1
|
Zoladek J, El Kazzi P, Caval V, Vivet-Boudou V, Cannac M, Davies EL, Rossi S, Bribes I, Rouilly L, Simonin Y, Jouvenet N, Decroly E, Paillart JC, Wilson SJ, Nisole S. A specific domain within the 3' untranslated region of Usutu virus confers resistance to the exonuclease ISG20. Nat Commun 2024; 15:8528. [PMID: 39358425 PMCID: PMC11447015 DOI: 10.1038/s41467-024-52870-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024] Open
Abstract
Usutu virus (USUV) and West Nile virus (WNV) are two closely related emerging mosquito-borne flaviviruses. Their natural hosts are wild birds, but they can also cause severe neurological disorders in humans. Both viruses are efficiently suppressed by type I interferon (IFN), which interferes with viral replication, dissemination, pathogenesis and transmission. Here, we show that the replication of USUV and WNV are inhibited through a common set of IFN-induced genes (ISGs), with the notable exception of ISG20, which USUV is resistant to. Strikingly, USUV was the only virus among all the other tested mosquito-borne flaviviruses that demonstrated resistance to the 3'-5' exonuclease activity of ISG20. Our findings highlight that the intrinsic resistance of the USUV genome, irrespective of the presence of cellular or viral proteins or protective post-transcriptional modifications, relies on a unique sequence present in its 3' untranslated region. Importantly, this genomic region alone can confer ISG20 resistance to a susceptible flavivirus, without compromising its infectivity, suggesting that it could be acquired by other flaviviruses. This study provides new insights into the strategy employed by emerging flaviviruses to overcome host defense mechanisms.
Collapse
Affiliation(s)
- Jim Zoladek
- Viral Trafficking, Restriction and Innate Signaling, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR 9004, Montpellier, France
| | - Priscila El Kazzi
- Architecture et Fonction des Macromolécules Biologiques (AFMB), Aix Marseille Université, CNRS UMR 7257, Marseille, France
| | - Vincent Caval
- Virus Sensing and Signaling Unit, CNRS UMR 3569, Institut Pasteur, Université Paris Cité, Paris, France
| | - Valérie Vivet-Boudou
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, Strasbourg, France
| | - Marion Cannac
- Viral Trafficking, Restriction and Innate Signaling, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR 9004, Montpellier, France
| | - Emma L Davies
- MRC-University of Glasgow, Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Soléna Rossi
- Viral Trafficking, Restriction and Innate Signaling, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR 9004, Montpellier, France
| | - Inès Bribes
- Viral Trafficking, Restriction and Innate Signaling, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR 9004, Montpellier, France
| | - Lucile Rouilly
- Architecture et Fonction des Macromolécules Biologiques (AFMB), Aix Marseille Université, CNRS UMR 7257, Marseille, France
| | - Yannick Simonin
- Pathogenesis and Control of Chronic and Emerging Infections (PCCEI), INSERM, Etablissement Français du Sang, Université de Montpellier, Montpellier, France
| | - Nolwenn Jouvenet
- Virus Sensing and Signaling Unit, CNRS UMR 3569, Institut Pasteur, Université Paris Cité, Paris, France
| | - Etienne Decroly
- Architecture et Fonction des Macromolécules Biologiques (AFMB), Aix Marseille Université, CNRS UMR 7257, Marseille, France
| | - Jean-Christophe Paillart
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, Strasbourg, France
| | - Sam J Wilson
- MRC-University of Glasgow, Centre for Virus Research, University of Glasgow, Glasgow, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Sébastien Nisole
- Viral Trafficking, Restriction and Innate Signaling, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR 9004, Montpellier, France.
| |
Collapse
|
2
|
Du H, Sun J, Wang X, Zhao L, Liu X, Zhang C, Wang F, Wu J. FOSL2-mediated transcription of ISG20 induces M2 polarization of macrophages and enhances tumorigenic ability of glioblastoma cells. J Neurooncol 2024; 169:659-670. [PMID: 39073688 DOI: 10.1007/s11060-024-04771-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/05/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Interferon stimulated exonuclease gene 20 (ISG20) has been reported to be correlated with macrophage infiltration in glioblastoma (GBM) in previous bioinformatics-based studies. This study explores the exact effect of ISG20 on macrophage polarization in GBM. METHODS ISG20 expression in GBM tissues and cells was determined by RT-qPCR and/or immunohistochemistry. GBM cells were co-cultured with M0 macrophages (PMA-stimulated THP-1 cells) in vitro, followed by flow cytometry and ELISA to analyze the M2 polarization of macrophages. Fluorescence-contained GBM cells were intracranially injected into nude mice along with M0 macrophages to generate orthotopic xenograft tumor models. Upstream regulator of ISG20 was predicted using bioinformatics. Loss- or gain-of-function assays of Fos like 2 (FOSL2) and ISG20 were performed in GBM cells. DNA methylation level of FOSL2 was analyzed by bisulfite sequencing analysis. RESULTS ISG20 was found highly expressed in GBM tissues and cells. ISG20 silencing in GBM cells decreased CD206 and CD163 levels in the co-cultured macrophages and reduced secretion of IL-10 and TGF-β. It also enhanced survival of nude mice bearing xenograft tumors, blocked tumor growth, and suppressed M2 polarization of macrophages in vivo. FOSL2, highly expressed in GBM, bound to the ISG20 promoter to activate its transcription. FOSL2 silencing similarly blocked M2 polarization of macrophages, which was negated by ISG20 overexpression. The high FOSL2 expression in GBM was attributed to DNA hypomethylation. CONCLUSION This study demonstrates that FOSL2 is highly expressed in GBM due to DNA hypomethylation. It activates transcription of ISG20, thus promoting M2 polarization of macrophages and GBM development.
Collapse
Affiliation(s)
- Hailong Du
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Shijiazhuang, 050000, Hebei, P.R. China
| | - Jianping Sun
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Shijiazhuang, 050000, Hebei, P.R. China
| | - Xiaoliang Wang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Shijiazhuang, 050000, Hebei, P.R. China
| | - Lei Zhao
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Shijiazhuang, 050000, Hebei, P.R. China
| | - Xiaosong Liu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Shijiazhuang, 050000, Hebei, P.R. China
| | - Chao Zhang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Shijiazhuang, 050000, Hebei, P.R. China
| | - Feng Wang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Shijiazhuang, 050000, Hebei, P.R. China
| | - Jianliang Wu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Shijiazhuang, 050000, Hebei, P.R. China.
| |
Collapse
|
3
|
Tang H, Wu H, Jian Y, Ji T, Wu B, Wu Y, Wang P, Cao T. Immune effector dysfunction signatures predict outcomes in patients with colorectal cancer. Int Immunopharmacol 2024; 132:111949. [PMID: 38552290 DOI: 10.1016/j.intimp.2024.111949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Immune effector dysfunction (IED) is mainly manifested as immune exhaustion and senescence, which are the primary obstacles to the success of cancer immunotherapy. In the current study, we characterized the prognostic relevance of IED signatures in patients with colorectal cancer (CRC). METHODS Immunohistochemistry (IHC) data of CRC tissue samples from 41 newly diagnosed patients in our clinical center (HDPH cohort) were used to investigate the prognostic importance of IED signatures. The results were validated by the RNA sequencing data of 372 CRC patients from the Cancer Genome Atlas (TCGA) database. RESULTS In the HDPH cohorts, high Natural Killer (NK) and CD8+ tumor-infiltrating lymphocytes (TILs) were associated with poor overall survival (OS) and relapse-free survival (RFS) in CRC patients. Optimal IED signatures, including high expression of CCR9, ISG20, and low expression of ICOS, and CACNA2D2, predicted poor OS and RFS. Moreover, high-risk scores estimated by a weighted combination of these four IED genes were associated with poor OS and RFS. Notably, risk stratification was constructed by combining risk score and tumor node metastasis (TNM) stage better than TNM stage alone in predicting OS and RFS for CRC patients. The above results were confirmed in the TCGA cohort. CONCLUSION CCR9, ISG20, ICOS, and CACNA2D2 were optimal IED signatures for predicting the outcomes of CRC patients, which might be a potential biomarker for prognostic stratification and designing novel CRC therapy.
Collapse
Affiliation(s)
- Haifeng Tang
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou 516006, China; Department of General Surgery, Huadu District People's Hospital of Guangzhou, Guangzhou 510810, China
| | - Hongsheng Wu
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou 516006, China; Department of General Surgery, Huadu District People's Hospital of Guangzhou, Guangzhou 510810, China
| | - Yueju Jian
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou 516006, China; Department of General Surgery, Huadu District People's Hospital of Guangzhou, Guangzhou 510810, China
| | - Tengfei Ji
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou 516006, China; Department of General Surgery, Huadu District People's Hospital of Guangzhou, Guangzhou 510810, China
| | - Biwen Wu
- Department of Oncology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510180, China
| | - Yong Wu
- Department of Oncology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510180, China.
| | - Peipei Wang
- Department of Oncology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510180, China; School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, China.
| | - Tiansheng Cao
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou 516006, China; Department of General Surgery, Huadu District People's Hospital of Guangzhou, Guangzhou 510810, China.
| |
Collapse
|
4
|
Louvat C, Deymier S, Nguyen XN, Labaronne E, Noy K, Cariou M, Corbin A, Mateo M, Ricci EP, Fiorini F, Cimarelli A. Stable structures or PABP1 loading protects cellular and viral RNAs against ISG20-mediated decay. Life Sci Alliance 2024; 7:e202302233. [PMID: 38418089 PMCID: PMC10902665 DOI: 10.26508/lsa.202302233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024] Open
Abstract
ISG20 is an IFN-induced 3'-5' RNA exonuclease that acts as a broad antiviral factor. At present, the features that expose RNA to ISG20 remain unclear, although recent studies have pointed to the modulatory role of epitranscriptomic modifications in the susceptibility of target RNAs to ISG20. These findings raise the question as to how cellular RNAs, on which these modifications are abundant, cope with ISG20. To obtain an unbiased perspective on this topic, we used RNA-seq and biochemical assays to identify elements that regulate the behavior of RNAs against ISG20. RNA-seq analyses not only indicate a general preservation of the cell transcriptome, but they also highlight a small, but detectable, decrease in the levels of histone mRNAs. Contrarily to all other cellular ones, histone mRNAs are non-polyadenylated and possess a short stem-loop at their 3' end, prompting us to examine the relationship between these features and ISG20 degradation. The results we have obtained indicate that poly(A)-binding protein loading on the RNA 3' tail provides a primal protection against ISG20, easily explaining the overall protection of cellular mRNAs observed by RNA-seq. Terminal stem-loop RNA structures have been associated with ISG20 protection before. Here, we re-examined this question and found that the balance between resistance and susceptibility to ISG20 depends on their thermodynamic stability. These results shed new light on the complex interplay that regulates the susceptibility of different classes of viruses against ISG20.
Collapse
Affiliation(s)
- Camille Louvat
- Molecular Microbiology and Structural Biochemistry, MMSB-IBCP, UMR 5086 CNRS University of Lyon, Lyon, France
| | - Séverine Deymier
- https://ror.org/059sz6q14 Centre International de Recherche en Infectiologie(CIRI), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Nationale Supérieure de Lyon, Lyon, France
| | - Xuan-Nhi Nguyen
- https://ror.org/059sz6q14 Centre International de Recherche en Infectiologie(CIRI), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Nationale Supérieure de Lyon, Lyon, France
| | - Emmanuel Labaronne
- Laboratoire de Biologie et Modelisation de la Cellule, Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, Inserm, U1293, Lyon, France
| | - Kodie Noy
- https://ror.org/059sz6q14 Centre International de Recherche en Infectiologie(CIRI), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Nationale Supérieure de Lyon, Lyon, France
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Lyon, France
| | - Marie Cariou
- https://ror.org/059sz6q14 Centre International de Recherche en Infectiologie(CIRI), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Nationale Supérieure de Lyon, Lyon, France
| | - Antoine Corbin
- https://ror.org/059sz6q14 Centre International de Recherche en Infectiologie(CIRI), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Nationale Supérieure de Lyon, Lyon, France
| | - Mathieu Mateo
- https://ror.org/059sz6q14 Centre International de Recherche en Infectiologie(CIRI), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Nationale Supérieure de Lyon, Lyon, France
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Lyon, France
| | - Emiliano P Ricci
- Laboratoire de Biologie et Modelisation de la Cellule, Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, Inserm, U1293, Lyon, France
| | - Francesca Fiorini
- Molecular Microbiology and Structural Biochemistry, MMSB-IBCP, UMR 5086 CNRS University of Lyon, Lyon, France
| | - Andrea Cimarelli
- https://ror.org/059sz6q14 Centre International de Recherche en Infectiologie(CIRI), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Nationale Supérieure de Lyon, Lyon, France
| |
Collapse
|
5
|
Husain M. Influenza Virus Host Restriction Factors: The ISGs and Non-ISGs. Pathogens 2024; 13:127. [PMID: 38392865 PMCID: PMC10893265 DOI: 10.3390/pathogens13020127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Influenza virus has been one of the most prevalent and researched viruses globally. Consequently, there is ample information available about influenza virus lifecycle and pathogenesis. However, there is plenty yet to be known about the determinants of influenza virus pathogenesis and disease severity. Influenza virus exploits host factors to promote each step of its lifecycle. In turn, the host deploys antiviral or restriction factors that inhibit or restrict the influenza virus lifecycle at each of those steps. Two broad categories of host restriction factors can exist in virus-infected cells: (1) encoded by the interferon-stimulated genes (ISGs) and (2) encoded by the constitutively expressed genes that are not stimulated by interferons (non-ISGs). There are hundreds of ISGs known, and many, e.g., Mx, IFITMs, and TRIMs, have been characterized to restrict influenza virus infection at different stages of its lifecycle by (1) blocking viral entry or progeny release, (2) sequestering or degrading viral components and interfering with viral synthesis and assembly, or (3) bolstering host innate defenses. Also, many non-ISGs, e.g., cyclophilins, ncRNAs, and HDACs, have been identified and characterized to restrict influenza virus infection at different lifecycle stages by similar mechanisms. This review provides an overview of those ISGs and non-ISGs and how the influenza virus escapes the restriction imposed by them and aims to improve our understanding of the host restriction mechanisms of the influenza virus.
