1
|
Jiang D, Ji C, Kang L, Ling W, Wang Z, Wang X, Niu C, Guo Y, Sun Q, An X, Kang B. Correlation analysis of polyamine metabolism and reproductive hormone levels in goose ovarian follicles. Theriogenology 2023; 210:244-250. [PMID: 37544046 DOI: 10.1016/j.theriogenology.2023.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/11/2023] [Accepted: 07/22/2023] [Indexed: 08/08/2023]
Abstract
To investigate the relationship between polyamine metabolism and reproductive hormones in ovarian follicles of Sichuan white geese, follicle polyamine content and reproductive hormone levels and gene expressions related to polyamine metabolism, steroidogenesis and steroid hormone receptors were detected by HPLC, ELISA and RT-qPCR. The results showed that the overall trend of spermidine and spermine levels increased first and then decreased as increasing follicle size, with the highest level in F3 and F5 follicles (P < 0.05). Putrescine and 17β-estradiol (E2) levels in hierarchical follicles were significantly lower than those in prehierarchical follicles (P < 0.05). Progesterone (P4) first increased and then decreased, with the highest level in the F5 follicle (P < 0.05). The expression levels of estrogen receptor 1 (ER1) showed an overall increase as increasing follicle size (except in F3 follicles), while estrogen receptor 2 (ER2) in hierarchical follicles was significantly lower than that in the prehierarchical follicles (P < 0.05). In addition, the overall expression level of progesterone receptor (PR) decreased, with no significant differences among F1, F2 and F3 follicles (P > 0.05). Yolk putrescine contents were positively correlated with yolk E2 concentrations and PR expression levels (P < 0.05), A significant positive correlation of spermidine levels with yolk P4 concentrations and PR expressions was also observed, as well as the spermine levels with yolk P4 concentrations (P < 0.05). In summary, polyamines were involved in the regulation of follicular development in geese, and this regulation played a role in affecting steroidogenesis and the expression of genes related to hormone receptors.
Collapse
Affiliation(s)
- Dongmei Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Chengweng Ji
- State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Lijuan Kang
- State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Weikang Ling
- State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Zelong Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xin Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Chunyang Niu
- State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Yongni Guo
- State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Qian Sun
- State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xiaoguang An
- State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Bo Kang
- State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
2
|
Bělíček J, Ľuptáková E, Kopečný D, Frömmel J, Vigouroux A, Ćavar Zeljković S, Jagic F, Briozzo P, Kopečný DJ, Tarkowski P, Nisler J, De Diego N, Moréra S, Kopečná M. Biochemical and structural basis of polyamine, lysine and ornithine acetylation catalyzed by spermine/spermidine N-acetyl transferase in moss and maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:482-498. [PMID: 36786691 DOI: 10.1111/tpj.16148] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/08/2023] [Indexed: 05/10/2023]
Abstract
Polyamines such as spermidine and spermine are essential regulators of cell growth, differentiation, maintenance of ion balance and abiotic stress tolerance. Their levels are controlled by the spermidine/spermine N1 -acetyltransferase (SSAT) via acetylation to promote either their degradation or export outside the cell as shown in mammals. Plant genomes contain at least one gene coding for SSAT (also named NATA for N-AcetylTransferase Activity). Combining kinetics, HPLC-MS and crystallography, we show that three plant SSATs, one from the lower plant moss Physcomitrium patens and two from the higher plant Zea mays, acetylate various aliphatic polyamines and two amino acids lysine (Lys) and ornithine (Orn). Thus, plant SSATs exhibit a broad substrate specificity, unlike more specific human SSATs (hSSATs) as hSSAT1 targets polyamines, whereas hSSAT2 acetylates Lys and thiaLys. The crystal structures of two PpSSAT ternary complexes, one with Lys and CoA, the other with acetyl-CoA and polyethylene glycol (mimicking spermine), reveal a different binding mode for polyamine versus amino acid substrates accompanied by structural rearrangements of both the coenzyme and the enzyme. Two arginine residues, unique among plant SSATs, hold the carboxyl group of amino acid substrates. The most abundant acetylated compound accumulated in moss was N6 -acetyl-Lys, whereas N5 -acetyl-Orn, known to be toxic for aphids, was found in maize. Both plant species contain very low levels of acetylated polyamines. The present study provides a detailed biochemical and structural basis of plant SSAT enzymes that can acetylate a wide range of substrates and likely play various roles in planta.
Collapse
Affiliation(s)
- Jakub Bělíček
- Department of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, CZ-78371, Czech Republic
| | - Eva Ľuptáková
- Department of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, CZ-78371, Czech Republic
| | - David Kopečný
- Department of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, CZ-78371, Czech Republic
| | - Jan Frömmel
- Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Armelle Vigouroux
- CEA, CNRS, Université Paris-Saclay, Institute for Integrative Biology of the Cell (I2BC), F-91198, Gif-sur-Yvette, France
| | - Sanja Ćavar Zeljković
- Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
- Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Centre of the Region Haná for Biotechnological and Agricultural Research, Crop Research Institute, Šlechtitelů 29, CZ-78371, Olomouc, Czech Republic
| | - Franjo Jagic
- INRAE, AgroParisTech, Université Paris-Saclay, Institut Jean-Pierre Bourgin (IJPB), Route de Saint Cyr, F-78026, Versailles, France
| | - Pierre Briozzo
- INRAE, AgroParisTech, Université Paris-Saclay, Institut Jean-Pierre Bourgin (IJPB), Route de Saint Cyr, F-78026, Versailles, France
| | - David Jaroslav Kopečný
- Department of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, CZ-78371, Czech Republic
| | - Petr Tarkowski
- Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
- Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Centre of the Region Haná for Biotechnological and Agricultural Research, Crop Research Institute, Šlechtitelů 29, CZ-78371, Olomouc, Czech Republic
| | - Jaroslav Nisler
- Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
- Isotope Laboratory, Institute of Experimental Botany, The Czech Academy of Sciences, Vídeňská 1083, CZ-14220, Prague, Czech Republic
| | - Nuria De Diego
- Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Solange Moréra
- CEA, CNRS, Université Paris-Saclay, Institute for Integrative Biology of the Cell (I2BC), F-91198, Gif-sur-Yvette, France
| | - Martina Kopečná
- Department of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, CZ-78371, Czech Republic
| |
Collapse
|
3
|
Evaluation of Tolerance and Trichological Efficacy of a Food Supplement in Men and Women with Telogen Effluvium-like Disorder. COSMETICS 2022. [DOI: 10.3390/cosmetics9060135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hair thinning is a very common problem in dermatology, affecting both men and women, and can strongly impact the quality of life of subjects. In this view, therapies that aim to reduce the appearance of thinning by delaying, arresting, or reversing the course of hair thinning are highly desirable. A novel nutraceutical product (NS) containing active botanicals, a patented composition comprising rutin and polyunsaturated fatty acids (PUFAs), zinc, biotin, and ornithine, has been developed to improve hair growth in subjects with hair thinning. Sixty subjects with telogen effluvium-like hair loss were randomized 1:1 in two groups (NS vs. placebo) and treated for three months and evaluated at the baseline visit (T0), and after 15 days (T1) and one (T2), two (T3), and three (T4) months of treatment. Two follow-up visits one month (T5) and two months after the last assumption (T6) were also included in the protocol. Subjects were evaluated for the percentage of hair in the anagen phase, density of hair in the anagen phase (n/cm2), vellus hair (miniaturized, smaller, and thinner hair), and the entity of hair loss in the telogen phase (pull test). NS supplementation produced a statistically significant (p < 0.05) increase in anagen hair and hair density versus baseline from 15 days (T1) of treatment and this effect was not detectable for placebo. Moreover, a clinically/statistically significant (p < 0.05) decrease in vellus hair was also reported, suggesting not only a rapid reduction of the process of miniaturization of the hair but also a transformation of vellus hair into terminal hair. The NS treatment also showed a significant (p < 0.05) increase in tensile strength till T6 (vs. placebo). A higher percentage of subjects who took the NS noted a reduction in daily hair loss, an increase in brightness, and the presence of stronger hair. No side effects were reported. The present study confirms the clinical efficacy and safety of novel nutraceutical supplements in men and women with hair thinning, acting as a multi-targeted therapeutic approach to hair thinning due to TE-like phenomena.
Collapse
|
4
|
Tao X, Zhu Y, Diaz-Perez Z, Yu SH, Foley JR, Stewart TM, Casero RA, Steet R, Zhai RG. Phenylbutyrate modulates polyamine acetylase and ameliorates Snyder-Robinson syndrome in a Drosophila model and patient cells. JCI Insight 2022; 7:e158457. [PMID: 35801587 PMCID: PMC9310527 DOI: 10.1172/jci.insight.158457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/20/2022] [Indexed: 11/26/2022] Open
Abstract
Polyamine dysregulation plays key roles in a broad range of human diseases from cancer to neurodegeneration. Snyder-Robinson syndrome (SRS) is the first known genetic disorder of the polyamine pathway, caused by X-linked recessive loss-of-function mutations in spermine synthase. In the Drosophila SRS model, altered spermidine/spermine balance has been associated with increased generation of ROS and aldehydes, consistent with elevated spermidine catabolism. These toxic byproducts cause mitochondrial and lysosomal dysfunction, which are also observed in cells from SRS patients. No efficient therapy is available. We explored the biochemical mechanism and discovered acetyl-CoA reduction and altered protein acetylation as potentially novel pathomechanisms of SRS. We repurposed the FDA-approved drug phenylbutyrate (PBA) to treat SRS using an in vivo Drosophila model and patient fibroblast cell models. PBA treatment significantly restored the function of mitochondria and autolysosomes and extended life span in vivo in the Drosophila SRS model. Treating fibroblasts of patients with SRS with PBA ameliorated autolysosome dysfunction. We further explored the mechanism of drug action and found that PBA downregulates the first and rate-limiting spermidine catabolic enzyme spermidine/spermine N1-acetyltransferase 1 (SAT1), reduces the production of toxic metabolites, and inhibits the reduction of the substrate acetyl-CoA. Taken together, we revealed PBA as a potential modulator of SAT1 and acetyl-CoA levels and propose PBA as a therapy for SRS and potentially other polyamine dysregulation-related diseases.
Collapse
Affiliation(s)
- Xianzun Tao
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Yi Zhu
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Zoraida Diaz-Perez
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Seok-Ho Yu
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, South Carolina, USA
| | - Jackson R. Foley
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Tracy Murray Stewart
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Robert A. Casero
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Richard Steet
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, South Carolina, USA
| | - R. Grace Zhai
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
5
|
Bourgin M, Derosa L, Silva CAC, Goubet AG, Dubuisson A, Danlos FX, Grajeda-Iglesias C, Cerbone L, Geraud A, Laparra A, Aprahamian F, Nirmalathasan N, Madeo F, Zitvogel L, Kroemer G, Durand S. Circulating acetylated polyamines correlate with Covid-19 severity in cancer patients. Aging (Albany NY) 2021; 13:20860-20885. [PMID: 34517343 PMCID: PMC8457559 DOI: 10.18632/aging.203525] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/02/2021] [Indexed: 12/18/2022]
Abstract
Cancer patients are particularly susceptible to the development of severe Covid-19, prompting us to investigate the serum metabolome of 204 cancer patients enrolled in the ONCOVID trial. We previously described that the immunosuppressive tryptophan/kynurenine metabolite anthranilic acid correlates with poor prognosis in non-cancer patients. In cancer patients, we observed an elevation of anthranilic acid at baseline (without Covid-19 diagnosis) and no further increase with mild or severe Covid-19. We found that, in cancer patients, Covid-19 severity was associated with the depletion of two bacterial metabolites, indole-3-proprionate and 3-phenylproprionate, that both positively correlated with the levels of several inflammatory cytokines. Most importantly, we observed that the levels of acetylated polyamines (in particular N1-acetylspermidine, N1,N8-diacetylspermidine and N1,N12-diacetylspermine), alone or in aggregate, were elevated in severe Covid-19 cancer patients requiring hospitalization as compared to uninfected cancer patients or cancer patients with mild Covid-19. N1-acetylspermidine and N1,N8-diacetylspermidine were also increased in patients exhibiting prolonged viral shedding (>40 days). An abundant literature indicates that such acetylated polyamines increase in the serum from patients with cancer, cardiovascular disease or neurodegeneration, associated with poor prognosis. Our present work supports the contention that acetylated polyamines are associated with severe Covid-19, both in the general population and in patients with malignant disease. Severe Covid-19 is characterized by a specific metabolomic signature suggestive of the overactivation of spermine/spermidine N1-acetyl transferase-1 (SAT1), which catalyzes the first step of polyamine catabolism.
