1
|
Homiski C, Dey-Rao R, Shen S, Qu J, Melendy T. DNA damage-induced phosphorylation of a replicative DNA helicase results in inhibition of DNA replication through attenuation of helicase function. Nucleic Acids Res 2024; 52:10311-10328. [PMID: 39126317 PMCID: PMC11417368 DOI: 10.1093/nar/gkae663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 06/14/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
A major function of the DNA damage responses (DDRs) that act during the replicative phase of the cell cycle is to inhibit initiation and elongation of DNA replication. It has been shown that DNA replication of the polyomavirus, SV40, is inhibited and its replication fork is slowed by cellular DDR responses. The inhibition of SV40 DNA replication is associated with enhanced DDR kinase phosphorylation of SV40 Large T-antigen (LT), the viral DNA helicase. Mass spectroscopy was used to identify a novel highly conserved DDR kinase site, T518, on LT. In cell-based assays expression of a phosphomimetic form of LT at T518 (T518D) resulted in dramatically decreased levels of SV40 DNA replication, but LT-dependent transcriptional activation was unaffected. Purified WT and LT T518D were analyzed in vitro. In concordance with the cell-based data, reactions using SV40 LT-T518D, but not T518A, showed dramatic inhibition of SV40 DNA replication. A myriad of LT protein-protein interactions and LT's biochemical functions were unaffected by the LT T518D mutation; however, LT's DNA helicase activity was dramatically decreased on long, but not very short, DNA templates. These results suggest that DDR phosphorylation at T518 inhibits SV40 DNA replication by suppressing LT helicase activity.
Collapse
Affiliation(s)
- Caleb Homiski
- Departments of Microbiology & Immunology and Biochemistry, and the Witebsky Center for Microbial Pathogenesis & Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Rama Dey-Rao
- Departments of Microbiology & Immunology and Biochemistry, and the Witebsky Center for Microbial Pathogenesis & Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Shichen Shen
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York at Buffalo, Buffalo, NY 14203, USA; NYS Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Jun Qu
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York at Buffalo, Buffalo, NY 14203, USA; NYS Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Thomas Melendy
- Departments of Microbiology & Immunology and Biochemistry, and the Witebsky Center for Microbial Pathogenesis & Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
2
|
Dey-Rao R, Shen S, Qu J, Melendy T. Proteomics Analysis of the Polyomavirus DNA Replication Initiation Complex Reveals Novel Functional Phosphorylated Residues and Associated Proteins. Int J Mol Sci 2024; 25:4540. [PMID: 38674125 PMCID: PMC11049971 DOI: 10.3390/ijms25084540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/06/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Polyomavirus (PyV) Large T-antigen (LT) is the major viral regulatory protein that targets numerous cellular pathways for cellular transformation and viral replication. LT directly recruits the cellular replication factors involved in initiation of viral DNA replication through mutual interactions between LT, DNA polymerase alpha-primase (Polprim), and single-stranded DNA binding complex, (RPA). Activities and interactions of these complexes are known to be modulated by post-translational modifications; however, high-sensitivity proteomic analyses of the PTMs and proteins associated have been lacking. High-resolution liquid chromatography tandem mass spectrometry (LC-MS/MS) of the immunoprecipitated factors (IPMS) identified 479 novel phosphorylated amino acid residues (PAARs) on the three factors; the function of one has been validated. IPMS revealed 374, 453, and 183 novel proteins associated with the three, respectively. A significant transcription-related process network identified by Gene Ontology (GO) enrichment analysis was unique to LT. Although unidentified by IPMS, the ETS protooncogene 1, transcription factor (ETS1) was significantly overconnected to our dataset indicating its involvement in PyV processes. This result was validated by demonstrating that ETS1 coimmunoprecipitates with LT. Identification of a novel PAAR that regulates PyV replication and LT's association with the protooncogenic Ets1 transcription factor demonstrates the value of these results for studies in PyV biology.
