol Cell Neurosci 2005; 30:364-77. [PMID: 16150606 DOI: 10.1016/j.mcn.2005.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Revised: 07/29/2005] [Accepted: 08/03/2005] [Indexed: 01/06/2023] Open
Abstract
Phosphacan is a nervous system-specific chondroitin sulfate proteoglycan and one of the major components of extracellular matrix in the brain. In the present study, we examined its spatiotemporal expression, ultrastructural localization, binding manner, and in vitro analysis on cell adhesion, axonal extension, and fasciculation in rat cerebellum. The present light microscopic immunohistochemistry showed that phosphacan immunoreactivity was localized mainly at the molecular layer in the cerebellum, but not at the external granular layer. Further double labeling immunohistochemical and immunoelectron microscopic studies revealed that phosphacan was localized around parallel fibers, but not at synapses. The binding of phosphacan to membrane and/or extracellular matrix partly required Ca2+ and was mediated through its core glycoprotein. Phosphacan inhibited adhesion and axonal extension of cerebellar granule cells in dissociated culture, while it promoted axonal fasciculation of their aggregated culture. These results indicate that phosphacan around parallel fibers may be the repulsive substratum for adhesion and extension of granule cells and promote the fasciculation of parallel fibers.
Collapse
Affiliation(s)
- Noriko Hayashi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | | | | | | | | |
Collapse
|
41
|
Hayashi N, Miyata S, Yamada M, Kamei K, Oohira A. Neuronal expression of the chondroitin sulfate proteoglycans receptor-type protein-tyrosine phosphatase beta and phosphacan. Neuroscience 2005; 131:331-48. [PMID: 15708477 DOI: 10.1016/j.neuroscience.2004.11.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2004] [Indexed: 12/30/2022]
Abstract
Receptor-type protein-tyrosine phosphatase beta (RPTPbeta) and its spliced variant phosphacan are major components of chondroitin sulfate proteoglycans in the CNS. In this study, expression and localization of RPTPbeta and phosphacan were examined in developing neurons by immunological analyses using 6B4, 3F8, and anti-PTP antibodies and reverse transcription-polymerase chain reaction (RT-PCR). Light microscopic immunohistochemistry showed that 6B4 RPTPbeta/phosphacan immunoreactivity was observed around neurons in the cortical plate. Further ultrastructural observation showed that 6B4 RPTPbeta/phosphacan immunoreactivity was observed mainly at the membrane of migrating neurons and radial glia. Immunocytochemical analysis revealed that RPTPbeta immunoreactivity was observed in cultured cerebral, hippocampal, and cerebellar neurons in addition to type-1 and type-2 astrocytes. Western analysis further demonstrated that the shorter receptor form of RPTPbeta (sRPTPbeta) was detected from cell lysate of cortical and hippocampal neurons using 6B4 and anti-PTP antibodies, while sRPTPbeta of cerebellar neurons and type-1 astrocytes was recognized only by anti-PTP antibody. Phosphacan was detected from neuronal culture supernatants of cortical, hippocampal, and cerebellar neurons, but not from type-1 astrocytes using 6B4 and 3F8 antibodies. RT-PCR analysis demonstrated the prominent expression of sRPTPbeta and phosphacan mRNAs in cortical neurons, and that of sRPTPbeta mRNA in type-1 astrocytes. During culture development of cortical neurons, the immunoreactivity of 6B4 sRPTPbeta was observed entirely on the neuronal surface including somata, dendrites, axons, and growth cones at earlier stages of cortical neuronal culture such as stages 2 and 3, while, after longer culture, 6B4 sRPTPbeta immunoreactivity in stages 4 and 5 neurons was detected at dendrites and somata and disappeared from axons, and was not observed over axonal terminals and postsynaptic spines. These results demonstrate that neurons are able to express sRPTPbeta on their cellular surface and to secrete phosphacan, and neuronal expression of sRPTPbeta may modulate neuronal differentiation including neuritogenesis and synaptogenesis.
Collapse
Affiliation(s)
- N Hayashi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | | | | | | | | |
Collapse
|
42
|
Orend G. Potential oncogenic action of tenascin-C in tumorigenesis. Int J Biochem Cell Biol 2005; 37:1066-83. [PMID: 15743679 DOI: 10.1016/j.biocel.2004.12.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Revised: 11/26/2004] [Accepted: 12/07/2004] [Indexed: 12/21/2022]
Abstract
The prominent expression of tenascin-C in the stroma of most solid tumors, first observed in the mid 1980s, implicates tenascin-C in tumorigenesis. This is also supported by in vitro experiments that demonstrate the capacity of tenascin-C to stimulate tumor growth by various mechanisms including promotion of proliferation, escaping immuno-surveillance and positively influencing angiogenesis. However, tumorigenesis in tenascin-C knock-out mice is not significantly different from that observed in control animals. Perhaps this is not unexpected if one considers that tenascin-C may act as an oncogene. The potential role of tenascin-C in tumorigenesis through its oncogenic action on cellular signaling will be discussed in this review, including how tenascin-C mediated tumor cell detachment might affect genome stability.