Collapse
Affiliation(s)
- Mélanie Bourgin
- Gustave Roussy Comprehensive Cancer Institute, Villejuif 94805, France
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris 75006, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif 94805, France
| | - Lisa Derosa
- Gustave Roussy Comprehensive Cancer Institute, Villejuif 94805, France
- Inserm U1015, Villejuif 94805, France
- Center of Clinical Investigations in Biotherapies of Cancer (Biotheris), Villejuif 94805, France
| | - Carolina Alves Costa Silva
- Gustave Roussy Comprehensive Cancer Institute, Villejuif 94805, France
- Inserm U1015, Villejuif 94805, France
- Center of Clinical Investigations in Biotherapies of Cancer (Biotheris), Villejuif 94805, France
- Faculty of Medicine, Université Paris Saclay, Le Kremlin-Bicêtre 94270, France
| | - Anne-Gaëlle Goubet
- Gustave Roussy Comprehensive Cancer Institute, Villejuif 94805, France
- Inserm U1015, Villejuif 94805, France
- Center of Clinical Investigations in Biotherapies of Cancer (Biotheris), Villejuif 94805, France
- Faculty of Medicine, Université Paris Saclay, Le Kremlin-Bicêtre 94270, France
| | - Agathe Dubuisson
- Gustave Roussy Comprehensive Cancer Institute, Villejuif 94805, France
- Inserm U1015, Villejuif 94805, France
| | - François-Xavier Danlos
- Gustave Roussy Comprehensive Cancer Institute, Villejuif 94805, France
- Faculty of Medicine, Université Paris Saclay, Le Kremlin-Bicêtre 94270, France
| | - Claudia Grajeda-Iglesias
- Gustave Roussy Comprehensive Cancer Institute, Villejuif 94805, France
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris 75006, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif 94805, France
| | - Luigi Cerbone
- Cancer Medicine Department, Gustave Roussy, Villejuif 94805, France
- Inserm U981, Villejuif 94805, France
| | - Arthur Geraud
- Department of Drug Development (DITEP), Gustave Roussy, Villejuif 94805, France
- Cancer Medicine Department, Gustave Roussy, Villejuif 94805, France
| | - Ariane Laparra
- Department of Drug Development (DITEP), Gustave Roussy, Villejuif 94805, France
| | - Fanny Aprahamian
- Gustave Roussy Comprehensive Cancer Institute, Villejuif 94805, France
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris 75006, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif 94805, France
| | - Nitharsshini Nirmalathasan
- Gustave Roussy Comprehensive Cancer Institute, Villejuif 94805, France
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris 75006, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif 94805, France
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz 8010, Austria
- BioTechMed-Graz, Graz 8010, Austria
- Field of Excellence BioHealth, University of Graz, Graz 8010, Austria
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif 94805, France
- Inserm U1015, Villejuif 94805, France
- Center of Clinical Investigations in Biotherapies of Cancer (Biotheris), Villejuif 94805, France
- Faculty of Medicine, Université Paris Saclay, Le Kremlin-Bicêtre 94270, France
| | - Guido Kroemer
- Gustave Roussy Comprehensive Cancer Institute, Villejuif 94805, France
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris 75006, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif 94805, France
- Pôle De Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris 75015, France
| | - Sylvère Durand
- Gustave Roussy Comprehensive Cancer Institute, Villejuif 94805, France
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris 75006, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif 94805, France
| |
Collapse
|
6
|
Wang J, Tan B, Li J, Kong X, Tan M, Wu G. Regulatory role of l-proline in fetal pig growth and intestinal epithelial cell proliferation. ACTA ACUST UNITED AC 2020; 6:438-446. [PMID: 33364460 PMCID: PMC7750805 DOI: 10.1016/j.aninu.2020.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 06/14/2020] [Accepted: 07/07/2020] [Indexed: 12/27/2022]
Abstract
l-proline (Pro) is a precursor of ornithine, which is converted into polyamines via ornithine decarboxylase (ODC). Polyamines plays a key role in the proliferation of intestinal epithelial cells. The study investigated the effect of Pro on polyamine metabolism and cell proliferation on porcine enterocytes in vivo and in vitro. Twenty-four Huanjiang mini-pigs were randomly assigned into 1 of 3 groups and fed a basal diet that contained 0.77% alanine (Ala, iso-nitrogenous control), 1% Pro or 1% Pro + 0.0167% α-difluoromethylornithine (DFMO) from d 15 to 70 of gestation. The fetal body weight and number of fetuses per litter were determined, and the small and large intestines were obtained on d 70 ± 1.78 of gestation. The in vitro study was performed in intestinal porcine epithelial (IPEC-J2) cells cultured in Dulbecco's modified Eagle medium-high glucose (DMEM-H) containing 0 μmol/L Pro, 400 μmol/L Pro, or 400 μmol/L Pro + 10 mmol/L DFMO for 4 d. The results showed that maternal dietary supplementation with 1% Pro increased fetal weight; the protein and DNA concentrations of the fetal small intestine; and mRNA levels for potassium voltage-gated channel, shaker-related subfamily, member 1 (Kv1.1) in the fetal small and large intestines (P < 0.05). Supplementing Pro to either gilts or IPEC-J2 cells increased ODC protein abundances and polyamine concentrations in the fetal intestines and IPEC-J2 cells (P < 0.05). In comparison with the Pro group, the combined administration of Pro and DFMO reduced the expression of ODC protein and spermine concentration in the fetal intestine, as well as the concentrations of putrescine, spermidine and spermine in IPEC-J2 cells (P < 0.05). Meanwhile, the percentage of cells in the S-phase and the mRNA levels of proto-oncogenes c-fos and c-myc were increased in response to Pro supplementation, whereas depletion of cellular polyamines with DFMO increased tumor protein p53 (p53) mRNA levels (P < 0.05). Taken together, dietary supplementation with Pro improved fetal pig growth and intestinal epithelial cell proliferation via enhancing polyamine synthesis.
Collapse
Affiliation(s)
- Jing Wang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China.,Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Bi'e Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.,Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Jianjun Li
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Xiangfeng Kong
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Minjie Tan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
7
|
Baroli G, Sanchez JR, Agostinelli E, Mariottini P, Cervelli M. Polyamines: The possible missing link between mental disorders and epilepsy (Review). Int J Mol Med 2019; 45:3-9. [PMID: 31746386 DOI: 10.3892/ijmm.2019.4401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 07/22/2019] [Indexed: 11/05/2022] Open
Abstract
Polyamines are small positively charged alkylamines that are essential in a number of crucial eukaryotic processes, like normal cell growth and development. In normal physiological conditions, intracellular polyamine content is tightly regulated through a fine regulated network of biosynthetic and catabolic enzymes and a transport system. The dysregulation of this network is frequently associated to different tumors, where high levels of polyamines has been detected. Polyamines also modulate ion channels and ionotropic glutamate receptors and altered levels of polyamines have been observed in different brain diseases, including mental disorders and epilepsy. The goal of this article is to review the role of polyamines in mental disorders and epilepsy within a frame of the possible link between these two brain pathologies. The high comorbidity between these two neurological illnesses is strongly suggestive that they share a common background in the central nervous system. This review proposes an additional association between the noradrenalin/serotonin and glutamatergic neuronal circuits with polyamines. Polyamines can be considered supplementary defensive shielding molecules, important to protect the brain from the development of epilepsy and mental illnesses that are caused by different types of neurons. In this contest, the modulation of polyamine metabolism may be a novel important target for the prevention and therapeutic treatment of these diseases that have a high impact on the costs of public health and considerably affect quality of life.
Collapse
Affiliation(s)
- Giulia Baroli
- Department of Science, University of Rome 'Roma Tre', I‑00146 Rome, Italy
| | | | - Enzo Agostinelli
- Department of Biochemical Sciences 'Rossi Fanelli', University of Rome 'La Sapienza', I‑00185 Rome, Italy
| | - Paolo Mariottini
- Department of Science, University of Rome 'Roma Tre', I‑00146 Rome, Italy
| | - Manuela Cervelli
- Department of Science, University of Rome 'Roma Tre', I‑00146 Rome, Italy
| |
Collapse
|
8
|
Zahedi K, Barone S, Soleimani M. Polyamine Catabolism in Acute Kidney Injury. Int J Mol Sci 2019; 20:E4790. [PMID: 31561575 PMCID: PMC6801762 DOI: 10.3390/ijms20194790] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/17/2019] [Accepted: 09/23/2019] [Indexed: 12/16/2022] Open
Abstract
Acute kidney injury (AKI) refers to an abrupt decrease in kidney function. It affects approximately 7% of all hospitalized patients and almost 35% of intensive care patients. Mortality from acute kidney injury remains high, particularly in critically ill patients, where it can be more than 50%. The primary causes of AKI include ischemia/reperfusion (I/R), sepsis, or nephrotoxicity; however, AKI patients may present with a complicated etiology where many of the aforementioned conditions co-exist. Multiple bio-markers associated with renal damage, as well as metabolic and signal transduction pathways that are involved in the mediation of renal dysfunction have been identified as a result of the examination of models, patient samples, and clinical data of AKI of disparate etiologies. These discoveries have enhanced our ability to diagnose AKIs and to begin to elucidate the mechanisms involved in their pathogenesis. Studies in our laboratory revealed that the expression and activity of spermine/spermidine N1-acetyltransferase (SAT1), the rate-limiting enzyme in polyamine back conversion, were enhanced in kidneys of rats after I/R injury. Additional studies revealed that the expression of spermine oxidase (SMOX), another critical enzyme in polyamine catabolism, is also elevated in the kidney and other organs subjected to I/R, septic, toxic, and traumatic injuries. The maladaptive role of polyamine catabolism in the mediation of AKI and other injuries has been clearly demonstrated. This review will examine the biochemical and mechanistic basis of tissue damage brought about by enhanced polyamine degradation and discuss the potential of therapeutic interventions that target polyamine catabolic enzymes or their byproducts for the treatment of AKI.
Collapse
Affiliation(s)
- Kamyar Zahedi
- Departments of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
- Research Services, Veterans Affairs Medical Center, Cincinnati, OH 45220, USA.
- Center on Genetics of Transport, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| | - Sharon Barone
- Departments of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
- Research Services, Veterans Affairs Medical Center, Cincinnati, OH 45220, USA.
- Center on Genetics of Transport, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| | - Manoocher Soleimani
- Departments of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
- Research Services, Veterans Affairs Medical Center, Cincinnati, OH 45220, USA.
- Center on Genetics of Transport, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
9
|
Rinaldi F, Marzani B, Pinto D, Ramot Y. A spermidine-based nutritional supplement prolongs the anagen phase of hair follicles in humans: a randomized, placebo-controlled, double-blind study. Dermatol Pract Concept 2017; 7:17-21. [PMID: 29214104 PMCID: PMC5718121 DOI: 10.5826/dpc.0704a05] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/04/2017] [Indexed: 01/06/2023] Open
Abstract
Background Spermidine has been shown both in vitro and in mice models to have an anagen-prolonging effect on hair follicles (HFs). Objectives To evaluate the effects of a spermidine-based nutritional supplement on the anagen phase of HFs in healthy human subjects in a randomized, double-blind, placebo-controlled trial. Methods One hundred healthy males and females were randomized to receive a tablet containing a spermidine-based nutritional supplement or a placebo once daily for 90 days. At the beginning and the end of the treatment period, 100 HFs were plucked and subjected to microscopic evaluation to determine the number of anagen V–VI HFs, and immunohistochemical examination was performed to quantify the Ki-67 and c-Kit levels in the hair bulbs. Pull test was performed after three and six months. Results The spermidine-based nutritional supplement increased the number of anagen V–VI HFs after three months of treatment, accompanied by increased Ki-67, a marker for cellular proliferation, and decreased c-Kit, a marker for apoptosis, levels. All results were also significantly better when compared to the placebo group. The pull test remained negative after six months in all patients receiving the spermidine supplement, while 68% of the subjects in the placebo group had a positive pull test. Conclusions This preliminary study shows that a spermidine-based nutritional supplement can prolong the anagen phase in humans, and therefore might be beneficial for hair loss conditions. Further studies are needed to evaluate its effects in specific different clinical settings.