Collapse
Affiliation(s)
- Matloob Husain
- Department of Microbiology and Immunology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
6
|
Nakanishi K. When Argonaute takes out the ribonuclease sword. J Biol Chem 2024; 300:105499. [PMID: 38029964 PMCID: PMC10772731 DOI: 10.1016/j.jbc.2023.105499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/11/2023] [Accepted: 11/15/2023] [Indexed: 12/01/2023] Open
Abstract
Argonaute (AGO) proteins in all three domains of life form ribonucleoprotein or deoxyribonucleoprotein complexes by loading a guide RNA or DNA, respectively. Since all AGOs retain a PIWI domain that takes an RNase H fold, the ancestor was likely an endoribonuclease (i.e., a slicer). In animals, most miRNA-mediated gene silencing occurs slicer independently. However, the slicer activity of AGO is indispensable in specific events, such as development and differentiation, which are critical for vertebrates and thus cannot be replaced by the slicer-independent regulation. This review highlights the distinctions in catalytic activation mechanisms among slicing-competent AGOs, shedding light on the roles of two metal ions in target recognition and cleavage. The precision of the target specificity by the RNA-induced silencing complexes is reevaluated and redefined. The possible coevolutionary relationship between slicer-independent gene regulation and AGO-binding protein, GW182, is also explored. These discussions reveal that numerous captivating questions remain unanswered regarding the timing and manner in which AGOs employ their slicing activity.
Collapse
Affiliation(s)
- Kotaro Nakanishi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA; Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
7
|
Lu Y, Yu R, Tong L, Zhang L, Zhang Z, Pan L, Wang Y, Guo H, Hu Y, Liu X. Transcriptome Analysis of LLC-PK Cells Single or Coinfected with Porcine Epidemic Diarrhea Virus and Porcine Deltacoronavirus. Viruses 2023; 16:74. [PMID: 38257774 PMCID: PMC10818665 DOI: 10.3390/v16010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) and porcine deltacoronavirus (PDCoV) are the two most prevalent swine enteric coronaviruses worldwide. They commonly cause natural coinfections, which worsen as the disease progresses and cause increased mortality in piglets. To better understand the transcriptomic changes after PEDV and PDCoV coinfection, we compared LLC porcine kidney (LLC-PK) cells infected with PEDV and/or PDCoV and evaluated the differential expression of genes by transcriptomic analysis and real-time qPCR. The antiviral efficacy of interferon-stimulated gene 20 (ISG20) against PDCoV and PEDV infections was also assessed. Differentially expressed genes (DEGs) were detected in PEDV-, PDCoV-, and PEDV + PDCoV-infected cells at 6, 12, and 24 h post-infection (hpi), and at 24 hpi, the number of DEGs was the highest. Furthermore, changes in the expression of interferons, which are mainly related to apoptosis and activation of the host innate immune pathway, were found in the PEDV and PDCoV infection and coinfection groups. Additionally, 43 ISGs, including GBP2, IRF1, ISG20, and IFIT2, were upregulated during PEDV or PDCoV infection. Furthermore, we found that ISG20 significantly inhibited PEDV and PDCoV infection in LLC-PK cells. The transcriptomic profiles of cells coinfected with PEDV and PDCoV were reported, providing reference data for understanding the host response to PEDV and PDCoV coinfection.
Collapse
Affiliation(s)
- Yanzhen Lu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (Y.L.)
- State Key Laboratory for Animal Disease Control and Prevention, OIE/National Foot-and-Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China (L.P.)
| | - Ruiming Yu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (Y.L.)
- State Key Laboratory for Animal Disease Control and Prevention, OIE/National Foot-and-Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China (L.P.)
| | - Lixin Tong
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (Y.L.)
- State Key Laboratory for Animal Disease Control and Prevention, OIE/National Foot-and-Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China (L.P.)
| | - Liping Zhang
- State Key Laboratory for Animal Disease Control and Prevention, OIE/National Foot-and-Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China (L.P.)
| | - Zhongwang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, OIE/National Foot-and-Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China (L.P.)
| | - Li Pan
- State Key Laboratory for Animal Disease Control and Prevention, OIE/National Foot-and-Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China (L.P.)
| | - Yonglu Wang
- State Key Laboratory for Animal Disease Control and Prevention, OIE/National Foot-and-Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China (L.P.)
| | - Huichen Guo
- State Key Laboratory for Animal Disease Control and Prevention, OIE/National Foot-and-Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China (L.P.)
| | - Yonghao Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (Y.L.)
| | - Xinsheng Liu
- State Key Laboratory for Animal Disease Control and Prevention, OIE/National Foot-and-Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China (L.P.)
| |
Collapse
|
8
|
Silonov SA, Mokin YI, Nedelyaev EM, Smirnov EY, Kuznetsova IM, Turoverov KK, Uversky VN, Fonin AV. On the Prevalence and Roles of Proteins Undergoing Liquid-Liquid Phase Separation in the Biogenesis of PML-Bodies. Biomolecules 2023; 13:1805. [PMID: 38136675 PMCID: PMC10741438 DOI: 10.3390/biom13121805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
The formation and function of membrane-less organelles (MLOs) is one of the main driving forces in the molecular life of the cell. These processes are based on the separation of biopolymers into phases regulated by multiple specific and nonspecific inter- and intramolecular interactions. Among the realm of MLOs, a special place is taken by the promyelocytic leukemia nuclear bodies (PML-NBs or PML bodies), which are the intranuclear compartments involved in the regulation of cellular metabolism, transcription, the maintenance of genome stability, responses to viral infection, apoptosis, and tumor suppression. According to the accepted models, specific interactions, such as SUMO/SIM, the formation of disulfide bonds, etc., play a decisive role in the biogenesis of PML bodies. In this work, a number of bioinformatics approaches were used to study proteins found in the proteome of PML bodies for their tendency for spontaneous liquid-liquid phase separation (LLPS), which is usually caused by weak nonspecific interactions. A total of 205 proteins found in PML bodies have been identified. It has been suggested that UBC9, P53, HIPK2, and SUMO1 can be considered as the scaffold proteins of PML bodies. It was shown that more than half of the proteins in the analyzed proteome are capable of spontaneous LLPS, with 85% of the analyzed proteins being intrinsically disordered proteins (IDPs) and the remaining 15% being proteins with intrinsically disordered protein regions (IDPRs). About 44% of all proteins analyzed in this study contain SUMO binding sites and can potentially be SUMOylated. These data suggest that weak nonspecific interactions play a significantly larger role in the formation and biogenesis of PML bodies than previously expected.
Collapse
Affiliation(s)
- Sergey A. Silonov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| | - Yakov I. Mokin
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| | - Eugene M. Nedelyaev
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| | - Eugene Y. Smirnov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| | - Irina M. Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| | - Konstantin K. Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Alexander V. Fonin
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| |
Collapse
|
9
|
Peng K, Wang N, Liu Q, Wang L, Duan X, Xie G, Li J, Ding D. Identification of disulfidptosis-related subtypes and development of a prognosis model based on stacking framework in renal clear cell carcinoma. J Cancer Res Clin Oncol 2023; 149:13793-13810. [PMID: 37530800 DOI: 10.1007/s00432-023-05201-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/22/2023] [Indexed: 08/03/2023]
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is a common malignant tumor with an unsatisfactory prognosis. This study aims to identify the expression patterns of disulfidptosis-related genes (DRGs), develop a prognostic model, and predict immunological profiles. METHODS First, we identified differentially expressed DRGs in TCGA-KIRC cohort and analyzed their mutational profiles, methylation levels, and interaction networks. Subsequently, we identified disulfidptosis-associated molecular subtypes and investigated their prognostic and immunological characteristics. Simultaneously, a disulfidptosis-related prognostic signature (DRPS) was developed using a two-stage stacking framework consisting of 5 machine learning models. The effect of DRPS on immune cell infiltration levels was explored using seven different algorithms, and the status and function of T cells for distinct risk-score groups were evaluated based on T cell exhaustion and dysfunction scores. Additionally, the study also examined differences in clinical characteristics and therapy efficacy between high- and low-risk groups. RESULTS We found two disulfidptosis-associated clusters, one of which had a poor prognosis and was linked to high immune cell infiltration but impaired T cell function. DRPS showed excellent predictive performance in all four cohorts and could accurately identified disulfidptosis-related molecular subtypes. The DRPS-based risk score was positively associated with poor prognosis, malignant pathological features, high immune cell infiltration levels, and T cell exhaustion or dysfunction, and better respond to immunotherapy and targeted therapy. Additionally, we have identified a close association between ISG20 and disulfidptosis as well as tumor immunity. CONCLUSION Our study identified distinct disulfidptosis-related subtypes in ccRCC patients, and constructed the highly accurate and robust DRPS based on an ensemble learning framework, which has critical reference value in clinical decision-making and individualized treatment. And this work also revealed ISG20 exhibits promising potential as a therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Kun Peng
- Department of Urology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Ning Wang
- Department of Urology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Qingyuan Liu
- Department of Urology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Lingdian Wang
- Department of Urology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Xiaoyu Duan
- Department of Urology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Guochong Xie
- Department of Urology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Jixi Li
- Department of Urology, People's Hospital of Henan University, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Degang Ding
- Department of Urology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, China.
- Department of Urology, People's Hospital of Henan University, Henan Provincial People's Hospital, Zhengzhou, 450003, China.
- Institute of Urology, Henan Provincial People's Hospital, Zhengzhou, China.
| |
Collapse
|
10
|
Peng Y, Liu H, Wu Q, Wang L, Yu Y, Yin F, Feng C, Ren X, Liu T, Chen L, Zhu H. Integrated bioinformatics analysis and experimental validation reveal ISG20 as a novel prognostic indicator expressed on M2 macrophage in glioma. BMC Cancer 2023; 23:596. [PMID: 37380984 DOI: 10.1186/s12885-023-11057-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/11/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Glioma is the most common malignant primary brain tumor and is characterized by a poor prognosis and limited therapeutic options. ISG20 expression is induced by interferons or double-stranded RNA and is associated with poor prognosis in several malignant tumors. Nevertheless, the expression of ISG20 in gliomas, its impact on patient prognosis, and its role in the tumor immune microenvironment have not been fully elucidated. METHODS Using bioinformatics, we comprehensively illustrated the potential function of ISG20, its predictive value in stratifying clinical prognosis, and its association with immunological characteristics in gliomas. We also confirmed the expression pattern of ISG20 in glioma patient samples by immunohistochemistry and immunofluorescence staining. RESULTS ISG20 mRNA expression was higher in glioma tissues than in normal tissues. Data-driven results showed that a high level of ISG20 expression predicted an unfavorable clinical outcome in glioma patients, and revealed that ISG20 was possibly expressed on tumor-associated macrophages and was significantly associated with immune regulatory processes, as evidenced by its positive correlation with the infiltration of regulatory immune cells (e.g., M2 macrophages and regulatory T cells), expression of immune checkpoint molecules, and effectiveness of immune checkpoint blockade therapy. Furthermore, immunohistochemistry staining confirmed the enhanced expression of ISG20 in glioma tissues with a higher WHO grade, and immunofluorescence assay verified its cellular localization on M2 macrophages. CONCLUSIONS ISG20 is expressed on M2 macrophages, and can serve as a novel indicator for predicting the malignant phenotype and clinical prognosis in glioma patients.
