1
|
Kulkarni P, Basu R, Bonn T, Low B, Mazurek N, Kopchick JJ. Growth Hormone Upregulates Melanoma Drug Resistance and Migration via Melanoma-Derived Exosomes. Cancers (Basel) 2024; 16:2636. [PMID: 39123364 PMCID: PMC11311539 DOI: 10.3390/cancers16152636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Drug resistance in melanoma is a major hindrance in cancer therapy. Growth hormone (GH) plays a pivotal role in contributing to the resistance to chemotherapy. Knocking down or blocking the GH receptor has been shown to sensitize the tumor cells to chemotherapy. Extensive studies have demonstrated that exosomes, a subset of extracellular vesicles, play an important role in drug resistance by transferring key factors to sensitize cancer cells to chemotherapy. In this study, we explore how GH modulates exosomal cargoes from melanoma cells and their role in drug resistance. We treated the melanoma cells with GH, doxorubicin, and the GHR antagonist, pegvisomant, and analyzed the exosomes released. Additionally, we administered these exosomes to the recipient cells. The GH-treated melanoma cells released exosomes with elevated levels of ABC transporters (ABCC1 and ABCB1), N-cadherin, and MMP2, enhancing drug resistance and migration in the recipient cells. GHR antagonism reduced these exosomal levels, restoring drug sensitivity and attenuating migration. Overall, our findings highlight a novel role of GH in modulating exosomal cargoes that drive chemoresistance and metastasis in melanoma. This understanding provides insights into the mechanisms of GH in melanoma chemoresistance and suggests GHR antagonism as a potential therapy to overcome chemoresistance in melanoma treatment.
Collapse
Affiliation(s)
- Prateek Kulkarni
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; (P.K.); (R.B.); (T.B.); (B.L.); (N.M.)
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701, USA
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - Reetobrata Basu
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; (P.K.); (R.B.); (T.B.); (B.L.); (N.M.)
| | - Taylor Bonn
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; (P.K.); (R.B.); (T.B.); (B.L.); (N.M.)
- Department of Nutrition, Ohio University, Athens, OH 45701, USA
| | - Beckham Low
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; (P.K.); (R.B.); (T.B.); (B.L.); (N.M.)
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - Nathaniel Mazurek
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; (P.K.); (R.B.); (T.B.); (B.L.); (N.M.)
- Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA
| | - John J. Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; (P.K.); (R.B.); (T.B.); (B.L.); (N.M.)
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701, USA
- Department of Biomedical Sciences, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
2
|
Gomari MM, Arab SS, Balalaie S, Ramezanpour S, Hosseini A, Dokholyan NV, Tarighi P. Rational peptide design for targeting cancer cell invasion. Proteins 2024; 92:76-95. [PMID: 37646459 DOI: 10.1002/prot.26580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 09/01/2023]
Abstract
Cell invasion is an important process in cancer progression and recurrence. Invasion and implantation of cancer cells from their original place to other tissues, by disabling vital organs, challenges the treatment of cancer patients. Given the importance of the matter, many molecular treatments have been developed to inhibit cancer cell invasion. Because of their low production cost and ease of production, peptides are valuable therapeutic molecules for inhibiting cancer cell invasion. In recent years, advances in the field of computational biology have facilitated the design of anti-cancer peptides. In our investigation, using computational biology approaches such as evolutionary analysis, residue scanning, protein-peptide interaction analysis, molecular dynamics, and free energy analysis, our team designed a peptide library with about 100 000 candidates based on A6 (acetyl-KPSSPPEE-amino) sequence which is an anti-invasion peptide. During computational studies, two of the designed peptides that give the highest scores and showed the greatest sequence similarity to A6 were entered into the experimental analysis workflow for further analysis. In experimental analysis steps, the anti-metastatic potency and other therapeutic effects of designed peptides were evaluated using MTT assay, RT-qPCR, zymography analysis, and invasion assay. Our study disclosed that the IK1 (acetyl-RPSFPPEE-amino) peptide, like A6, has great potency to inhibit the invasion of cancer cells.
Collapse
Affiliation(s)
- Mohammad Mahmoudi Gomari
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Shahriar Arab
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saeed Balalaie
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, Tehran, Iran
| | - Sorour Ramezanpour
- Department of Chemistry, K. N. Toosi University of Technology, Tehran, Iran
| | - Arshad Hosseini
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nikolay V Dokholyan
- Department of Pharmacology, Department of Biochemistry & Molecular Biology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Parastoo Tarighi
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Masjedi MNK, Sadroddiny E, Ai J, Balalaie S, Asgari Y. Targeted expression of a designed fusion protein containing BMP2 into the lumen of exosomes. Biochim Biophys Acta Gen Subj 2024; 1868:130505. [PMID: 37925035 DOI: 10.1016/j.bbagen.2023.130505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 10/07/2023] [Accepted: 10/28/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND Exosomes are 30-150 nm membrane vesicles, originating from the endocytic pathway. By acting as natural carriers of biomolecules, they can transfer various materials to recipient cells. Therefore, discovering novel strategies for cargo packaging into exosomes is crucial. METHODS The fusion constructs, consisting of protein of interest (BMP2) along with the targeting motif, linkers, tracking proteins, and enzyme cleavage sites, were computationally designed. Following the homology modeling, the best structure was selected and subjected to molecular dynamics (MD) simulation and docking analyses. The fusion protein gene was expressed in the HEK-293LTV cell line. The high-efficiency transfected and transduced cells were screened and their exosomes were isolated. Finally, cell and exosome lysates were evaluated for expression of the fusion protein. RESULTS A total of 12 constructs with lengths ranging from 483 to 496 were designed. The top three templates, 1REW, 2H5Q, and 2MOF were screened. MD simulation and docking analyses of the structures revealed their stability and functionality. In the protein expression analyses, three bands at sizes of approximately 60, 25, and 12.5 kDa were observed, consistent with the sizes of the complete fusion protein, dimeric, and monomeric BMP2 protein. The presence of a 12.5 kDa band at exosome lysate analysis might suggest that it was loaded and cleaved inside exosomes. CONCLUSION In summary, these findings revealed that the proposed idea for cargo sorting within the exosome lumen through incorporating an appropriate cleavage site was effective, thus providing further insight into the potential of exosomes as nano-shuttles bearing therapeutic biomolecules.
Collapse
Affiliation(s)
- Maryam Noei-Khesht Masjedi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Esmaeil Sadroddiny
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Jafar Ai
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Balalaie
- Peptide Chemistry Research Center, K. N. Toosi University of Technology, Tehran, Iran; Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yazdan Asgari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Sui C, Liao Z, Bai J, Hu D, Yue J, Yang S. Current knowledge on the role of extracellular vesicles in endometrial receptivity. Eur J Med Res 2023; 28:471. [PMID: 37899459 PMCID: PMC10614333 DOI: 10.1186/s40001-023-01459-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/19/2023] [Indexed: 10/31/2023] Open
Abstract
Endometrial receptivity has been widely understood as the capacity of the endometrium to receive implantable embryos. The establishment of endometrial receptivity involves multiple biological processes including decidualization, tissue remodeling, angiogenesis, immune regulation, and oxidative metabolism. Extracellular vesicles (EVs) are lipid-bilayer-membrane nanosized vesicles mediating cell-to-cell communication. Recently, EVs and their cargo have been proven as functional factors in the establishment of endometrial receptivity. In this review, we comprehensively summarized the alteration of endometrium/embryo-derived EVs during the receptive phase and retrospected the current findings which revealed the pivotal role and potential mechanism of EVs to promote successful implantation. Furthermore, we highlight the potentiality and limitations of EVs being translated into clinical applications such as biomarkers of endometrial receptivity or reproductive therapeutic mediators, and point out the direction for further research.
Collapse
Affiliation(s)
- Cong Sui
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095#, Wuhan, 430030, People's Republic of China
| | - Zhiqi Liao
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095#, Wuhan, 430030, People's Republic of China
| | - Jian Bai
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095#, Wuhan, 430030, People's Republic of China
| | - Dan Hu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095#, Wuhan, 430030, People's Republic of China
| | - Jing Yue
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095#, Wuhan, 430030, People's Republic of China
| | - Shulin Yang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095#, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
5
|
Quesnel A, Broughton A, Karagiannis GS, Filippou PS. Message in the bottle: regulation of the tumor microenvironment via exosome-driven proteolysis. Cancer Metastasis Rev 2022; 41:789-801. [PMID: 35394580 DOI: 10.1007/s10555-022-10030-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/29/2022] [Indexed: 01/25/2023]
Abstract
Exosomes comprise a subtype of extracellular vesicles involved in cell-to-cell communication, specifically by transporting biological molecules, such as proteins and nucleic acids, to either local or more distant recipient cells, thus triggering distinct biological behaviors. Included in the exosome cargo is frequently a wide range of proteolytic enzymes, such as the matrix metalloproteinases (MMPs), the disintegrin and metalloproteinases (ADAMs), and the ADAM with thrombospondin-like motifs (ADAMTSs), whose functions contribute to the development and progression of cancer. In recent years, extensive research on the potential use of exosomes in diagnostic and therapeutic applications for personalized medicine has emerged, but the targeting of the proteolytic cargo of exosomes has not been fully exploited in this direction. In this review, we aim to explore both the mechanistic and the translational importance of proteolytic enzymes carried by the tumor cell-derived exosomes, as well as their role in the acquisition and support of certain hallmarks of cancer.
Collapse
Affiliation(s)
- Agathe Quesnel
- School of Health & Life Sciences, Teesside University, Middlesbrough, TS1 3BX, UK.,National Horizons Centre, Teesside University, Darlington, DL1 1HG, UK
| | - Amy Broughton
- School of Health & Life Sciences, Teesside University, Middlesbrough, TS1 3BX, UK
| | - George S Karagiannis
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.,Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA.,Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY, USA.,Albert Einstein Cancer Center, Tumor Microenvironment and Metastasis Program, Bronx, NY, USA
| | - Panagiota S Filippou
- School of Health & Life Sciences, Teesside University, Middlesbrough, TS1 3BX, UK. .,National Horizons Centre, Teesside University, Darlington, DL1 1HG, UK.
| |
Collapse
|
6
|
Bai S, Wang Z, Wang M, Li J, Wei Y, Xu R, Du J. Tumor-Derived Exosomes Modulate Primary Site Tumor Metastasis. Front Cell Dev Biol 2022; 10:752818. [PMID: 35309949 PMCID: PMC8924426 DOI: 10.3389/fcell.2022.752818] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 02/10/2022] [Indexed: 12/12/2022] Open
Abstract
Tumor-derived exosomes (TDEs) are actively produced and released by tumor cells and carry messages from tumor cells to healthy cells or abnormal cells, and they participate in tumor metastasis. In this review, we explore the underlying mechanism of action of TDEs in tumor metastasis. TDEs transport tumor-derived proteins and non-coding RNA to tumor cells and promote migration. Transport to normal cells, such as vascular endothelial cells and immune cells, promotes angiogenesis, inhibits immune cell activation, and improves chances of tumor implantation. Thus, TDEs contribute to tumor metastasis. We summarize the function of TDEs and their components in tumor metastasis and illuminate shortcomings for advancing research on TDEs in tumor metastasis.