Collapse
Affiliation(s)
- Fabio Rinaldi
- International Hair Research Foundation, Milan, Italy
| | | | | | - Yuval Ramot
- Department of Dermatology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
10
|
Grau C, Starkovich M, Azamian MS, Xia F, Cheung SW, Evans P, Henderson A, Lalani SR, Scott DA. Xp11.22 deletions encompassing CENPVL1, CENPVL2, MAGED1 and GSPT2 as a cause of syndromic X-linked intellectual disability. PLoS One 2017; 12:e0175962. [PMID: 28414775 PMCID: PMC5393878 DOI: 10.1371/journal.pone.0175962] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 04/03/2017] [Indexed: 12/27/2022] Open
Abstract
By searching a clinical database of over 60,000 individuals referred for array-based CNV analyses and online resources, we identified four males from three families with intellectual disability, developmental delay, hypotonia, joint hypermobility and relative macrocephaly who carried small, overlapping deletions of Xp11.22. The maximum region of overlap between their deletions spanned ~430 kb and included two pseudogenes, CENPVL1 and CENPVL2, whose functions are not known, and two protein coding genes-the G1 to S phase transition 2 gene (GSPT2) and the MAGE family member D1 gene (MAGED1). Deletions of this ~430 kb region have not been previously implicated in human disease. Duplications of GSPT2 have been documented in individuals with intellectual disability, but the phenotypic consequences of a loss of GSPT2 function have not been elucidated in humans or mouse models. Changes in MAGED1 have not been associated with intellectual disability in humans, but loss of MAGED1 function is associated with neurocognitive and neurobehavioral phenotypes in mice. In all cases, the Xp11.22 deletion was inherited from an unaffected mother. Studies performed on DNA from one of these mothers did not show evidence of skewed X-inactivation. These results suggest that deletions of an ~430 kb region on chromosome Xp11.22 that encompass CENPVL1, CENPVL2, GSPT2 and MAGED1 cause a distinct X-linked syndrome characterized by intellectual disability, developmental delay, hypotonia, joint hypermobility and relative macrocephaly. Loss of GSPT2 and/or MAGED1 function may contribute to the intellectual disability and developmental delay seen in males with these deletions.
Collapse
Affiliation(s)
- Christina Grau
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Molly Starkovich
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Mahshid S. Azamian
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Fan Xia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Baylor Genetics, Houston, Texas, Unite States of America
| | - Sau Wai Cheung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Baylor Genetics, Houston, Texas, Unite States of America
| | - Patricia Evans
- Departments of Pediatrics and Neurology, University of Texas Southwestern Medical School, Dallas, Texas, United States of America
| | - Alex Henderson
- The Newcastle upon Tyne Hospitals, Newcastle upon Tyne, England
| | - Seema R. Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Daryl A. Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
11
|
The effects of intradermal injections of spermidine on the growth rate of fibres and mitosis of wool follicles in Merino lambs. ACTA ACUST UNITED AC 2016. [DOI: 10.1017/s1357729800052802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
AbstractPolyamines (putrescine, spermidine and spermine) are required for optimal growth in all cells, and are essential for cell proliferation and growth of cultured wool follicles, with an optimal concentration of spermidine required for the fibre elongation. The effects of a local supply of exogenous spermidine on the rate of cell division in the wool follicles, the length growth rate and diameter of fibres were therefore examined in Merino lambs. Three groups of eight lambs (40 kg) were given food at 1·2 ✕ maintenance. Spermidine was injected intradermally into a small patch (3 ✕ 3 cm) on the left flank three times per day for 7 days at one of three concentrations: 1·38, 2·75 or 4·58 џmol in 0·8 ml volume. The same volume of saline was injected into the contralateral side as a control. The concentration of spermidine in the skin patch 3 h after injection on day 7 increased by proportionately 018, 0·33 or 0·41 (P < 0001) respectively. The rates of cell division in the follicle bulb 3 h after the spermidine injection were proportionately 0104, 0184 and 0·283 higher compared with the contralateral side (P = 0078 overall) for the low, medium and high doses of spermidine respectively and differed between the three doses (P < 005). The fibre length growth rate, as measured using autoradiography, was proportionately 0099, 0117 and 0156 higher than that of the contralateral side (P < 0001 overall) for the low, medium and high doses of spermidine respectively, but differences between doses were not significant (P > 005). Spermidine injection did not result in a significant change in fibre diameter during the treatment period. The ratio of fibre length growth rate to fibre diameter was increased by the injection of spermidine (P < 0001). The results suggest that injecting extra spermidine into the skin altered spermidine homeostasis in the skin, stimulated cell proliferation and resulted in increased fibre growth.
Collapse
|
12
|
Decreased sensitivity to aspirin is associated with altered polyamine metabolism in human prostate cancer cells. Amino Acids 2015; 48:1003-1012. [PMID: 26704566 PMCID: PMC4796368 DOI: 10.1007/s00726-015-2143-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/20/2015] [Indexed: 12/21/2022]
Abstract
Aspirin is a well-known analgesic, anti-inflammatory and antipyretic drug and is recognised as a chemopreventative agent in cardiovascular disease and, more recently, in colorectal cancer. Although several studies indicate that aspirin is capable of reducing the risk of developing cancers, there is a lack of convincing evidence that aspirin can prevent prostate cancer in man. In this study, aspirin was shown to be an effective inhibitor of the growth of human prostate cancer cells. In order to investigate the link between polyamine catabolism and the effects of aspirin we used a “Tet off” system that induced the activity of spermidine/spermine N1-acetyltransferase (SSAT) in human prostate cancer cells (LNCap). Treatment with aspirin was found to decrease induced SSAT activity in these cells. A negative correlation was observed between increased polyamine catabolism via increased SSAT activity and the sensitivity to aspirin. In the presence of increased SSAT activity high amounts of N1-acetylspermidine and putrescine were observed. These cells were also found to grow more slowly than the non-induced cells. The results indicate that SSAT and its related polyamine metabolism may play a key role in sensitivity of cancer cells to aspirin and possibly other NSAIDs and this may have implications for the development of novel chemopreventative agents.
Collapse
|
13
|
Blaha M, Nemcova L, Kepkova KV, Vodicka P, Prochazka R. Gene expression analysis of pig cumulus-oocyte complexes stimulated in vitro with follicle stimulating hormone or epidermal growth factor-like peptides. Reprod Biol Endocrinol 2015; 13:113. [PMID: 26445099 PMCID: PMC4596359 DOI: 10.1186/s12958-015-0112-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/02/2015] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The gonadotropin-induced resumption of oocyte meiosis in preovulatory follicles is preceded by expression of epidermal growth factor (EGF)-like peptides, amphiregulin (AREG) and epiregulin (EREG), in mural granulosa and cumulus cells. Both the gonadotropins and the EGF-like peptides possess the capacity to stimulate resumption of oocyte meiosis in vitro via activation of a broad signaling network in cumulus cells. To better understand the rapid genomic actions of gonadotropins (FSH) and EGF-like peptides, we analyzed transcriptomes of cumulus cells at 3 h after their stimulation. METHODS We hybridized aRNA from cumulus cells to a pig oligonucleotide microarray and compared the transcriptomes of FSH- and AREG/EREG-stimulated cumulus cells with untreated control cells and vice versa. The identified over- and underexpressed genes were subjected to functional genomic analysis according to their molecular and cellular functions. The expression pattern of 50 selected genes with a known or potential function in ovarian development was verified by real-time qRT-PCR. RESULTS Both FSH and AREG/EREG increased the expression of genes associated with regulation of cell proliferation, cell migration, blood coagulation and extracellular matrix remodeling. FSH alone induced the expression of genes involved in inflammatory response and in the response to reactive oxygen species. Moreover, FSH stimulated the expression of genes closely related to some ovulatory events either exclusively or significantly more than AREG/EREG (AREG, ADAMTS1, HAS2, TNFAIP6, PLAUR, PLAT, and HSD17B7). In contrast to AREG/EREG, FSH also increased the expression of genes coding for key transcription factors (CEBPB, FOS, ID1/3, and NR5A2), which may contribute to the differing expression profiles of FSH- and AREG/EREG-treated cumulus cells. CONCLUSIONS The impact of FSH on cumulus cell gene transcription was higher than the impact of EGF-like factors in terms of the number of cell functions affected as well as the number of over- and underexpressed genes. Both FSH and EGF-like factors overexpressed genes involved in the post-ovulatory switch in steroidogenesis and tissue remodelling. However, FSH was remarkably more efficient in the up-regulation of several specific genes essential for ovulation of matured oocytes and also genes that been reported to play an important role in maturation of cumulus-enclosed oocytes in vitro.
Collapse
Affiliation(s)
- Milan Blaha
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics, The Czech Academy of Sciences, Rumburska 89, 277 21, Libechov, Czech Republic
| | - Lucie Nemcova
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics, The Czech Academy of Sciences, Rumburska 89, 277 21, Libechov, Czech Republic
| | - Katerina Vodickova Kepkova
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics, The Czech Academy of Sciences, Rumburska 89, 277 21, Libechov, Czech Republic
| | - Petr Vodicka
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Radek Prochazka
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics, The Czech Academy of Sciences, Rumburska 89, 277 21, Libechov, Czech Republic.
| |
Collapse
|
14
|
Zahedi K, Barone S, Wang Y, Murray-Stewart T, Roy-Chaudhury P, Smith RD, Casero RA, Soleimani M. Proximal tubule epithelial cell specific ablation of the spermidine/spermine N1-acetyltransferase gene reduces the severity of renal ischemia/reperfusion injury. PLoS One 2014; 9:e110161. [PMID: 25390069 PMCID: PMC4229091 DOI: 10.1371/journal.pone.0110161] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 09/09/2014] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Expression and activity of spermidine/spermine N1-acetyltransferase (SSAT) increases in kidneys subjected to ischemia/reperfusion (I/R) injury, while its ablation reduces the severity of such injuries. These results suggest that increased SSAT levels contribute to organ injury; however, the role of SSAT specifically expressed in proximal tubule epithelial cells, which are the primary targets of I/R injury, in the mediation of renal damage remains unresolved. METHODS Severity of I/R injury in wt and renal proximal tubule specific SSAT-ko mice (PT-SSAT-Cko) subjected to bilateral renal I/R injury was assessed using cellular and molecular biological approaches. RESULTS Severity of the loss of kidney function and tubular damage are reduced in PT-SSAT-Cko- compared to wt-mice after I/R injury. In addition, animals treated with MDL72527, an inhibitor of polyamine oxidases, had less severe renal damage than their vehicle treated counter-parts. The renal expression of HMGB 1 and Toll like receptors (TLR) 2 and 4 were also reduced in PT-SSAT-Cko- compared to wt mice after I/R injury. Furthermore, infiltration of neutrophils, as well as expression of tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1 (MCP-1) and interleukin-6 (IL-6) transcripts were lower in the kidneys of PT-SSAT-Cko compared to wt mice after I/R injury. Finally, the activation of caspase3 was more pronounced in the wt compared to PT-SSAT-Cko animals. CONCLUSIONS Enhanced SSAT expression by proximal tubule epithelial cells leads to tubular damage, and its deficiency reduces the severity of renal I/R injury through reduction of cellular damage and modulation of the innate immune response.
Collapse
Affiliation(s)
- Kamyar Zahedi
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Veterans Affair Medical Center, Cincinnati, Ohio, United States of America
| | - Sharon Barone
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Veterans Affair Medical Center, Cincinnati, Ohio, United States of America
| | - Yang Wang
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Tracy Murray-Stewart
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Prabir Roy-Chaudhury
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Roger D. Smith
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Robert A. Casero
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Manoocher Soleimani
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Veterans Affair Medical Center, Cincinnati, Ohio, United States of America
| |
Collapse
|
15
|
Luke CT, Casta A, Kim H, Christiano AM. Hairless and the polyamine putrescine form a negative regulatory loop in the epidermis. Exp Dermatol 2014; 22:644-9. [PMID: 24079733 DOI: 10.1111/exd.12228] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2013] [Indexed: 11/30/2022]
Abstract
Hairless (HR) is a nuclear protein with corepressor activity that is highly expressed in the skin and hair follicle. Mutations in Hairless lead to hair loss accompanied by the appearance of papules (atrichia with papular lesions), and similar phenotypes appear when the key polyamine enzymes ornithine decarboxylase (ODC) and spermidine/spermine N(1) -acetyltransferase (SSAT) are overexpressed. Both ODC and SSAT transgenic mice have elevated epidermal levels of putrescine, leading us to investigate the mechanistic link between putrescine and HR. We show here that HR and putrescine form a negative regulatory network, as epidermal ODC expression is elevated when HR is decreased and vice versa. We also show that the regulation of ODC by HR is dependent on the MYC superfamily of proteins, in particular MYC, MXI1 and MXD3. Furthermore, we found that elevated levels of putrescine lead to decreased HR expression, but that the SSAT-TG phenotype is distinct from that found when HR is mutated. Transcriptional microarray analysis of putrescine-treated primary human keratinocytes demonstrated differential regulation of genes involved in protein-protein interactions, nucleotide binding and transcription factor activity, suggesting that the putrescine-HR negative regulatory loop may have a large impact on epidermal homeostasis and hair follicle cycling.