Collapse
Affiliation(s)
- Yaojun Peng
- Department of Graduate Administration, Medical School of Chinese, PLA General Hospital, Beijing, China
- Department of Emergency, The First Medical Center, Chinese PLA General Hospital, 28Th Fuxing Road, Beijing, China
| | - Hongyu Liu
- Department of Graduate Administration, Medical School of Chinese, PLA General Hospital, Beijing, China
- Department of Neurosurgery, The First Medical Center, Chinese PLA General Hospital, 28Th Fuxing Road, Beijing, China
- Department of Neurosurgery, Hainan Hospital of Chinese PLA General Hospital, Sanya, Hainan, China
| | - Qiyan Wu
- Institute of Oncology, The Fifth Medical Centre, Chinese PLA General Hospital, 8Th East Road of Fengtai, Beijing, China
| | - Lingxiong Wang
- Institute of Oncology, The Fifth Medical Centre, Chinese PLA General Hospital, 8Th East Road of Fengtai, Beijing, China
| | - Yanju Yu
- Institute of Oncology, The Fifth Medical Centre, Chinese PLA General Hospital, 8Th East Road of Fengtai, Beijing, China
| | - Fan Yin
- Department of Oncology, The Second Medical Center & National Clinical Research Center of Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| | - Cong Feng
- Department of Emergency, The First Medical Center, Chinese PLA General Hospital, 28Th Fuxing Road, Beijing, China
| | - Xuewen Ren
- Department of Emergency, The First Medical Center, Chinese PLA General Hospital, 28Th Fuxing Road, Beijing, China
| | - Tianyi Liu
- Institute of Oncology, The Fifth Medical Centre, Chinese PLA General Hospital, 8Th East Road of Fengtai, Beijing, China.
| | - Ling Chen
- Department of Neurosurgery, The First Medical Center, Chinese PLA General Hospital, 28Th Fuxing Road, Beijing, China.
| | - Haiyan Zhu
- Department of Emergency, The First Medical Center, Chinese PLA General Hospital, 28Th Fuxing Road, Beijing, China.
| |
Collapse
|
11
|
Liu SY, Huang M, Fung TS, Chen RA, Liu DX. Characterization of the induction kinetics and antiviral functions of IRF1, ISG15 and ISG20 in cells infected with gammacoronavirus avian infectious bronchitis virus. Virology 2023; 582:114-127. [PMID: 37058744 PMCID: PMC10072953 DOI: 10.1016/j.virol.2023.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/16/2023]
Abstract
Coronavirus infection induces a variety of cellular antiviral responses either dependent on or independent of type I interferons (IFNs). Our previous studies using Affymetrix microarray and transcriptomic analysis revealed the differential induction of three IFN-stimulated genes (ISGs), IRF1, ISG15 and ISG20, by gammacoronavirus infectious bronchitis virus (IBV) infection of IFN-deficient Vero cells and IFN-competent, p53-defcient H1299 cells, respectively. In this report, the induction kinetics and anti-IBV functions of these ISGs as well as mechanisms underlying their differential induction are characterized. The results confirmed that these three ISGs were indeed differentially induced in H1299 and Vero cells infected with IBV, significantly more upregulation of IRF1, ISG15 and ISG20 was elicited in IBV-infected Vero cells than that in H1299 cells. Induction of these ISGs was also detected in cells infected with human coronavirus-OC43 (HCoV-OC43) and porcine epidemic diarrhea virus (PEDV), respectively. Manipulation of their expression by overexpression, knockdown and/or knockout demonstrated that IRF1 played an active role in suppressing IBV replication, mainly through the activation of the IFN pathway. However, a minor, if any, role in inhibiting IBV replication was played by ISG15 and ISG20. Furthermore, p53, but not IRF1, was implicated in regulating the IBV infection-induced upregulation of ISG15 and ISG20. This study provides new information on the mechanisms underlying the induction of these ISGs and their contributions to the host cell antiviral response during IBV infection.
Collapse
Affiliation(s)
- Si Ying Liu
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, 526000, Guangdong Province, People's Republic of China; Guangdong Province Key Laboratory Microbial Signals & Disease Control, and Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, Guangdong Province, People's Republic of China
| | - Mei Huang
- Zhaoqing Institute of Biotechnology Co., Ltd., Zhaoqing, 526238, Guangdong Province, People's Republic of China
| | - To Sing Fung
- Guangdong Province Key Laboratory Microbial Signals & Disease Control, and Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, Guangdong Province, People's Republic of China
| | - Rui Ai Chen
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, 526000, Guangdong Province, People's Republic of China
| | - Ding Xiang Liu
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, 526000, Guangdong Province, People's Republic of China; Guangdong Province Key Laboratory Microbial Signals & Disease Control, and Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, Guangdong Province, People's Republic of China.
| |
Collapse
|
12
|
Decombe A, El Kazzi P, Decroly E. Interplay of RNA 2'-O-methylations with viral replication. Curr Opin Virol 2023; 59:101302. [PMID: 36764118 DOI: 10.1016/j.coviro.2023.101302] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/06/2022] [Accepted: 12/19/2022] [Indexed: 02/11/2023]
Abstract
Viral RNAs (vRNAs) are decorated by post-transcriptional modifications, including methylation of nucleotides. Methylations regulate biological functions linked to the sequence, structure, and protein interactome of RNA. Several RNA viruses were found to harbor 2'-O-methylations, affecting the ribose moiety of RNA. This mark was initially shown to target the first and second nucleotides of the 5'-end cap structure of mRNA. More recently, nucleotides within vRNA were also reported to carry 2'-O-methylations. The consequences of such methylations are still puzzling since they were associated with both proviral and antiviral effects. Here, we focus on the mechanisms governing vRNA 2'-O-methylation and we explore the possible roles of this epitranscriptomic modification for viral replication.
Collapse
Affiliation(s)
- Alice Decombe
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288 Marseille Cedex 09, France
| | - Priscila El Kazzi
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288 Marseille Cedex 09, France
| | - Etienne Decroly
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288 Marseille Cedex 09, France.
| |
Collapse
|
13
|
Kouwaki T, Nishimura T, Wang G, Nakagawa R, Oshiumi H. K63-linked polyubiquitination of LGP2 by Riplet regulates RIG-I-dependent innate immune response. EMBO Rep 2023; 24:e54844. [PMID: 36515138 PMCID: PMC9900346 DOI: 10.15252/embr.202254844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Type I interferons (IFNs) exhibit strong antiviral activity and induce the expression of antiviral proteins. Since excessive expression of type I IFNs is harmful to the host, their expression should be turned off at the appropriate time. In this study, we find that post-translational modification of LGP2, a member of the RIG-I-like receptor family, modulates antiviral innate immune responses. The LGP2 protein undergoes K63-linked polyubiquitination in response to cytoplasmic double-stranded RNAs or viral infection. Our mass spectrometry analysis reveals the K residues ubiquitinated by the Riplet ubiquitin ligase. LGP2 ubiquitination occurs with a delay compared to RIG-I ubiquitination. Interestingly, ubiquitination-defective LGP2 mutations increase the expression of type I IFN at a late phase, whereas the mutant proteins attenuate other antiviral proteins, such as SP100, PML, and ANKRD1. Our data indicate that delayed polyubiquitination of LGP2 fine-tunes RIG-I-dependent antiviral innate immune responses at a late phase of viral infection.
Collapse
Affiliation(s)
- Takahisa Kouwaki
- Department of Immunology, Graduate School of Medical Sciences, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Tasuku Nishimura
- Department of Immunology, Graduate School of Medical Sciences, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Guanming Wang
- Department of Immunology, Graduate School of Medical Sciences, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Reiko Nakagawa
- Laboratory for PhyloinformaticsRIKEN Center for Biosystems Dynamics Research in KobeKobeJapan
| | - Hiroyuki Oshiumi
- Department of Immunology, Graduate School of Medical Sciences, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| |
Collapse
|
14
|
Bignoux MJ, Otgaar TC, Bernert M, Weiss SFT, Ferreira E. Downregulation of LRP/LR with siRNA inhibits several cancer hallmarks in lung cancer cells. FEBS Open Bio 2023; 13:323-340. [PMID: 36579897 PMCID: PMC9900088 DOI: 10.1002/2211-5463.13544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/07/2022] [Accepted: 12/28/2022] [Indexed: 12/30/2022] Open
Abstract
The incidence and mortality rates of cancer are growing rapidly worldwide, with lung cancer being the most commonly occurring cancer in males. Human carcinomas circumvent the inhibitory pathways induced by DNA damage and senescence through the upregulation of telomerase activity. The 37 kDa/67 kDa laminin receptor (LRP/LR) is a cell surface receptor which plays a role in several cancer hallmarks, including metastasis, angiogenesis, cell viability maintenance, apoptotic evasion, and mediating telomerase activity. We have previously shown that the knockdown of LRP/LR with an LRP-specific siRNA significantly impedes adhesion and invasion, induces apoptosis, and inhibits telomerase activity in various cancer cell lines in vitro. Here, we investigated the effect of downregulating LRP/LR with LRP-specific siRNA in A549 lung cancer cells. Downregulation of LRP/LR resulted in a significant decrease in cell viability, migration potential, and telomerase activity, as well as a significant increase in apoptosis. Proteomic analysis further suggested the re-establishment of immune control over the lung cancer cells, a previously unidentified facet of LRP downregulation in cancer. Altogether, we suggest that targeting LRP/LR for downregulation may have therapeutic potential for inhibiting several cancer hallmarks.
Collapse
Affiliation(s)
- Monique J. Bignoux
- School of Molecular and Cell BiologyUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Tyrone C. Otgaar
- School of Molecular and Cell BiologyUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Martin Bernert
- School of Molecular and Cell BiologyUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Stefan F. T. Weiss
- School of Molecular and Cell BiologyUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Eloise Ferreira
- School of Molecular and Cell BiologyUniversity of the WitwatersrandJohannesburgSouth Africa
| |
Collapse
|
15
|
Cheng J, Fu J, Tan Q, Liu Z, Guo K, Zhang L, He J, Zhou B, Liu X, Li D, Fu J. The regulation of ISG20 expression on SARS-CoV-2 infection in cancer patients and healthy individuals. Front Immunol 2022; 13:958898. [PMID: 36177004 PMCID: PMC9513371 DOI: 10.3389/fimmu.2022.958898] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/26/2022] [Indexed: 11/22/2022] Open
Abstract
ISG20 inhibits viruses such as SARS-CoV-2 invasion; however, details of its expression and regulation with viral susceptibility remain to be elucidated. The present study analyzed ISG20 expression, isoform information, survival rate, methylation patterns, immune cell infiltration, and COVID-19 outcomes in healthy and cancerous individuals. Cordycepin (CD) and N6, N6-dimethyladenosine (m62A) were used to treat cancer cells for ISG20 expression. We revealed that ISG20 mRNA expression was primarily located in the bone marrow and lymphoid tissues. Interestingly, its expression was significantly increased in 11 different types of cancer, indicating that cancer patients may be less vulnerable to SARS-CoV-2 infection. Among them, higher expression of ISG20 was associated with a long OS in CESC and SKCM, suggesting that ISG20 may be a good marker for both viral prevention and cancer progress. ISG20 promoter methylation was significantly lower in BLCA, READ, and THCA tumor tissues than in the matched normal tissues, while higher in BRCA, LUSC, KIRC, and PAAD. Hypermethylation of ISG20 in KIRC and PAAD tumor tissues was correlated with higher expression of ISG20, suggesting that methylation of ISG20 may not underlie its overexpression. Furthermore, ISG20 expression was significantly correlated with immune infiltration levels, including immune lymphocytes, chemokine, receptors, immunoinhibitors, immunostimulators, and MHC molecules in pan-cancer. STAD exhibited the highest degree of ISG20 mutations; the median progression-free survival time in months for the unaltered group was 61.84, while it was 81.01 in the mutant group. Isoforms ISG20-001 and ISG20−009 showed the same RNase_T domain structure, demonstrating the functional roles in tumorigenesis and SARS-CoV-2 invasion inhibition in cancer patients. Moreover, CD and m62A increase ISG20 expression in various cancer cell lines, implying the antiviral/anti-SARS-CoV-2 therapeutic potential. Altogether, this study highlighted the value of combating cancer by targeting ISG20 during the COVID-19 pandemic, and small molecules extracted from traditional Chinese medicines, such as CD, may have potential as anti-SARS-CoV-2 and anticancer agents by promoting ISG20 expression.
Collapse
Affiliation(s)
- Jingliang Cheng
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Jiewen Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Qi Tan
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Zhiying Liu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Kan Guo
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Lianmei Zhang
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
- Department of Pathology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huai’an, China
| | - Jiayue He
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Baixu Zhou
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
- Department of Gynecology and Obstetrics, Guangdong Women and Children Hospital, Guangzhou, China
| | - Xiaoyan Liu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
- *Correspondence: Junjiang Fu, ; Dabing Li, ; Xiaoyan Liu,
| | - Dabing Li
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
- Basic Medical School, Southwest Medical University, Luzhou, China
- *Correspondence: Junjiang Fu, ; Dabing Li, ; Xiaoyan Liu,
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
- *Correspondence: Junjiang Fu, ; Dabing Li, ; Xiaoyan Liu,
| |
Collapse
|
16
|
A Novel Approach of Antiviral Drugs Targeting Viral Genomes. Microorganisms 2022; 10:microorganisms10081552. [PMID: 36013970 PMCID: PMC9414836 DOI: 10.3390/microorganisms10081552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Outbreaks of viral diseases, which cause morbidity and mortality in animals and humans, are increasing annually worldwide. Vaccines, antiviral drugs, and antibody therapeutics are the most effective tools for combating viral infection. The ongoing coronavirus disease 2019 pandemic, in particular, raises an urgent need for the development of rapid and broad-spectrum therapeutics. Current antiviral drugs and antiviral antibodies, which are mostly specific at protein levels, have encountered difficulties because the rapid evolution of mutant viral strains resulted in drug resistance. Therefore, degrading viral genomes is considered a novel approach for developing antiviral drugs. The current article highlights all potent candidates that exhibit antiviral activity by digesting viral genomes such as RNases, RNA interference, interferon-stimulated genes 20, and CRISPR/Cas systems. Besides that, we introduce a potential single-chain variable fragment (scFv) that presents antiviral activity against various DNA and RNA viruses due to its unique nucleic acid hydrolyzing characteristic, promoting it as a promising candidate for broad-spectrum antiviral therapeutics.
Collapse
|
17
|
Deymier S, Louvat C, Fiorini F, Cimarelli A. ISG20: an enigmatic antiviral RNase targeting multiple viruses. FEBS Open Bio 2022; 12:1096-1111. [PMID: 35174977 PMCID: PMC9157404 DOI: 10.1002/2211-5463.13382] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/31/2022] [Accepted: 02/15/2022] [Indexed: 11/25/2022] Open
Abstract
Interferon-stimulated gene 20 kDa protein (ISG20) is a relatively understudied antiviral protein capable of inhibiting a broad spectrum of viruses. ISG20 exhibits strong RNase properties, and it belongs to the large family of DEDD exonucleases, present in both prokaryotes and eukaryotes. ISG20 was initially characterized as having strong RNase activity in vitro, suggesting that its inhibitory effects are mediated via direct degradation of viral RNAs. This mechanism of action has since been further elucidated and additional antiviral activities of ISG20 highlighted, including direct degradation of deaminated viral DNA and translational inhibition of viral RNA and nonself RNAs. This review focuses on the current understanding of the main molecular mechanisms of viral inhibition by ISG20 and discusses the latest developments on the features that govern specificity or resistance to its action.