Collapse
Affiliation(s)
- Suwen Bai
- Longgang District People´s Hospital of Shenzhen, The Second Affiliated Hospital of The Chinese University of Hong Kong, Shenzhen, China.,School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Zunyun Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Minghua Wang
- Longgang District People´s Hospital of Shenzhen, The Second Affiliated Hospital of The Chinese University of Hong Kong, Shenzhen, China
| | - Junai Li
- Longgang District People´s Hospital of Shenzhen, The Second Affiliated Hospital of The Chinese University of Hong Kong, Shenzhen, China
| | - Yuan Wei
- Longgang District People´s Hospital of Shenzhen, The Second Affiliated Hospital of The Chinese University of Hong Kong, Shenzhen, China
| | - Ruihuan Xu
- Longgang District People´s Hospital of Shenzhen, The Second Affiliated Hospital of The Chinese University of Hong Kong, Shenzhen, China
| | - Juan Du
- Longgang District People´s Hospital of Shenzhen, The Second Affiliated Hospital of The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
7
|
Ferrara B, Pignatelli C, Cossutta M, Citro A, Courty J, Piemonti L. The Extracellular Matrix in Pancreatic Cancer: Description of a Complex Network and Promising Therapeutic Options. Cancers (Basel) 2021; 13:cancers13174442. [PMID: 34503252 PMCID: PMC8430646 DOI: 10.3390/cancers13174442] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 01/18/2023] Open
Abstract
The stroma is a relevant player in driving and supporting the progression of pancreatic ductal adenocarcinoma (PDAC), and a large body of evidence highlights its role in hindering the efficacy of current therapies. In fact, the dense extracellular matrix (ECM) characterizing this tumor acts as a natural physical barrier, impairing drug penetration. Consequently, all of the approaches combining stroma-targeting and anticancer therapy constitute an appealing option for improving drug penetration. Several strategies have been adopted in order to target the PDAC stroma, such as the depletion of ECM components and the targeting of cancer-associated fibroblasts (CAFs), which are responsible for the increased matrix deposition in cancer. Additionally, the leaky and collapsing blood vessels characterizing the tumor might be normalized, thus restoring blood perfusion and allowing drug penetration. Even though many stroma-targeting strategies have reported disappointing results in clinical trials, the ECM offers a wide range of potential therapeutic targets that are now being investigated. The dense ECM might be bypassed by implementing nanoparticle-based systems or by using mesenchymal stem cells as drug carriers. The present review aims to provide an overview of the principal mechanisms involved in the ECM remodeling and of new promising therapeutic strategies for PDAC.
Collapse
Affiliation(s)
- Benedetta Ferrara
- Diabetes Research Institute (HSR-DRI), San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy; (B.F.); (C.P.); (A.C.)
| | - Cataldo Pignatelli
- Diabetes Research Institute (HSR-DRI), San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy; (B.F.); (C.P.); (A.C.)
| | - Mélissande Cossutta
- INSERM U955, Immunorégulation et Biothérapie, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil, 94010 Créteil, France; (M.C.); (J.C.)
- AP-HP, Centre d’Investigation Clinique Biothérapie, Groupe Hospitalo-Universitaire Chenevier Mondor, 94010 Créteil, France
| | - Antonio Citro
- Diabetes Research Institute (HSR-DRI), San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy; (B.F.); (C.P.); (A.C.)
| | - José Courty
- INSERM U955, Immunorégulation et Biothérapie, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil, 94010 Créteil, France; (M.C.); (J.C.)
- AP-HP, Centre d’Investigation Clinique Biothérapie, Groupe Hospitalo-Universitaire Chenevier Mondor, 94010 Créteil, France
| | - Lorenzo Piemonti
- Diabetes Research Institute (HSR-DRI), San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy; (B.F.); (C.P.); (A.C.)
- Correspondence:
| |
Collapse
|
8
|
Extracellular vesicles and the extracellular matrix: a new paradigm or old news? Biochem Soc Trans 2021; 48:2335-2345. [PMID: 33125481 DOI: 10.1042/bst20200717] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles (EV) are implicated in a variety of functions affecting the extracellular matrix (ECM), including matrix degradation, cross-linking of matrix proteins and matrix calcification. These processes are important in many physiological contexts such as angiogenesis and wound healing, and dysregulation of ECM homeostasis contributes to a wide range of diseases including fibrosis, cancer and arthritis. Most studies of EV have focussed on their roles in cell:cell communication, but EV can exist as integral components of the ECM. By far the most well-characterised ECM-resident EV are matrix vesicles (MV) in bone, but the broader role of EV in the ECM is not well understood. This review will explore what is known of the roles of EV in the ECM and will also highlight the similarities and differences between MV and other EV.
Collapse
|
9
|
Assessing Plasmin Generation in Health and Disease. Int J Mol Sci 2021; 22:ijms22052758. [PMID: 33803235 PMCID: PMC7963172 DOI: 10.3390/ijms22052758] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/20/2021] [Accepted: 03/05/2021] [Indexed: 12/13/2022] Open
Abstract
Fibrinolysis is an important process in hemostasis responsible for dissolving the clot during wound healing. Plasmin is a central enzyme in this process via its capacity to cleave fibrin. The kinetics of plasmin generation (PG) and inhibition during fibrinolysis have been poorly understood until the recent development of assays to quantify these metrics. The assessment of plasmin kinetics allows for the identification of fibrinolytic dysfunction and better understanding of the relationships between abnormal fibrin dissolution and disease pathogenesis. Additionally, direct measurement of the inhibition of PG by antifibrinolytic medications, such as tranexamic acid, can be a useful tool to assess the risks and effectiveness of antifibrinolytic therapy in hemorrhagic diseases. This review provides an overview of available PG assays to directly measure the kinetics of plasmin formation and inhibition in human and mouse plasmas and focuses on their applications in defining the role of plasmin in diseases, including angioedema, hemophilia, rare bleeding disorders, COVID-19, or diet-induced obesity. Moreover, this review introduces the PG assay as a promising clinical and research method to monitor antifibrinolytic medications and screen for genetic or acquired fibrinolytic disorders.
Collapse
|
10
|
Zeng Y, Fu BM. Resistance Mechanisms of Anti-angiogenic Therapy and Exosomes-Mediated Revascularization in Cancer. Front Cell Dev Biol 2020; 8:610661. [PMID: 33363174 PMCID: PMC7755714 DOI: 10.3389/fcell.2020.610661] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/20/2020] [Indexed: 12/14/2022] Open
Abstract
Anti-angiogenic therapies (AATs) have been widely used for cancer treatment. But the beneficial effects of AATs are short, because AAT-induced tumor revascularization facilitates the tumor relapse. In this mini-review, we described different forms of tumor neovascularization and revascularization including sprouting angiogenesis, vessel co-option, intussusceptive angiogenesis, and vasculogenic mimicry, all of which are closely mediated by vascular endothelial growth factor (VEGF), angiopoietins, matrix metalloproteinases, and exosomes. We also summarized the current findings for the resistance mechanisms of AATs including enhancement in pro-angiogenic cytokines, heterogeneity in tumor-associated endothelial cells (ECs), crosstalk between tumor cells and ECs, masking of extracellular vesicles, matrix stiffness and contributions from fibroblasts, macrophages and adipocytes in the tumor microenvironment. We highlighted the revascularization following AATs, particularly the role of exosome stimulating factors such as hypoxia and miRNA, and that of exosomal cargos such as cytokines, miRNAs, lncRNAs, and circRNAs from the tumor ECs in angiogenesis and revascularization. Finally, we proposed that renormalization of tumor ECs would be a more efficient cancer therapy than the current AATs.
Collapse
Affiliation(s)
- Ye Zeng
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Bingmei M. Fu
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY, United States
| |
Collapse
|
11
|
Charest A. Experimental and Biological Insights from Proteomic Analyses of Extracellular Vesicle Cargos in Normalcy and Disease. ADVANCED BIOSYSTEMS 2020; 4:e2000069. [PMID: 32815324 PMCID: PMC8091982 DOI: 10.1002/adbi.202000069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/19/2020] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs) offer a vehicle for diagnostic and therapeutic utility. EVs carry bioactive cargo and an accrued interest in their characterization has emerged. Efforts at identifying EV-enriched protein or RNA led to a surprising realization that EVs are excessively heterogeneous in nature. This diversity is originally attributed to vesicle sizes but it is becoming evident that different classes of EVs vehiculate distinct molecular cargos. Therefore, one of the current challenges in EV research is their selective isolation in quantities sufficient for efficient downstream analyses. Many protocols have been developed; however, reproducibility between research groups can be difficult to reach and inter-studies analyses of data from different isolation protocols are unmanageable. Therefore, there is an unmet need to optimize and standardize methods and protocols for the isolation and purification of EVs. This review focuses on the diverse techniques and protocols used over the years to isolate and purify EVs with a special emphasis on their adequacy for proteomics applications. By combining recent advances in specific isolation methods that yield superior quality of EV preparations and mass spectrometry techniques, the field is now prepared for transformative advancements in establishing distinct categorization and cargo identification of subpopulations based on EV surface markers.
Collapse
|
12
|
Ko SY, Naora H. Extracellular Vesicle Membrane-Associated Proteins: Emerging Roles in Tumor Angiogenesis and Anti-Angiogenesis Therapy Resistance. Int J Mol Sci 2020; 21:E5418. [PMID: 32751440 PMCID: PMC7432555 DOI: 10.3390/ijms21155418] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 12/11/2022] Open
Abstract
The tumor vasculature is essential for tumor growth and metastasis, and is a prime target of several anti-cancer agents. Increasing evidence indicates that tumor angiogenesis is stimulated by extracellular vesicles (EVs) that are secreted or shed by cancer cells. These EVs encapsulate a variety of biomolecules with angiogenic properties, and have been largely thought to stimulate vessel formation by transferring this luminal cargo into endothelial cells. However, recent studies have revealed that EVs can also signal to recipient cells via proteins on the vesicular surface. This review discusses and integrates emerging insights into the diverse mechanisms by which proteins associate with the EV membrane, the biological functions of EV membrane-associated proteins in tumor angiogenesis, and the clinical significance of these proteins in anti-angiogenic therapy.