Collapse
Affiliation(s)
- Courtney T Luke
- Department of Dermatology, Columbia University, College of Physicians & Surgeons, New York, NY, USA
| | | | | | | |
Collapse
|
16
|
Spermidine/spermine N1-acetyltransferase activity associates with white blood cell count in myeloid leukemias. Exp Hematol 2014; 42:574-80. [DOI: 10.1016/j.exphem.2014.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 01/20/2014] [Accepted: 02/10/2014] [Indexed: 01/09/2023]
|
17
|
Discovery and validation of blood biomarkers for suicidality. Mol Psychiatry 2013; 18:1249-64. [PMID: 23958961 PMCID: PMC3835939 DOI: 10.1038/mp.2013.95] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 06/21/2013] [Accepted: 06/25/2013] [Indexed: 01/01/2023]
Abstract
Suicides are a leading cause of death in psychiatric patients, and in society at large. Developing more quantitative and objective ways (biomarkers) for predicting and tracking suicidal states would have immediate practical applications and positive societal implications. We undertook such an endeavor. First, building on our previous blood biomarker work in mood disorders and psychosis, we decided to identify blood gene expression biomarkers for suicidality, looking at differential expression of genes in the blood of subjects with a major mood disorder (bipolar disorder), a high-risk population prone to suicidality. We compared no suicidal ideation (SI) states and high SI states using a powerful intrasubject design, as well as an intersubject case-case design, to generate a list of differentially expressed genes. Second, we used a comprehensive Convergent Functional Genomics (CFG) approach to identify and prioritize from the list of differentially expressed gene biomarkers of relevance to suicidality. CFG integrates multiple independent lines of evidence-genetic and functional genomic data-as a Bayesian strategy for identifying and prioritizing findings, reducing the false-positives and false-negatives inherent in each individual approach. Third, we examined whether expression levels of the blood biomarkers identified by us in the live bipolar subject cohort are actually altered in the blood in an age-matched cohort of suicide completers collected from the coroner's office, and report that 13 out of the 41 top CFG scoring biomarkers (32%) show step-wise significant change from no SI to high SI states, and then to the suicide completers group. Six out of them (15%) remained significant after strict Bonferroni correction for multiple comparisons. Fourth, we show that the blood levels of SAT1 (spermidine/spermine N1-acetyltransferase 1), the top biomarker identified by us, at the time of testing for this study, differentiated future as well as past hospitalizations with suicidality, in a live cohort of bipolar disorder subjects, and exhibited a similar but weaker pattern in a live cohort of psychosis (schizophrenia/schizoaffective disorder) subjects. Three other (phosphatase and tensin homolog (PTEN), myristoylated alanine-rich protein kinase C substrate (MARCKS), and mitogen-activated protein kinase kinase kinase 3 (MAP3K3)) of the six biomarkers that survived Bonferroni correction showed similar but weaker effects. Taken together, the prospective and retrospective hospitalization data suggests SAT1, PTEN, MARCKS and MAP3K3 might be not only state biomarkers but trait biomarkers as well. Fifth, we show how a multi-dimensional approach using SAT1 blood expression levels and two simple visual-analog scales for anxiety and mood enhances predictions of future hospitalizations for suicidality in the bipolar cohort (receiver-operating characteristic curve with area under the curve of 0.813). Of note, this simple approach does not directly ask about SI, which some individuals may deny or choose not to share with clinicians. Lastly, we conducted bioinformatic analyses to identify biological pathways, mechanisms and medication targets. Overall, suicidality may be underlined, at least in part, by biological mechanisms related to stress, inflammation and apoptosis.
Collapse
|
18
|
Inflammation, carcinogenesis and neurodegeneration studies in transgenic animal models for polyamine research. Amino Acids 2013; 46:521-30. [PMID: 23933909 DOI: 10.1007/s00726-013-1572-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 07/26/2013] [Indexed: 12/18/2022]
Abstract
Natural polyamines (PA) are cationic molecules affecting cell growth and proliferation. An association between increased polyamine biosynthesis and inflammation-induced carcinogenesis has been recognised. On the other hand, there are indications that inflammatory stimuli can up-regulate polyamine catabolism and that altered polyamine metabolism could affect pro- and anti-inflammatory cytokines. Since the polyamine content is strictly related to cell growth, a consistent number of evidences relate polyamine metabolism dysfunction with cancer. The increase of polyamine levels in malignant and proliferating cells attracted the interest of scientists during last decades, addressing polyamine depletion as a new strategy to inhibit carcinogenesis. Several studies suggest that PA also play an important role in neurodegeneration, but the mechanisms by which they participate in neuronal death are still unclear. Furthermore, the role of endogenous PA in normal brain functioning is yet to be elucidated. The consequences of an alteration of polyamine metabolism have also been approached in vivo with the use of transgenic animals overexpressing or devoid of some enzymes involved in polyamine metabolism. In the present work we review the experimental investigation carried out on inflammation, cancerogenesis and neurodegeneration using transgenic animals engineered as models for polyamine research.
Collapse
|
19
|
Modulation of polyamine metabolic flux in adipose tissue alters the accumulation of body fat by affecting glucose homeostasis. Amino Acids 2013; 46:701-15. [PMID: 23881108 DOI: 10.1007/s00726-013-1548-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 06/26/2013] [Indexed: 10/26/2022]
Abstract
The continued rise in obesity despite public education, awareness and policies indicates the need for mechanism-based therapeutic approaches to help control the disease. Our data, in conjunction with other studies, suggest an unexpected role for the polyamine catabolic enzyme spermidine/spermine-N1-acetyltransferase (SSAT) in fat homeostasis. Our previous studies showed that deletion of SSAT greatly exaggerates weight gain and that the transgenic overexpression suppresses weight gain in mice on a high-fat diet. This discovery is substantial but the underlying molecular linkages are only vaguely understood. Here, we used a comprehensive systems biology approach, on white adipose tissue (WAT), to discover that the partition of acetyl-CoA towards polyamine catabolism alters glucose homeostasis and hence, fat accumulation. Comparative proteomics and antibody-based expression studies of WAT in SSAT knockout, wild type and transgenic mice identified nine proteins with an increasing gradient across the genotypes, all of which correlate with acetyl-CoA consumption in polyamine acetylation. Adipose-specific SSAT knockout mice and global SSAT knockout mice on a high-fat diet exhibited similar growth curves and proteomic patterns in their WAT, confirming that attenuated consumption of acetyl-CoA in acetylation of polyamines in adipose tissue drives the obese phenotype of these mice. Analysis of protein expression indicated that the identified changes in the levels of proteins regulating acetyl-CoA consumption occur via the AMP-activated protein kinase pathway. Together, our data suggest that differential expression of SSAT markedly alters acetyl-CoA levels, which in turn trigger a global shift in glucose metabolism in adipose tissue, thus affecting the accumulation of body fat.
Collapse
|
20
|
Pirnes-Karhu S, Mäntymaa P, Sironen R, Mäkinen PI, Wojciechowski S, Juutinen S, Koistinaho J, Hörkkö S, Jantunen E, Alhonen L, Uimari A. Enhanced polyamine catabolism disturbs hematopoietic lineage commitment and leads to a myeloproliferative disease in mice overexpressing spermidine/spermine N¹-acetyltransferase. Amino Acids 2013; 46:689-700. [PMID: 23836421 DOI: 10.1007/s00726-013-1546-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/25/2013] [Indexed: 01/08/2023]
Abstract
Spermidine/spermine N(1)-acetyltransferase (SSAT) regulates intracellular polyamine levels by catabolizing spermidine and spermine which are essential for cell proliferation and differentiation. Hematological characterization of SSAT overexpressing mice (SSAT mice) revealed enhanced myelopoiesis and thrombocytopoiesis leading to increased amounts of myeloid cells in bone marrow, peripheral blood, and spleen compared to wild-type animals. The level of SSAT activity in the bone marrow cells was associated with the bone marrow cellularity and spleen weight which both were significantly increased in SSAT mice. The result of bone marrow transplantations indicated that both the intrinsic SSAT overexpression of bone marrow cells and bone marrow microenvironment had an impact on the observed hematopoietic phenotype. The Lineage-negative Sca-1(+) c-Kit(+) hematopoietic stem cell (HSC) compartment in SSAT mice, showed enhanced proliferation, increased proportion of long-term HSCs and affected expression of transcription factors associated with lineage priming and myeloid differentiation. The proportions of common myeloid and megakaryocytic/erythroid progenitors were decreased and the proportion of granulocyte-macrophage progenitors was increased in SSAT bone marrow. The data suggest that SSAT overexpression and the concomitantly accelerated polyamine metabolism in hematopoietic cells and bone marrow microenvironment affect lineage commitment and lead to the development of a mouse myeloproliferative disease in SSAT mice.
Collapse
Affiliation(s)
- Sini Pirnes-Karhu
- Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Depletion of cellular polyamines, spermidine and spermine, causes a total arrest in translation and growth in mammalian cells. Proc Natl Acad Sci U S A 2013; 110:2169-74. [PMID: 23345430 DOI: 10.1073/pnas.1219002110] [Citation(s) in RCA: 190] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The polyamines, putrescine, spermidine, and spermine, are essential polycations, intimately involved in the regulation of cellular proliferation. Although polyamines exert dynamic effects on the conformation of nucleic acids and macromolecular synthesis in vitro, their specific functions in vivo are poorly understood. We investigated the cellular function of polyamines by overexpression of a key catabolic enzyme, spermidine/spermine N(1)-acetyltransferase 1 (SAT1) in mammalian cells. Transient cotransfection of HeLa cells with GFP and SAT1 vectors suppressed GFP protein expression without lowering its mRNA level, an indication that the block in GFP expression was not at transcription, but at translation. Fluorescence single-cell imaging also revealed specific inhibition of endogenous protein synthesis in the SAT1 overexpressing cells, without any inhibition of synthesis of DNA or RNA. Overexpression of SAT1 using a SAT1 adenovirus led to rapid depletion of cellular spermidine and spermine, total inhibition of protein synthesis, and growth arrest within 24 h. The SAT1 effect is most likely due to depletion of spermidine and spermine, because stable polyamine analogs that are not substrates for SAT1 restored GFP and endogenous protein synthesis. Loss of polysomes with increased 80S monosomes in the polyamine-depleted cells suggests a direct role for polyamines in translation initiation. Our data provide strong evidence for a primary function of polyamines, spermidine and spermine, in translation in mammalian cells.
Collapse
|
22
|
Zahedi K, Barone SL, Xu J, Steinbergs N, Schuster R, Lentsch AB, Amlal H, Wang J, Casero RA, Soleimani M. Hepatocyte-specific ablation of spermine/spermidine-N1-acetyltransferase gene reduces the severity of CCl4-induced acute liver injury. Am J Physiol Gastrointest Liver Physiol 2012; 303:G546-60. [PMID: 22723264 PMCID: PMC3468550 DOI: 10.1152/ajpgi.00431.2011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Activation of spermine/spermidine-N(1)-acetyltransferase (SSAT) leads to DNA damage and growth arrest in mammalian cells, and its ablation reduces the severity of ischemic and endotoxic injuries. Here we have examined the role of SSAT in the pathogenesis of toxic liver injury caused by carbon tetrachloride (CCl(4)). The expression and activity of SSAT increase in the liver subsequent to CCl(4) administration. Furthermore, the early liver injury after CCl(4) treatment was significantly attenuated in hepatocyte-specific SSAT knockout mice (Hep-SSAT-Cko) compared with wild-type (WT) mice as determined by the reduced serum alanine aminotransferase levels, decreased hepatic lipid peroxidation, and less severe liver damage. Cytochrome P450 2e1 levels remained comparable in both genotypes, suggesting that SSAT deficiency does not affect the metabolism of CCl(4). Hepatocyte-specific deficiency of SSAT also modulated the induction of cytokines involved in inflammation and repair as well as leukocyte infiltration. In addition, Noxa and activated caspase 3 levels were elevated in the livers of WT compared with Hep-SSAT-Cko mice. Interestingly, the onset of cell proliferation was significantly more robust in the WT compared with Hep-SSAT Cko mice. The inhibition of polyamine oxidases protected the animals against CCl(4)-induced liver injury. Our studies suggest that while the abrogation of polyamine back conversion or inhibition of polyamine oxidation attenuate the early injury, they may delay the onset of hepatic regeneration.