Collapse
Affiliation(s)
- Séverine Deymier
- Centre International de Recherche en Infectiologie (CIRI)Université de LyonInsermU1111Université Claude Bernard Lyon 1CNRSUMR5308École Nationale Supérieur de LyonFrance
| | | | | | - Andrea Cimarelli
- Centre International de Recherche en Infectiologie (CIRI)Université de LyonInsermU1111Université Claude Bernard Lyon 1CNRSUMR5308École Nationale Supérieur de LyonFrance
| |
Collapse
|
18
|
Kang D, Gao S, Tian Z, Zhang G, Guan G, Liu G, Luo J, Du J, Yin H. ISG20 Inhibits Bluetongue Virus Replication. Virol Sin 2022; 37:521-530. [PMID: 35513266 PMCID: PMC9437527 DOI: 10.1016/j.virs.2022.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 04/22/2022] [Indexed: 12/14/2022] Open
Abstract
ISG20 is an interferon-inducible exonuclease that inhibits virus replication. Although ISG20 is thought to degrade viral RNA, the antiviral mechanism and specificity of ISG20 remain unclear. In this study, the antiviral role of ovine ISG20 (oISG20) in bluetongue virus (BTV) infection was investigated. It was found that BTV infection up-regulated the transcription of ovine ISG20 (oISG20) in a time- and BTV multiplicity of infection (MOI)-dependent manner. Overexpression of oISG20 suppressed the production of BTV genome, proteins, and virus titer, whereas the knockdown of oISG20 increased viral replication. oISG20 was found to co-localize with BTV proteins VP4, VP5, VP6, and NS2, but only directly interacted with VP4. Exonuclease defective oISG20 significantly decreased the inhibitory effect on BTV replication. In addition, the interaction of mutant oISG20 and VP4 was weakened, suggesting that binding to VP4 was associated with the inhibition of BTV replication. The present data characterized the anti-BTV effect of oISG20, and provides a novel clue for further exploring the inhibition mechanism of double-stranded RNA virus by ISG20. BTV infection significantly up-regulated the transcription level of oISG20 in vitro. The oISG20 showed a high similarity with other ISG20s from different species. The oISG20 had antiviral activity against BTV infection. The inhibitory effect of oISG20 on BTV replication is mediated by BTV VP4 protein.
Collapse
|
19
|
Cystic Fibrosis: Systems Biology Analysis from Homozygous p.Phe508del Variant Patients' Samples Reveals Perturbations in Tissue-Specific Pathways. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5262000. [PMID: 34901273 PMCID: PMC8660202 DOI: 10.1155/2021/5262000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/08/2021] [Indexed: 11/24/2022]
Abstract
Cystic fibrosis (CF) is an autosomal recessive disorder, caused by diverse genetic variants for the CF transmembrane conductance regulator (CFTR) protein. Among these, p.Phe508del is the most prevalent variant. The effects of this variant on the physiology of each tissue remains unknown. This study is aimed at predicting cell signaling pathways present in different tissues of fibrocystic patients, homozygous for p.Phe508del. The study involved analysis of two microarray datasets, E-GEOD-15568 and E-MTAB-360 corresponding to the rectal and bronchial epithelium, respectively, obtained from the ArrayExpress repository. Particularly, differentially expressed genes (DEGs) were predicted, protein-protein interaction (PPI) networks were designed, and centrality and functional interaction networks were analyzed. The study reported that p.Phe508del-mutated CFTR-allele in homozygous state influenced the whole gene expression in each tissue differently. Interestingly, gene ontology (GO) term enrichment analysis revealed that only “neutrophil activation” was shared between both tissues; however, nonshared DEGs were grouped into the same GO term. For further verification, functional interaction networks were generated, wherein no shared nodes were reported between these tissues. These results suggested that the p.Phe508del-mutated CFTR-allele in homozygous state promoted tissue-specific pathways in fibrocystic patients. The generated data might further assist in prediction diagnosis to define biomarkers or devising therapeutic strategies.
Collapse
|
20
|
Rousseaux N, Andrieux L. [ISG20: An antiviral factor able to discriminate self versus non-self translation]. Med Sci (Paris) 2021; 37:1070-1072. [PMID: 34851289 DOI: 10.1051/medsci/2021167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Noëmi Rousseaux
- École normale supérieure de Lyon, Département de biologie, Master biologie, Lyon, France
| | - Lena Andrieux
- École normale supérieure de Lyon, Département de biologie, Master biologie, Lyon, France
| |
Collapse
|
21
|
Stadler D, Kächele M, Jones AN, Hess J, Urban C, Schneider J, Xia Y, Oswald A, Nebioglu F, Bester R, Lasitschka F, Ringelhan M, Ko C, Chou W, Geerlof A, van de Klundert MA, Wettengel JM, Schirmacher P, Heikenwälder M, Schreiner S, Bartenschlager R, Pichlmair A, Sattler M, Unger K, Protzer U. Interferon-induced degradation of the persistent hepatitis B virus cccDNA form depends on ISG20. EMBO Rep 2021; 22:e49568. [PMID: 33969602 PMCID: PMC8183418 DOI: 10.15252/embr.201949568] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/16/2022] Open
Abstract
Hepatitis B virus (HBV) persists by depositing a covalently closed circular DNA (cccDNA) in the nucleus of infected cells that cannot be targeted by available antivirals. Interferons can diminish HBV cccDNA via APOBEC3-mediated deamination. Here, we show that overexpression of APOBEC3A alone is not sufficient to reduce HBV cccDNA that requires additional treatment of cells with interferon indicating involvement of an interferon-stimulated gene (ISG) in cccDNA degradation. Transcriptome analyses identify ISG20 as the only type I and II interferon-induced, nuclear protein with annotated nuclease activity. ISG20 localizes to nucleoli of interferon-stimulated hepatocytes and is enriched on deoxyuridine-containing single-stranded DNA that mimics transcriptionally active, APOBEC3A-deaminated HBV DNA. ISG20 expression is detected in human livers in acute, self-limiting but not in chronic hepatitis B. ISG20 depletion mitigates the interferon-induced loss of cccDNA, and co-expression with APOBEC3A is sufficient to diminish cccDNA. In conclusion, non-cytolytic HBV cccDNA decline requires the concerted action of a deaminase and a nuclease. Our findings highlight that ISGs may cooperate in their antiviral activity that may be explored for therapeutic targeting.
Collapse
|
22
|
Wang Y, Chen Y, Lin Y, Quan Y, Xiao X, Zhang R. TRIM22 inhibits respiratory syncytial virus replication by targeting JAK-STAT1/2 signaling. J Med Virol 2021; 93:3412-3419. [PMID: 32803897 DOI: 10.1002/jmv.26436] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/08/2020] [Indexed: 01/06/2023]
Abstract
Respiratory syncytial virus (RSV) infection is a major cause of lower respiratory tract disease. Although RSV causes major economic losses every year, effective treatments have not been found so far. Recent studies have shown that the tripartite motif-containing (TRIM) superfamily plays an essential role in the immune response. In this study, we found that TRIM22 had an inhibitory effect on RSV infection, and downregulation of TRIM22 moderately enhanced RSV replication. Our data further demonstrated that RSV infection induced TRIM22 expression through the activation of JAK-STAT1/2 signaling. RSV infection also induced TRIM22 expression. Taken together, these data points showed that the TRIM family member, TRIM22, had an essential role in resisting RSV infection, and this effect was closely related to the JAK-STAT1/2 pathway. Our results provide promising evidence for a novel target for the prevention and treatment of RSV.
Collapse
Affiliation(s)
- Yishu Wang
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
- Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Yiling Chen
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Ying Lin
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Yingqin Quan
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Xiaoping Xiao
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Renli Zhang
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| |
Collapse
|
23
|
Markiewicz L, Drazkowska K, Sikorski PJ. Tricks and threats of RNA viruses - towards understanding the fate of viral RNA. RNA Biol 2021; 18:669-687. [PMID: 33618611 PMCID: PMC8078519 DOI: 10.1080/15476286.2021.1875680] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/22/2020] [Accepted: 01/09/2021] [Indexed: 12/24/2022] Open
Abstract
Human innate cellular defence pathways have evolved to sense and eliminate pathogens, of which, viruses are considered one of the most dangerous. Their relatively simple structure makes the identification of viral invasion a difficult task for cells. In the course of evolution, viral nucleic acids have become one of the strongest and most reliable early identifiers of infection. When considering RNA virus recognition, RNA sensing is the central mechanism in human innate immunity, and effectiveness of this sensing is crucial for triggering an appropriate antiviral response. Although human cells are armed with a variety of highly specialized receptors designed to respond only to pathogenic viral RNA, RNA viruses have developed an array of mechanisms to avoid being recognized by human interferon-mediated cellular defence systems. The repertoire of viral evasion strategies is extremely wide, ranging from masking pathogenic RNA through end modification, to utilizing sophisticated techniques to deceive host cellular RNA degrading enzymes, and hijacking the most basic metabolic pathways in host cells. In this review, we aim to dissect human RNA sensing mechanisms crucial for antiviral immune defences, as well as the strategies adopted by RNA viruses to avoid detection and degradation by host cells. We believe that understanding the fate of viral RNA upon infection, and detailing the molecular mechanisms behind virus-host interactions, may be helpful for developing more effective antiviral strategies; which are urgently needed to prevent the far-reaching consequences of widespread, highly pathogenic viral infections.
Collapse
|
24
|
Xiong H, Zhang X, Chen X, Liu Y, Duan J, Huang C. High expression of ISG20 predicts a poor prognosis in acute myeloid leukemia. Cancer Biomark 2021; 31:255-261. [PMID: 33896836 DOI: 10.3233/cbm-210061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Acute myeloid leukemia (AML) is one of the most malignant hematopoietic system diseases. Interferon stimulated exonuclease gene 20 (ISG20) is a protein induced by interferons or double-stranded RNA, which is associated with poor prognosis in several malignant tumors. However its expression in AML is unknown. OBJECTIVE To explore the expression of ISG20 in AML and its prognostic significance. METHODS The expression of ISG20 in AML patients was analyzed by GEPIA database, detected by qRT-PCR and their prognosis was followed-up. Chi-square test was used to identify the association between ISG20 expression and clinical characteristics of the patients. Kaplan-Meier analysis was performed to draw survival curves and Cox regression analysis to confirm the independent prognostic factors of AML patients. RESULTS Kaplan-Meier analysis revealed that whether to receive treatment, karyotype, and ISG20 expression were related to overall survival time of AML patients (P< 0.05). Cox regression analysis showed that whether to receive treatment (HR = 0.248, 95% CI = 0.076-0.808, P= 0.021) and high expression of ISG20 (HR = 4.266, 95% CI = 1.118-16.285, P= 0.034) were independent unfavorable prognostic factors for AML patients. CONCLUSION The high expression of ISG20 acts as a poor prognosis indicator in AML patients.
Collapse
|
25
|
Yang E, Li MMH. All About the RNA: Interferon-Stimulated Genes That Interfere With Viral RNA Processes. Front Immunol 2020; 11:605024. [PMID: 33362792 PMCID: PMC7756014 DOI: 10.3389/fimmu.2020.605024] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/09/2020] [Indexed: 12/18/2022] Open
Abstract
Interferon (IFN) signaling induces the expression of a wide array of genes, collectively referred to as IFN-stimulated genes (ISGs) that generally function to inhibit viral replication. RNA viruses are frequently targeted by ISGs through recognition of viral replicative intermediates and molecular features associated with viral genomes, or the lack of molecular features associated with host mRNAs. The ISGs reviewed here primarily inhibit viral replication in an RNA-centric manner, working to sense, degrade, or repress expression of viral RNA. This review focuses on dissecting how these ISGs exhibit multiple antiviral mechanisms, often through use of varied co-factors, highlighting the complexity of the type I IFN response. Specifically, these ISGs can mediate antiviral effects through viral RNA degradation, viral translation inhibition, or both. While the OAS/RNase L pathway globally degrades RNA and arrests translation, ISG20 and ZAP employ targeted RNA degradation and translation inhibition to block viral replication. Meanwhile, SHFL targets translation by inhibiting -1 ribosomal frameshifting, which is required by many RNA viruses. Finally, a number of E3 ligases inhibit viral transcription, an attractive antiviral target during the lifecycle of negative-sense RNA viruses which must transcribe their genome prior to translation. Through this review, we aim to provide an updated perspective on how these ISGs work together to form a complex network of antiviral arsenals targeting viral RNA processes.
Collapse
Affiliation(s)
- Emily Yang
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Melody M. H. Li
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
26
|
Park YK, Lee SY, Lee AR, Kim K, Kim K, Kim K, Choi B. Antiviral activity of interferon-stimulated gene 20, as a putative repressor binding to hepatitis B virus enhancer II and core promoter. J Gastroenterol Hepatol 2020; 35:1426-1436. [PMID: 31951295 PMCID: PMC7497004 DOI: 10.1111/jgh.14986] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 12/30/2019] [Accepted: 01/13/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM Interferon-stimulated gene 20 (ISG20) is an interferon-inducible exonuclease that inhibits the replication of several RNA viruses. In patients with chronic hepatitis B, ISG20 expression is related to the interferon-α treatment response. However, the molecular mechanism of ISG20-mediated anti-hepatitis B virus (HBV) activity is unclear. METHODS We have investigated the effect of ISG20 on antiviral activity to address that. The life cycle of HBV was analyzed by the ectopic expression of ISG20 in HepG2 and HepG2-NTCP cells. Finally, to provide physiological relevance of our study, the expression of ISG20 from chronic hepatitis B patients was examined. RESULTS Interferon-stimulated gene 20 was mainly induced by interferon-β and dramatically inhibited HBV replication. In addition, ISG20 decreased HBV gene expression and transcription. Although ISG20 inhibited HBV replication by reducing viral enhancer activity, the expression of transcription factors that bind the HBV enhancer was not affected. Particularly, ISG20 suppressed HBV enhancer activity by binding to the enhancer II and core promoter (EnhII/Cp) region. CONCLUSION Our findings suggest that ISG20 exerts the anti-HBV activity by acting as a putative repressor binding to the HBV EnhII/Cp region.