Collapse
Affiliation(s)
- Rama Dey-Rao
- Department of Microbiology & Immunology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Shichen Shen
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Jun Qu
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Thomas Melendy
- Department of Microbiology & Immunology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, State University of New York at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
3
|
Dey-Rao R, Shen S, Qu J, Melendy T. Proteomics analysis reveals novel phosphorylated residues and associated proteins of the polyomavirus DNA replication initiation complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.08.579500. [PMID: 38370620 PMCID: PMC10871363 DOI: 10.1101/2024.02.08.579500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Polyomavirus ( PyV ) Large T-antigen ( LT ) is the major viral regulatory protein that targets numerous cellular factors/pathways: tumor suppressors, cell cycle regulators, transcription and chromatin regulators, as well as other factors for viral replication. LT directly recruits the cellular replication factors involved in LT's recognition of the viral origin, origin unwinding, and primer synthesis which is carried out by mutual interactions between LT, DNA polymerase alpha-primase ( Polprim ), and single strand (ss) DNA binding replication protein A ( RPA ). The activities as well as interactions of these three with each other as well as other factors, are known to be modulated by post-translational modifications (PTMs); however, modern high-sensitivity proteomic analyses of the PTMs as well as proteins associated with the three have been lacking. Elution from immunoprecipitation (IP) of the three factors were subjected to high-resolution liquid chromatography tandem mass spectrometry (LC-MS/MS). We identified 479 novel phosphorylated amino acid residues (PAARs) on the three factors: 82 PAARs on SV40 LT, 305 on the Polprim heterotetrametric complex and 92 on the RPA heterotrimeric complex. LC-MS/MS analysis also identified proteins that co-immunoprecipitated (coIP-ed) with the three factors that were not previously reported: 374 with LT, 453 with Polprim and 183 with RPA. We used a bioinformatic-based approach to analyze the proteomics data and demonstrate a highly significant "enrichment" of transcription-related process associated uniquely with LT, consistent with its role as a transcriptional regulator, as opposed to Polprim and RPA associated proteins which showed no such enrichment. The most significant cell cycle related network was regulated by ETS proto-oncogene 1 (ETS1), indicating its involvement in regulatory control of DNA replication, repair, and metabolism. The interaction between LT and ETS1 is validated and shown to be independent of nucleic acids. One of the novel phosphorylated aa residues detected on LT from this study, has been demonstrated by us to affect DNA replication activities of SV40 Large T-antigen. Our data provide substantial additional novel information on PAARs, and proteins associated with PyV LT, and the cellular Polprim-, RPA- complexes which will benefit research in DNA replication, transformation, transcription, and other viral and host cellular processes.
Collapse
|
4
|
Moraes IR, de Oliveira HC, Fontes MRM. Structural basis of nuclear transport for NEIL DNA glycosylases mediated by importin-alpha. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:140974. [PMID: 38065227 DOI: 10.1016/j.bbapap.2023.140974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/18/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024]
Abstract
NEIL glycosylases, including NEIL1, NEIL2, and NEIL3, play a crucial role in the base excision DNA repair pathway (BER). The classical importin pathway mediated by importin α/β and cargo proteins containing nuclear localization sequences (NLS) is the most common transport mechanism of DNA repair proteins to the nucleus. Previous studies have identified putative NLSs located at the C-terminus of NEIL3 and NEIL1. Crystallographic, bioinformatics, calorimetric (ITC), and fluorescence assays were used to investigate the interaction between NEIL1 and NEIL3 putative NLSs and importin-α (Impα). Our findings showed that NEIL3 contains a typical cNLS, with medium affinity for the major binding site of Impα. In contrast, crystallographic analysis of NEIL1 NLS revealed its binding to Impα, but with high B-factors and a lack of electron density at the linker region. ITC and fluorescence assays indicated no detectable affinity between NEIL1 NLS and Impα. These data suggest that NEIL1 NLS is a non-classical NLS with low affinity to Impα. Additionally, we compared the binding mode of NEIL3 and NEIL1 with Mus musculus Impα to human isoforms HsImpα1 and HsImpα3, which revealed interesting binding differences for HsImpα3 variant. NEIL3 is a classical medium affinity monopartite NLS, while NEIL1 is likely to be an unclassical low-affinity bipartite NLS. The base excision repair pathway is one of the primary systems involved in repairing DNA. Thus, understanding the mechanisms of nuclear transport of NEIL proteins is crucial for comprehending the role of these proteins in DNA repair and disease development.
Collapse
Affiliation(s)
- Ivan R Moraes
- Departamento de Biofísica e Farmacologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil
| | - Hamine C de Oliveira
- Departamento de Biofísica e Farmacologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil
| | - Marcos R M Fontes
- Departamento de Biofísica e Farmacologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil; Instituto de Estudos Avançados do Mar (IEAMar), Universidade Estadual Paulista (UNESP), São Vicente, SP, Brazil.
| |
Collapse
|
5
|
Moens U, Passerini S, Falquet M, Sveinbjørnsson B, Pietropaolo V. Phosphorylation of Human Polyomavirus Large and Small T Antigens: An Ignored Research Field. Viruses 2023; 15:2235. [PMID: 38005912 PMCID: PMC10674619 DOI: 10.3390/v15112235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Protein phosphorylation and dephosphorylation are the most common post-translational modifications mediated by protein kinases and protein phosphatases, respectively. These reversible processes can modulate the function of the target protein, such as its activity, subcellular localization, stability, and interaction with other proteins. Phosphorylation of viral proteins plays an important role in the life cycle of a virus. In this review, we highlight biological implications of the phosphorylation of the monkey polyomavirus SV40 large T and small t antigens, summarize our current knowledge of the phosphorylation of these proteins of human polyomaviruses, and conclude with gaps in the knowledge and a proposal for future research directions.