Collapse
Affiliation(s)
- Kamyar Zahedi
- Division of Nephrology and Hypertension, Department of Medicine, University of Cincinnati College of Medicine, Ohio, USA.
| | - Sharon L. Barone
- 1Division of Nephrology and Hypertension, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio;
| | - Jie Xu
- 1Division of Nephrology and Hypertension, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio;
| | - Nora Steinbergs
- 2The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland;
| | - Rebecca Schuster
- 3Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio; and
| | - Alex B. Lentsch
- 3Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio; and
| | - Hassane Amlal
- 1Division of Nephrology and Hypertension, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio;
| | - Jiang Wang
- 4Department of Pathology and Laboratory Medicine and
| | - Robert A. Casero
- 2The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland;
| | - Manoocher Soleimani
- 1Division of Nephrology and Hypertension, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio; ,5Veterans Affair Medical Center, Cincinnati, Ohio
| |
Collapse
|
23
|
Perez-Leal O, Barrero CA, Clarkson AB, Casero RA, Merali S. Polyamine-regulated translation of spermidine/spermine-N1-acetyltransferase. Mol Cell Biol 2012; 32:1453-67. [PMID: 22354986 PMCID: PMC3318587 DOI: 10.1128/mcb.06444-11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 02/09/2012] [Indexed: 01/08/2023] Open
Abstract
Rapid synthesis of the polyamine catabolic enzyme spermidine/spermine-N(1)-acetyltransferase (SSAT) in response to increased polyamines is an important polyamine homeostatic mechanism. Indirect evidence has suggested that there is an important control mechanism involving the release of a translational repressor protein that allows the immediate initiation of SSAT protein synthesis without RNA transcription, maturation, or translocation. To identify a repressor protein, we used a mass spectroscopy-based RNA-protein interaction system and found six proteins that bind to the coding region of SSAT mRNA. Individual small interfering RNA (siRNA) experiments showed that nucleolin knockdown enhances SSAT translation. Nucleolin exists in several isoforms, and we report that the isoform that binds to SSAT mRNA undergoes autocatalysis in the presence of polyamines, a result suggesting that there is a negative feedback system that helps control the cellular content of polyamines. Preliminary molecular interaction data show that a nucleolin isoform binds to a 5' stem-loop of the coding region of SSAT mRNA. The glycine/arginine-rich C terminus of nucleolin is required for binding, and the four RNA recognition motif domains are included in the isoform that blocks SSAT translation. Understanding SSAT translational control mechanisms has the potential for the development of therapeutic strategies against cancer and obesity.
Collapse
Affiliation(s)
- Oscar Perez-Leal
- Department of Biochemistry, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Carlos A. Barrero
- Department of Biochemistry, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Allen B. Clarkson
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
| | - Robert A. Casero
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Salim Merali
- Department of Biochemistry, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
24
|
Van den Bossche J, Lamers WH, Koehler ES, Geuns JMC, Alhonen L, Uimari A, Pirnes-Karhu S, Van Overmeire E, Morias Y, Brys L, Vereecke L, De Baetselier P, Van Ginderachter JA. Pivotal Advance: Arginase-1-independent polyamine production stimulates the expression of IL-4-induced alternatively activated macrophage markers while inhibiting LPS-induced expression of inflammatory genes. J Leukoc Biol 2012; 91:685-99. [PMID: 22416259 DOI: 10.1189/jlb.0911453] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In macrophages, basal polyamine (putrescine, spermidine, and spermine) levels are relatively low but are increased upon IL-4 stimulation. This Th2 cytokine induces Arg1 activity, which converts arginine into ornithine, and ornithine can be decarboxylated by ODC to produce putrescine, which is further converted into spermidine and spermine. Recently, we proposed polyamines as novel agents in IL-4-dependent E-cadherin regulation in AAMs. Here, we demonstrate for the first time that several, but not all, AAM markers depend on polyamines for their IL-4-induced gene and protein expression and that polyamine dependency of genes relies on the macrophage type. Remarkably, Arg1-deficient macrophages display rather enhanced IL-4-induced polyamine production, suggesting that an Arg1-independent polyamine synthesis pathway may operate in macrophages. On the other side of the macrophage activation spectrum, LPS-induced expression of several proinflammatory genes was increased significantly in polyamine-depleted CAMs. Overall, we propose Arg1 independently produced polyamines as novel regulators of the inflammatory status of the macrophage. Indeed, whereas polyamines are needed for IL-4-induced expression of several AAM mediators, they inhibit the LPS-mediated expression of proinflammatory genes in CAMs.
Collapse
Affiliation(s)
- Jan Van den Bossche
- Myeloid Cell Immunology Lab, VIB-Vrije Universiteit Brussel, Building E, Level 8, Pleinlaan 2, B-1050, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Vargas MF, Tapia-Pizarro AA, Henríquez SP, Quezada M, Salvatierra AM, Noe G, Munroe DJ, Velasquez LA, Croxatto HB. Effect of single post-ovulatory administration of levonorgestrel on gene expression profile during the receptive period of the human endometrium. J Mol Endocrinol 2012; 48:25-36. [PMID: 22052941 DOI: 10.1530/jme-11-0094] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The hypothesis that levonorgestrel (LNG) used as an emergency contraceptive interferes with endometrial receptivity remains unproven. We compared the endometrial gene expression profile during the receptive period after administering a single dose of LNG 1.5 mg or placebo on day 1 of the luteal phase. An endometrial biopsy was done on day LH+7 or LH+8 and samples were taken from seven volunteers, each one contributing with one cycle treated with placebo and another with LNG. The expression of 20 383 genes was determined using cDNA microarrays. Real-time RT-PCR was used 1) to confirm the differences found in DNA microarray analysis and 2) to determine the effect of LNG on transcript levels of C3, C4BPα, COX2, MAOA, S100A4, and SERPINB9, known to be upregulated during receptivity, and on cPLA2α, JAK1, JNK1, CTSL1, and GSTP1, known to respond to mifepristone. Additional endometrial biopsies were done during the pre-receptive (LH+3) and receptive (LH+7) period and samples were taken from eight untreated volunteers in order to determine the changes associated with acquisition of receptivity of 14 genes. Mean levels of PAEP, TGM2, CLU, IGF2, and IL6ST mRNAs increased after administering LNG while those of HGD, SAT1, EVA1, LOC90133, ANXA1, SLC25A29, CYB5A, CRIP1, and SLC39A14 decreased. Except for the level of ANXA1 transcript, all changes remained within the range observed in untreated controls, and none of the transcripts responding to mifepristone changed in response to LNG. Post-ovulatory administration of LNG caused minimal changes in gene expression profiling during the receptive period. Neither the magnitude nor the nature or direction of the changes endorses the hypothesis that LNG interferes with endometrial receptivity.
Collapse
Affiliation(s)
- M F Vargas
- Universidad Santiago de Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Cerrada-Gimenez M, Tusa M, Casellas A, Pirinen E, Moya M, Bosch F, Alhonen L. Altered glucose-stimulated insulin secretion in a mouse line with activated polyamine catabolism. Transgenic Res 2011; 21:843-53. [PMID: 22180015 DOI: 10.1007/s11248-011-9579-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 11/30/2011] [Indexed: 11/28/2022]
Abstract
Ubiquitous activation of polyamine catabolism has been demonstrated to have protective effects in mice on fat accumulation and insulin sensitivity/glucose tolerance in, both, normal conditions and after a high fat diet. We have analyzed the endocrine pancreas functionality in four months-old male mice overexpressing the rate limiting enzyme in the polyamine catabolism, spermidine/spermine N¹-acetyltransferase (SSAT). The pancreatic SSAT activity was 37-fold elevated in the transgenic mice, which reduced the total pancreatic and islet pools of spermidine (71%) and spermine (69%), and increased putrescine and N¹-acetyl spermidine. Reduction in the islet ATP levels (65%) was accompanied with increased transcription of 5'-AMP-activated protein kinase (AMPK) (1.5-fold) and Foxa2 (2.7-fold), and reduced HNF4α (67%) and HNF1α (92%), insulin 1 (47%), insulin 2 (50%), and Glut2 (57%). Moreover, the SSAT transgenic mice also presented increased beta cell area, decreased insulin production, and altered glucose-stimulated insulin secretion. It has been hypothesized that the acute activation of the polyamine catabolism produces a futile cycle that greatly decreases the energy reserves of the cell. The lower energy status would activate the energy expenditure regulator, AMPK, which would consequently repress the PI3K/Akt pathway, and activate the transcription factor Foxa2.
Collapse
Affiliation(s)
- M Cerrada-Gimenez
- Biotechnology and Molecular Medicine, A.I. Virtanen Institute, Biocenter Kuopio, University of Eastern Finland, Kuopio Campus, P.O.Box 1627, 70211 Kuopio, Finland.
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
The polyamines are ubiquitous polycationic compounds. Over the past 40 yr, investigation has shown that some of these, namely spermine, spermidine, and putrescine, are essential to male and female reproductive processes and to embryo/fetal development. Indeed, their absence is characterized by infertility and arrest in embryogenesis. Mammals synthesize polyamines de novo from amino acids or import these compounds from the diet. Information collected recently has shown that polyamines are essential regulators of cell growth and gene expression, and they have been implicated in both mitosis and meiosis. In male reproduction, polyamine expression correlates with stages of spermatogenesis, and polyamines appear to function in promoting sperm motility. There is evidence for polyamine involvement in ovarian follicle development and ovulation in female mammals, and polyamine synthesis is required for steroidogenesis in the ovary. Studies of the embryo indicate a polyamine requirement that can be met from maternal sources before implantation, whereas elimination of polyamine synthesis abrogates embryo development at gastrulation. Polyamines play roles in embryo implantation, in decidualization, and in placental formation and function, and polyamine privation during gestation results in intrauterine growth retardation. Emerging information implicates dietary arginine and dietary polyamines as nutritional regulators of fertility. The mechanisms by which polyamines regulate these multiple and diverse processes are not yet well explored; thus, there is fertile ground for further productive investigation.
Collapse
Affiliation(s)
- Pavine L C Lefèvre
- Centre de Recherche en Reproduction Animale, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, Canada QC J2S 2M2
| | | | | |
Collapse
|
28
|
Cerrada-Gimenez M, Weisell J, Hyvönen MT, Park MH, Alhonen L, Vepsäläinen J, Keinänen TA. Complex N-acetylation of triethylenetetramine. Drug Metab Dispos 2011; 39:2242-9. [PMID: 21878558 DOI: 10.1124/dmd.111.041798] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Triethylenetetramine (TETA) is an efficient copper chelator that has versatile clinical potential. We have recently shown that spermidine/spermine-N(1)-acetyltransferase (SSAT1), the key polyamine catabolic enzyme, acetylates TETA in vitro. Here, we studied the metabolism of TETA in three different mouse lines: syngenic, SSAT1-overexpressing, and SSAT1-deficient (SSAT1-KO) mice. The mice were sacrificed at 1, 2, or 4 h after TETA injection (300 mg/kg i.p.). We found only N(1)-acetyltriethylenetetramine (N(1)AcTETA) and/or TETA in the liver, kidney, and plasma samples. As expected, SSAT1-overexpressing mice acetylated TETA at an accelerated rate compared with syngenic and SSAT1-KO mice. It is noteworthy that SSAT1-KO mice metabolized TETA as syngenic mice did, probably by thialysine acetyltransferase, which had a K(m) value of 2.5 ± 0.3 mM and a k(cat) value of 1.3 s(-1) for TETA when tested in vitro with the human recombinant enzyme. Thus, the present results suggest that there are at least two N-acetylases potentially metabolizing TETA. However, their physiological significance for TETA acetylation requires further studies. Furthermore, we detected chemical intramolecular N-acetyl migration from the N(1) to N(3) position of N(1)AcTETA and N(1),N(8)-diacetyltriethylenetetramine in an acidified high-performance liquid chromatography sample matrix. The complex metabolism of TETA together with the intramolecular N-acetyl migration may explain the huge individual variations in the acetylation rate of TETA reported earlier.