Collapse
Affiliation(s)
- Yong Kwang Park
- Division of Viral Disease Research, Center for Infectious Disease ResearchKorea National Institute of HealthCheongju‐siChungbukKorea
| | - Sun Young Lee
- Division of Viral Disease Research, Center for Infectious Disease ResearchKorea National Institute of HealthCheongju‐siChungbukKorea
| | - Ah Ram Lee
- Department of Pharmacology, Center for Cancer Research and Diagnostic Medicine, IBST, School of MedicineKonkuk UniversitySeoulKorea
| | - Kyung‐Chang Kim
- Division of Viral Disease Research, Center for Infectious Disease ResearchKorea National Institute of HealthCheongju‐siChungbukKorea
| | - Kisoon Kim
- Division of Viral Disease Research, Center for Infectious Disease ResearchKorea National Institute of HealthCheongju‐siChungbukKorea
| | - Kyun‐Hwan Kim
- Department of Pharmacology, Center for Cancer Research and Diagnostic Medicine, IBST, School of MedicineKonkuk UniversitySeoulKorea
| | - Byeong‐Sun Choi
- Division of Viral Disease Research, Center for Infectious Disease ResearchKorea National Institute of HealthCheongju‐siChungbukKorea
| |
Collapse
|
27
|
Imam H, Kim GW, Mir SA, Khan M, Siddiqui A. Interferon-stimulated gene 20 (ISG20) selectively degrades N6-methyladenosine modified Hepatitis B Virus transcripts. PLoS Pathog 2020; 16:e1008338. [PMID: 32059034 PMCID: PMC7046284 DOI: 10.1371/journal.ppat.1008338] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/27/2020] [Accepted: 01/20/2020] [Indexed: 12/24/2022] Open
Abstract
Interferon (IFN) stimulates a whole repertoire of cellular genes, collectively referred to as ISGs (Interferon-stimulated genes). ISG20, a 3´-5´ exonuclease enzyme, has been previously shown to bind and degrade hepatitis B Virus (HBV) transcripts. Here, we show that the N6-methyladenosine (m6A)-modified HBV transcripts are selectively recognized and processed for degradation by ISG20. Moreover, this effect of ISG20 is critically regulated by m6A reader protein, YTHDF2 (YTH-domain family 2). Previously, we identified a unique m6A site within HBV transcripts and confirmed that methylation at nucleotide A1907 regulates HBV lifecycle. In this report, we now show that the methylation at A1907 is a critical regulator of IFN-α mediated decay of HBV RNA. We observed that the HBV RNAs become less sensitive to ISG20 mediated degradation when methyltransferase enzymes or m6A reader protein YTHDF2 are silenced in HBV expressing cells. By using an enzymatically inactive form ISG20D94G, we further demonstrated that ISG20 forms a complex with m6A modified HBV RNA and YTHDF2 protein. Due to terminal redundancy, HBV genomic nucleotide A1907 position is acquired twice by pregenomic RNA (pgRNA) during transcription and therefore the sites of methylation are encoded within 5´ and 3´ epsilon stem loops. We generated HBV mutants that lack m6A site at either one (5´ or 3´) or both the termini (5´& 3´). Using these mutants, we demonstrated that m6A modified HBV RNAs are subjected to ISG20-mediated decay and propose sequence of events, in which ISG20 binds with YTHDF2 and recognizes m6A-modified HBV transcripts to carry out the ribonuclease activity. This is the first study, which identifies a hitherto unknown role of m6A modification of RNA in IFN-α induced viral RNA degradation and proposes a new role of YTHDF2 protein as a cofactor required for IFN-α mediated viral RNA degradation. Hepatitis B Virus (HBV) is a DNA virus but replicates through a transitional pregenomic RNA (pgRNA). Interferon stimulated antiviral RNase, ISG20 selectively binds to the lower epsilon stem loop of HBV RNA and causes their degradation. Surprisingly this ISG20 binding site is chemically modified by N6-methyladenosine addition to A1907 residue, which resides in the lower region of the epsilon stem loop. This single m6A site occurs twice due to terminal redundancy of sequences in the pgRNA. We demonstrated herein that IFN-α-induced ISG20 can selectively degrade m6A modified HBV RNA. Using a combined strategy of silencing cellular methyltransferases, m6A binding protein YTHDF2 and the m6A sites mutants, we show that HBV transcripts are resistant to either IFN-α treatment or ectopically introduced ISG20 mediated degradation. YTHDF2 is an m6A binding protein which makes the HBV RNAs less stable. YTHDF2 protein forms a complex with IFN-α stimulated ISG20 and executes the nuclease digestion of the recruited m6A modified transcripts. Absence of cellular m6A machinery (methyltransferases or m6A reader proteins) makes the HBV RNA unresponsive to ISG20 mediated decay. This study provides molecular explanation of IFN-α mediated degradation of m6A modified HBV RNAs.
Collapse
Affiliation(s)
- Hasan Imam
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, California, United States of America
| | - Geon-Woo Kim
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, California, United States of America
| | - Saiful Anam Mir
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, California, United States of America
| | - Mohsin Khan
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, California, United States of America
- * E-mail: (MK); (AS)
| | - Aleem Siddiqui
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, California, United States of America
- * E-mail: (MK); (AS)
| |
Collapse
|
28
|
Xu T, Ruan H, Gao S, Liu J, Liu Y, Song Z, Cao Q, Wang K, Bao L, Liu D, Tong J, Shi J, Liang H, Yang H, Chen K, Zhang X. ISG20 serves as a potential biomarker and drives tumor progression in clear cell renal cell carcinoma. Aging (Albany NY) 2020; 12:1808-1827. [PMID: 32003757 PMCID: PMC7053611 DOI: 10.18632/aging.102714] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/02/2020] [Indexed: 12/13/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is one of the most common malignancies and lacks reliable biomarkers for diagnosis and prognosis, which results in high incidence and mortality rates of ccRCC. In this study, ISG20, HJURP, and FOXM1 were identified as hub genes via weighted gene co-expression network analysis (WGCNA) and Cox regression analysis. Samples validation showed that only ISG20 was up-regulated in ccRCC. Therefore, ISG20 was selected for further study. High ISG20 expression was associated with poor overall survival and disease-free survival. Furthermore, the expression of ISG20 could effectively differentiate ccRCC from normal tissues and was positively correlated to clinical stages. Functional experiments proved that knockdown of ISG20 expression could obviously inhibit cell growth, migration, and invasion in ccRCC cells. To find the potential mechanisms of ISG20, gene set enrichment analysis (GSEA) was performed and revealed that high expression of ISG20 was significantly involved in metastasis and cell cycle pathways. In addition, we found that ISG20 could regulate the expression of MMP9 and CCND1. In conclusion, these findings suggested that ISG20 promoted cell proliferation and metastasis via regulating MMP9/CCND1 expression and might serve as a potential biomarker and therapeutic target in ccRCC.
Collapse
Affiliation(s)
- Tianbo Xu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hailong Ruan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Su Gao
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jingchong Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuenan Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhengshuai Song
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qi Cao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Keshan Wang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lin Bao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Di Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Junwei Tong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jian Shi
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Huageng Liang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hongmei Yang
- Department of Pathogenic Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ke Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
29
|
Le Y. Screening and identification of key candidate genes and pathways in myelodysplastic syndrome by bioinformatic analysis. PeerJ 2019; 7:e8162. [PMID: 31803541 PMCID: PMC6886488 DOI: 10.7717/peerj.8162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/04/2019] [Indexed: 12/25/2022] Open
Abstract
Myelodysplastic syndrome (MDS) is a heterogeneous hematologic malignancy derived from hematopoietic stem cells and the molecular mechanism of MDS remains unclear. This study aimed to elucidate potential markers of diagnosis and prognosis of MDS. The gene expression profiles GSE19429 and GSE58831 were obtained and downloaded from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) in MDS were screened using GEO2R and overlapped DEGs were obtained with Venn Diagrams. Then, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway functional enrichment analyses, protein–protein interaction network establishment and survival analyses were performed. Functional enrichment analysis indicated that these DEGs were significantly enriched in the interferon signaling pathway, immune response, hematopoietic cell lineage and the FOXO signaling pathway. Four hub genes and four significant modules including 25 module genes were obtained via Cytoscape MCODE. Survival analysis showed that the overall survival of MDS patients having BLNK, IRF4, IFITM1, IFIT1, ISG20, IFI44L alterations were worse than that without alterations. In conclusion, the identification of these genes and pathways helps understand the underlying molecular mechanisms of MDS and provides candidate targets for the diagnosis and prognosis of MDS.
Collapse
Affiliation(s)
- Ying Le
- Department of Hematology, Maoming People's Hospital, Maoming, Guangdong, China
| |
Collapse
|
30
|
Wu N, Nguyen XN, Wang L, Appourchaux R, Zhang C, Panthu B, Gruffat H, Journo C, Alais S, Qin J, Zhang N, Tartour K, Catez F, Mahieux R, Ohlmann T, Liu M, Du B, Cimarelli A. The interferon stimulated gene 20 protein (ISG20) is an innate defense antiviral factor that discriminates self versus non-self translation. PLoS Pathog 2019; 15:e1008093. [PMID: 31600344 PMCID: PMC6805002 DOI: 10.1371/journal.ppat.1008093] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/22/2019] [Accepted: 09/18/2019] [Indexed: 01/29/2023] Open
Abstract
ISG20 is a broad spectrum antiviral protein thought to directly degrade viral RNA. However, this mechanism of inhibition remains controversial. Using the Vesicular Stomatitis Virus (VSV) as a model RNA virus, we show here that ISG20 interferes with viral replication by decreasing protein synthesis in the absence of RNA degradation. Importantly, we demonstrate that ISG20 exerts a translational control over a large panel of non-self RNA substrates including those originating from transfected DNA, while sparing endogenous transcripts. This activity correlates with the protein's ability to localize in cytoplasmic processing bodies. Finally, these functions are conserved in the ISG20 murine ortholog, whose genetic ablation results in mice with increased susceptibility to viral infection. Overall, our results posit ISG20 as an important defense factor able to discriminate the self/non-self origins of the RNA through translation modulation.