Collapse
Affiliation(s)
- Gertraud Orend
- Institute of Biochemistry and Genetics, Departement fiir Klinisch Biologische Wissenschaften (DKBW), Center for Biomedicine, University Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland.
| |
Collapse
|
43
|
Garcion E, Halilagic A, Faissner A, ffrench-Constant C. Generation of an environmental niche for neural stem cell development by the extracellular matrix molecule tenascin C. Development 2004; 131:3423-32. [PMID: 15226258 DOI: 10.1242/dev.01202] [Citation(s) in RCA: 227] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Stem cells in the embryonic mammalian CNS are initially responsive to fibroblast growth factor 2 (FGF2). They then undergo a developmental programme in which they acquire epidermal growth factor (EGF) responsiveness, switch from the production of neuronal to glial precursors and become localized in specialized germinal zones such as the subventricular zone (SVZ). Here we show that extracellular matrix molecules act as regulators of this programme. Tenascin C is highly expressed in the SVZ, and transgenic mice lacking tenascin C show delayed acquisition of the EGF receptor. This results from alterations in the response of the stem cells to the growth factors FGF2 and bone morphogenic protein 4 (BMP4), which normally promote and inhibit acquisition of the EGF receptor, respectively. Tenascin C-deficient mice also have altered numbers of CNS stem cells and these stem cells have an increased probability of generating neurones when grown in cell culture. We conclude that tenascin C contributes to the generation of a stem cell 'niche' within the SVZ, acting to orchestrate growth factor signalling so as to accelerate neural stem cell development.
Collapse
Affiliation(s)
- Emmanuel Garcion
- Cambridge Centre for Brain Repair, and Department of Medical Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | | | | | | |
Collapse
|
44
|
Minamitani T, Ariga H, Matsumoto KI. Deficiency of tenascin-X causes a decrease in the level of expression of type VI collagen. Exp Cell Res 2004; 297:49-60. [PMID: 15194424 DOI: 10.1016/j.yexcr.2004.03.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2003] [Revised: 03/01/2004] [Indexed: 11/29/2022]
Abstract
Tenascin-X (TNX) is an extracellular matrix glycoprotein. We previously demonstrated that TNX-null fibroblasts exhibit decreased cell-matrix and cell-cell adhesion. In this study, we used a differential display technique to determine the genes involved in this process. Differential display analysis of wild-type and TNX-null fibroblasts revealed that mRNA expression level of type VI collagen alpha3 is predominantly decreased in TNX-null fibroblasts. Expression levels of mRNAs of other subunits of type VI collagen, alpha2 and alpha3 chains, were also remarkably decreased in TNX-null fibroblasts. The protein level of alpha3 chain of type VI collagen was also reduced in TNX-null fibroblasts. However, the organization of type VI collagen in the extracellular matrix of TNX-null fibroblasts was similar to that of wild-type fibroblasts. Transient expression of TNX in Balb3T3 cells caused an increase in the level of mRNA of type VI collagen compared with that in vector control and increased the promoter activity of type VI collagen alpha1 subunit gene. In addition, the expression levels of type I collagen and other collagen fibril-associated molecules such as type XII and type XIV collagens, decorin, lumican and fibromodulin in wild-type and TNX-null fibroblasts were compared. It was found that the mRNA expression levels of type I collagen and collagen fibril-associated molecules other than decorin were decreased and that the expression level of decorin was increased in TNX-null fibroblasts. The results suggest the possibility that TNX mediates not only cell-cell and cell-matrix interactions but also fibrillogenesis via collagen fibril-associated molecules.