Collapse
Affiliation(s)
| | - Honami Naora
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| |
Collapse
|
13
|
Ramírez-Ricardo J, Leal-Orta E, Martínez-Baeza E, Ortiz-Mendoza C, Breton-Mora F, Herrera-Torres A, Elizalde-Acosta I, Cortes-Reynosa P, Thompson-Bonilla R, Perez Salazar E. Circulating extracellular vesicles from patients with breast cancer enhance migration and invasion via a Src‑dependent pathway in MDA‑MB‑231 breast cancer cells. Mol Med Rep 2020; 22:1932-1948. [PMID: 32582965 PMCID: PMC7411406 DOI: 10.3892/mmr.2020.11259] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/15/2020] [Indexed: 12/21/2022] Open
Abstract
Triple negative breast cancer (TNBC) is a breast cancer subtype associated with high rates of metastasis, heterogeneity, drug resistance and a poor prognosis. Extracellular vesicles (EVs) are vesicles of endosomal and plasma membrane origin, and are secreted by healthy and cancer cells. In cancer, EVs contribute to tumor progression by mediating escape from the immune system surveillance, and are involved in extracellular matrix degradation, invasion, angiogenesis, migration and metastasis. Furthermore, EVs have been identified in several human fluids. However, the role of EVs from patients with breast cancer in the migration and invasion of human breast cancer cells is not fully understood. The present study investigated whether EVs isolated from Mexican patients with breast cancer can induce cellular processes related to invasion in breast cancer. Moreover, plasma fractions enriched in EVs and deprived of platelet-derived EVs obtained from blood samples of 32 Mexican patients with biopsy-diagnosed breast cancer at different clinical stages who had not received treatment were analyzed. Furthermore, one control group was included, which consisted of 20 Mexican healthy females. The present results demonstrated that EVs from women with breast cancer promote migration and invasion, and increase matrix metalloproteinase (MMP)-2 and MMP-9 secretion in TNBC MDA-MB-231 cells. In addition, it was found that EVs from patients with breast cancer induced Src and focal adhesion kinase activation, and focal adhesions assembly with an increase in focal adhesions number, while the migration and invasion was dependent on Src activity. Collectively, EVs from Mexican patients with breast cancer induce migration and invasion via a Src-dependent pathway in TNBC MDA-MB-231 cells.
Collapse
|
14
|
Okusha Y, Eguchi T, Tran MT, Sogawa C, Yoshida K, Itagaki M, Taha EA, Ono K, Aoyama E, Okamura H, Kozaki KI, Calderwood SK, Takigawa M, Okamoto K. Extracellular Vesicles Enriched with Moonlighting Metalloproteinase Are Highly Transmissive, Pro-Tumorigenic, and Trans-Activates Cellular Communication Network Factor ( CCN2/CTGF): CRISPR against Cancer. Cancers (Basel) 2020; 12:cancers12040881. [PMID: 32260433 PMCID: PMC7226423 DOI: 10.3390/cancers12040881] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/24/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022] Open
Abstract
Matrix metalloproteinase 3 (MMP3) plays multiple roles in extracellular proteolysis as well as intracellular transcription, prompting a new definition of moonlighting metalloproteinase (MMP), according to a definition of protein moonlighting (or gene sharing), a phenomenon by which a protein can perform more than one function. Indeed, connective tissue growth factor (CTGF, aka cellular communication network factor 2 (CCN2)) is transcriptionally induced as well as cleaved by MMP3. Moreover, several members of the MMP family have been found within tumor-derived extracellular vesicles (EVs). We here investigated the roles of MMP3-rich EVs in tumor progression, molecular transmission, and gene regulation. EVs derived from a rapidly metastatic cancer cell line (LuM1) were enriched in MMP3 and a C-terminal half fragment of CCN2/CTGF. MMP3-rich, LuM1-derived EVs were disseminated to multiple organs through body fluid and were pro-tumorigenic in an allograft mouse model, which prompted us to define LuM1-EVs as oncosomes in the present study. Oncosome-derived MMP3 was transferred into recipient cell nuclei and thereby trans-activated the CCN2/CTGF promoter, and induced CCN2/CTGF production in vitro. TRENDIC and other cis-elements in the CCN2/CTGF promoter were essential for the oncosomal responsivity. The CRISPR/Cas9-mediated knockout of MMP3 showed significant anti-tumor effects such as the inhibition of migration and invasion of tumor cells, and a reduction in CCN2/CTGF promoter activity and fragmentations in vitro. A high expression level of MMP3 or CCN2/CTGF mRNA was prognostic and unfavorable in particular types of cancers including head and neck, lung, pancreatic, cervical, stomach, and urothelial cancers. These data newly demonstrate that oncogenic EVs-derived MMP is a transmissive trans-activator for the cellular communication network gene and promotes tumorigenesis at distant sites.
Collapse
Affiliation(s)
- Yuka Okusha
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (Y.O.); (M.T.T.); (C.S.); (M.I.); (E.A.T.); (K.-i.K.); (K.O.)
- Division of Molecular and Cellular Biology, Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA;
| | - Takanori Eguchi
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (Y.O.); (M.T.T.); (C.S.); (M.I.); (E.A.T.); (K.-i.K.); (K.O.)
- Advanced Research Center for Oral and Craniofacial Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (E.A.); (M.T.)
- Correspondence: or
| | - Manh T. Tran
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (Y.O.); (M.T.T.); (C.S.); (M.I.); (E.A.T.); (K.-i.K.); (K.O.)
| | - Chiharu Sogawa
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (Y.O.); (M.T.T.); (C.S.); (M.I.); (E.A.T.); (K.-i.K.); (K.O.)
| | - Kaya Yoshida
- Department of Oral Healthcare Education, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8504, Japan;
| | - Mami Itagaki
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (Y.O.); (M.T.T.); (C.S.); (M.I.); (E.A.T.); (K.-i.K.); (K.O.)
- Research program for undergraduate students, Okayama University Dental School, Okayama 700-8525, Japan
| | - Eman A. Taha
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (Y.O.); (M.T.T.); (C.S.); (M.I.); (E.A.T.); (K.-i.K.); (K.O.)
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
- Department of Biochemistry, Ain Shams University Faculty of Science, Cairo 11566, Egypt
| | - Kisho Ono
- Department of Oral and Maxillofacial Surgery, Okayama University Hospital, Okayama 700-0914, Japan;
| | - Eriko Aoyama
- Advanced Research Center for Oral and Craniofacial Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (E.A.); (M.T.)
| | - Hirohiko Okamura
- Department of Oral Morphology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama 700-8525, Japan;
| | - Ken-ichi Kozaki
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (Y.O.); (M.T.T.); (C.S.); (M.I.); (E.A.T.); (K.-i.K.); (K.O.)
| | - Stuart K. Calderwood
- Division of Molecular and Cellular Biology, Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA;
| | - Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (E.A.); (M.T.)
| | - Kuniaki Okamoto
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (Y.O.); (M.T.T.); (C.S.); (M.I.); (E.A.T.); (K.-i.K.); (K.O.)
| |
Collapse
|
15
|
Abstract
Rapidly increasing scientific reports of exosomes and their biological effects have improved our understanding of their cellular sources and their cell-to-cell communication. These nano-sized vesicles act as potent carriers of regulatory bio-macromolecules and can induce regulatory functions by delivering them from its source to recipient cells. The details of their communication network are less understood. Recent studies have shown that apart from delivering its cargo to the cells, it can directly act on extracellular matrix (ECM) proteins and growth factors and can induce various remodeling events. More importantly, exosomes carry many surface-bound proteases, which can cleave different ECM proteins and carbohydrates and can shed cell surface receptors. These local extracellular events can modulate signaling cascades, which consequently influences the whole tissue and organ. This review aims to highlight the critical roles of exosomal proteases and their mechanistic insights within the cellular and extracellular environment.
Collapse
|
16
|
Ciardiello C, Migliorino R, Leone A, Budillon A. Large extracellular vesicles: Size matters in tumor progression. Cytokine Growth Factor Rev 2019; 51:69-74. [PMID: 31937439 DOI: 10.1016/j.cytogfr.2019.12.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/24/2019] [Accepted: 12/30/2019] [Indexed: 12/11/2022]
Abstract
Extracellular Vesicles (EVs) represent a heterogeneous population of particles naturally released from all cells, delimited by a lipid bilayer and able to horizontally transfer their cargos to recipient cells. These features imply the growing interest on EVs in cancer biology as biomarkers and therapeutic targets. In this review, we will highlight the specific process related to biogenesis and release of large EVs (L-EVs) derived from the plasma membrane (PM) compared to the small and well described exosomes, generated through the classical endosome-multivesicular body (MVB) pathway. The control of PM rigidity by cells depends on lipid/protein composition, cytoskeleton dynamics, cytoplasmic viscosity, ions balance, metabolic reprogramming and specific intracellular signaling pathways, all critical determinants of L-EVs biogenesis. We will focus in details on a specific class of L-EVs, named Large Oncosomes (LO), exclusively shed by cancer cells and with a size ranging from 1 μm up to 10 μm. We will examine LO specific cargos, either proteins or nucleic acids (i.e. mRNA, microRNAs, single/double-stranded DNA), as well as their functional role in cancer development and progression, also discussing the mechanisms of L-EVs internalization by recipient cells. Overall we will highlight the potential of LO as specific diagnostic/prognostic cancer biomarkers discussing the associated challenges.
Collapse
Affiliation(s)
- Chiara Ciardiello
- Experimental Pharmacology Unit, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy.
| | - Rossella Migliorino
- Experimental Pharmacology Unit, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy
| | - Alessandra Leone
- Experimental Pharmacology Unit, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy
| | - Alfredo Budillon
- Experimental Pharmacology Unit, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy.
| |
Collapse
|
17
|
Cell Intrinsic and Extrinsic Mechanisms of Caveolin-1-Enhanced Metastasis. Biomolecules 2019; 9:biom9080314. [PMID: 31362353 PMCID: PMC6723107 DOI: 10.3390/biom9080314] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/17/2019] [Accepted: 07/25/2019] [Indexed: 12/19/2022] Open
Abstract
Caveolin-1 (CAV1) is a scaffolding protein with a controversial role in cancer. This review will initially discuss earlier studies focused on the role as a tumor suppressor before elaborating subsequently on those relating to function of the protein as a promoter of metastasis. Different mechanisms are summarized illustrating how CAV1 promotes such traits upon expression in cancer cells (intrinsic mechanisms). More recently, it has become apparent that CAV1 is also a secreted protein that can be included into exosomes where it plays a significant role in determining cargo composition. Thus, we will also discuss how CAV1 containing exosomes from metastatic cells promote malignant traits in more benign recipient cells (extrinsic mechanisms). This ability appears, at least in part, attributable to the transfer of specific cargos present due to CAV1 rather than the transfer of CAV1 itself. The evolution of how our perception of CAV1 function has changed since its discovery is summarized graphically in a time line figure.