Collapse
Affiliation(s)
- Nannan Wu
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- Shanghai Emerging and Reemerging Infectious Disease Institute, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xuan-Nhi Nguyen
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Li Wang
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Romain Appourchaux
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Chengfei Zhang
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Baptiste Panthu
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Henri Gruffat
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Chloé Journo
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Sandrine Alais
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Juliang Qin
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Na Zhang
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Kevin Tartour
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Frédéric Catez
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Renaud Mahieux
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Theophile Ohlmann
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Mingyao Liu
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Bing Du
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- * E-mail: (BD); (AC)
| | - Andrea Cimarelli
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- * E-mail: (BD); (AC)
| |
Collapse
|
31
|
Gao M, Lin Y, Liu X, Li Y, Zhang C, Wang Z, Wang Z, Wang Y, Guo Z. ISG20 promotes local tumor immunity and contributes to poor survival in human glioma. Oncoimmunology 2018; 8:e1534038. [PMID: 30713788 PMCID: PMC6343791 DOI: 10.1080/2162402x.2018.1534038] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 10/01/2018] [Accepted: 10/02/2018] [Indexed: 12/20/2022] Open
Abstract
Recent evidence has confirmed that a mutation of the isocitrate dehydrogenase (IDH) gene occurs early in gliomagenesis and contributes to suppressed immunity. The present study aimed to determine the candidate genes associated with IDH mutation status that could serve as biomarkers of immune suppression for improved prognosis prediction. Clinical information and RNA-seq gene expression data were collected for 932 glioma samples from the CGGA and TCGA databases, and differentially expressed genes in both lower-grade glioma (LGG) and glioblastoma (GBM) samples were identified according to IDH mutation status. Only one gene, interferon-stimulated exonuclease gene 20 (ISG20), with reduced expression in IDH mutant tumors, demonstrated significant prognostic value. ISG20 expression level significantly increased with increasing tumor grade, and its high expression was associated with a poor clinical outcome. Moreover, increased ISG20 expression was associated with increased infiltration of monocyte-derived macrophages and neutrophils, and suppressed adaptive immune response. ISG20 expression was also positively correlated with PD-1, PD-L1, and CTLA4 expression, along with the levels of several chemokines. We conclude that ISG20 is a useful biomarker to identify IDH-mediated immune processes in glioma and may serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Mengqi Gao
- Department of Neurosurgery, the First Hospital of China Medical University, Shenyang, China
| | - Yi Lin
- Department of Neurosurgery, the First Hospital of China Medical University, Shenyang, China
| | - Xing Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas network, Beijing, China
| | - Yiming Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas network, Beijing, China
| | - Chuanbao Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas network, Beijing, China
| | - Zheng Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas network, Beijing, China
| | - Zhiliang Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas network, Beijing, China
| | - Yulin Wang
- Department of Neurosurgery, the First Hospital of China Medical University, Shenyang, China
| | - Zongze Guo
- Department of Neurosurgery, the First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
32
|
The Interferon-Induced Exonuclease ISG20 Exerts Antiviral Activity through Upregulation of Type I Interferon Response Proteins. mSphere 2018; 3:3/5/e00209-18. [PMID: 30232164 PMCID: PMC6147134 DOI: 10.1128/msphere.00209-18] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The host immune responses to infection lead to the production of type I interferon (IFN), and the upregulation of interferon-stimulated genes (ISGs) reduces virus replication and virus dissemination within a host. Ectopic expression of the interferon-induced 20-kDa exonuclease ISG20 suppressed replication of chikungunya virus and Venezuelan equine encephalitis virus, two mosquito-vectored RNA alphaviruses. Since the replication of alphavirus genomes occurs exclusively in the cytoplasm, the mechanism of nucleus-localized ISG20 inhibition of replication is unclear. In this study, we determined that ISG20 acts as a master regulator of over 100 genes, many of which are ISGs. Specifically, ISG20 upregulated IFIT1 genes and inhibited translation of the alphavirus genome. Furthermore, IFIT1-sensitive alphavirus replication was increased in Isg20−/− mice compared to the replication of wild-type viruses but not in cells ectopically expressing ISG20. We propose that ISG20 acts as an indirect regulator of RNA virus replication in the cytoplasm through the upregulation of many other ISGs. Type I interferon (IFN)-stimulated genes (ISGs) have critical roles in inhibiting virus replication and dissemination. Despite advances in understanding the molecular basis of ISG restriction, the antiviral mechanisms of many remain unclear. The 20-kDa ISG ISG20 is a nuclear 3′–5′ exonuclease with preference for single-stranded RNA (ssRNA) and has been implicated in the IFN-mediated restriction of several RNA viruses. Although the exonuclease activity of ISG20 has been shown to degrade viral RNA in vitro, evidence has yet to be presented that virus inhibition in cells requires this activity. Here, we utilized a combination of an inducible, ectopic expression system and newly generated Isg20−/− mice to investigate mechanisms and consequences of ISG20-mediated restriction. Ectopically expressed ISG20 localized primarily to Cajal bodies in the nucleus and restricted replication of chikungunya and Venezuelan equine encephalitis viruses. Although restriction by ISG20 was associated with inhibition of translation of infecting genomic RNA, degradation of viral RNAs was not observed. Instead, translation inhibition of viral RNA was associated with ISG20-induced upregulation of over 100 other genes, many of which encode known antiviral effectors. ISG20 modulated the production of IFIT1, an ISG that suppresses translation of alphavirus RNAs. Consistent with this observation, the pathogenicity of IFIT1-sensitive alphaviruses was increased in Isg20−/− mice compared to that of wild-type viruses but not in cells ectopically expressing ISG20. Our findings establish an indirect role for ISG20 in the early restriction of RNA virus replication by regulating expression of other ISGs that inhibit translation and possibly other activities in the replication cycle. IMPORTANCE The host immune responses to infection lead to the production of type I interferon (IFN), and the upregulation of interferon-stimulated genes (ISGs) reduces virus replication and virus dissemination within a host. Ectopic expression of the interferon-induced 20-kDa exonuclease ISG20 suppressed replication of chikungunya virus and Venezuelan equine encephalitis virus, two mosquito-vectored RNA alphaviruses. Since the replication of alphavirus genomes occurs exclusively in the cytoplasm, the mechanism of nucleus-localized ISG20 inhibition of replication is unclear. In this study, we determined that ISG20 acts as a master regulator of over 100 genes, many of which are ISGs. Specifically, ISG20 upregulated IFIT1 genes and inhibited translation of the alphavirus genome. Furthermore, IFIT1-sensitive alphavirus replication was increased in Isg20−/− mice compared to the replication of wild-type viruses but not in cells ectopically expressing ISG20. We propose that ISG20 acts as an indirect regulator of RNA virus replication in the cytoplasm through the upregulation of many other ISGs.
Collapse
|
33
|
Lnc-ISG20 Inhibits Influenza A Virus Replication by Enhancing ISG20 Expression. J Virol 2018; 92:JVI.00539-18. [PMID: 29899085 DOI: 10.1128/jvi.00539-18] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/31/2018] [Indexed: 02/06/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are involved in many aspects of cellular processes, including the antiviral immune response. To identify influenza A virus (IAV)-related lncRNAs, we performed RNA deep sequencing to compare the profiles of lncRNAs in A549 and HEK293T cells with or without IAV infection. We identified an IAV-upregulated lncRNA named lnc-ISG20 because it shares most of its sequence with ISG20. We found that lnc-ISG20 is an interferon-stimulated gene similar to ISG20. Overexpression of lnc-ISG20 inhibited IAV replication, while lnc-ISG20 knockdown favored viral replication, suggesting that lnc-ISG20 is inhibitory to IAV replication. Further study indicated that overexpression of lnc-ISG20 enhances ISG20 protein levels, while knockdown of lnc-ISG20 reduces ISG20 protein levels in A549 cells induced with poly(I·C) and Sendai virus. We demonstrated that lnc-ISG20 inhibits IAV replication in an ISG20-dependent manner. As lnc-ISG20 did not affect the mRNA level of ISG20, we postulated that lnc-ISG20 may function as endogenous RNA competing with ISG20 to enhance its translation. Indeed, we identified that microRNA 326 (miR-326) is a mutual microRNA for both ISG20 and lnc-ISG20 that targets the 3' untranslated region of ISG20 mRNA to inhibit its translation. We confirmed that lnc-ISG20 can bind miR-326, which in turn decreased the amount of miR-326 bound to ISG20 mRNA. In conclusion, we identified that the IAV-upregulated lnc-ISG20 is a novel interferon-stimulated gene that elicits its inhibitory effect on IAV replication by enhancing ISG20 expression. We demonstrated that lnc-ISG20 functions as a competitive endogenous RNA to bind miR-326 to reduce its inhibition of ISG20 translation. Our results revealed the mechanism by which lnc-ISG20 inhibits IAV replication.IMPORTANCE The replication of influenza A virus is regulated by host factors. However, the mechanisms by which lncRNAs regulate IAV infection are not well understood. We identified that lnc-ISG20 is upregulated during IAV infection and is also an interferon-stimulated gene. We demonstrated that lnc-ISG20 can enhance ISG20 expression, which in turn inhibits IAV replication. Our studies indicate that lnc-ISG20 functions as a competing endogenous RNA that binds miR-326 and reduces its inhibitory effect on ISG20. Taken together, our findings reveal the mechanistic details of lnc-ISG20 negatively regulating IAV replication. These findings indicate that lnc-ISG20 plays an important role during the host antiviral immune response.
Collapse
|
34
|
Van Tong H, Hoan NX, Binh MT, Quyen DT, Meyer CG, Song LH, Toan NL, Velavan TP. Interferon-stimulated gene 20 kDa protein serum levels and clinical outcome of hepatitis B virus-related liver diseases. Oncotarget 2018; 9:27858-27871. [PMID: 29963243 PMCID: PMC6021248 DOI: 10.18632/oncotarget.25559] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 05/21/2018] [Indexed: 01/20/2023] Open
Abstract
Interferon-stimulated gene 20 kDa protein (ISG20) with 3' to 5' exonuclease activity mainly targeting single-stranded RNA plays an important role in immune responses against various infectious pathogens, including hepatitis viruses. ISG20 levels were measured by ELISA assays in sera of 339 hepatitis B-virus (HBV) infected patients and 71 healthy individuals and were correlated with clinical and laboratory parameters. ISG20 mRNA was quantified by qRT-PCR in 30 pairs of hepatocellular carcinoma (HCC) tumour and adjacent non-tumour liver tissues. ISG20 levels were significantly elevated in HBV patients compared to healthy controls (P<0.0001). In the patient group, varying ISG20 levels were associated with different forms of HBV-related liver diseases. ISG20 levels were higher in patients with HCC compared to those without HCC (P<0.0001), and increased according to the stages of HCC (P<0.0001). ISG20 mRNA expression was up-regulated in tumour tissues compared to the expression in adjacent non-tumour tissues (P=0.017). Importantly, ISG20 levels were strongly correlated with the levels of AST, ALT, total and direct bilirubin among HCC patients (Pearson's r = 0.43, 0.35, 0.34, 0.3; P<0.0001, respectively). Although differences between liver cirrhosis (LC) and non-LC patients were not observed, ISG20 levels were elevated according to the progression of cirrhosis in patients with LC plus HCC (P=0.005). In conclusions, ISG20 levels are induced by HBV infection and significantly associated with progression and clinical outcome of HBV-related liver diseases, especially in patients with HCC. ISG20 might be a potential indicator for liver injury and the clinical outcome in HBV-related HCC.
Collapse
Affiliation(s)
- Hoang Van Tong
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi, Vietnam
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Nghiem Xuan Hoan
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- 108 Military Central Hospital, Hanoi, Vietnam
- Vietnamese-German Center of Excellence in Medical Research, Hanoi, Vietnam
| | - Mai Thanh Binh
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- 108 Military Central Hospital, Hanoi, Vietnam
- Vietnamese-German Center of Excellence in Medical Research, Hanoi, Vietnam
| | - Dao Thanh Quyen
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- 108 Military Central Hospital, Hanoi, Vietnam
- Vietnamese-German Center of Excellence in Medical Research, Hanoi, Vietnam
| | - Christian G. Meyer
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Vietnamese-German Center of Excellence in Medical Research, Hanoi, Vietnam
- Duy Tan University, Da Nang, Vietnam
| | - Le Huu Song
- 108 Military Central Hospital, Hanoi, Vietnam
- Vietnamese-German Center of Excellence in Medical Research, Hanoi, Vietnam
| | - Nguyen Linh Toan
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam
| | - Thirumalaisamy P. Velavan
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Vietnamese-German Center of Excellence in Medical Research, Hanoi, Vietnam
- Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
35
|
Interferon-stimulated gene of 20 kDa protein (ISG20) degrades RNA of hepatitis B virus to impede the replication of HBV in vitro and in vivo. Oncotarget 2018; 7:68179-68193. [PMID: 27626689 PMCID: PMC5356548 DOI: 10.18632/oncotarget.11907] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/15/2016] [Indexed: 01/04/2023] Open
Abstract
Hepatitis B virus (HBV) barely induces host interferon (IFN)-stimulated genes (ISGs), which allows efficient HBV replication in the immortalized mouse hepatocytes as per human hepatocytes. Here we found that transfection of Isg20 plasmid robustly inhibits the HBV replication in HBV-infected hepatocytes irrespective of IRF3 or IFN promoter activation. Transfection of Isg20 is thus effective to eradicate HBV in the infected hepatocytes. Transfection of HBV genome or ε-stem of HBV pgRNA (active pgRNA moiety) failed to induce Isg20 in the hepatocytes, while control polyI:C (a viral dsRNA analogue mimic) activated MAVS pathway leading to production of type I IFN and then ISGsg20 via the IFN-α/β receptor (IFNAR). Consistently, addition of IFN-α induced Isg20 and partially suppressed HBV replication in hepatocytes. Chasing HBV RNA, DNA and proteins by blotting indicated that ISG20 expression decreased HBV RNA and replicative DNA in HBV-transfected cells, which resulted in low HBs antigen production and virus titer. The exonuclease domains of ISG20 mainly participated in HBV-RNA decay. In vivo hydrodynamic injection, ISG20 was crucial for suppressing HBV replication without degrading host RNA in the liver. Taken together, ISG20 acts as an innate anti-HBV effector that selectively degrades HBV RNA and blocks replication of infectious HBV particles. ISG20 would be a critical effector for ameliorating chronic HBV infection in the IFN therapy.
Collapse
|
36
|
Zheng Z, Wang L, Pan J. Estradiol and proinflammatory cytokines stimulate ISG20 expression in synovial fibroblasts of patients with osteoarthritis. Intractable Rare Dis Res 2017; 6:269-273. [PMID: 29259855 PMCID: PMC5735280 DOI: 10.5582/irdr.2017.01062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Interferon stimulated gene 20-kDa (ISG20) has been implicated in the pathology of osteoarthritis (OA) and it has been separately found to be responsive to estrogen stimulation. OA disproportionately affects women, and especially older women, suggesting some role of reproductive hormones in its pathology. The current study characterized the expression of ISG20 following stimulation with estradiol (E2) and proinflammatory cytokines in OA synovial fibroblasts (OASFs). E2 and the proinflammatory cytokines interleukin-6 (IL-6), lipopolysaccharide (LPS), and tumor necrosis factor α (TNF-α) were used to stimulate OASFs in vitro. The expression of ISG20 before and after stimulation was detected using quantitative real-time polymerase chain reaction (RT-qPCR) and Western blotting. E2 and proinflammatory cytokine (IL-6, LPS and TNF-α) stimulation significantly induced the expression of ISG20 both at the messenger RNA (mRNA) and protein level. Moreover, the induction was time- and dose-dependent. Small interfering RNA (siRNA) was transfected into OASFs, and expression of the inflammatory factors interleukin-1α (IL-1α), IL-6, and interleukin-10 (IL-10) was detected using RT-qPCR. Silencing ISG20 with siRNA inhibited the expression of IL-1α, IL-6, and IL-10. Thus, expression of ISG20 was regulated by estradiol and proinflammatory factors, while ISG20 in turn regulated the expression of other inflammatory factors. These data support the contention that ISG20 plays a role in the inflammatory process of OA.