Collapse
Affiliation(s)
- Ugo Moens
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø—The Arctic University of Norway, 9037 Tromsø, Norway; (M.F.); (B.S.)
| | - Sara Passerini
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy;
| | - Mar Falquet
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø—The Arctic University of Norway, 9037 Tromsø, Norway; (M.F.); (B.S.)
| | - Baldur Sveinbjørnsson
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø—The Arctic University of Norway, 9037 Tromsø, Norway; (M.F.); (B.S.)
| | - Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy;
| |
Collapse
|
6
|
Sallis S, Bérubé-Simard FA, Grondin B, Leduc E, Azouz F, Bélanger C, Pilon N. The CHARGE syndrome-associated protein FAM172A controls AGO2 nuclear import. Life Sci Alliance 2023; 6:e202302133. [PMID: 37221016 PMCID: PMC10205598 DOI: 10.26508/lsa.202302133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/25/2023] Open
Abstract
CHARGE syndrome is a neural crest-related disorder mainly caused by mutation of the chromatin remodeler-coding gene CHD7 Alternative causes include mutation of other chromatin and/or splicing factors. One of these additional players is the poorly characterized FAM172A, which we previously found in a complex with CHD7 and the small RNA-binding protein AGO2 at the chromatin-spliceosome interface. Focusing on the FAM172A-AGO2 interplay, we now report that FAM172A is a direct binding partner of AGO2 and, as such, one of the long sought-after regulators of AGO2 nuclear import. We show that this FAM172A function mainly relies on its classical bipartite nuclear localization signal and associated canonical importin-α/β pathway, being enhanced by CK2-induced phosphorylation and abrogated by a CHARGE syndrome-associated missense mutation. Overall, this study thus strengthens the notion that noncanonical nuclear functions of AGO2 and associated regulatory mechanisms might be clinically relevant.
Collapse
Affiliation(s)
- Sephora Sallis
- Molecular Genetics of Development Laboratory, Department of Biological Sciences, Université du Québec à Montréal, Montreal, Canada
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois, Université du Québec à Montréal, Montreal, Canada
| | - Félix-Antoine Bérubé-Simard
- Molecular Genetics of Development Laboratory, Department of Biological Sciences, Université du Québec à Montréal, Montreal, Canada
| | - Benoit Grondin
- Molecular Genetics of Development Laboratory, Department of Biological Sciences, Université du Québec à Montréal, Montreal, Canada
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois, Université du Québec à Montréal, Montreal, Canada
| | - Elizabeth Leduc
- Molecular Genetics of Development Laboratory, Department of Biological Sciences, Université du Québec à Montréal, Montreal, Canada
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois, Université du Québec à Montréal, Montreal, Canada
| | - Fatiha Azouz
- Molecular Genetics of Development Laboratory, Department of Biological Sciences, Université du Québec à Montréal, Montreal, Canada
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois, Université du Québec à Montréal, Montreal, Canada
| | - Catherine Bélanger
- Molecular Genetics of Development Laboratory, Department of Biological Sciences, Université du Québec à Montréal, Montreal, Canada
| | - Nicolas Pilon
- Molecular Genetics of Development Laboratory, Department of Biological Sciences, Université du Québec à Montréal, Montreal, Canada
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois, Université du Québec à Montréal, Montreal, Canada
- Department of Pediatrics, Université de Montréal, Montreal, Canada
| |
Collapse
|
7
|
Muñoz-Díaz E, Sáez-Vásquez J. Nuclear dynamics: Formation of bodies and trafficking in plant nuclei. FRONTIERS IN PLANT SCIENCE 2022; 13:984163. [PMID: 36082296 PMCID: PMC9445803 DOI: 10.3389/fpls.2022.984163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/04/2022] [Indexed: 06/01/2023]
Abstract
The existence of the nucleus distinguishes prokaryotes and eukaryotes. Apart from containing most of the genetic material, the nucleus possesses several nuclear bodies composed of protein and RNA molecules. The nucleus is separated from the cytoplasm by a double membrane, regulating the trafficking of molecules in- and outwards. Here, we investigate the composition and function of the different plant nuclear bodies and molecular clues involved in nuclear trafficking. The behavior of the nucleolus, Cajal bodies, dicing bodies, nuclear speckles, cyclophilin-containing bodies, photobodies and DNA damage foci is analyzed in response to different abiotic stresses. Furthermore, we research the literature to collect the different protein localization signals that rule nucleocytoplasmic trafficking. These signals include the different types of nuclear localization signals (NLSs) for nuclear import, and the nuclear export signals (NESs) for nuclear export. In contrast to these unidirectional-movement signals, the existence of nucleocytoplasmic shuttling signals (NSSs) allows bidirectional movement through the nuclear envelope. Likewise, nucleolar signals are also described, which mainly include the nucleolar localization signals (NoLSs) controlling nucleolar import. In contrast, few examples of nucleolar export signals, called nucleoplasmic localization signals (NpLSs) or nucleolar export signals (NoESs), have been reported. The existence of consensus sequences for these localization signals led to the generation of prediction tools, allowing the detection of these signals from an amino acid sequence. Additionally, the effect of high temperatures as well as different post-translational modifications in nuclear and nucleolar import and export is discussed.