Collapse
|
18
|
Tumour cell blebbing and extracellular vesicle shedding: key role of matrikines and ribosomal protein SA. Br J Cancer 2019; 120:453-465. [PMID: 30739912 PMCID: PMC6461924 DOI: 10.1038/s41416-019-0382-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 12/06/2018] [Accepted: 12/20/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Carcinogenesis occurs in elastin-rich tissues and leads to local inflammation and elastolytic proteinase release. This contributes to bioactive matrix fragment (Matrikine) accumulation like elastin degradation products (EDP) stimulating tumour cell invasive and metastatic properties. We previously demonstrate that EDPs exert protumoural activities through Hsp90 secretion to stabilised extracellular proteinases. METHODS EDP influence on cancer cell blebbing and extracellular vesicle shedding were examined with a videomicroscope coupled with confocal Yokogawa spinning disk, by transmission electron microscopy, scanning electron microscopy and confocal microscopy. The ribosomal protein SA (RPSA) elastin receptor was identified after affinity chromatography by western blotting and cell immunolocalisation. mRNA expression was studied using real-time PCR. SiRNA were used to confirm the essential role of RPSA. RESULTS We demonstrate that extracellular matrix degradation products like EDPs induce tumour amoeboid phenotype with cell membrane blebbing and shedding of extracellular vesicle containing Hsp90 and proteinases in the extracellular space. EDPs influence intracellular calcium influx and cytoskeleton reorganisation. Among matrikines, VGVAPG and AGVPGLGVG peptides reproduced EDP effects through RPSA binding. CONCLUSIONS Our data suggests that matrikines induce cancer cell blebbing and extracellular vesicle release through RPSA binding, favouring dissemination, cell-to-cell communication and growth of cancer cells in metastatic sites.
Collapse
|
19
|
Abstract
Extracellular vesicles (EVs) are small particles that mediate intercellular communications in local and distant microenvironments. Due to their ability to carry bioactive materials such as proteins, nucleic acids, and lipids, and to transfer their cargo into target cells, EVs are thought to be crucial mediators under pathological and physiological conditions. Recent investigations of their protein profiles have revealed the presence of metalloproteinases such as matrix metalloproteinases (MMPs) in EVs from various cell types and body fluids. Although information regarding the biological and clinical significance of MMPs in EVs is still limited, EV-associated MMPs can alter EV cargo by ectodomain shedding, exerting proteolytic activity following uptake by target cells, or directly contributing to degradation of extracellular matrix proteins surrounding cells. This review focuses on recent findings regarding EV-associated MMPs, and we further discuss their potential involvement in human diseases.
Collapse
Affiliation(s)
- Masayuki Shimoda
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
20
|
Extracellular Vesicles and Matrix Remodeling Enzymes: The Emerging Roles in Extracellular Matrix Remodeling, Progression of Diseases and Tissue Repair. Cells 2018; 7:cells7100167. [PMID: 30322133 PMCID: PMC6210724 DOI: 10.3390/cells7100167] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/17/2018] [Accepted: 10/12/2018] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane enclosed micro- and nano-sized vesicles that are secreted from almost every species, ranging from prokaryotes to eukaryotes, and from almost every cell type studied so far. EVs contain repertoire of bioactive molecules such as proteins (including enzymes and transcriptional factors), lipids, carbohydrates and nucleic acids including DNA, coding and non-coding RNAs. The secreted EVs are taken up by neighboring cells where they release their content in recipient cells, or can sail through body fluids to reach distant organs. Since EVs transport bioactive cargo between cells, they have emerged as novel mediators of extra- and intercellular activities in local microenvironment and inter-organ communications distantly. Herein, we review the activities of EV-associated matrix-remodeling enzymes such as matrix metalloproteinases, heparanases, hyaluronidases, aggrecanases, and their regulators such as extracellular matrix metalloproteinase inducers and tissue inhibitors of metalloproteinases as novel means of matrix remodeling in physiological and pathological conditions. We discuss how such EVs act as novel mediators of extracellular matrix degradation to prepare a permissive environment for various pathological conditions such as cancer, cardiovascular diseases, arthritis and metabolic diseases. Additionally, the roles of EV-mediated matrix remodeling in tissue repair and their potential applications as organ therapies have been reviewed. Collectively, this knowledge could benefit the development of new approaches for tissue engineering.
Collapse
|
21
|
Latifi Z, Fattahi A, Ranjbaran A, Nejabati HR, Imakawa K. Potential roles of metalloproteinases of endometrium-derived exosomes in embryo-maternal crosstalk during implantation. J Cell Physiol 2017; 233:4530-4545. [PMID: 29115666 DOI: 10.1002/jcp.26259] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/09/2017] [Indexed: 12/15/2022]
Abstract
During embryo implantation, crosstalk between the endometrial epithelium and the blastocyst, especially the trophoblasts, is a prerequisite for successful implantation. During this crosstalk, various molecular and functional changes occur to promote synchrony between the embryo and the endometrium as well as the uterine cavity microenvironment. In the past few years, growing evidence has shown that endometrium-derived exosomes play pivotal roles in the embryonic-maternal crosstalk during implantation, although the exact mechanism of this crosstalk has yet to be determined. The presence of metalloproteinases has been reported in endometrium-derived exosomes, implying the importance of these enzymes in exosome-based crosstalk. Thus, in this review, we describe the potential roles of the metalloproteinases of endometrium-derived exosomes in promoting embryo attachment and implantation. This study could provide a better understanding of the potential roles of exosomal metalloproteinases in embryo implantation and pave the way for developing novel exosome-based regulatory agents to support early pregnancy.
Collapse
Affiliation(s)
- Zeinab Latifi
- Animal Resource Science Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Ibaraki, Japan.,Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Fattahi
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Ranjbaran
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Reza Nejabati
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kazuhiko Imakawa
- Animal Resource Science Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Ibaraki, Japan
| |
Collapse
|
22
|
Hisada Y, Ay C, Auriemma AC, Cooley BC, Mackman N. Human pancreatic tumors grown in mice release tissue factor-positive microvesicles that increase venous clot size. J Thromb Haemost 2017; 15:2208-2217. [PMID: 28834179 DOI: 10.1111/jth.13809] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Indexed: 12/18/2022]
Abstract
Essentials Tumor-bearing mice have larger venous clots than controls. Human tissue factor is present in clots in tumor-bearing mice. Inhibition of human tissue factor reduces clot size in tumor-bearing mice. This new mouse model may be useful to study mechanisms of cancer-associated thrombosis. SUMMARY Background Pancreatic cancer patients have a high rate of venous thromboembolism. Human pancreatic tumors and cell lines express high levels of tissue factor (TF), and release TF-positive microvesicles (TF+ MVs). In pancreatic cancer patients, tumor-derived TF+ MVs are present in the blood, and increased levels are associated with venous thromboembolism and decreased survival. Previous studies have shown that mice with orthotopic human or murine pancreatic tumors have circulating tumor-derived TF+ MVs, an activated clotting system, and increased incidence and mean clot weight in an inferior vena cava stenosis model. These results suggest that TF+ MVs contribute to thrombosis. However, the specific role of tumor-derived TF+ MVs in venous thrombosis in mice has not been determined. Objectives To test the hypothesis that tumor-derived TF+ MVs enhance thrombosis in mice. Methods We determined the contribution of TF+ MVs derived from human pancreatic tumors grown orthotopically in nude mice to venous clot formation by using an anti-human TF mAb. We used an inferior vena cava stasis model of venous thrombosis. Results Tumor-bearing mice had significantly larger clots than control mice. Clots from tumor-bearing mice contained human TF, suggesting the incorporation of tumor-derived MVs. Importantly, administration of an anti-human TF mAb reduced clot size in tumor-bearing mice but did not affect clot size in control mice. Conclusions Our results indicate that TF+ MVs released from orthotopic pancreatic tumors increase venous thrombosis in mice. This new model may be useful for evaluating the roles of different factors in cancer-associated thrombosis.
Collapse
Affiliation(s)
- Y Hisada
- Department of Medicine, Division of Hematology and Oncology, Thrombosis and Hemostasis Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- K. G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Tromsø, Norway
| | - C Ay
- Department of Medicine, Division of Hematology and Oncology, Thrombosis and Hemostasis Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Clinical Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - A C Auriemma
- Department of Medicine, Division of Hematology and Oncology, Thrombosis and Hemostasis Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - B C Cooley
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - N Mackman
- Department of Medicine, Division of Hematology and Oncology, Thrombosis and Hemostasis Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
23
|
Shimoda M, Khokha R. Metalloproteinases in extracellular vesicles. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1989-2000. [DOI: 10.1016/j.bbamcr.2017.05.027] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/27/2017] [Accepted: 05/30/2017] [Indexed: 12/21/2022]
|
24
|
Bern MM. Extracellular vesicles: how they interact with endothelium, potentially contributing to metastatic cancer cell implants. Clin Transl Med 2017; 6:33. [PMID: 28933058 PMCID: PMC5607152 DOI: 10.1186/s40169-017-0165-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/13/2017] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EV) are blebs of cellular membranes, which entrap small portions of subjacent cytosol. They are released from a variety of cells, circulate in the blood for an unknown length of time and come to rest on endothelial surfaces. They contribute to an array of physiologic pathways, the complexity of which is still being investigated. They contribute to metastatic malignant cell implants and tumor-related angiogenesis, possibly abetted by the tissue factor that they carry. It is thought that the adherence of the EV to endothelium is dependent upon a combination of their P-selectin glycoprotein ligand-1 and exposed phosphatidylserine, the latter of which is normally hidden on the inner bilayer of the intact cellular membrane. This manuscript reviews what is known about EV origins, their clearance from the circulation and how they contribute to malignant cell implants upon endothelium surfaces and subsequent tumor growth.