Collapse
Affiliation(s)
- Takeharu Minamitani
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | | | | |
Collapse
|
45
|
Wright JW, Harding JW. The brain angiotensin system and extracellular matrix molecules in neural plasticity, learning, and memory. Prog Neurobiol 2004; 72:263-93. [PMID: 15142685 DOI: 10.1016/j.pneurobio.2004.03.003] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2003] [Accepted: 03/18/2004] [Indexed: 01/25/2023]
Abstract
The brain renin-angiotensin system (RAS) has long been known to regulate several classic physiologies including blood pressure, sodium and water balance, cyclicity of reproductive hormones and sexual behaviors, and pituitary gland hormones. These physiologies are thought to be under the control of the angiotensin II (AngII)/AT1 receptor subtype system. The AT2 receptor subtype is expressed during fetal development and is less abundant in the adult. This receptor appears to oppose growth responses facilitated by the AT1 receptor, as well as growth factor receptors. Recent evidence points to an important contribution by the brain RAS to non-classic physiologies mediated by the newly discovered angiotensin IV (AngIV)/AT4 receptor subtype system. These physiologies include the regulation of blood flow, modulation of exploratory behavior, and a facilitory role in learning and memory acquisition. This system appears to interact with brain matrix metalloproteinases in order to modify extracellular matrix molecules thus permitting the synaptic remodeling critical to the neural plasticity presumed to underlie memory consolidation, reconsolidation, and retrieval. There is support for an inhibitory influence by AngII activation of the AT1 subtype, and a facilitory role by AngIV activation of the AT4 subtype, on neuronal firing rate, long-term potentiation, associative and spatial learning. The discovery of the AT4 receptor subtype, and its facilitory influence upon learning and memory, suggest an important role for the brain RAS in normal cognitive processing and perhaps in the treatment of dysfunctional memory disease states.
Collapse
Affiliation(s)
- John W Wright
- Department of Psychology, Washington State University, P.O. Box 644820, Pullman, WA 99164-4820, USA.
| | | |
Collapse
|
46
|
Yagi T, Terada N, Baba T, Ohno S. Immunolocalization of laminin-alpha1-like antigens around synapses in mouse cerebellar perineuronal nets. ACTA ACUST UNITED AC 2004; 34:559-65. [PMID: 14626346 DOI: 10.1023/a:1026044517888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The hypothesis that extracellular matrix components may be related to neuronal development in the mouse cerebellar cortex was verified with immunohistochemistry by using an antibody against laminin-alpha1, a major extracellular matrix protein in various tissues. A commercially available polyclonal antibody, raised against the carboxyl-terminal 20-amino acid peptide of laminin-alpha1 was used. Some positive immunoreaction products were localized around large GABAergic interneurons in granular layers and others were around neurons in deep cerebellar nuclei. At the electron microscope level, diaminobenzidine immunoreaction products were localized around presynaptic boutons and in intercellular matrices around interneurons. Such immunoreaction products could be detected at postnatal day 20, when most of cerebellar synapses are assumed to be established. It has been known that a special feature of extracellular matrix, termed perineuronal nets, exists around specific subpopulation of neurons. In the mouse cerebellum, the present findings suggest that laminin itself or laminin-like-antigens exists in the perineuronal nets in relation to inhibitory neuron synapses.
Collapse
Affiliation(s)
- Takashi Yagi
- Department of Anatomy, Faculty of Medicine, University of Yamanashi, Tamaho, Yamanashi 409-3898, Japan
| | | | | | | |
Collapse
|
47
|
Schumacher S, Stübe EM. Regulated binding of the fibrinogen-like domains of tenascin-R and tenascin-C to the neural EGF family member CALEB. J Neurochem 2003; 87:1213-23. [PMID: 14622101 DOI: 10.1046/j.1471-4159.2003.02112.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The neural transmembrane protein CALEB was discovered in a screen for novel molecules implicated in neuronal differentiation processes and was found to bind to two proteins of the extracellular matrix, tenascin-C and tenascin-R. The expression of different isoforms of CALEB in axon- and synapse-rich areas in the nervous system is regulated during development. Here we show that an unusual acidic peptide segment of CALEB is sufficient to mediate the binding of CALEB to the fibrinogen-like globes of both tenascin family members as well as to native tenascin-C. We identify a small sequence element within the acidic peptide segment of CALEB as important for this binding. Interestingly, the interactions of CALEB and tenascin-C and -R seem to be regulated during development. We demonstrate that only CALEB-80, the expression of which is up-regulated in the chicken retina during synaptogenesis, but not CALEB-140, expressed later on in development, can bind to the fibrinogen-like domains of tenascin-R or tenascin-C and to native tenascin-C. While both CALEB-80 and CALEB-140 are expressed in the plexiform layers and the optic fiber layer of embryonic chicken retina, CALEB-140 labeling is more intense in the optic fiber layer in comparison to the inner plexiform layer.