Collapse
Affiliation(s)
- Eduardo Muñoz-Díaz
- Centre National de la Recherche Scientifique (CNRS), Laboratoire Génome et Développement des Plantes, UMR 5096, Perpignan, France
- Univ. Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR 5096, Perpignan, France
| | - Julio Sáez-Vásquez
- Centre National de la Recherche Scientifique (CNRS), Laboratoire Génome et Développement des Plantes, UMR 5096, Perpignan, France
- Univ. Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR 5096, Perpignan, France
| |
Collapse
|
8
|
Lee A, Bogoyevitch MA, Jans DA. Bimolecular Fluorescence Complementation: Quantitative Analysis of In Cell Interaction of Nuclear Transporter Importin α with Cargo Proteins. Methods Mol Biol 2022; 2502:215-233. [PMID: 35412241 DOI: 10.1007/978-1-0716-2337-4_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bimolecular fluorescence complementation utilizes the ability of two complementary nonfluorescent fragments to reconstitute and emit fluorescence when brought together through specific interaction of attached protein fragments of interest. It has been used in several different contexts to study protein-protein interaction. Here we apply the method for the first time to study interaction of the nuclear transporter importin α and its cargoes in a cellular context. By using image analysis to quantify the extent of nuclear complexation, it is possible to gain insight into the strength of interaction in cells.
Collapse
Affiliation(s)
- Alexander Lee
- Nuclear Signalling Laboratory, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, Australia
| | - Marie A Bogoyevitch
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, Australia
| | - David A Jans
- Nuclear Signalling Laboratory, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
9
|
Importin/exportin-mediated nucleocytoplasmic shuttling of cucumber mosaic virus 2b protein is required for 2b's efficient suppression of RNA silencing. PLoS Pathog 2022; 18:e1010267. [PMID: 35081172 PMCID: PMC8820599 DOI: 10.1371/journal.ppat.1010267] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 02/07/2022] [Accepted: 01/11/2022] [Indexed: 11/19/2022] Open
Abstract
The 2b protein (2b) of cucumber mosaic virus (CMV), an RNA-silencing suppressor (RSS), is a major pathogenicity determinant of CMV. 2b is localized in the nucleus and cytoplasm, and its nuclear import is determined by two nuclear localization signals (NLSs); a carrier protein (importin [IMPα]) is predicted to be involved in 2b's nuclear transport. Cytoplasmic 2bs play a role in suppression of RNA silencing by binding to small RNAs and AGO proteins. A putative nuclear export signal (NES) motif was also found in 2b, but has not been proved to function. Here, we identified a leucine-rich motif in 2b's C-terminal half as an NES. We then showed that NES-deficient 2b accumulated abundantly in the nucleus and lost its RSS activity, suggesting that 2b exported from the nucleus can play a role as an RSS. Although two serine residues (S40 and S42) were previously found to be phosphorylated, we also found that an additional phosphorylation site (S28) alone can affect 2b's nuclear localization and RSS activity. Alanine substitution at S28 impaired the IMPα-mediated nuclear/nucleolar localization of 2b, and RSS activity was even stronger compared to wild-type 2b. In a subcellular fractionation assay, phosphorylated 2bs were detected in the nucleus, and comparison of the accumulation levels of nuclear phospho-2b between wild-type 2b and the NES mutant showed a greatly reduced level of the phosphorylated NES mutant in the nucleus, suggesting that 2bs are dephosphorylated in the nucleus and may be translocated to the cytoplasm in a nonphosphorylated form. These results suggest that 2b manipulates its nucleocytoplasmic transport as if it tracks down its targets, small RNAs and AGOs, in the RNA silencing pathway. We infer that 2b's efficient RSS activity is maintained by a balance of phosphorylation and dephosphorylation, which are coupled to importin/exportin-mediated shuttling between the nucleus and cytoplasm.
Collapse
|
10
|
Structural and calorimetric studies reveal specific determinants for the binding of a high-affinity NLS to mammalian importin-alpha. Biochem J 2021; 478:2715-2732. [PMID: 34195786 DOI: 10.1042/bcj20210401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/21/2021] [Accepted: 06/25/2021] [Indexed: 11/17/2022]
Abstract
The classical nuclear import pathway is mediated by importin (Impα and Impβ), which recognizes the cargo protein by its nuclear localization sequence (NLS). NLSs have been extensively studied resulting in different proposed consensus; however, recent studies showed that exceptions may occur. This mechanism may be also dependent on specific characteristics of different Impα. Aiming to better understand the importance of specific residues from consensus and adjacent regions of NLSs, we studied different mutations of a high-affinity NLS complexed to Impα by crystallography and calorimetry. We showed that although the consensus sequence allows Lys or Arg residues at the second residue of a monopartite sequence, the presence of Arg is very important to its binding in major and minor sites of Impα. Mutations in the N or C-terminus (position P1 or P6) of the NLS drastically reduces their affinity to the receptor, which is corroborated by the loss of hydrogen bonds and hydrophobic interactions. Surprisingly, a mutation in the far N-terminus of the NLS led to an increase in the affinity for both binding sites, corroborated by the structure with an additional hydrogen bond. The binding of NLSs to the human variant Impα1 revealed that these are similar to those found in structures presented here. For human variant Impα3, the bindings are only relevant for the major site. This study increases understanding of specific issues sparsely addressed in previous studies that are important to the task of predicting NLSs, which will be relevant in the eventual design of synthetic NLSs.