Collapse
Affiliation(s)
- Murray M Bern
- University of New Mexico Comprehensive Cancer Center, 1201 Camino de Salud, Albuquerque, NM, 87131, USA.
| |
Collapse
|
25
|
Surman M, Stępień E, Hoja-Łukowicz D, Przybyło M. Deciphering the role of ectosomes in cancer development and progression: focus on the proteome. Clin Exp Metastasis 2017; 34:273-289. [PMID: 28317069 PMCID: PMC5442264 DOI: 10.1007/s10585-017-9844-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/11/2017] [Indexed: 12/11/2022]
Abstract
Ectosomes are small heterogeneous membrane vesicles generated by budding from the plasma membrane in a variety of cell types and, more frequently, in tumor cells. They are shed into the extracellular space and are proposed as a novel form of intracellular communication in which information is transmitted from the originating cell to recipient cells without direct cell-to-cell contact. This review focuses on a single population of extracellular vesicles-ectosomes. We summarize recent studies of tumor-derived ectosomes which examine their biogenesis and protein cargo, and their influence on different aspects of cancer progression. We discuss possible clinical implications involving ectosomes as potential biomarkers, diagnostic tools and treatment targets in oncology. The unique composition of the molecules (cargo) that ectosomes carry, and their functional role, depends largely on the state of their originating cell. Through horizontal transfer of a variety of biologically active molecules (including proteins, lipids and nucleic acids) between donor and recipient cells, tumor-derived ectosomes may play functional roles in oncogenic transformation, tumor progression, invasion, metastasis, angiogenesis promotion, escape from immune surveillance, and drug resistance, thereby facilitating disease progression. The presence of tumor-derived ectosomes in body fluids such as the blood and urine of cancer patients makes them potentially useful prognostic and predictive biomarkers. Tumor-derived ectosomes also offer possible targets for multiple therapeutic strategies.
Collapse
Affiliation(s)
- Magdalena Surman
- Department of Glycoconjugate Biochemistry, Institute of Zoology, Jagiellonian University in Krakow, Krakow, Poland
| | - Ewa Stępień
- Department of Medical Physics, M. Smoluchowski Institute of Physics, Jagiellonian University in Krakow, Krakow, Poland
| | - Dorota Hoja-Łukowicz
- Department of Glycoconjugate Biochemistry, Institute of Zoology, Jagiellonian University in Krakow, Krakow, Poland
| | - Małgorzata Przybyło
- Department of Glycoconjugate Biochemistry, Institute of Zoology, Jagiellonian University in Krakow, Krakow, Poland.
| |
Collapse
|
26
|
Wong F, Coban O, Weitsman G, Ng T. Integrating imaging, exosome and protein network rewiring information to track early tumour evolution of resistance mechanisms. CONVERGENT SCIENCE PHYSICAL ONCOLOGY 2017. [DOI: 10.1088/2057-1739/aa5cbd] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
27
|
López-Cobo S, Campos-Silva C, Valés-Gómez M. Glycosyl-Phosphatidyl-Inositol (GPI)-Anchors and Metalloproteases: Their Roles in the Regulation of Exosome Composition and NKG2D-Mediated Immune Recognition. Front Cell Dev Biol 2016; 4:97. [PMID: 27672635 PMCID: PMC5019032 DOI: 10.3389/fcell.2016.00097] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 08/24/2016] [Indexed: 12/16/2022] Open
Abstract
Communication within the immune system depends on the release of factors that can travel and transmit information at points distant from the cell that produced them. In general, immune cells use two key strategies that can occur either at the plasma membrane or in intracellular compartments to produce such factors, vesicle release and proteolytic cleavage. Release of soluble factors in exosomes, a subset of vesicles that originate from intracellular compartments, depends generally on biochemical and lipid environment features. This physical environment allows proteins to be recruited to membrane microdomains that will be later endocytosed and further released to the extracellular milieu. Cholesterol and sphingolipid rich domains (also known as lipid rafts or detergent-resistant membranes, DRMs) often contribute to exosomes and these membrane regions are rich in proteins modified with Glycosyl-Phosphatidyl-Inositol (GPI) and lipids. For this reason, many palmitoylated and GPI-anchored proteins are preferentially recruited to exosomes. In this review, we analyse the biochemical features involved in the release of NKG2D-ligands as an example of functionally related gene families encoding both transmembrane and GPI-anchored proteins that can be released either by proteolysis or in exosomes, and modulate the intensity of the immune response. The immune receptor NKG2D is present in all human Natural Killer and T cells and plays an important role in the first barrier of defense against tumor and infection. However, tumor cells can evade the immune system by releasing NKG2D-ligands to induce down-regulation of the receptor. Some NKG2D-ligands can be recruited to exosomes and potently modulate receptor expression and immune function, while others are more susceptible to metalloprotease cleavage and are shed as soluble molecules. Strikingly, metalloprotease inhibition is sufficient to drive the accumulation in exosomes of ligands otherwise released by metalloprotease cleavage. In consequence, NKG2D-ligands appear as different entities in different cells, depending on cellular metabolism and biochemical structure, which mediate different intensities of immune modulation. We discuss whether similar mechanisms, depending on an interplay between metalloprotease cleavage and exosome release, could be a more general feature regulating the composition of exosomes released from human cells.
Collapse
Affiliation(s)
- Sheila López-Cobo
- Department of Immunology and Oncology, Spanish National Centre for Biotechnology Madrid, Spain
| | - Carmen Campos-Silva
- Department of Immunology and Oncology, Spanish National Centre for Biotechnology Madrid, Spain
| | - Mar Valés-Gómez
- Department of Immunology and Oncology, Spanish National Centre for Biotechnology Madrid, Spain
| |
Collapse
|
28
|
de Winne K, Roseeuw E, Pagnaer J, Schacht E. Succinoylated Poly[N-(2- Hydroxyethyl)-L-Glutamine] Derivatives for Drug Delivery. J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911504048327] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A series of succinoylated poly[N-(2-)- L-glutamine] (PHEG) derivatives was synthesized by reacting PHEG with succinic anhydride in the presence of N,N-dimethylaminopyridine as a catalyst. The size of the derivatives were measured by dynamic light scattering in buffers (pH 5.5 and 7.4, respectively) the lysosomal and physiological pH. The degradability of the succinoylated polymers toward cathepsin B was followed by gel permeation chromatography. It was demonstrated that an increase of modification results in decreased biodegradability. Conjugation of mitomycin C (MMC) with a succinoylated PHEG derivative through a collagenase-sensitive Pro-Leu-Gly-Pro- Leu spacer resulted in a water-soluble MMC conjugate. This conjugate was shown to be hydrolytically stable in buffers of lysosomal and physiological pH and able to release MMC in the presence of the bacterial collagenase clostridium histolyticum.
Collapse
Affiliation(s)
| | | | - John Pagnaer
- Polymer Materials Research Group, Ghent University, Krijgslaan 281 S4-bis, 9000 Ghent, Belgium
| | - Etienne Schacht
- Polymer Materials Research Group, Ghent University, Krijgslaan 281 S4-bis, 9000 Ghent, Belgium
| |
Collapse
|
29
|
Rilla K, Siiskonen H, Tammi M, Tammi R. Hyaluronan-coated extracellular vesicles--a novel link between hyaluronan and cancer. Adv Cancer Res 2015; 123:121-48. [PMID: 25081528 DOI: 10.1016/b978-0-12-800092-2.00005-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The synthesis of hyaluronan (HA) on the plasma membrane is a unique and still partly mysterious way of macromolecular biosynthesis. HA forms pericellular coats around many cell types and accumulates in the extracellular matrix (ECM) of growing and renewing tissues. It is secreted to high concentrations in body fluids with antifriction properties like pleural, peritoneal, and synovial fluids, but is also detectable in plasma, saliva, and urine. In pathological states, like cancer and inflammation, the amount of HA is increased around cells, in the ECM, and in the body fluids. HA is an indicator of poor prognosis for cancer patients and creates a favorable environment for cellular growth and motility. The recent finding that HA-coated extracellular vesicles act both as a product of HA synthase activity and as special vehicles for HA, and perhaps carry signals important for malignant growth, provides a novel link between HA and cancer. HA could be carried on the surface of these vesicles in tissues and body fluids, creating beneficial environments by itself, or by associated molecules, for the invasion and metastasis of cancer cells. The HA-coated plasma membrane protrusions and vesicles shed from them are potential biomarkers in cancer and other HA-associated disease states.
Collapse
Affiliation(s)
- Kirsi Rilla
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.
| | - Hanna Siiskonen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland; Department of Dermatology, Kuopio University Hospital and University of Eastern Finland, Kuopio, Finland
| | - Markku Tammi
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Raija Tammi
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
30
|
Jaiswal R, Raymond Grau GE, Bebawy M. Cellular communication via microparticles: role in transfer of multidrug resistance in cancer. Future Oncol 2015; 10:655-69. [PMID: 24754595 DOI: 10.2217/fon.13.230] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Multidrug resistance (MDR) continues to be a major impediment to the successful treatment of cancer. The two efflux transporters, P-glycoprotein (P-gp) and MRP1 are major contributors to cancer MDR clinically. The upregulation of P-gp leading to MDR was initially understood to occur via pre- and post-transcriptional mechanisms only. However, we demonstrated that microparticles mediate the intercellular exchange and trafficking of bioactive material, including functional P-gp and selected modulatory miRNAs. This exchange of P-gp leads to the dissemination of MDR within a cancer cell population. These findings have significant implications in understanding the cellular basis governing the intercellular acquisition of deleterious traits in cancers, serving to substantially advance our understanding of the molecular basis of the emergence of MDR in cancer clinically.
Collapse
Affiliation(s)
- Ritu Jaiswal
- School of Pharmacy, Graduate School of Health, The University of Technology, Sydney, NSW 2007, Australia
| | | | | |
Collapse
|
31
|
Ciliary ectosomes: transmissions from the cell's antenna. Trends Cell Biol 2015; 25:276-85. [PMID: 25618328 DOI: 10.1016/j.tcb.2014.12.008] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 12/20/2014] [Accepted: 12/22/2014] [Indexed: 12/21/2022]
Abstract
The cilium is the site of function for a variety of membrane receptors, enzymes and signal transduction modules crucial for a spectrum of cellular processes. Through targeted transport and selective gating mechanisms, the cell localizes specific proteins to the cilium that equip it for the role of sensory antenna. This capacity of the cilium to serve as a specialized compartment where specific proteins can be readily concentrated for sensory reception also makes it an ideal organelle to employ for the regulated emission of specific biological material and information. In this review we present and discuss an emerging body of evidence centered on ciliary ectosomes - bioactive vesicles released from the surface of the cilium.