Collapse
Affiliation(s)
- Marc Cerrada-Gimenez
- Department of Medicine, Biocenter Kuopio, University of Eastern Finland, Kuopio, Finland
| | | | | | | | | | | | | |
Collapse
|
29
|
Koponen T, Cerrada-Gimenez M, Pirinen E, Hohtola E, Paananen J, Vuohelainen S, Tusa M, Pirnes-Karhu S, Heikkinen S, Virkamäki A, Uimari A, Alhonen L, Laakso M. The activation of hepatic and muscle polyamine catabolism improves glucose homeostasis. Amino Acids 2011; 42:427-40. [PMID: 21814795 DOI: 10.1007/s00726-011-1013-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 05/26/2011] [Indexed: 11/29/2022]
Abstract
The mitochondrial biogenesis and energy expenditure regulator, PGC-1α, has been previously reported to be induced in the white adipose tissue (WAT) and liver of mice overexpressing spermidine/spermine N (1)-acetyltransferase (SSAT). The activation of PGC-1α in these mouse lines leads to increased number of mitochondria, improved glucose homeostasis, reduced WAT mass and elevated basal metabolic rate. The constant activation of polyamine catabolism produces a futile cycle that greatly reduces the ATP pools and induces 5'-AMP-activated protein kinase (AMPK), which in turn activates PGC-1α in WAT. In this study, we have investigated the effects of activated polyamine catabolism on the glucose and energy metabolisms when targeted to specific tissues. For that we used a mouse line overexpressing SSAT under the endogenous SSAT promoter, an inducible SSAT overexpressing mouse model using the metallothionein I promoter (MT-SSAT), and a mouse model with WAT-specific SSAT overexpression (aP2-SSAT). The results demonstrated that WAT-specific SSAT overexpression was sufficient to increase the number of mitochondria, reduce WAT mass and protect the mice from high-fat diet-induced obesity. However, the improvement in the glucose homeostasis is achieved only when polyamine catabolism is enhanced at the same time in the liver and skeletal muscle. Our results suggest that the tissue-specific targeting of activated polyamine catabolism may reveal new possibilities for the development of drugs boosting mitochondrial metabolism and eventually for treatment of obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Taina Koponen
- Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, Kuopio Campus, P.O. Box 1627, 70211, Kuopio, Finland.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Uimari A, Merentie M, Sironen R, Pirnes-Karhu S, Peräniemi S, Alhonen L. Overexpression of spermidine/spermine N1-acetyltransferase or treatment with N1-N11-diethylnorspermine attenuates the severity of zinc-induced pancreatitis in mouse. Amino Acids 2011; 42:461-71. [PMID: 21814793 DOI: 10.1007/s00726-011-1025-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 04/22/2011] [Indexed: 12/15/2022]
Abstract
Depletion of pancreatic intracellular polyamine pools has been observed in acute pancreatitis both in the animal models and in humans. In this study, the wild-type mice, polyamine catabolic enzyme spermidine/spermine N(1)-acetyltransferase overexpressing (SSAT mice) and SSAT-deficient mice were used to characterize the new zinc-induced acute pancreatitis mouse model and study the role of polyamines and polyamine catabolism in this model. Intraperitoneal zinc injection induced acute necrotizing pancreatitis in wild-type mice as well as in SSAT-overexpressing and SSAT-deficient mice. Serum α-amylase activity was significantly increased in all zinc-treated mice compared with the untreated controls. However, the α-amylase activities in SSAT mice were constantly lower than those in the other groups. Histopathological examination of pancreatic tissue revealed edema, acinar cell necrosis and necrotizing inflammation, typical for acute pancreatitis. Compared with the other zinc-treated mice less damage according to the histopathological analysis was observed in the pancreatic tissue of SSAT mice. Levels of intracellular spermidine, and occasionally spermine, were significantly decreased in pancreases of all zinc-treated animals and SSAT enzyme activity was enhanced both in wild-type and SSAT mice. Interestingly, a spermine analog, N(1), N(11)-diethylnorspermine (DENSpm), enhanced the proliferation of pancreatic cells and reduced the severity of zinc-induced pancreatitis in wild-type mice. The results show that in mice a single intraperitoneal zinc injection causes acute necrotizing pancreatitis accompanied by decrease of intracellular polyamine pools. The study supports the important role of polyamines for the integrity and function of the pancreas. In addition, the study suggests that whole body overexpression of SSAT obtained in SSAT mice reduces inflammatory pancreatic cell injury.
Collapse
Affiliation(s)
- Anne Uimari
- Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | | | | | | | | | | |
Collapse
|
31
|
Pirnes-Karhu S, Sironen R, Alhonen L, Uimari A. Lipopolysaccharide-induced anti-inflammatory acute phase response is enhanced in spermidine/spermine N1-acetyltransferase (SSAT) overexpressing mice. Amino Acids 2011; 42:473-84. [PMID: 21814792 DOI: 10.1007/s00726-011-1026-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 05/10/2011] [Indexed: 12/29/2022]
Abstract
Bacterial lipopolysaccharide (LPS) is an effective activator of the components of innate immunity. It has been shown that polyamines and their metabolic enzymes affect the LPS-induced immune response by modulating both pro- and anti-inflammatory actions. On the other hand, LPS causes changes in cellular polyamine metabolism. In this study, the LPS-induced inflammatory response in spermidine/spermine N(1)-acetyltransferase overexpressing transgenic mice (SSAT mice) was analyzed. In liver and kidneys, LPS enhanced the activity of the polyamine biosynthetic enzyme ornithine decarboxylase and increased the intracellular putrescine content in both SSAT overexpressing and wild-type mice. In survival studies, the enhanced polyamine catabolism and concomitantly altered cellular polyamine pools in SSAT mice did not affect the LPS-induced mortality of these animals. However, in the acute phase of LPS-induced inflammatory response, the serum levels of proinflammatory cytokines interleukin-1β and interferon-γ were significantly reduced and, on the contrary, anti-inflammatory cytokine interleukin-10 was significantly increased in the sera of SSAT mice compared with the wild-type animals. In addition, hepatic acute-phase proteins C-reactive protein, haptoglobin and α(1)-acid glycoprotein were expressed in higher amounts in SSAT mice than in the wild-type animals. In summary, the study suggests that SSAT overexpression obtained in SSAT mice enhances the anti-inflammatory actions in the acute phase of LPS-induced immune response.
Collapse
Affiliation(s)
- Sini Pirnes-Karhu
- Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, P. O. Box 1627, 70211, Kuopio, Finland
| | | | | | | |
Collapse
|
32
|
Perez-Leal O, Merali S. Regulation of polyamine metabolism by translational control. Amino Acids 2011; 42:611-7. [PMID: 21811825 DOI: 10.1007/s00726-011-1036-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 05/25/2011] [Indexed: 12/18/2022]
Abstract
Polyamines are low molecular weight, positively charged compounds that are ubiquitous in all living cells. They play a crucial role in many biochemical processes including regulation of transcription and translation, modulation of enzyme activities, regulation of ion channels and apoptosis. A strict balance between synthesis, catabolism and excretion tightly controls the cellular concentration of polyamines. The concentrations of rate-limiting enzymes in the polyamine synthesis and degradation pathways are regulated at different levels, including transcription, translation and degradation. Polyamines can modulate the translation of most of the enzymes required for their synthesis and catabolism through feedback mechanisms that are unique for each enzyme. Translational control is associated with cis-acting and trans-acting factors that can be influenced by the concentration of polyamines through mechanisms that are not completely understood. In this review, we present an overview of the translational control mechanisms of the proteins in the polyamine pathway, including ornithine decarboxylase (ODC), ODC antizyme, S-adenosylmethionine decarboxylase and spermidine/spermine N(1) acetyltransferase, highlighting the areas where more research is needed. A better understanding of the translational control of these enzymes would offer the possibility of a novel pharmacological intervention against cancer and other diseases.
Collapse
Affiliation(s)
- Oscar Perez-Leal
- AHB/552, Department of Biochemistry, Temple University of School of Medicine, 3307 N. Broad Street, Philadelphia, PA 19140, USA.
| | | |
Collapse
|
33
|
Ramot Y, Tiede S, Bíró T, Abu Bakar MH, Sugawara K, Philpott MP, Harrison W, Pietilä M, Paus R. Spermidine promotes human hair growth and is a novel modulator of human epithelial stem cell functions. PLoS One 2011; 6:e22564. [PMID: 21818338 PMCID: PMC3144892 DOI: 10.1371/journal.pone.0022564] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 06/24/2011] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Rapidly regenerating tissues need sufficient polyamine synthesis. Since the hair follicle (HF) is a highly proliferative mini-organ, polyamines may also be important for normal hair growth. However, the role of polyamines in human HF biology and their effect on HF epithelial stem cells in situ remains largely unknown. METHODS AND FINDINGS We have studied the effects of the prototypic polyamine, spermidine (0.1-1 µM), on human scalp HFs and human HF epithelial stem cells in serum-free organ culture. Under these conditions, spermidine promoted hair shaft elongation and prolonged hair growth (anagen). Spermidine also upregulated expression of the epithelial stem cell-associated keratins K15 and K19, and dose-dependently modulated K15 promoter activity in situ and the colony forming efficiency, proliferation and K15 expression of isolated human K15-GFP+ cells in vitro. Inhibiting the rate-limiting enzyme of polyamine synthesis, ornithine decarboyxlase (ODC), downregulated intrafollicular K15 expression. In primary human epidermal keratinocytes, spermidine slightly promoted entry into the S/G2-M phases of the cell cycle. By microarray analysis of human HF mRNA extracts, spermidine upregulated several key target genes implicated e.g. in the control of cell adherence and migration (POP3), or endoplasmic reticulum and mitochondrial functions (SYVN1, NACA and SLC25A3). Excess spermidine may restrict further intrafollicular polyamine synthesis by inhibiting ODC gene and protein expression in the HF's companion layer in situ. CONCLUSIONS These physiologically and clinically relevant data provide the first direct evidence that spermidine is a potent stimulator of human hair growth and a previously unknown modulator of human epithelial stem cell biology.
Collapse
Affiliation(s)
- Yuval Ramot
- Department of Dermatology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ignatenko NA, Gerner EW, Besselsen DG. Defining the role of polyamines in colon carcinogenesis using mouse models. J Carcinog 2011; 10:10. [PMID: 21712957 PMCID: PMC3122100 DOI: 10.4103/1477-3163.79673] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 02/05/2011] [Indexed: 12/05/2022] Open
Abstract
Genetics and diet are both considered important risk determinants for colorectal cancer, a leading cause of death in the US and worldwide. Genetically engineered mouse (GEM) models have made a significant contribution to the characterization of colorectal cancer risk factors. Reliable, reproducible, and clinically relevant animal models help in the identification of the molecular events associated with disease progression and in the development of effictive treatment strategies. This review is focused on the use of mouse models for studying the role of polyamines in colon carcinogenesis. We describe how the available mouse models of colon cancer such as the multiple intestinal neoplasia (Min) mice and knockout genetic models facilitate understanding of the role of polyamines in colon carcinogenesis and help in the development of a rational strategy for colon cancer chemoprevention.
Collapse
Affiliation(s)
- Natalia A Ignatenko
- Department of Cell Biology and Anatomy, Arizona Cancer Center, 1515 N. Campbell Ave., Tucson, Arizona 85724, USA
| | | | | |
Collapse
|
35
|
St-Amand J, Yoshioka M, Tanaka K, Nishida Y. Transcriptome-wide identification of preferentially expressed genes in the hypothalamus and pituitary gland. Front Endocrinol (Lausanne) 2011; 2:111. [PMID: 22649398 PMCID: PMC3355919 DOI: 10.3389/fendo.2011.00111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Accepted: 12/14/2011] [Indexed: 01/01/2023] Open
Abstract
To identify preferentially expressed genes in the central endocrine organs of the hypothalamus and pituitary gland, we generated transcriptome-wide mRNA profiles of the hypothalamus, pituitary gland, and parietal cortex in male mice (12-15 weeks old) using serial analysis of gene expression (SAGE). Total counts of SAGE tags for the hypothalamus, pituitary gland, and parietal cortex were 165824, 126688, and 161045 tags, respectively. This represented 59244, 45151, and 55131 distinct tags, respectively. Comparison of these mRNA profiles revealed that 22 mRNA species, including three potential novel transcripts, were preferentially expressed in the hypothalamus. In addition to well-known hypothalamic transcripts, such as hypocretin, several genes involved in hormone function, intracellular transduction, metabolism, protein transport, steroidogenesis, extracellular matrix, and brain disease were identified as preferentially expressed hypothalamic transcripts. In the pituitary gland, 106 mRNA species, including 60 potential novel transcripts, were preferentially expressed. In addition to well-known pituitary genes, such as growth hormone and thyroid stimulating hormone beta, a number of genes classified to function in transport, amino acid metabolism, intracellular transduction, cell adhesion, disulfide bond formation, stress response, transcription, protein synthesis, and turnover, cell differentiation, the cell cycle, and in the cytoskeleton and extracellular matrix were also preferentially expressed. In conclusion, the current study identified not only well-known hypothalamic and pituitary transcripts but also a number of new candidates likely to be involved in endocrine homeostatic systems regulated by the hypothalamus and pituitary gland.