Collapse
|
11
|
Al-Wassiti HA, Thomas DR, Wagstaff KM, Fabb SA, Jans DA, Johnston AP, Pouton CW. Adenovirus Terminal Protein Contains a Bipartite Nuclear Localisation Signal Essential for Its Import into the Nucleus. Int J Mol Sci 2021; 22:3310. [PMID: 33804953 PMCID: PMC8036708 DOI: 10.3390/ijms22073310] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 01/22/2023] Open
Abstract
Adenoviruses contain dsDNA covalently linked to a terminal protein (TP) at the 5'end. TP plays a pivotal role in replication and long-lasting infectivity. TP has been reported to contain a nuclear localisation signal (NLS) that facilitates its import into the nucleus. We studied the potential NLS motifs within TP using molecular and cellular biology techniques to identify the motifs needed for optimum nuclear import. We used confocal imaging microscopy to monitor the localisation and nuclear association of GFP fusion proteins. We identified two nuclear localisation signals, PV(R)6VP and MRRRR, that are essential for fully efficient TP nuclear entry in transfected cells. To study TP-host interactions further, we expressed TP in Escherichia coli (E. coli). Nuclear uptake of purified protein was determined in digitonin-permeabilised cells. The data confirmed that nuclear uptake of TP requires active transport using energy and shuttling factors. This mechanism of nuclear transport was confirmed when expressed TP was microinjected into living cells. Finally, we uncovered the nature of TP binding to host nuclear shuttling proteins, revealing selective binding to Imp β, and a complex of Imp α/β but not Imp α alone. TP translocation to the nucleus could be inhibited using selective inhibitors of importins. Our results show that the bipartite NLS is required for fully efficient TP entry into the nucleus and suggest that this translocation can be carried out by binding to Imp β or Imp α/β. This work forms the biochemical foundation for future work determining the involvement of TP in nuclear delivery of adenovirus DNA.
Collapse
Affiliation(s)
- Hareth A. Al-Wassiti
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne 3800, Australia;
| | - David R. Thomas
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Melbourne 3800, Australia; (D.R.T.); (K.M.W.); (D.A.J.)
| | - Kylie M. Wagstaff
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Melbourne 3800, Australia; (D.R.T.); (K.M.W.); (D.A.J.)
| | - Stewart A. Fabb
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne 3052, Australia;
| | - David A. Jans
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Melbourne 3800, Australia; (D.R.T.); (K.M.W.); (D.A.J.)
| | - Angus P. Johnston
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne 3800, Australia;
| | - Colin W. Pouton
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne 3800, Australia;
| |
Collapse
|
12
|
Yang SNY, Atkinson SC, Wang C, Lee A, Bogoyevitch MA, Borg NA, Jans DA. The broad spectrum antiviral ivermectin targets the host nuclear transport importin α/β1 heterodimer. Antiviral Res 2020; 177:104760. [PMID: 32135219 DOI: 10.1016/j.antiviral.2020.104760] [Citation(s) in RCA: 209] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 12/11/2022]
Abstract
Infection by RNA viruses such as human immunodeficiency virus (HIV)-1, influenza, and dengue virus (DENV) represent a major burden for human health worldwide. Although RNA viruses replicate in the infected host cell cytoplasm, the nucleus is central to key stages of the infectious cycle of HIV-1 and influenza, and an important target of DENV nonstructural protein 5 (NS5) in limiting the host antiviral response. We previously identified the small molecule ivermectin as an inhibitor of HIV-1 integrase nuclear entry, subsequently showing ivermectin could inhibit DENV NS5 nuclear import, as well as limit infection by viruses such as HIV-1 and DENV. We show here that ivermectin's broad spectrum antiviral activity relates to its ability to target the host importin (IMP) α/β1 nuclear transport proteins responsible for nuclear entry of cargoes such as integrase and NS5. We establish for the first time that ivermectin can dissociate the preformed IMPα/β1 heterodimer, as well as prevent its formation, through binding to the IMPα armadillo (ARM) repeat domain to impact IMPα thermal stability and α-helicity. We show that ivermectin inhibits NS5-IMPα interaction in a cell context using quantitative bimolecular fluorescence complementation. Finally, we show for the first time that ivermectin can limit infection by the DENV-related West Nile virus at low (μM) concentrations. Since it is FDA approved for parasitic indications, ivermectin merits closer consideration as a broad spectrum antiviral of interest.