Collapse
|
32
|
Lötvall J, Hill AF, Hochberg F, Buzás EI, Di Vizio D, Gardiner C, Gho YS, Kurochkin IV, Mathivanan S, Quesenberry P, Sahoo S, Tahara H, Wauben MH, Witwer KW, Théry C. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J Extracell Vesicles 2014; 3:26913. [PMID: 25536934 PMCID: PMC4275645 DOI: 10.3402/jev.v3.26913] [Citation(s) in RCA: 1946] [Impact Index Per Article: 194.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Secreted membrane-enclosed vesicles, collectively called extracellular vesicles (EVs), which include exosomes, ectosomes, microvesicles, microparticles, apoptotic bodies and other EV subsets, encompass a very rapidly growing scientific field in biology and medicine. Importantly, it is currently technically challenging to obtain a totally pure EV fraction free from non-vesicular components for functional studies, and therefore there is a need to establish guidelines for analyses of these vesicles and reporting of scientific studies on EV biology. Here, the International Society for Extracellular Vesicles (ISEV) provides researchers with a minimal set of biochemical, biophysical and functional standards that should be used to attribute any specific biological cargo or functions to EVs.
Collapse
Affiliation(s)
- Jan Lötvall
- Krefting Research Centre, University of Gothenburg, Göteborg, Sweden
| | - Andrew F Hill
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Australia
| | - Fred Hochberg
- Department of Neurosurgery, University of California at San Diego, San Diego, CA, USA
| | - Edit I Buzás
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | | | - Christopher Gardiner
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford, UK
| | - Yong Song Gho
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | | | - Suresh Mathivanan
- Department of Biochemistry, La Trobe University, Melbourne, Australia
| | - Peter Quesenberry
- The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Susmita Sahoo
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hidetoshi Tahara
- Department of Cellular and Molecular Biology, Hiroshima University Institute of Biomedical & Health Sciences, Hiroshima, Japan
| | - Marca H Wauben
- Department of Biochemistry and Cell Biology, Faculty of Veterinary medicine, Utrecht University, Utrecht, The Netherlands
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Clotilde Théry
- INSERM U932, Institut Curie, 26 rue d'Ulm, 75005, Paris, France;
| |
Collapse
|
33
|
Colombo M, Raposo G, Théry C. Biogenesis, Secretion, and Intercellular Interactions of Exosomes and Other Extracellular Vesicles. Annu Rev Cell Dev Biol 2014; 30:255-89. [DOI: 10.1146/annurev-cellbio-101512-122326] [Citation(s) in RCA: 3537] [Impact Index Per Article: 353.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Marina Colombo
- Institut Curie, Centre de Recherche, Paris, F-75248 France; ,
- Structure and Membrane Compartments CNRS, UMR144, Paris F-75248, France
- INSERM U932, Paris F-75248, France
- Paris Sciences et Lettres, Paris F-75005, France
| | - Graça Raposo
- Institut Curie, Centre de Recherche, Paris, F-75248 France; ,
- Structure and Membrane Compartments CNRS, UMR144, Paris F-75248, France
- Paris Sciences et Lettres, Paris F-75005, France
| | - Clotilde Théry
- Institut Curie, Centre de Recherche, Paris, F-75248 France; ,
- INSERM U932, Paris F-75248, France
- Paris Sciences et Lettres, Paris F-75005, France
| |
Collapse
|
34
|
Elastin peptides regulate HT-1080 fibrosarcoma cell migration and invasion through an Hsp90-dependent mechanism. Br J Cancer 2014; 111:139-48. [PMID: 24874477 PMCID: PMC4090727 DOI: 10.1038/bjc.2014.239] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 04/04/2014] [Accepted: 04/10/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The elastin-derived peptides (EDPs) exert protumoural activities by potentiating the secretion of matrix metalloproteinases (MMP) and the plasminogen-plasmin activating system. In the present paper, we studied heat-shock protein 90 (Hsp90) involvement in this mechanism. METHODS HT-1080 fibrosarcoma cell migration and invasion were studied in artificial wound assay and modified Boyden chamber assay, respectively. Heat-shock protein 90 was studied by western blot and immunofluorescence. Matrix metalloproteinase-2 and urokinase plasminogen activator (uPA) were studied by gelatin ± plasminogen zymography and immunofluorescence. Heat-shock protein 90 partners were studied by immunoprecipitation. Messenger RNA expression was studied using real-time PCR. Small interfering RNAs were used to confirm the essential role of Hsp90. RESULTS We showed that kappa-elastin and VGVAPG elastin hexapeptide stimulated Hsp90, pro-MMP-2 and uPA secretion within 6 h, whereas AGVPGLGVG and GRKRK peptides had no effect. No increase of mRNA level was observed. Heat-shock protein 90-specific inhibitors inhibit EDP-stimulated HT-1080 cell-invasive capacity and restrained EDP-stimulated pro-MMP-2 and uPA secretions. The inhibitory effect was reproduced by using Hsp90-blocking antibody or Hsp90 knockdown by siRNA. Heat-shock protein 90 interacted with and stabilised uPA and pro-MMP-2 in conditioned culture media of HT-1080 fibrosarcoma cells. CONCLUSIONS Taken together, our results demonstrate that EDPs exert protumoural activities through an Hsp90-dependent mechanism involving pro-MMP-2 and uPA.
Collapse
|
35
|
O'Sullivan S, Medina C, Ledwidge M, Radomski MW, Gilmer JF. Nitric oxide-matrix metaloproteinase-9 interactions: biological and pharmacological significance--NO and MMP-9 interactions. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:603-17. [PMID: 24333402 DOI: 10.1016/j.bbamcr.2013.12.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 12/02/2013] [Accepted: 12/05/2013] [Indexed: 12/24/2022]
Abstract
Nitric oxide (NO) and matrix metalloproteinase 9 (MMP-9) levels are found to increase in inflammation states and in cancer, and their levels may be reciprocally modulated. Understanding interactions between NO and MMP-9 is of biological and pharmacological relevance and may prove crucial in designing new therapeutics. The reciprocal interaction between NO and MMP-9 have been studied for nearly twenty years but to our knowledge, are yet to be the subject of a review. This review provides a summary of published data regarding the complex and sometimes contradictory effects of NO on MMP-9. We also analyse molecular mechanisms modulating and mediating NO-MMP-9 interactions. Finally, a potential therapeutic relevance of these interactions is presented.
Collapse
|
36
|
Devalet B, Mullier F, Chatelain B, Dogné JM, Chatelain C. The central role of extracellular vesicles in the mechanisms of thrombosis in paroxysmal nocturnal haemoglobinuria: a review. J Extracell Vesicles 2014; 3:23304. [PMID: 24672668 PMCID: PMC3965713 DOI: 10.3402/jev.v3.23304] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 02/17/2014] [Accepted: 02/20/2014] [Indexed: 12/22/2022] Open
Abstract
Paroxysmal nocturnal haemoglobinuria (PNH) is an acquired disorder of the haematopoietic stem cell that makes blood cells more sensitive to the action of complement. PNH patients experience an increased risk of arterial and venous thrombosis – major causes of death due to this disease. Though many potential interlaced mechanisms are suspected, extracellular vesicles (EVs) of various origins may play a central role. The processes possibly involved are haemolysis, platelet activation, injured endothelial cells and monocyte activation. The impact of transfusion should be evaluated. A better understanding of the mechanisms involved may help to propose guidelines for the prophylaxis and treatment of thrombosis in PNH. In this paper, we propose an updated review of the pathophysiology of the underlying mechanisms of thrombosis associated with PNH, with specific focus on the prominent role of EVs.
Collapse
Affiliation(s)
- Bérangère Devalet
- Department of Hematology, Namur Thrombosis and Hemostasis Center (NTHC), CHU Dinant-Godinne UCL Namur, Yvoir, Belgium
| | - François Mullier
- Hematology Laboratory, Namur Thrombosis and Hemostasis Center (NTHC), CHU Dinant-Godinne UCL Namur, Yvoir, Belgium ; Department of Pharmacy, Namur Thrombosis and Hemostasis Center (NTHC), University of Namur, Belgium
| | - Bernard Chatelain
- Hematology Laboratory, Namur Thrombosis and Hemostasis Center (NTHC), CHU Dinant-Godinne UCL Namur, Yvoir, Belgium
| | - Jean-Michel Dogné
- Department of Pharmacy, Namur Thrombosis and Hemostasis Center (NTHC), University of Namur, Belgium
| | - Christian Chatelain
- Department of Hematology, Namur Thrombosis and Hemostasis Center (NTHC), CHU Dinant-Godinne UCL Namur, Yvoir, Belgium
| |
Collapse
|
37
|
Habu M, Koyama H, Kishida M, Kamino M, Iijima M, Fuchigami T, Tokimura H, Ueda M, Tokudome M, Koriyama C, Hirano H, Arita K, Kishida S. Ryk is essential for Wnt-5a-dependent invasiveness in human glioma. J Biochem 2014; 156:29-38. [PMID: 24621529 DOI: 10.1093/jb/mvu015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma is characterized by marked invasiveness, but little is known about the mechanism of invasion in glioblastoma cells. Wnts are secreted ligands that regulate cell proliferation, differentiation, motility and fate at various developmental stages. In adults, misregulation of the Wnt pathway is associated with several diseases. Recently, we reported that Wnt-5a was overexpressed and correlated with cell motility and infiltrative activity through the regulation of matrix metalloproteinase (MMP)-2 in glioma-derived cells. Although several receptors for Wnt-5a were identified, the receptors of Wnt-5a that mediate cellular responses of glioma were not clearly identified. Knockdown of receptor-like tyrosine kinase (Ryk) but not that of Ror2 suppressed the activity of MMP-2 and Wnt-5a-dependent invasive activity in glioma cells. These results suggest that Ryk is important for the Wnt-5a-dependent induction of MMP-2 and invasive activity in glioma-derived cells and that Ryk might have a novel patho-physiological function in adult cancer invasion. Furthermore, not only the expression of Wnt-5a but also that of Frizzled (Fz)-2 and Ryk was correlated with the WHO histological grade in 38 human glioma tissues. Taking these findings together, Fz-2 and Ryk could be therapeutic or pharmacological target molecules for the control of Wnt-5a-dependent invasion of human glioma in the near future.