Collapse
Affiliation(s)
- Zhiwei Zheng
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Ji'nan, China
- Shandong Medicinal Biotechnology Center, Ji'nan, China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Ji'nan, China
- Key Laboratory for Biotech-drugs of the Ministry of Health, Ji'nan, China
| | - Lin Wang
- Shandong Medicinal Biotechnology Center, Ji'nan, China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Ji'nan, China
- Key Laboratory for Biotech-drugs of the Ministry of Health, Ji'nan, China
| | - Jihong Pan
- Shandong Medicinal Biotechnology Center, Ji'nan, China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Ji'nan, China
- Key Laboratory for Biotech-drugs of the Ministry of Health, Ji'nan, China
- Address correspondence to: Dr. Jihong Pan, Shandong Medicinal and Biotechnology Center, Shandong Academy of Medical Sciences, 18877 Jingshi Road, Ji'nan, Shandong 250062, China. E-mail:
| |
Collapse
|
37
|
Liu Y, Nie H, Mao R, Mitra B, Cai D, Yan R, Guo JT, Block TM, Mechti N, Guo H. Interferon-inducible ribonuclease ISG20 inhibits hepatitis B virus replication through directly binding to the epsilon stem-loop structure of viral RNA. PLoS Pathog 2017; 13:e1006296. [PMID: 28399146 PMCID: PMC5388505 DOI: 10.1371/journal.ppat.1006296] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/15/2017] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus (HBV) replicates its DNA genome through reverse transcription of a viral RNA pregenome. We report herein that the interferon (IFN) stimulated exoribonuclease gene of 20 KD (ISG20) inhibits HBV replication through degradation of HBV RNA. ISG20 expression was observed at basal level and was highly upregulated upon IFN treatment in hepatocytes, and knock down of ISG20 resulted in elevation of HBV replication and attenuation of IFN-mediated antiviral effect. The sequence element conferring the susceptibility of HBV RNA to ISG20-mediated RNA degradation was mapped at the HBV RNA terminal redundant region containing epsilon (ε) stem-loop. Furthermore, ISG20-induced HBV RNA degradation relies on its ribonuclease activity, as the enzymatic inactive form ISG20D94G was unable to promote HBV RNA decay. Interestingly, ISG20D94G retained antiviral activity against HBV DNA replication by preventing pgRNA encapsidation, resulting from a consequence of ISG20-ε interaction. This interaction was further characterized by in vitro electrophoretic mobility shift assay (EMSA) and ISG20 was able to bind HBV ε directly in absence of any other cellular proteins, indicating a direct ε RNA binding capability of ISG20; however, cofactor(s) may be required for ISG20 to efficiently degrade ε. In addition, the lower stem portion of ε is the major ISG20 binding site, and the removal of 4 base pairs from the bottom portion of ε abrogated the sensitivity of HBV RNA to ISG20, suggesting that the specificity of ISG20-ε interaction relies on both RNA structure and sequence. Furthermore, the C-terminal Exonuclease III (ExoIII) domain of ISG20 was determined to be responsible for interacting with ε, as the deletion of ExoIII abolished in vitro ISG20-ε binding and intracellular HBV RNA degradation. Taken together, our study sheds light on the underlying mechanisms of IFN-mediated HBV inhibition and the antiviral mechanism of ISG20 in general. HBV is a DNA virus but replicates its DNA via retrotranscription of a viral RNA pregenome. ISG20, an antiviral RNase induced by interferons, inhibits the replication of many RNA viruses but the underlying molecular antiviral mechanism remains elusive. Since all the known viruses, except for prions, have RNA products in their life cycles, ISG20 can be a broad spectrum antiviral protein; but in order to distinguish viral RNA from host RNA, ISG20 may have evolved to recognize virus-specific signals as its antiviral target. We demonstrated herein that ISG20 selectively binds to a unique stem-loop structure called epsilon (ε) in all HBV RNA species and degrades viral RNA to inhibit HBV replication. Because ε is the HBV pregenomic RNA packaging signal and reverse transcription priming site, the binding of ISG20 to ε, even in the absence of ribonuclease activity, results in antiviral effect to prevent DNA replication due to preventing viral polymerase binding to pgRNA. We also determined the structure and sequence requirements of ε RNA and ISG20 protein for ISG20-ε binding and antiviral activity. Such information will aid the function study of ISG20 against viral pathogens in host innate defense, and ISG20 has potentials to be developed into a therapeutic agent for viral diseases including hepatitis B.
Collapse
Affiliation(s)
- Yuanjie Liu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Hui Nie
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Richeng Mao
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Bidisha Mitra
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Dawei Cai
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Ran Yan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
| | - Timothy M. Block
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
| | - Nadir Mechti
- CNRS, UMR5235, DIMNP, University of Montpellier 2, Montpellier, France
| | - Haitao Guo
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
38
|
Zheng Z, Wang L, Pan J. Interferon-stimulated gene 20-kDa protein (ISG20) in infection and disease: Review and outlook. Intractable Rare Dis Res 2017; 6:35-40. [PMID: 28357179 PMCID: PMC5359350 DOI: 10.5582/irdr.2017.01004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Interferon-stimulated exonuclease gene 20 (ISG20) is an RNA exonuclease in the yeast RNA exonuclease 4 homolog (REX4) subfamily and the DEDDh exonuclease family, and this gene codes for a 20-kDa protein. Those exonucleases are involved in cleaving single-stranded RNA and DNA. ISG20 is also referred to as HEM45 (HeLa estrogen-modulated, band 45). Expression of ISG20 can be induced or regulated by both type I and II interferons (IFNs) in various cell lines. ISG20 plays a role in mediating interferon's antiviral activities. In addition, ISG20 may be a potential susceptibility biomarker or pharmacological target in some inflammatory conditions. Exonucleases are useful components of many physiological processes. Despite recent advances in our understanding of the functions of ISG20, much work remains to be done with regard to uncovering the mechanism of action of ISG20 in specific diseases and adapting ISG20 for use as a biomarker of disease. This review describes current information on ISG20 and its potential use in marking disease. This review describes several research achievements thus far and it seeks to provide some new ideas for future related research.
Collapse
Affiliation(s)
- Zhiwei Zheng
- Shandong Medicinal Biotechnology Center, Ji'nan, China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Ji'nan, China
- Key Laboratory for Biotech-drugs of the Ministry of Health, Ji'nan, China
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Ji'nan, China
| | - Lin Wang
- Shandong Medicinal Biotechnology Center, Ji'nan, China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Ji'nan, China
- Key Laboratory for Biotech-drugs of the Ministry of Health, Ji'nan, China
| | - Jihong Pan
- Shandong Medicinal Biotechnology Center, Ji'nan, China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Ji'nan, China
- Key Laboratory for Biotech-drugs of the Ministry of Health, Ji'nan, China
- Address correspondence to: Dr. Jihong Pan, Shandong Medicinal and Biotechnology Center, Shandong Academy of Medical Sciences, 18877 Jingshi Road, Ji'nan, Shandong 250062, China. E-mail:
| |
Collapse
|
39
|
Qu H, Li J, Yang L, Sun L, Liu W, He H. Influenza A Virus-induced expression of ISG20 inhibits viral replication by interacting with nucleoprotein. Virus Genes 2016; 52:759-767. [PMID: 27342813 DOI: 10.1007/s11262-016-1366-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 06/18/2016] [Indexed: 11/25/2022]
Abstract
Influenza A virus (IAV) is an important pathogen that has a wide range of hosts and represents a threat to the health of humans and several animal species. IAV infection can induce the transcription of many genes in the host. In the present study, we demonstrated for the first time that three different strains of H1N1 IAV induce the expression of an IFN-stimulated gene, ISG20. We determined the antiviral activity of ISG20 against IAV because ISG20 inhibited viral protein expression and reduced the progeny viral titer dependent upon its exonuclease activity. To elucidate the detailed mechanism of ISG20, we further demonstrated that ISG20 impairs the polymerase activity and inhibits both the replication and transcription levels of the M1 and NP genes. Notably, we identified that ISG20 colocalizes and interacts with NP during IAV infection, while exonuclease-inactive mutant ISG20 lacked association with NP, indicating that ISG20 inhibits IAV replication by interacting with NP. Together, these data provide a detailed explanation for the specific antiviral action of ISG20 and suggest that ISG20 may act as a promising antiviral drug candidate against IAV.
Collapse
Affiliation(s)
- Hongren Qu
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Jing Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Limin Yang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Lei Sun
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Wenjun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China.
| | - Hongxuan He
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.
| |
Collapse
|
40
|
Oshiumi H, Mifsud EJ, Daito T. Links between recognition and degradation of cytoplasmic viral RNA in innate immune response. Rev Med Virol 2016; 26:90-101. [PMID: 26643446 DOI: 10.1002/rmv.1865] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 09/21/2015] [Accepted: 11/01/2015] [Indexed: 12/24/2022]
Abstract
Recognition and degradation of viral RNA are essential for antiviral innate immune responses. Cytoplasmic viral RNA is recognized by retinoic acid-inducible gene I (RIG-I)-like receptors, which trigger type I interferon (IFN) production. Secreted type I IFN activates ubiquitously expressed type I IFN receptor and induces IFN-stimulated genes (ISGs). To suppress viral replication, several nucleases degrade viral RNA. RNase L is an ISG with endonuclease activity that degrades viral RNA, producing small RNA that activates RIG-I, resulting in the amplification of type I IFN production. Moreover, recent studies have elucidated novel links between viral RNA recognition and degradation. The RNA exosome is a protein complex that includes nucleases and is essential for host and viral RNA decay. Although the small RNAs produced by the RNA exosome do not activate RIG-I, several accessory factors of the RNA exosome promote RIG-I activation. Zinc-finger antiviral protein (ZAP) is an accessory factor that recognizes viral RNA and promotes viral RNA degradation via the RNA exosome. ZAPS is an alternative splicing form of ZAP and promotes RIG-I oligomerization and ATPase activity, resulting in RIG-I activation. DDX60 is another cofactor involved in the viral RNA degradation via the RNA exosome. The DDX60 protein promotes RIG-I signaling in a cell-type specific manner. These observations imply that viral RNA degradation and recognition are linked to each other. In this review, I discuss the links between recognition and degradation of viral RNA.
Collapse
Affiliation(s)
- Hiroyuki Oshiumi
- Laboratory for Biologics Development, Research Center for Zoonosis Control, GI-CoRE Global Station for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Edin J Mifsud
- Laboratory for Biologics Development, Research Center for Zoonosis Control, GI-CoRE Global Station for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Takuji Daito
- Laboratory for Biologics Development, Research Center for Zoonosis Control, GI-CoRE Global Station for Zoonosis Control, Hokkaido University, Sapporo, Japan
| |
Collapse
|
41
|
Khaiboullina SF, Morzunov SP, Boichuk SV, Palotás A, St Jeor S, Lombardi VC, Rizvanov AA. Death-domain associated protein-6 (DAXX) mediated apoptosis in hantavirus infection is counter-balanced by activation of interferon-stimulated nuclear transcription factors. Virology 2013; 443:338-48. [PMID: 23830076 DOI: 10.1016/j.virol.2013.05.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 05/15/2013] [Indexed: 10/26/2022]
Abstract
Hantaviruses are negative strand RNA species that replicate predominantly in the cytoplasm. They also activate numerous cellular responses, but their involvement in nuclear processes is yet to be established. Using human umbilical vein endothelial cells (HUVECs), this study investigates the molecular finger-print of nuclear transcription factors during hantavirus infection. The viral-replication-dependent activation of pro-myelocytic leukemia protein (PML) was followed by subsequent localization in nuclear bodies (NBs). PML was also found in close proximity to activated Sp100 nuclear antigen and interferon-stimulated gene 20 kDa protein (ISG-20), but co-localization with death-domain associated protein-6 (DAXX) was not observed. These data demonstrate that hantavirus triggers PML activation and localization in NBs in the absence of DAXX-PLM-NB co-localization. The results suggest that viral infection interferes with DAXX-mediated apoptosis, and expression of interferon-activated Sp100 and ISG-20 proteins may indicate intracellular intrinsic antiviral attempts.
Collapse
|
42
|
Puglisi R, Cambuli C, Capoferri R, Giannino L, Lukaj A, Duchi R, Lazzari G, Galli C, Feligini M, Galli A, Bongioni G. Differential gene expression in cumulus oocyte complexes collected by ovum pick up from repeat breeder and normally fertile Holstein Friesian heifers. Anim Reprod Sci 2013; 141:26-33. [PMID: 23911014 DOI: 10.1016/j.anireprosci.2013.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 07/04/2013] [Accepted: 07/05/2013] [Indexed: 11/25/2022]
Abstract
The aim of this study was to establish whether perturbed gene expression during cumulus oocyte development causes repeat breeding in cattle. In this study, a repeat breeder was defined as a normal estrous cycling animal that did not become pregnant after three inseminations despite the absence of clinically detectable reproductive disorders. Transcripts of genes extracted from cumulus oocyte complexes (COC) that were collected from three repeat breeder and three normally fertile Holstein Friesian heifers were compared. Up to 40 COC were collected from each heifer by means of repeated sessions of ovum pick up in the absence of hormonal stimulation; immediately plunged into liquid nitrogen; and stored at -80°C until analysis. For each heifer, RNA was extracted from the pooled COC and hybridized on GeneChip(®) Bovine Gene Array (Affymetrix). Analysis of gene expression profiles of repeat breeder and control COC showed that 178 genes were differentially expressed (log2 fold change>1.5). Of these genes, 43 (24%) were up-regulated and 135 (76%) were down-regulated in repeat breeder relative to control heifers. This altered pattern of expression occurred in genes involved in several cellular biological processes and cellular components such as metabolism, angiogenesis, substrate/ion transport, regulation/signaling, cell adhesion and cytoskeleton. From these, 13 genes potentially involved in cumulus oocyte growth were subjected to validation by qRT-PCR and nine genes (annexin A1, ANXA1; lactoferrin, LTF; interferon stimulated exonuclease 20kDa, ISG20/HEM45; oxidized low density lipoprotein receptor 1, OLR1; fatty acid desaturase 2, FADS2; glutathione S-transferase A2 and A4, GSTA2 and GSTA4; glutathione peroxidase 1, GPX1; endothelin receptor type A, EDNRA) were confirmed to be differentially expressed. This study identified potential marker genes for fertility in dairy cattle.