Collapse
Affiliation(s)
- Sundy N Y Yang
- Nuclear Signalling Laboratory, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic, 3800, Australia
| | - Sarah C Atkinson
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic, 3800, Australia
| | - Chunxiao Wang
- Nuclear Signalling Laboratory, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic, 3800, Australia
| | - Alexander Lee
- Nuclear Signalling Laboratory, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic, 3800, Australia
| | - Marie A Bogoyevitch
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Australia
| | - Natalie A Borg
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic, 3800, Australia
| | - David A Jans
- Nuclear Signalling Laboratory, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic, 3800, Australia.
| |
Collapse
|
13
|
Goeckel ME, Basgall EM, Lewis IC, Goetting SC, Yan Y, Halloran M, Finnigan GC. Modulating CRISPR gene drive activity through nucleocytoplasmic localization of Cas9 in S. cerevisiae. Fungal Biol Biotechnol 2019; 6:2. [PMID: 30766726 PMCID: PMC6360766 DOI: 10.1186/s40694-019-0065-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 01/10/2019] [Indexed: 01/28/2023] Open
Abstract
Background The bacterial CRISPR/Cas genome editing system has provided a major breakthrough in molecular biology. One use of this technology is within a nuclease-based gene drive. This type of system can install a genetic element within a population at unnatural rates. Combatting of vector-borne diseases carried by metazoans could benefit from a delivery system that bypasses traditional Mendelian laws of segregation. Recently, laboratory studies in fungi, insects, and even mice, have demonstrated successful propagation of CRISPR gene drives and the potential utility of this type of mechanism. However, current gene drives still face challenges including evolved resistance, containment, and the consequences of application in wild populations. Additional research into molecular mechanisms that would allow for control, titration, and inhibition of drive systems is needed. Results In this study, we use artificial gene drives in budding yeast to explore mechanisms to modulate nuclease activity of Cas9 through its nucleocytoplasmic localization. We examine non-native nuclear localization sequences (both NLS and NES) on Cas9 fusion proteins in vivo through fluorescence microscopy and genomic editing. Our results demonstrate that mutational substitutions to nuclear signals and combinatorial fusions can both modulate the level of gene drive activity within a population of cells. Conclusions These findings have implications for control of traditional nuclease-dependent editing and use of gene drive systems within other organisms. For instance, initiation of a nuclear export mechanism to Cas9 could serve as a molecular safeguard within an active gene drive to reduce or eliminate editing.
Collapse
Affiliation(s)
- Megan E Goeckel
- 1Department of Biochemistry and Molecular Biophysics, 141 Chalmers Hall, Kansas State University, Manhattan, KS 66506 USA
| | - Erianna M Basgall
- 1Department of Biochemistry and Molecular Biophysics, 141 Chalmers Hall, Kansas State University, Manhattan, KS 66506 USA
| | - Isabel C Lewis
- 1Department of Biochemistry and Molecular Biophysics, 141 Chalmers Hall, Kansas State University, Manhattan, KS 66506 USA
| | - Samantha C Goetting
- 1Department of Biochemistry and Molecular Biophysics, 141 Chalmers Hall, Kansas State University, Manhattan, KS 66506 USA
| | - Yao Yan
- 1Department of Biochemistry and Molecular Biophysics, 141 Chalmers Hall, Kansas State University, Manhattan, KS 66506 USA
| | - Megan Halloran
- 1Department of Biochemistry and Molecular Biophysics, 141 Chalmers Hall, Kansas State University, Manhattan, KS 66506 USA.,2Present Address: Department of Psychology, 106-B Kastle Hall, University of Kentucky, Lexington, KY 40506 USA
| | - Gregory C Finnigan
- 1Department of Biochemistry and Molecular Biophysics, 141 Chalmers Hall, Kansas State University, Manhattan, KS 66506 USA
| |
Collapse
|
14
|
Wagstaff KM, Headey S, Telwatte S, Tyssen D, Hearps AC, Thomas DR, Tachedjian G, Jans DA. Molecular dissection of an inhibitor targeting the HIV integrase dependent preintegration complex nuclear import. Cell Microbiol 2018; 21:e12953. [PMID: 30216959 PMCID: PMC6585680 DOI: 10.1111/cmi.12953] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 08/26/2018] [Accepted: 08/29/2018] [Indexed: 12/14/2022]
Abstract
Human immunodeficiency virus (HIV) continues to be a major contributor to morbidity and mortality worldwide, particularly in developing nations where high cost and logistical issues severely limit the use of current HIV therapeutics. This, combined HIV's high propensity to develop resistance, means that new antiviral agents against novel targets are still urgently required. We previously identified novel anti-HIV agents directed against the nuclear import of the HIV integrase (IN) protein, which plays critical roles in the HIV lifecycle inside the cell nucleus, as well as in transporting the HIV preintegration complex (PIC) into the nucleus. Here we investigate the structure activity relationship of a series of these compounds for the first time, including a newly identified anti-IN compound, budesonide, showing that the extent of binding to the IN core domain correlates directly with the ability of the compound to inhibit IN nuclear transport in a permeabilised cell system. Importantly, compounds that inhibited the nuclear transport of IN were found to significantly decrease HIV viral replication, even in a dividing cell system. Significantly, budesonide or its analogue flunisolide, were able to effect a significant reduction in the presence of specific nuclear forms of the HIV DNA (2-LTR circles), suggesting that the inhibitors work though blocking IN, and potentially PIC, nuclear import. The work presented here represents a platform for further development of these specific inhibitors of HIV replication with therapeutic and prophylactic potential.