Collapse
Affiliation(s)
- Mika Habu
- Department of Biochemistry and Genetics; Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences; Department of Pharmacy, Kagoshima Prefectural Satunan Hospital; Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences; Natural Science Centre for Research and Education, Kagoshima University; and Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, JapanDepartment of Biochemistry and Genetics; Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences; Department of Pharmacy, Kagoshima Prefectural Satunan Hospital; Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences; Natural Science Centre for Research and Education, Kagoshima University; and Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hirofumi Koyama
- Department of Biochemistry and Genetics; Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences; Department of Pharmacy, Kagoshima Prefectural Satunan Hospital; Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences; Natural Science Centre for Research and Education, Kagoshima University; and Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Michiko Kishida
- Department of Biochemistry and Genetics; Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences; Department of Pharmacy, Kagoshima Prefectural Satunan Hospital; Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences; Natural Science Centre for Research and Education, Kagoshima University; and Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Masayuki Kamino
- Department of Biochemistry and Genetics; Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences; Department of Pharmacy, Kagoshima Prefectural Satunan Hospital; Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences; Natural Science Centre for Research and Education, Kagoshima University; and Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, JapanDepartment of Biochemistry and Genetics; Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences; Department of Pharmacy, Kagoshima Prefectural Satunan Hospital; Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences; Natural Science Centre for Research and Education, Kagoshima University; and Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Mikio Iijima
- Department of Biochemistry and Genetics; Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences; Department of Pharmacy, Kagoshima Prefectural Satunan Hospital; Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences; Natural Science Centre for Research and Education, Kagoshima University; and Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Takao Fuchigami
- Department of Biochemistry and Genetics; Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences; Department of Pharmacy, Kagoshima Prefectural Satunan Hospital; Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences; Natural Science Centre for Research and Education, Kagoshima University; and Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, JapanDepartment of Biochemistry and Genetics; Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences; Department of Pharmacy, Kagoshima Prefectural Satunan Hospital; Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences; Natural Science Centre for Research and Education, Kagoshima University; and Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hiroshi Tokimura
- Department of Biochemistry and Genetics; Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences; Department of Pharmacy, Kagoshima Prefectural Satunan Hospital; Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences; Natural Science Centre for Research and Education, Kagoshima University; and Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Masahiro Ueda
- Department of Biochemistry and Genetics; Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences; Department of Pharmacy, Kagoshima Prefectural Satunan Hospital; Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences; Natural Science Centre for Research and Education, Kagoshima University; and Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, JapanDepartment of Biochemistry and Genetics; Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences; Department of Pharmacy, Kagoshima Prefectural Satunan Hospital; Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences; Natural Science Centre for Research and Education, Kagoshima University; and Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Mai Tokudome
- Department of Biochemistry and Genetics; Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences; Department of Pharmacy, Kagoshima Prefectural Satunan Hospital; Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences; Natural Science Centre for Research and Education, Kagoshima University; and Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Chihaya Koriyama
- Department of Biochemistry and Genetics; Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences; Department of Pharmacy, Kagoshima Prefectural Satunan Hospital; Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences; Natural Science Centre for Research and Education, Kagoshima University; and Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hirofumi Hirano
- Department of Biochemistry and Genetics; Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences; Department of Pharmacy, Kagoshima Prefectural Satunan Hospital; Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences; Natural Science Centre for Research and Education, Kagoshima University; and Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kazunori Arita
- Department of Biochemistry and Genetics; Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences; Department of Pharmacy, Kagoshima Prefectural Satunan Hospital; Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences; Natural Science Centre for Research and Education, Kagoshima University; and Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Shosei Kishida
- Department of Biochemistry and Genetics; Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences; Department of Pharmacy, Kagoshima Prefectural Satunan Hospital; Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences; Natural Science Centre for Research and Education, Kagoshima University; and Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, JapanDepartment of Biochemistry and Genetics; Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences; Department of Pharmacy, Kagoshima Prefectural Satunan Hospital; Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences; Natural Science Centre for Research and Education, Kagoshima University; and Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
38
|
Carmona-Rivera C, Zhao W, Yalavarthi S, Kaplan MJ. Neutrophil extracellular traps induce endothelial dysfunction in systemic lupus erythematosus through the activation of matrix metalloproteinase-2. Ann Rheum Dis 2014; 74:1417-24. [PMID: 24570026 DOI: 10.1136/annrheumdis-2013-204837] [Citation(s) in RCA: 324] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 02/02/2014] [Indexed: 12/24/2022]
Abstract
RATIONALE The structural and functional integrity of the endothelium is crucial in maintaining vascular homeostasis and preventing atherosclerosis. Patients with systemic lupus erythematosus (SLE) have an increased risk of developing endothelial dysfunction and premature cardiovascular disease. Neutrophil extracellular trap (NET) formation is increased in SLE and has been proposed to contribute to endothelial damage, but the mechanism remains unclear. OBJECTIVE To determine the mechanism by which enhanced NET formation by low-density granulocytes (LDGs) in SLE contributes to endothelial damage and disrupts the endothelium. RESULTS The putative role of NET-externalised matrix metalloproteinases (MMPs) in altering the functional integrity of the endothelium was examined. MMP-9 externalised by lupus LDGs during NET formation specifically impaired murine aortic endothelium-dependent vasorelaxation and induced endothelial cell apoptosis. Endothelial dysfunction correlated with the activation of endothelial MMP-2 by MMP-9 present in NETs, while inhibition of MMP-2 activation restored endothelium-dependent function and decreased NET-induced vascular cytotoxicity. Moreover, immunogenic complexes composed of MMP-9 and anti-MMP-9 were identified in SLE sera. These complexes, as well as anti-MMP-9 autoantibodies, induced NETosis and enhanced MMP-9 activity. CONCLUSIONS These observations implicate activation of endothelial MMP-2 by MMP-9 contained in NETs as an important player in endothelial dysfunction, and MMP-9 as a novel self-antigen in SLE. These results further support that aberrant NET formation plays pathogenic roles in SLE.
Collapse
Affiliation(s)
- Carmelo Carmona-Rivera
- Systemic Autoimmunity Branch, Intramural Research Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Wenpu Zhao
- Systemic Autoimmunity Branch, Intramural Research Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Mariana J Kaplan
- Systemic Autoimmunity Branch, Intramural Research Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
39
|
Callaghan R, Luk F, Bebawy M. Inhibition of the multidrug resistance P-glycoprotein: time for a change of strategy? Drug Metab Dispos 2014; 42:623-31. [PMID: 24492893 DOI: 10.1124/dmd.113.056176] [Citation(s) in RCA: 290] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
P-glycoprotein (P-gp) is a key player in the multidrug-resistant phenotype in cancer. The protein confers resistance by mediating the ATP-dependent efflux of an astonishing array of anticancer drugs. Its broad specificity has been the subject of numerous attempts to inhibit the protein and restore the efficacy of anticancer drugs. The general strategy has been to develop compounds that either compete with anticancer drugs for transport or act as direct inhibitors of P-gp. Despite considerable in vitro success, there are no compounds currently available to "block" P-gp-mediated resistance in the clinic. The failure may be attributed to toxicity, adverse drug interaction, and numerous pharmacokinetic issues. This review provides a description of several alternative approaches to overcome the activity of P-gp in drug-resistant cells. These include 1) drugs that specifically target resistant cells, 2) novel nanotechnologies to provide high-dose, targeted delivery of anticancer drugs, 3) compounds that interfere with nongenomic transfer of resistance, and 4) approaches to reduce the expression of P-gp within tumors. Such approaches have been developed through the pursuit of greater understanding of resistance mediators such as P-gp, and they show considerable potential for further application.
Collapse
Affiliation(s)
- Richard Callaghan
- Division of Biomedical Science & Biochemistry, Research School of Biology, College of Medicine, Biology & Environment, The Australian National University, Canberra, New South Wales, Australia (R.C.); and School of Pharmacy, Graduate School of Health, The University of Technology, Sydney, New South Wales, Australia (F.L., M.B.)
| | | | | |
Collapse
|
40
|
Shimoda M, Khokha R. Proteolytic factors in exosomes. Proteomics 2013; 13:1624-36. [PMID: 23526769 DOI: 10.1002/pmic.201200458] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 02/18/2013] [Accepted: 02/25/2013] [Indexed: 12/14/2022]
Abstract
Exosomes are small microvesicles secreted from the late endosomal compartment of cells. Although an increasing body of evidence indicates that they play a pivotal role in cell-to-cell communication, the biological functions of exosomes are far from fully understood. Recent work has revealed detailed proteomic profiles of exosomes from cell lines and body fluids, which may provide clues to understanding their biological significance and general importance in human diseases. Metalloproteinases include the cell surface-anchored sheddases a disintegrin and metalloproteinases, as well as cell surface-bound and soluble matrix metalloproteinases and these extracellular proteases have been detected in exosomes by proteomic analyses. Exosomes play a key role in the transfer of proteins to other cells and metalloproteinases may provide a novel platform where ectodomain shedding by these membrane proteases alters the makeup of the recipient cell's surface. This review aims to address some of the facets of exosome biology with particular emphasis on the proteolytic factors and we discuss their potential involvement in human diseases, especially tumor biology.
Collapse
|
41
|
Voura EB, English JL, Yu HYE, Ho AT, Subarsky P, Hill RP, Hojilla CV, Khokha R. Proteolysis during tumor cell extravasation in vitro: metalloproteinase involvement across tumor cell types. PLoS One 2013; 8:e78413. [PMID: 24194929 PMCID: PMC3806793 DOI: 10.1371/journal.pone.0078413] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 09/20/2013] [Indexed: 12/22/2022] Open
Abstract
To test if proteolysis is involved in tumor cell extravasation, we developed an in vitro model where tumor cells cross an endothelial monolayer cultured on a basement membrane. Using this model we classified the ability of the cells to transmigrate through the endothelial cell barrier onto the underlying matrix, and scored this invasion according to the stage of passage through the endothelium. Metalloproteinase inhibitors reduced tumor cell extravasation by at least 35%. Visualization of protease and cell adhesion molecules by confocal microscopy demonstrated the cell surface localization of MMP-2, MMP-9, MT1-MMP, furin, CD44 and αvβ3, during the process of transendothelial migration. By the addition of inhibitors and bio-modulators we assessed the functional requirement of the aforementioned molecules for efficient migration. Proteolytic digestion occurred at the cell-matrix interface and was most evident during the migratory stage. All of the inhibitors and biomodulators affected the transition of the tumor cells into the migratory stage, highlighting the most prevalent use of proteolysis at this particular step of tumor cell extravasation. These data suggest that a proteolytic interface operates at the tumor cell surface within the tumor-endothelial cell microenvironment.