Collapse
Affiliation(s)
- Jonny St-Amand
- Functional Genomics Laboratory, Department of Anatomy and Physiology, Molecular Endocrinology and Oncology Research Center, Laval University Medical CenterLaval University, QC, Canada
- *Correspondence: Jonny St-Amand, Functional Genomics Laboratory, Department of Anatomy and Physiology, Molecular Endocrinology and Oncology Research Center Laval University Medical Center, Laval University, 2705 Blvd Laurier, Quebec, QC, Canada G1V 4G2. e-mail: ; Yuichiro Nishida, Department of Preventive Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan. e-mail:
| | - Mayumi Yoshioka
- Functional Genomics Laboratory, Department of Anatomy and Physiology, Molecular Endocrinology and Oncology Research Center, Laval University Medical CenterLaval University, QC, Canada
| | - Keitaro Tanaka
- Department of Preventive Medicine, Saga UniversitySaga, Japan
| | - Yuichiro Nishida
- Department of Preventive Medicine, Saga UniversitySaga, Japan
- *Correspondence: Jonny St-Amand, Functional Genomics Laboratory, Department of Anatomy and Physiology, Molecular Endocrinology and Oncology Research Center Laval University Medical Center, Laval University, 2705 Blvd Laurier, Quebec, QC, Canada G1V 4G2. e-mail: ; Yuichiro Nishida, Department of Preventive Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan. e-mail:
| |
Collapse
|
36
|
Ramot Y, Pietilä M, Giuliani G, Rinaldi F, Alhonen L, Paus R. Polyamines and hair: a couple in search of perfection. Exp Dermatol 2010; 19:784-90. [PMID: 20629736 DOI: 10.1111/j.1600-0625.2010.01111.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Polyamines (spermidine, putrescine and spermine) are multifunctional cationic amines that are indispensable for cellular proliferation; of key significance in the growth of rapidly regenerating tissues and tumors. Given that the hair follicle (HF) is one of the most highly proliferative organs in mammalian biology, it is not surprising that polyamines are crucial to HF growth. Indeed, growing (anagen) HFs show the highest activity of ornithine decarboxylase (ODC), the rate-limiting enzyme of polyamine biosynthesis, while inhibition of ODC, using eflornithine, results in a decreased rate of excessive facial hair growth in vivo and inhibits human scalp hair growth in organ culture. In sheep, manipulation of dietary intake of polyamines also results in altered wool growth. Polyamine-containing nutraceuticals have therefore been proposed as promoters of human hair growth. Recent progress in polyamine research, coupled with renewed interest in the role of polyamines in skin biology, encourages one to revisit their potential roles in HF biology and highlights the need for a systematic evaluation of their mechanisms of action and clinical applications in the treatment of hair disorders. The present viewpoint essay outlines the key frontiers in polyamine-related hair research and defines the major open questions. Moreover, it argues that a renaissance in polyamine research in hair biology, well beyond the inhibition of ODC activity in hirsutism therapy, is important for the development of novel therapeutic strategies for the manipulation of human hair growth. Such targets could include the manipulation of polyamine biosynthesis and the topical administration of selected polyamines, such as spermidine.
Collapse
Affiliation(s)
- Yuval Ramot
- Department of Dermatology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| | | | | | | | | | | |
Collapse
|
37
|
Zahedi K, Barone S, Kramer DL, Amlal H, Alhonen L, Jänne J, Porter CW, Soleimani M. The role of spermidine/spermine N1-acetyltransferase in endotoxin-induced acute kidney injury. Am J Physiol Cell Physiol 2010; 299:C164-74. [PMID: 20392931 PMCID: PMC2904252 DOI: 10.1152/ajpcell.00512.2009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 04/07/2010] [Indexed: 11/22/2022]
Abstract
The expression of catabolic enzymes spermidine/spermine N(1)-acetyltransferase (SSAT) and spermine oxidase (SMO) increases after ischemic reperfusion injury. We hypothesized that polyamine catabolism is upregulated and that this increase in catabolic response contributes to tissue damage in endotoxin-induced acute kidney injury (AKI). SSAT mRNA expression peaked at threefold 24 h following LPS injection and returned to background levels by 48 h. The activity of SSAT correlated with its mRNA levels. The expression of SMO also increased in the kidney after LPS administration. Serum creatinine levels increased significantly at approximately 15 h, peaking by 24 h, and returned to background levels by 72 h. To test the role of SSAT in endotoxin-induced AKI, we injected wild-type (SSAT-wt) and SSAT-deficient (SSAT-ko) mice with LPS. Compared with SSAT-wt mice, the SSAT-ko mice subjected to endotoxic-AKI had less severe kidney damage as indicated by better preservation of kidney function. The role of polyamine oxidation in the mediation of kidney injury was examined by comparing the severity of renal damage in SSAT-wt mice treated with MDL72527, an inhibitor of both polyamine oxidase and SMO. Animals treated with MDL72527 showed significant protection against endotoxin-induced AKI. We conclude that increased polyamine catabolism through generation of by-products of polyamine oxidation contributes to kidney damage and that modulation of polyamine catabolism may be a viable approach for the treatment of endotoxin-induced AKI.
Collapse
Affiliation(s)
- Kamyar Zahedi
- Division of Nephrology and Hypertension, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0585, USA.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Cerrada-Gimenez M, Pietilä M, Loimas S, Pirinen E, Hyvönen MT, Keinänen TA, Jänne J, Alhonen L. Continuous oxidative stress due to activation of polyamine catabolism accelerates aging and protects against hepatotoxic insults. Transgenic Res 2010; 20:387-96. [PMID: 20577801 DOI: 10.1007/s11248-010-9422-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 06/10/2010] [Indexed: 01/24/2023]
Abstract
Enhanced polyamine catabolism via polyamine acetylation-oxidation elevates the oxidative stress in an organism due to increased production of reactive oxygen species (ROS). We studied a transgenic mouse line overexpressing the rate limiting enzyme in the polyamine catabolism, spermidine/spermine N (1)-acetyltransferase (SSAT) that is characterized by increased putrescine and decreased spermidine and spermine pools. In order to protect the mice from the chronic oxidative stress produced by the activation of polyamine catabolism, the hepatic expression of the transcription factor p53 was found threefold elevated in the transgenic mice. In addition, the prolonged activation of p53 accelerated the aging of transgenic mice and reduced their lifespan (50%). Aging was associated with decreased antioxidant enzyme activities. In the transgenic mice the activities of catalase and Cu, Zn-superoxide dismutase (SOD) were 42 and 23% reduced respectively, while the expression of CYP450 2E1 was 60% decreased and oxidative stress measured as protein carbonyl content was tenfold elevated. In the transgenic mice, the age-related repression of the different antioxidant enzymes served as a protection against the hepatotoxic effects of carbon tetrachloride and thioacetamide.
Collapse
Affiliation(s)
- Marc Cerrada-Gimenez
- Biotechnology and Molecular Medicine, A.I. Virtanen Institute, Biocenter Kuopio, University of Eastern Finland, Kuopio Campus, P.O. Box 1627, 70211, Kuopio, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Cerrada-Gimenez M, Häyrinen J, Juutinen S, Reponen T, Jänne J, Alhonen L. Proteomic analysis of livers from a transgenic mouse line with activated polyamine catabolism. Amino Acids 2009; 38:613-22. [PMID: 20012117 DOI: 10.1007/s00726-009-0420-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 09/08/2009] [Indexed: 01/19/2023]
Abstract
We have generated a transgenic mouse line that over expresses the rate-controlling enzyme of the polyamine catabolism, spermidine/spermine N (1)-acetyltransferase, under the control of a heavy metal inducible promoter. This line is characterized by a notable increase in SSAT activity in liver, pancreas and kidneys and a moderate increase in the rest of the tissues. SSAT induction results in an enhanced polyamine catabolism manifested as a depletion of spermidine and spermine and an overaccumulation of putrescine in all tissues. To study how the activation of polyamine catabolism affects other metabolic pathways, protein expression pattern of the livers of transgenic animals was analyzed by two-dimensional polyacrylamide gel electrophoresis and mass spectrometry. A total of 23 proteins were shown to be differentially expressed in the transgenic from the wild-type animals. Many of the identified proteins showed expression patterns associated with polyamine catabolism activation. However, the expression pattern of other proteins, such as repression of GST pi and selenium-binding protein 2 and 60 kDa heat-shock protein, could be explained by the overexpression of peroxisome proliferator-activated receptor gamma co-activator 1alpha in response to depleted ATP pools. The activation of the latter proteins is thought to lead to the improved insulin sensitivity seen in the MT-SSAT animals.
Collapse
Affiliation(s)
- Marc Cerrada-Gimenez
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Kuopio, P.O.Box 1627, 70211 Kuopio, Finland.
| | | | | | | | | | | |
Collapse
|
40
|
Pirinen E, Gylling H, Itkonen P, Yaluri N, Heikkinen S, Pietilä M, Kuulasmaa T, Tusa M, Cerrada-Gimenez M, Pihlajamäki J, Alhonen L, Jänne J, Miettinen TA, Laakso M. Activated polyamine catabolism leads to low cholesterol levels by enhancing bile acid synthesis. Amino Acids 2009; 38:549-60. [PMID: 19956992 DOI: 10.1007/s00726-009-0416-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 09/21/2009] [Indexed: 11/29/2022]
Abstract
Transgenic mice with activated polyamine catabolism due to overexpression of spermidine/spermine N(1)-acetyltransferase (SSAT) have significantly reduced plasma total cholesterol levels. In our study, we show that low cholesterol levels were attributable to enhanced bile acid synthesis in combination with reduced cholesterol absorption. Hepatic cholesterol 7alpha-hydroxylase (CYP7A1), the rate-limiting enzyme catalyzing the conversion of cholesterol to bile acids, plays an important role in the removal of excess cholesterol from the body. We suggest that by reducing activity of Akt activated polyamine catabolism increased the stability and activity of peroxisome proliferator-activated receptor gamma co-activator 1alpha, the critical activator of CYP7A1. This is supported by our finding that the treatment with SSAT activator, N (1) ,N(11)-diethylnorspermine, reduced significantly the amount of phosphorylated (active) Akt in HepG2 cells. In summary, activated-polyamine catabolism is a novel mechanism to regulate bile acid synthesis. Therefore, polyamine catabolism could be a potential therapeutic target to control hepatic CYP7A1 expression.
Collapse
Affiliation(s)
- Eija Pirinen
- Department of Medicine, University of Kuopio, P.O. Box 1777, 70211, Kuopio, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Cutaneous application of alpha-methylspermidine activates the growth of resting hair follicles in mice. Amino Acids 2009; 38:583-90. [PMID: 19956989 DOI: 10.1007/s00726-009-0421-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 09/24/2009] [Indexed: 01/29/2023]
Abstract
Recent studies using transgenic animals have revealed a crucial role for polyamines in the development and the growth of skin and hair follicles. In mammals, the growth of hair is characterized by three main cyclic phases of transformation, including a rapid growth phase (anagen), an apoptosis-driven regression phase (catagen) and a relatively quiescent resting phase (telogen). The polyamine pool during the anagen phase is higher than in telogen and catagen phases. In this study, we used alpha-methylspermidine, a metabolically stable polyamine analog, to artificially elevate the polyamine pool during telogen. This manipulation was sufficient to induce hair growth in telogen phase mice after 2 weeks of daily topical application. The application site was characterized by typical features of anagen, such as pigmentation, growing hair follicles, proliferation of follicular keratinocytes and upregulation of beta-catenin. The analog penetrated the protective epidermal layer of the skin and could be detected in dermis. The natural polyamines were partially replaced by the analog in the application site. However, the combined pool of natural spermidine and alpha-methylspermidine exceeded the physiological spermidine pool in telogen phase skin. These results highlight the role of polyamines in hair cycle regulation and show that it is possible to control the process of hair growth using physiologically stable polyamine analogs.
Collapse
|
42
|
Abstract
Cloning of genes related to polyamine metabolism has enabled the generation of genetically modified mice and rats overproducing or devoid of proteins encoded by these genes. Our first transgenic mice overexpressing ODC (ornithine decarboxylase) were generated in 1991 and, thereafter, most genes involved in polyamine metabolism have been used for overproduction of the respective proteins, either ubiquitously or in a tissue-specific fashion in transgenic animals. Phenotypic characterization of these animals has revealed a multitude of changes, many of which could not have been predicted based on the previous knowledge of the polyamine requirements and functions. Animals that overexpress the genes encoding the inducible key enzymes of biosynthesis and catabolism, ODC and SSAT (spermidine/spermine N1-acetyltransferase) respectively, appear to possess the most pleiotropic phenotypes. Mice overexpressing ODC have particularly been used as cancer research models. Transgenic mice and rats with enhanced polyamine catabolism have revealed an association of rapidly depleted polyamine pools and accelerated metabolic cycle with development of acute pancreatitis and a fatless phenotype respectively. The latter phenotype with improved glucose tolerance and insulin sensitivity is useful in uncovering the mechanisms that lead to the opposite phenotype in humans, Type 2 diabetes. Disruption of the ODC or AdoMetDC [AdoMet (S-adenosylmethionine) decarboxylase] gene is not compatible with mouse embryogenesis, whereas mice with a disrupted SSAT gene are viable and show no harmful phenotypic changes, except insulin resistance at a late age. Ultimately, the mice with genetically altered polyamine metabolism can be used to develop targeted means to treat human disease conditions that they relevantly model.