Collapse
Affiliation(s)
- Kylie M Wagstaff
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Stephen Headey
- Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Parkville, Australia
| | | | - David Tyssen
- Life Science Division, Burnet Institute, Melbourne, Australia
| | - Anna C Hearps
- Life Science Division, Burnet Institute, Melbourne, Australia.,Department of Infectious Diseases, Melbourne University, Melbourne, Australia
| | - David R Thomas
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | | | - David A Jans
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| |
Collapse
|
15
|
PKA-site phosphorylation of importin13 regulates its subcellular localization and nuclear transport function. Biochem J 2018; 475:2699-2712. [PMID: 30045875 DOI: 10.1042/bcj20180082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 07/12/2018] [Accepted: 07/16/2018] [Indexed: 01/25/2023]
Abstract
Importin 13 (IPO13) is a key member of the importin β superfamily, which can transport cargoes both into and out of the nucleus to contribute to a variety of important cellular processes. IPO13 is known to undergo phosphorylation, but the impact of this on function has not been investigated. Here, we show for the first time that IPO13 is phosphorylated by cAMP-dependent protein kinase A specifically at serine 193. Results from fluorescence recovery after photobleaching and fluorescence loss in photobleaching approaches establish that negative charge at serine 193 through phosphorylation or point mutation both reduces IPO13 nuclear import and increases its nuclear export. Importantly, phosphorylation also appears to enhance cargo interaction on the part of IPO13, with significant impact on localization, as shown for the Pax6 homeobox-containing transcription partner. This is the first report that IPO13 can be phosphorylated at Ser193 and that this modification regulates IPO13 subcellular localization and nucleocytoplasmic transport function, with important implications for IPO13's role in development and other processes.
Collapse
|
16
|
Contribution of the residue at position 4 within classical nuclear localization signals to modulating interaction with importins and nuclear targeting. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1114-1129. [DOI: 10.1016/j.bbamcr.2018.05.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 05/02/2018] [Accepted: 05/04/2018] [Indexed: 01/08/2023]
|
17
|
Identification of novel antivirals inhibiting recognition of Venezuelan equine encephalitis virus capsid protein by the Importin α/β1 heterodimer through high-throughput screening. Antiviral Res 2018; 151:8-19. [PMID: 29337164 DOI: 10.1016/j.antiviral.2018.01.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 01/08/2018] [Accepted: 01/08/2018] [Indexed: 11/24/2022]
Abstract
Although the alphavirus Venezuelan equine encephalitis virus (VEEV) has been the cause of multiple outbreaks resulting in extensive human and equine mortality and morbidity, there are currently no anti-VEEV therapeutics available. VEEV pathogenicity is largely dependent on targeting of the viral capsid protein (CP) to the host cell nucleus through the nuclear transporting importin (Imp) α/β1 heterodimer. Here we perform a high-throughput screen, combined with nested counterscreens to identify small molecules able to inhibit the Impα/β1:CP interaction for the first time. Several compounds were able to significantly reduce viral replication in infected cells. Compound G281-1564 in particular could inhibit VEEV replication at low μM concentration, while showing minimal toxicity, with steady state and dynamic quantitative microscopic measurements confirming its ability to inhibit CP nuclear import. This study establishes the principle that inhibitors of CP nucleocytoplasmic trafficking can have potent antiviral activity against VEEV, and represents a platform for future development of safe anti-VEEV compounds with high efficacy and specificity.
Collapse
|
18
|
Novel inhibitors targeting Venezuelan equine encephalitis virus capsid protein identified using In Silico Structure-Based-Drug-Design. Sci Rep 2017; 7:17705. [PMID: 29255256 PMCID: PMC5735092 DOI: 10.1038/s41598-017-17672-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 11/29/2017] [Indexed: 11/09/2022] Open
Abstract
Therapeutics are currently unavailable for Venezuelan equine encephalitis virus (VEEV), which elicits flu-like symptoms and encephalitis in humans, with an estimated 14% of cases resulting in neurological disease. Here we identify anti-VEEV agents using in silico structure-based-drug-design (SBDD) for the first time, characterising inhibitors that block recognition of VEEV capsid protein (C) by the host importin (IMP) α/β1 nuclear transport proteins. From an initial screen of 1.5 million compounds, followed by in silico refinement and screening for biological activity in vitro, we identified 21 hit compounds which inhibited IMPα/β1:C binding with IC50s as low as 5 µM. Four compounds were found to inhibit nuclear import of C in transfected cells, with one able to reduce VEEV replication at µM concentration, concomitant with reduced C nuclear accumulation in infected cells. Further, this compound was inactive against a mutant VEEV that lacks high affinity IMPα/β1:C interaction, supporting the mode of its antiviral action to be through inhibiting C nuclear localization. This successful application of SBDD paves the way for lead optimization for VEEV antivirals, and is an exciting prospect to identify inhibitors for the many other viral pathogens of significance that require IMPα/β1 in their infectious cycle.