Collapse
Affiliation(s)
- Stefan Schumacher
- Institut für Zellbiochemie und Klinische Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany.
| | | |
Collapse
|
48
|
Sango K, Oohira A, Ajiki K, Tokashiki A, Horie M, Kawano H. Phosphacan and neurocan are repulsive substrata for adhesion and neurite extension of adult rat dorsal root ganglion neurons in vitro. Exp Neurol 2003; 182:1-11. [PMID: 12821372 DOI: 10.1016/s0014-4886(03)00090-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Phosphacan (PC) and neurocan (NC) are major chondroitin sulfate proteoglycans (CS-PGs) in nervous tissue and are involved in the modulation of cell adhesion and neurite outgrowth during neural development and regeneration. In the present study, we examined the effects of PC and NC on the attachment and neurite extension of adult rat dorsal root ganglion (DRG) neurons in vitro. Treatment with PC and NC on poly-L-lysine (PL) significantly impaired both neuronal attachment and neurite extension in a concentration-dependent manner (10 microg/ml > 1 microg/ml >> 0.1 microg/ml), and they were partially suppressed by chondroitinase ABC (ChABC) digestion. The CS-PGs applied to culture medium (1 microg/ml) also displayed inhibitory effects on neurite extension, which were not altered by ChABC treatment. These results show that PC and NC are repulsive substrata for adhesion and neurite regeneration of adult DRG neurons in vitro and suggest that both chondroitin sulfate moieties and core proteins are responsible for the inhibitory actions of the CS-PGs. We also conducted immunohistochemical analyses with the monoclonal antibodies to core proteins of PC (mAb 6B4) and NC (mAb 1G2), which revealed that only a few neurons in the DRG section were stained with these antibodies. In contrast, most DRG neurons at different stages (12 h, 1 day, 2 days, and 4 days) in culture were immunoreactive to mAb 6B4 and mAb 1G2. Taking these findings together, it is plausible that both CS-PGs expressed in the cultured neurons may play a role in the modulation of attachment, survival, and neurite regeneration.
Collapse
Affiliation(s)
- Kazunori Sango
- Department of Developmental Morphology, Tokyo Metropolitan Institute for Neuroscience, 2-6 Musashidai, Fuchu-shi, Tokyo 183-8526, Japan.
| | | | | | | | | | | |
Collapse
|
49
|
Chiquet-Ehrismann R, Chiquet M. Tenascins: regulation and putative functions during pathological stress. J Pathol 2003; 200:488-99. [PMID: 12845616 DOI: 10.1002/path.1415] [Citation(s) in RCA: 394] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
UNLABELLED In this review, we discuss the structure and function of the extracellular matrix protein family of tenascins with emphasis on their involvement in human pathologies. The article is divided into the following sections: INTRODUCTION the tenascin family of extracellular matrix proteins; Structural roles: tenascin-X deficiency and Ehlers-Danlos syndrome; Tenascins as modulators of cell adhesion, migration, and growth; Role of tenascin-C in inflammation; Regulation of tenascins by mechanical stress: implications for wound healing and regeneration; Association of tenascin-C with cancer: antibodies as diagnostic and therapeutic tools; Conclusion and perspectives.
Collapse
Affiliation(s)
- Ruth Chiquet-Ehrismann
- Friedrich Miescher Institute, Novartis Research Foundation, Maulbeerstrasse 66, CH-4058 Basel, Switzerland.
| | | |
Collapse
|
50
|
Gorodetsky R, Vexler A, Shamir M, An J, Levdansky L, Shimeliovich I, Marx G. New cell attachment peptide sequences from conserved epitopes in the carboxy termini of fibrinogen. Exp Cell Res 2003; 287:116-29. [PMID: 12799188 DOI: 10.1016/s0014-4827(03)00120-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Fibrinogen seems to contribute significantly to cell binding and recruitment into wounds besides its major role in clot formation. We describe 19- to 21-mer cell-binding (haptotactic) peptides from the C-termini of fibrinogen beta-chain (Cbeta), the extended alphaE chain, and near the C-terminal of the gamma-chain. When these peptides were covalently bound to a biologically inert matrix such as Sepharose beads (SB), they elicited beads attachment to cells, mostly of mesenchymal origin (including fibroblasts, endothelial cells, and smooth muscle cells) as well as some transformed cell lines. Based on such haptotactic activity, these peptides were termed "haptides." By contrast, peptides homologous to fibrinogen C-termini alpha- and gamma-chains elicited no such activity. The haptide Cbeta could not block the interaction of fibroblasts with antibodies directed against integrins beta(1), alpha(v), alpha(v)beta(1), alpha(v)beta(3), and alphaIIbeta(3). Moreover, GRGDS peptide could not inhibit enhanced cell binding to SB-Cbeta, as expected from an integrin-mediated process. In soluble form the haptides were accumulated in cells with nonsaturable kinetics without any toxic or proproliferative effects in concentrations up to 80 microM. These findings suggest that the conserved haptidic sequences within fibrin(ogen) can be associated with the adhesion and migration of cells into fibrin clots and may have a significant role in normal wound healing and in various pathological conditions.
Collapse
Affiliation(s)
- Raphael Gorodetsky
- Biotechnology and Radiobiology Laboratory, Sharett Institute of Oncology, Hadassah University Hospital, P.O. Box 12000, 91120, Jerusalem, Israel.
| | | | | | | | | | | | | |
Collapse
|