Collapse
|
43
|
Khomutov AR, Keinanen TA, Grigorenko NA, Hyvonen MT, Uimari A, Pietila M, Cerrada-Gimenez M, Simonian AR, Khomutov MA, Vepsalainen J, Alhonen L, Janne J. Methylated analogs of spermine and spermidine as tools to investigate cellular functions of polyamines and enzymes of their metabolism. Mol Biol 2009. [DOI: 10.1134/s0026893309020083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
44
|
Zahedi K, Lentsch AB, Okaya T, Barone S, Sakai N, Witte DP, Arend LJ, Alhonen L, Jell J, Jänne J, Porter CW, Soleimani M. Spermidine/spermine-N1-acetyltransferase ablation protects against liver and kidney ischemia-reperfusion injury in mice. Am J Physiol Gastrointest Liver Physiol 2009; 296:G899-909. [PMID: 19164485 PMCID: PMC2670665 DOI: 10.1152/ajpgi.90507.2008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Accepted: 01/12/2009] [Indexed: 01/31/2023]
Abstract
Expression of spermine/spermidine-N1-acetyltransferase (SSAT), the rate-limiting enzyme of polyamine backconversion cascade, increases after ischemia-reperfusion injuries (IRI). We hypothesized that SSAT plays an important role in the mediation of IRI. To test our hypothesis, wild-type (SSAT-wt) and SSAT-deficient (SSAT-ko) mice were subjected to liver or kidney IRI by ligation of hepatic or renal arteries. The liver and kidney content of putrescine (Put), a downstream by-product of SSAT activity, increased in SSAT-wt animals but not in SSAT-ko animals after IRI, indicating that polyamine backconversion is not functional in SSAT-deficient mice. When subjected to hepatic IRI, SSAT-ko mice were significantly protected against liver damage compared with SSAT-wt mice. Similarly, SSAT-ko animals subjected to renal IRI showed significantly greater protection against damage to kidney tubules than SSAT-wt mice. These studies indicate that SSAT-deficient animals are protected against IRI and suggest that SSAT is an important mediator of the tissue damage in IRI.
Collapse
Affiliation(s)
- Kamyar Zahedi
- Division of Nephrology and Hypertension, Department of Surgery, University of Cincinnati College of Medicine, 231 Albert Sabine Way, MSB 259G, Cincinnati, OH 45267-0585, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
López-García C, López-Contreras AJ, Cremades A, Castells MT, Marín F, Schreiber F, Peñafiel R. Molecular and morphological changes in placenta and embryo development associated with the inhibition of polyamine synthesis during midpregnancy in mice. Endocrinology 2008; 149:5012-23. [PMID: 18583422 DOI: 10.1210/en.2008-0084] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Polyamines play an essential role in murine development, as demonstrated by both gene ablation in ornithine decarboxylase (ODC)-deficient embryos and pharmacological treatments of pregnant mice. However, the molecular and cellular mechanisms by which ODC inhibition affects embryonic development during critical periods of pregnancy are mostly unknown. Our present results demonstrate that the contragestational effect of alpha-difluoromethylornithine (DFMO), a suicide inhibitor of ODC, when given at d 7-9 of pregnancy, is associated with embryo growth arrest and marked alterations in the development of yolk sac and placenta. Blood island formation as well as the transcript levels of embryonary globins alpha-like x chain and beta-like y-chain was markedly decreased in the yolk sac. At the placental level, abnormal chorioallantoic attachment, absence of the spongiotrophoblast layer and a deficient development of the labyrinthine zone were evident. Real-time RT-PCR analysis showed that transcript levels of the steroidogenic genes steroidogenic acute regulatory protein, 3beta-hydroxysteroid dehydrogenase VI, and 17alpha-hydroxylase were markedly decreased by DFMO treatment in the developing placenta at d 9 and 10 of pregnancy. Plasma values of progesterone and androstenedione were also decreased by DFMO treatment. Transcriptomic analysis also detected changes in the expression of several genes involved in placentation and the differentiation of trophoblastic lineages. In conclusion, our results indicate that ODC inhibition at d 8 of pregnancy is related to alterations in yolk sac formation and trophoblast differentiation, affecting processes such as vasculogenesis and steroidogenesis.
Collapse
Affiliation(s)
- Carlos López-García
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain
| | | | | | | | | | | | | |
Collapse
|
46
|
Zhao YC, Chi YJ, Yu YS, Liu JL, Su RW, Ma XH, Shan CH, Yang ZM. Polyamines are essential in embryo implantation: expression and function of polyamine-related genes in mouse uterus during peri-implantation period. Endocrinology 2008; 149:2325-32. [PMID: 18202119 DOI: 10.1210/en.2007-1420] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Polyamines are key regulators in cell growth and differentiation. It has been shown that ornithine decarboxylase (Odc) was essential for post-implantation embryo development, and overexpression of spermidine/spermine N1-acetyltransferase will lead to ovarian hypofunction and hypoplastic uteri. However, the expression and function of polyamine-related genes in mouse uterus during early pregnancy are still unknown. In this study we investigated the expression, regulation, and function of polyamine-related genes in mouse uterus during the peri-implantation period. Odc expression was strongly detected at implantation sites and stimulated by estrogen treatment. The expression of Odc antizyme 1 and spermidine/spermine N1-acetyltransferase was also highly shown at implantation sites and regulated by Odc or polyamine level in uterine cells. Embryo implantation was significantly inhibited by alpha-difluoromethylornithine, an Odc inhibitor. Moreover, the reduction of Odc activity caused by alpha-difluoromethylornithine treatment was compensated by the up-regulation of S-adenosylmethionine decarboxylase gene expression. Collectively, our results indicated that the coordinated expression of uterine polyamine-related genes may be important for embryo implantation.
Collapse
Affiliation(s)
- Yue-Chao Zhao
- Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, College of Life Science, Xiamen University, Xiamen 361005, China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Kramer DL, Diegelman P, Jell J, Vujcic S, Merali S, Porter CW. Polyamine acetylation modulates polyamine metabolic flux, a prelude to broader metabolic consequences. J Biol Chem 2007; 283:4241-51. [PMID: 18089555 DOI: 10.1074/jbc.m706806200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Recent studies suggest that overexpression of the polyamine-acetylating enzyme spermidine/spermine N(1)-acetyltransferase (SSAT) significantly increases metabolic flux through the polyamine pathway. The concept derives from the observation that SSAT-induced acetylation of polyamines gives rise to a compensatory increase in biosynthesis and presumably to increased flow through the pathway. Despite the strength of this deduction, the existence of heightened polyamine flux has not yet been experimentally demonstrated. Here, we use the artificial polyamine precursor 4-fluoro-ornithine to measure polyamine flux by tracking fluorine unit permeation of polyamine pools in human prostate carcinoma LNCaP cells. Conditional overexpression of SSAT was accompanied by a massive increase in intracellular and extracellular acetylated spermidine and by a 6-20-fold increase in biosynthetic enzyme activities. In the presence of 300 microM 4-fluoro-ornithine, SSAT overexpression led to the sequential appearance of fluorinated putrescine, spermidine, acetylated spermidine, and spermine. As fluorinated polyamines increased, endogenous polyamines decreased, so that the total polyamine pool size remained relatively constant. At 24 h, 56% of the spermine pool in the induced SSAT cells was fluorine-labeled compared with only 12% in uninduced cells. Thus, SSAT induction increased metabolic flux by approximately 5-fold. Flux could be interrupted by inhibition of polyamine biosynthesis but not by inhibition of polyamine oxidation. Overall, the findings are consistent with a paradigm whereby flux is initiated by SSAT acetylation of spermine and particularly spermidine followed by a marked increase in key biosynthetic enzymes. The latter sustains the flux cycle by providing a constant supply of polyamines for subsequent acetylation by SSAT. The broader metabolic implications of this futile metabolic cycling are discussed in detail.
Collapse
Affiliation(s)
- Debora L Kramer
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
Owing to their high turnover, the intestinal mucosal cells have a particularly high requirement for polyamines. Therefore, they are an excellent charcol for the study of polyamine function in rapid physiological growth and differentiation. After a cursory introduction to the major aspects of polyamine metabolism, regulation, and mode of action, we discuss the contribution of the polyamines to the maintenance of normal gut function, the maturation of the intestinal mucosa, and its repair after injuries. Repletion of cellular polyamine pools with (D,L)-2-(difluoromethyl)ornithine has considerably improved our understanding of how the polyamines are involved in the regulation of normal and neoplastic growth. Unfortunately, the attempts to exploit polyamine metabolism as a cancer therapeutic target have not yet been successful. However, the selective inactivation of ornithine decarboxylase appears to be a promising chemopreventive method in familial adenomatous polyposis. Presumably, it relies on the fact that ornithine decarboxylase is a critical regulator of the proliferative response of the protooncogene c-myc, but not of its apoptotic response.
Collapse
Affiliation(s)
- Nikolaus Seiler
- INSERM U682, Université Louis Pasteur EA3430, Faculty of Medicine, Laboratory of Nutritional Cancer Prevention, IRCAD, Strasbourg, France
| | | |
Collapse
|
49
|
Berger FG, Kramer DL, Porter CW. Polyamine metabolism and tumorigenesis in the Apc(Min/+) mouse. Biochem Soc Trans 2007; 35:336-9. [PMID: 17371273 DOI: 10.1042/bst0350336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
While polyamine homoeostasis is clearly important in maintenance of normal cell function, the roles of these cations, as well as the enzymes that regulate their metabolism, in the neoplastic process are not clear. In particular, the polyamine catabolic enzyme SSAT (spermidine/spermine N(1)-acetyltransferase) seems to have different roles in tumorigenesis, depending upon the particular system being analysed. In attempts to clarify the function of SSAT in tumour development, we have utilized the Apc(Min/+) mouse, which carries a mutant allele of the Apc (adenomatous polyposis coli) gene, rendering it susceptible to the formation of multiple adenomas in the small intestine and colon. Using genetically engineered animals (i.e. transgenic and knockout mice), we have shown that SSAT acts as a tumour promoter in the Apc(Min/+) model. Modulation of tumorigenesis is not associated with changes in tissue levels of either spermidine or spermine. These findings, along with those made in other animal models of cancer, have prompted us to propose that metabolic flux through the polyamine biosynthetic and catabolic pathways, and the consequent changes in levels of various metabolites within the cell (i.e. the metabolome), is critical to tumour development. The metabolic flux model represents a novel way of thinking about the role of polyamines in cell physiology and the neoplastic process.
Collapse
Affiliation(s)
- F G Berger
- Department of Biological Sciences and Center for Colon Cancer Research, University of South Carolina, Columbia, SC 29208, USA.
| | | | | |
Collapse
|
50
|
Pirinen E, Kuulasmaa T, Pietilä M, Heikkinen S, Tusa M, Itkonen P, Boman S, Skommer J, Virkamäki A, Hohtola E, Kettunen M, Fatrai S, Kansanen E, Koota S, Niiranen K, Parkkinen J, Levonen AL, Ylä-Herttuala S, Hiltunen JK, Alhonen L, Smith U, Jänne J, Laakso M. Enhanced polyamine catabolism alters homeostatic control of white adipose tissue mass, energy expenditure, and glucose metabolism. Mol Cell Biol 2007; 27:4953-67. [PMID: 17485446 PMCID: PMC1951486 DOI: 10.1128/mcb.02034-06] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1 alpha) is an attractive candidate gene for type 2 diabetes, as genes of the oxidative phosphorylation (OXPHOS) pathway are coordinatively downregulated by reduced expression of PGC-1 alpha in skeletal muscle and adipose tissue of patients with type 2 diabetes. Here we demonstrate that transgenic mice with activated polyamine catabolism due to overexpression of spermidine/spermine N(1)-acetyltransferase (SSAT) had reduced white adipose tissue (WAT) mass, high basal metabolic rate, improved glucose tolerance, high insulin sensitivity, and enhanced expression of the OXPHOS genes, coordinated by increased levels of PGC-1 alpha and 5'-AMP-activated protein kinase (AMPK) in WAT. As accelerated polyamine flux caused by SSAT overexpression depleted the ATP pool in adipocytes of SSAT mice and N(1),N(11)-diethylnorspermine-treated wild-type fetal fibroblasts, we propose that low ATP levels lead to the induction of AMPK, which in turn activates PGC-1 alpha in WAT of SSAT mice. Our hypothesis is supported by the finding that the phenotype of SSAT mice was reversed when the accelerated polyamine flux was reduced by the inhibition of polyamine biosynthesis in WAT. The involvement of polyamine catabolism in the regulation of energy and glucose metabolism may offer a novel target for drug development for obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Eija Pirinen
- Department of Medicine, University of Kuopio, P.O. Box 1777, FI-70211 Kuopio, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|