Collapse
Affiliation(s)
- Roberto Puglisi
- Istituto Sperimentale Italiano Lazzaro Spallanzani, Loc. La Quercia, 26027 Rivolta d'Adda (CR), Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Lu X, Qin B, Ma Q, Yang C, Gong XY, Chen LM. Differential expression of ISG20 in chronic hepatitis B patients and relation to interferon-alpha therapy response. J Med Virol 2013; 85:1506-12. [PMID: 23794439 DOI: 10.1002/jmv.23610] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2013] [Indexed: 11/10/2022]
Abstract
The 20 kDa exonuclease encoded by the interferon-stimulated gene, ISG20, can inhibit the replication of hepatitis B virus (HBV), and may represent a clinically useful prognostic marker for response to interferon-alpha (IFN-α) antiviral therapy. The present study was designed to investigate the differential expression patterns of ISG20 in liver biopsy samples from treatment-naive patients with chronic hepatitis B and non-HBV infected controls and to determine the relation between the differential expression and IFN-α treatment outcome (responders vs. non-responders). HBV infection status was determined by measuring levels of hepatitis B surface antigen (HBsAg) by chemoluminescence immunoassay and of HBV DNA by real-time quantitative (q)PCR. ISG20 protein and mRNA expressions were assessed by immunohistochemistry and qPCR, respectively. Chronic hepatitis B responders showed significantly higher levels of ISG20 protein and mRNA expressions than either the chronic hepatitis B non-responders or the controls. Moreover, increased expression of ISG20 in both the nucleus and cytoplasm was correlated with positive response to IFN-α treatment. Thus, active transcription and translation of ISG20 may represent a marker to identify chronic hepatitis B patients likely to respond to IFN-α therapy. Prognostic clinical strategies based upon this marker may include genomic screening methods and immunohistochemical staining of liver biopsies.
Collapse
Affiliation(s)
- Xi Lu
- Department of Infectious Diseases, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | | | | | | | | | | |
Collapse
|
44
|
Chort A, Alves S, Marinello M, Dufresnois B, Dornbierer JG, Tesson C, Latouche M, Baker DP, Barkats M, El Hachimi KH, Ruberg M, Janer A, Stevanin G, Brice A, Sittler A. Interferon beta induces clearance of mutant ataxin 7 and improves locomotion in SCA7 knock-in mice. Brain 2013; 136:1732-45. [DOI: 10.1093/brain/awt061] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
45
|
Multiple enhancers associated with ACAN suggest highly redundant transcriptional regulation in cartilage. Matrix Biol 2012; 31:328-37. [PMID: 22820679 DOI: 10.1016/j.matbio.2012.06.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 06/08/2012] [Accepted: 06/29/2012] [Indexed: 12/22/2022]
Abstract
The chondroitin sulfate proteoglycan core protein aggrecan is the major protein constituent of cartilage aside from collagen, and is largely responsible for its distinctive mechanical properties. Aggrecan is required both for proper cartilage formation in development and maintenance of mature cartilage. Prominent ACAN transcription is a conserved feature of vertebrate cartilage, although little is known about its specific transcriptional regulation. We examined the genomic interval containing human ACAN for transcriptional enhancers directing expression to cartilage, using a functional assay in transgenic zebrafish. We tested 24 conserved non-coding sequences, representing ~6% of the total sequence in the interval, and identified eleven independently capable of regulating reporter gene expression in cartilage. These enhancers were widely spaced, from >100kb upstream of the gene to within the first intron. While the majority displayed broad cartilage expression in zebrafish larvae, several were restricted to a subset of cartilage cells in the craniofacial skeleton. In older fish, the enhancers displayed differential activity; some maintained expression, either in all cartilage or preferentially in articular cartilage at the joints, while others were not active. This remarkable degree of overlapping regulatory control has been highly conserved; we identified clear orthologues of six enhancers at the chicken ACAN locus, arranged in the same order relative to the gene. These were also functional in directing expression to cartilage in transgenic zebrafish. Several enhancers contain potential binding sites for Sox9, consistent with its described role as an upstream regulator of ACAN expression. However, others lacked Sox9 consensus binding sites, implicating additional pathways and transcription factors as regulators of ACAN expression in cartilage, either in development or adult tissue. Our identification of these enhancer sequences is the necessary first step in detailed examination of the upstream regulators of ACAN expression.
Collapse
|
46
|
Strobl B, Leitner NR, Müller M. Multifaceted Antiviral Actions of Interferon-stimulated Gene Products. JAK-STAT SIGNALING : FROM BASICS TO DISEASE 2012. [PMCID: PMC7121797 DOI: 10.1007/978-3-7091-0891-8_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Interferons (IFNs) are extremely powerful cytokines for the host defence against viral infections. Binding of IFNs to their receptors activates the JAK/STAT signalling pathway with the Janus kinases JAK1, 2 and TYK2 and the signal transducer and activators of transcription (STAT) 1 and STAT2. Depending on the cellular setting, additional STATs (STAT3-6) and additional signalling pathways are activated. The actions of IFNs on infected cells and the surrounding tissue are mediated by the induction of several hundred IFN-stimulated genes (ISGs). Since the cloning of the first ISGs, considerable progress has been made in describing antiviral effector proteins and their many modes of action. Effector proteins individually target distinct steps in the viral life cycle, including blocking virus entry, inhibition of viral transcription and translation, modification of viral nucleic acids and proteins and, interference with virus assembly and budding. Novel pathways of viral inhibition are constantly being elucidated and, additionally, unanticipated functions of known antiviral effector proteins are discovered. Herein, we outline IFN-induced antiviral pathways and review recent developments in this fascinating area of research.
Collapse
|
47
|
GRIM-1, a novel growth suppressor, inhibits rRNA maturation by suppressing small nucleolar RNAs. PLoS One 2011; 6:e24082. [PMID: 21931644 PMCID: PMC3169572 DOI: 10.1371/journal.pone.0024082] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 07/29/2011] [Indexed: 01/13/2023] Open
Abstract
We have recently isolated novel IFN-inducible gene, Gene associated with Retinoid-Interferon-induced Mortality-1 (GRIM-1), using a genetic technique. Moderate ectopic expression of GRIM-1 caused growth inhibition and sensitized cells to retinoic acid (RA)/IFN-induced cell death while high expression caused apoptosis. GRIM-1 depletion, using RNAi, conferred a growth advantage. Three protein isoforms (1α, 1β and 1γ) with identical C-termini are produced from GRIM-1 mRNA. We show that GRIM-1 isoforms interact with NAF1 and DKC1, two essential proteins required for box H/ACA sno/sca RNP biogenesis and suppresses box H/ACA RNA levels in mammalian cells by delocalizing NAF1. Suppression of these small RNAs manifests as inefficient rRNA maturation and growth suppression. Interestingly, yeast Shq1p also caused growth suppression in mammalian cells. Consistent with its growth-suppressive property, GRIM-1 expression is lost in a number of human primary prostate tumors. Our observations support a recent study that GRIM-1 might act as a co-tumor suppressor in the prostate.
Collapse
|
48
|
Vestergaard AL, Knudsen UB, Munk T, Rosbach H, Martensen PM. Transcriptional expression of type-I interferon response genes and stability of housekeeping genes in the human endometrium and endometriosis. Mol Hum Reprod 2010; 17:243-54. [PMID: 21156832 DOI: 10.1093/molehr/gaq100] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Endometriosis is a painful chronic female disease defined by the presence of endometrial tissue implants in ectopic (Ec) locations. The pathogenesis is much debated, and type-I interferons (IFNs) could be involved. The expression of genes of the type-I IFN response were profiled by a specific PCR array of RNA obtained from Ec and eutopic (Eu) endometrium collected from nine endometriosis patients and nine healthy control women. Transcriptional expression levels of selected IFN-regulated and housekeeping genes (HKGs) were investigated by real-time quantitative reverse transcriptase PCR (qRT-PCR). Stably expressed HKGs for valid normalization of transcriptional studies of endometrium and endometriosis have not yet been published. Here, seven HKGs were evaluated for stability using the GeNorm and NormFinder software. A normalization factor based on HMBS, TBP and YWHAZ expression was suitable for normalization of qRT-PCR studies of Eu versus Ec endometrium. In the endometrial cell lines HEC1A, HEC1B, Ishikawa and RL95-2, HMBS and HPRT1 were the most stably expressed. The IFN-specific PCR array indicated significantly different expression of the genes BST2, COL16A1, HOXB2 and ISG20 between the endometrial tissue types. However, by correctly normalized qRT-PCR, levels of BST2, COL16A1 and the highly type-I IFN-stimulated genes ISG12A and 6-16 displayed insignificant variations. Conversely, HOXB2 and ISG20 transcriptions were significantly reduced in endometriosis lesions compared with endometrium from endometriosis patients and healthy controls. In conclusion, appropriate HKGs for normalization of qRT-PCR studies of endometrium and endometriosis have been identified here. Abolished expression of ISG20 and HOX genes could be important in endometriosis.
Collapse
Affiliation(s)
- Anna L Vestergaard
- Department of Molecular Biology, Aarhus University, 8000 Aarhus C, Denmark
| | | | | | | | | |
Collapse
|
49
|
Macaque proteome response to highly pathogenic avian influenza and 1918 reassortant influenza virus infections. J Virol 2010; 84:12058-68. [PMID: 20844032 DOI: 10.1128/jvi.01129-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The host proteome response and molecular mechanisms that drive disease in vivo during infection by a human isolate of the highly pathogenic avian influenza virus (HPAI) and 1918 pandemic influenza virus remain poorly understood. This study presents a comprehensive characterization of the proteome response in cynomolgus macaque (Macaca fascicularis) lung tissue over 7 days of infection with HPAI (the most virulent), a reassortant virus containing 1918 hemagglutinin and neuraminidase surface proteins (intermediate virulence), or a human seasonal strain (least virulent). A high-sensitivity two-dimensional liquid chromatography-tandem mass spectroscopy strategy and functional network analysis were implemented to gain insight into response pathways activated in macaques during influenza virus infection. A macaque protein database was assembled and used in the identification of 35,239 unique peptide sequences corresponding to approximately 4,259 proteins. Quantitative analysis identified an increase in expression of 400 proteins during viral infection. The abundance levels of a subset of these 400 proteins produced strong correlations with disease progression observed in the macaques, distinguishing a "core" response to viral infection from a "high" response specific to severe disease. Proteome expression profiles revealed distinct temporal response kinetics between viral strains, with HPAI inducing the most rapid response. While proteins involved in the immune response, metabolism, and transport were increased rapidly in the lung by HPAI, the other viruses produced a delayed response, characterized by an increase in proteins involved in oxidative phosphorylation, RNA processing, and translation. Proteomic results were integrated with previous genomic and pathological analysis to characterize the dynamic nature of the influenza virus infection process.
Collapse
|
50
|
Jin YH, Jung S, Jin SG, Jung TY, Moon KS, Kim IY. GRIM-19 Expression and Function in Human Gliomas. J Korean Neurosurg Soc 2010; 48:20-30. [PMID: 20717508 DOI: 10.3340/jkns.2010.48.1.20] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 05/24/2010] [Accepted: 06/21/2010] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE We determined whether the expression of GRIM-19 is correlated with pathologic types and malignant grades in gliomas, and determined the function of GRIM-19 in human gliomas. METHODS Tumor tissues were isolated and frozen at -80 just after surgery. The tissues consisted of normal brain tissue (4), astrocytomas (2), anaplastic astrocytomas (2), oligodendrogliomas (13), anaplastic oligodendrogliomas (11), and glioblastomas (16). To profile tumor-related genes, we applied RNA differential display using a Genefishing DEG kit, and validated the tumor-related genes by reverse transcription polymerase chain reaction (RT-PCR). A human glioblastoma cell line (U343MG-A) was used for the GRIM-19 functional studies. The morphologic and cytoskeletal changes were examined via light and confocal microscopy. The migratory and invasive abilities were investigated by the simple scratch technique and Matrigel assay. The antiproliferative activity was determined by thiazolyl blue Tetrazolium bromide (MTT) assay and FACS analysis. RESULTS Based on RT-PCR analysis, the expression of GRIM-19 was higher in astrocytic tumors than oligodendroglial tumors. The expression of GRIM-19 was higher in high-grade tumors than low-grade tumors or normal brain tissue; glioblastomas showed the highest expression. After transfection of GRIM-19 into U343MG-A, the morphology of the sense-transfection cells became larger and more spindly. The antisense-transfection cells became smaller and rounder compared with wild type U343MG-A. The MTT assay showed that the sense-transfection cells were more sensitive to the combination of interferon-beta and retinoic acid than U343MG-A cells or antisense-transfection cells; the anti-proliferative activity was related to apoptosis. CONCLUSION GRIM-19 may be one of the gene profiles which regulate cell death via apoptosis in human gliomas.
Collapse
Affiliation(s)
- Yong-Hao Jin
- Department of Neurosurgery & Brain Tumor Research Laboratory, Chonnam National University Hwasun Hospital & Medical School, Gwangju, Korea
| | | | | | | | | | | |
Collapse
|