Collapse
Affiliation(s)
- Evelyn B. Voura
- Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Ontario, Canada
- Department of Biology, Dominican College, Orangeburg, New York, United States of America
| | - Jane L. English
- Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Ontario, Canada
| | - Hoi-Ying E. Yu
- Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Ontario, Canada
| | - Andrew T. Ho
- Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Ontario, Canada
| | - Patrick Subarsky
- Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Ontario, Canada
| | - Richard P. Hill
- Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Ontario, Canada
| | - Carlo V. Hojilla
- Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Ontario, Canada
| | - Rama Khokha
- Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
42
|
Kibe T, Fuchigami T, Kishida M, Iijima M, Ishihata K, Hijioka H, Miyawaki A, Semba I, Nakamura N, Kiyono T, Kishida S. A novel ameloblastoma cell line (AM-3) secretes MMP-9 in response to Wnt-3a and induces osteoclastogenesis. Oral Surg Oral Med Oral Pathol Oral Radiol 2013; 115:780-8. [DOI: 10.1016/j.oooo.2013.03.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 02/28/2013] [Accepted: 03/07/2013] [Indexed: 11/17/2022]
|
43
|
Lacroix R, Dubois C, Leroyer AS, Sabatier F, Dignat-George F. Revisited role of microparticles in arterial and venous thrombosis. J Thromb Haemost 2013; 11 Suppl 1:24-35. [PMID: 23809108 DOI: 10.1111/jth.12268] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Microparticles (MPs) represent a heterogeneous population of submicronic vesicles that are released in response to cell activation or apoptosis. MPs harbor a large repertoire of cell surface receptors and mRNA and biological activities representative of their parent cells and related to their involvement in many biological functions. Although MP generation is a physiological response, a dramatic increase in circulating MPs is detectable in a variety of thrombosis-associated disorders compared with healthy individuals. In this review, we will discuss a new vision of MPs as complex and ambivalent structures that express both activators and inhibitors of coagulation but also convey fibrinolytic properties. After summarizing our current knowledge about the role of MPs in venous and arterial thrombosis, this review will explore how this new vision of MPs influences their definition as emergent biomarkers in thrombotic diseases. Among the studies that have aimed to establish a link between thrombosis and MPs, a few studies have demonstrated a predictive value of MPs. So far, it is unclear whether this limited causative association is the result of current technical concerns and limited standardization or has to be integrated into a more complex vision of the role of MPs as key systems for regulating the balance between coagulation and fibrinolysis.
Collapse
Affiliation(s)
- R Lacroix
- VRCM, UMR_S1076, UFR de Pharmacie, Aix Marseille Université, INSERM, Marseille, France
| | | | | | | | | |
Collapse
|
44
|
The cilium secretes bioactive ectosomes. Curr Biol 2013; 23:906-11. [PMID: 23623554 DOI: 10.1016/j.cub.2013.04.019] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/03/2013] [Accepted: 04/09/2013] [Indexed: 12/19/2022]
Abstract
The release of membrane vesicles from the surface of cells into their surrounding environment is now recognized as an important pathway for the delivery of proteins to extracellular sites of biological function. Membrane vesicles of this kind, termed exosomes and ectosomes, are the result of active processes and have been shown to carry a wide array of biological effector molecules that can play roles in cell-to-cell communication and remodeling of the extracellular space. Degradation of the extracellular matrix (ECM) through the regulated release of proteolytic enzymes is a key process for development, morphogenesis, and cell migration in animal and plant cells. Here we show that the unicellular alga Chlamydomonas achieves the timely degradation of its mother cell wall, a type of ECM, through the budding of ectosomes directly from the membranes of its flagella. Using a combination of immunoelectron microscopy, immunofluorescence microscopy, and functional analysis, we demonstrate that these vesicles, which we term ciliary ectosomes, act as carriers of the proteolytic enzyme necessary for the liberation of daughter cells following mitosis. Chlamydomonas has proven to be the key unicellular model for the highly conserved mechanisms of mammalian cilia, and our results suggest that cilia may be an underappreciated source of bioactive, extracellular membrane vesicles.
Collapse
|
45
|
Panyathep A, Chewonarin T, Taneyhill K, Vinitketkumnuen U, Surh YJ. Inhibitory effects of dried longan (Euphoria longana Lam.) seed extract on invasion and matrix metalloproteinases of colon cancer cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:3631-3641. [PMID: 23527961 DOI: 10.1021/jf3052863] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The critical step in colorectal cancer progression and associated mortality is cancer invasion, which depends on two key gelatinase enzymes, matrix metalloproteinases-2 and -9. Dried longan ( Euphoria longana Lam.) seed is a rich natural source of antioxidant polyphenols.This study evaluated the effect of dried longan seeds on colon cancer cell invasion via gelatinase function and expression. Three dried longan seed fractions were collected by Sephadex LH-20 column chromatography. They showed a potent inhibitor on colorectal cancer cell invasion and gelatinase activity. The antigelatinase activities of fractions 1 and 2 were a direct effect via Zn²⁺ chelation, whereas fraction 3 modulated indirectly through suppression of zymogen activators. Among the fractions, only fraction 3 reduced the gelatinase expression, which was correlated with the levels of tissue inhibitor of metalloproteinase-1 and may as well involve the p38 mitogen-activated protein kinases and the c-Jun N-terminal kinase signaling pathways. This primary research has manifested and encouraged the anticancer properties of dried longan seed extracts with potential inhibitory effects on cancer cell invasion as well as antigelatinase activity and expression in colon cancer cells.
Collapse
Affiliation(s)
- Atita Panyathep
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| | | | | | | | | |
Collapse
|
46
|
Solli AI, Fadnes B, Winberg JO, Uhlin-Hansen L, Hadler-Olsen E. Tissue- and cell-specific co-localization of intracellular gelatinolytic activity and matrix metalloproteinase 2. J Histochem Cytochem 2013; 61:444-61. [PMID: 23482328 DOI: 10.1369/0022155413484765] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Matrix metalloproteinase 2 (MMP-2) is a proteolytic enzyme that degrades extracellular matrix proteins. Recent studies indicate that MMP-2 also has a role in intracellular proteolysis during various pathological conditions, such as ischemic injuries in heart and brain and in tumor growth. The present study was performed to map the distribution of intracellular MMP-2 activity in various mouse tissues and cells under physiological conditions. Samples from normal brain, heart, lung, liver, spleen, pancreas, kidney, adrenal gland, thyroid gland, gonads, oral mucosa, salivary glands, esophagus, intestines, and skin were subjected to high-resolution in situ gelatin zymography and immunohistochemical staining. In hepatocytes, cardiac myocytes, kidney tubuli cells, epithelial cells in the oral mucosa as well as in excretory ducts of salivary glands, and adrenal cortical cells, we found strong intracellular gelatinolytic activity that was significantly reduced by the metalloprotease inhibitor EDTA but not by the cysteine protease inhibitor E-64. Furthermore, the gelatinolytic activity was co-localized with MMP-2. Western blotting and electron microscopy combined with immunogold labeling revealed the presence of MMP-2 in different intracellular compartments of isolated hepatocytes. Our results indicate that MMP-2 takes part in intracellular proteolysis in specific tissues and cells during physiological conditions.
Collapse
Affiliation(s)
- Ann Iren Solli
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | | | | | | | | |
Collapse
|
47
|
Abstract
Membrane vesicles secreted by Leishmania mexicana were collected and analyzed. These vesicles can bind plasminogen and were shown to contain enolase, previously identified as a plasminogen-binding protein. In addition, another plasminogen-binding protein was identified, the small myristoylated protein, SMP-1. Recombinant SMP-1 was able to bind plasminogen in a lysine-dependent manner with a K(d) value of 0.24 μM. The C-terminal lysine seems to be responsible for this binding, since this recognition decreases upon carboxypeptidase B treatment. This protein was present within the secreted membrane vesicles as demonstrated by its protection from trypsin digestion in the absence of Triton X-100. Plasminogen-binding proteins in the secreted vesicles may be involved in parasite invasion in the mammalian host.
Collapse
|
48
|
Lacroix R, Plawinski L, Robert S, Doeuvre L, Sabatier F, Martinez de Lizarrondo S, Mezzapesa A, Anfosso F, Leroyer AS, Poullin P, Jourde N, Njock MS, Boulanger CM, Anglés-Cano E, Dignat-George F. Leukocyte- and endothelial-derived microparticles: a circulating source for fibrinolysis. Haematologica 2012; 97:1864-72. [PMID: 22733025 DOI: 10.3324/haematol.2012.066167] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND We recently assigned a new fibrinolytic function to cell-derived microparticles in vitro. In this study we explored the relevance of this novel property of microparticles to the in vivo situation. DESIGN AND METHODS Circulating microparticles were isolated from the plasma of patients with thrombotic thrombocytopenic purpura or cardiovascular disease and from healthy subjects. Microparticles were also obtained from purified human blood cell subpopulations. The plasminogen activators on microparticles were identified by flow cytometry and enzyme-linked immunosorbent assays; their capacity to generate plasmin was quantified with a chromogenic assay and their fibrinolytic activity was determined by zymography. RESULTS Circulating microparticles isolated from patients generate a range of plasmin activity at their surface. This property was related to a variable content of urokinase-type plasminogen activator and/or tissue plasminogen activator. Using distinct microparticle subpopulations, we demonstrated that plasmin is generated on endothelial and leukocyte microparticles, but not on microparticles of platelet or erythrocyte origin. Leukocyte-derived microparticles bear urokinase-type plasminogen activator and its receptor whereas endothelial microparticles carry tissue plasminogen activator and tissue plasminogen activator/inhibitor complexes. CONCLUSIONS Endothelial and leukocyte microparticles, bearing respectively tissue plasminogen activator or urokinase-type plasminogen activator, support a part of the fibrinolytic activity in the circulation which is modulated in pathological settings. Awareness of this blood-borne fibrinolytic activity conveyed by microparticles provides a more comprehensive view of the role of microparticles in the hemostatic equilibrium.
Collapse
Affiliation(s)
- Romaric Lacroix
- Aix Marseille Université, INSERM UMR-S1076, UFR de Pharmacie, Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Microparticles as a circulating source of procoagulant and fibrinolytic activities in the circulation. Thromb Res 2012; 129 Suppl 2:S27-9. [DOI: 10.1016/j.thromres.2012.02.025] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Gong J, Jaiswal R, Mathys JM, Combes V, Grau G, Bebawy M. Microparticles and their emerging role in cancer multidrug resistance. Cancer Treat Rev 2012; 38:226-34. [DOI: 10.1016/j.ctrv.2011.06.005] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 06/16/2011] [Accepted: 06/21/2011] [Indexed: 11/29/2022]
|