Collapse
|
19
|
Rungger D, Muster L, Georgiev O, Rungger-Brändle E. Oocyte shuttle, a recombinant protein transporting donor DNA into the Xenopus oocyte in situ. Biol Open 2017; 6:290-295. [PMID: 28202471 PMCID: PMC5312104 DOI: 10.1242/bio.022376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The newly developed oocyte shuttle protein contains a streptavidin moiety that tightly binds biotinylated DNA. Injected intravenously into adult Xenopus females, the protein-DNA complex is rapidly transported through the bloodstream and, within the ovary, the vitellogenin ligand present in the protein binds to the receptors at the surface of the oocytes. The bound complex is internalized and translocates into the oocyte nucleus thanks to an SV40 nuclear localization signal, enhanced by an adjacent casein kinase phosphorylation site. Functioning of the shuttle protein is documented by transporting DNA molecules that, upon intramolecular homologous recombination within the oocyte nucleus, express easily traceable markers such as green fluorescence or tetracycline resistance. Summary: A newly developed oocyte shuttle protein, binding donor DNA and carrying it from the bloodstream to the oocyte nucleus within the ovary, should greatly facilitate production of transgenic Xenopus embryos.
Collapse
Affiliation(s)
- Duri Rungger
- Station de Zoologie expérimentale, Department of Genetics and Evolution, University of Geneva, 154 route de Malagnou, Chêne-Bougeries 1224, Switzerland
| | - Lisbeth Muster
- Station de Zoologie expérimentale, Department of Genetics and Evolution, University of Geneva, 154 route de Malagnou, Chêne-Bougeries 1224, Switzerland
| | - Oleg Georgiev
- Institute of Molecular Life Sciences, University of Zurich-Irchel, Winterthurer Strasse 190, Zurich 8057, Switzerland
| | | |
Collapse
|
20
|
Insights into a novel nuclear function for Fascin in the regulation of the amino-acid transporter SLC3A2. Sci Rep 2016; 6:36699. [PMID: 27819326 PMCID: PMC5098188 DOI: 10.1038/srep36699] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/19/2016] [Indexed: 01/08/2023] Open
Abstract
Fascin 1 (FSCN1) is a cytoskeleton-associated protein recognized to function primarily in the regulation of cytoskeleton structure and formation of plasma membrane protrusions. Here we report a novel nuclear function for Fascin 1. Biochemical studies and genome wide localization using ChIP-seq identified phosphorylated Fascin 1 (pFascin) in complexes associated with transcription and that it co-localizes with histone H3 Lys4 trimethylation (H3K4me3) on chromatin. Gene expression profiling identified genes affected by Fascin 1 including SLC3A2, a gene encoding for a plasma membrane transporter that regulates intracellular amino acid levels. RbBP5, a subunit of the H3K4 histone methyltransferase (HMT) complex was found to interact with Fascin 1 supporting its role in H3K4me3 establishment at target genes. Moreover, we show that changes to SLC3A2 levels affect amino acid-mediated mTORC1 activation. These results reveal that Fascin 1 has a yet undiscovered nuclear function as an epigenetic modulator of genes essential for amino acid metabolism.
Collapse
|
21
|
Audsley MD, Jans DA, Moseley GW. Roles of nuclear trafficking in infection by cytoplasmic negative-strand RNA viruses: paramyxoviruses and beyond. J Gen Virol 2016; 97:2463-2481. [PMID: 27498841 DOI: 10.1099/jgv.0.000575] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Genome replication and virion production by most negative-sense RNA viruses (NSVs) occurs exclusively in the cytoplasm, but many NSV-expressed proteins undergo active nucleocytoplasmic trafficking via signals that exploit cellular nuclear transport pathways. Nuclear trafficking has been reported both for NSV accessory proteins (including isoforms of the rabies virus phosphoprotein, and V, W and C proteins of paramyxoviruses) and for structural proteins. Trafficking of the former is thought to enable accessory functions in viral modulation of antiviral responses including the type I IFN system, but the intranuclear roles of structural proteins such as nucleocapsid and matrix proteins, which have critical roles in extranuclear replication and viral assembly, are less clear. Nevertheless, nuclear trafficking of matrix protein has been reported to be critical for efficient production of Nipah virus and Respiratory syncytial virus, and nuclear localization of nucleocapsid protein of several morbilliviruses has been linked to mechanisms of immune evasion. Together, these data point to the nucleus as a significant host interface for viral proteins during infection by NSVs with otherwise cytoplasmic life cycles. Importantly, several lines of evidence now suggest that nuclear trafficking of these proteins may be critical to pathogenesis and thus could provide new targets for vaccine development and antiviral therapies.
Collapse
Affiliation(s)
- Michelle D Audsley
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - David A Jans
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Gregory W Moseley
- Department of Biochemistry and Molecular Biology, BIO21 Molecular Science and Biotechnology Institute, University of Melbourne, VIC 3000, Australia
| |
Collapse
|
22
|
Jeong SA, Kim K, Lee JH, Cha JS, Khadka P, Cho HS, Chung IK. Akt-mediated phosphorylation increases the binding affinity of hTERT for importin α to promote nuclear translocation. J Cell Sci 2015; 128:2287-301. [DOI: 10.1242/jcs.166132] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 04/10/2015] [Indexed: 01/09/2023] Open
Abstract
ABSTRACT
Telomeres are essential for chromosome integrity and protection, and their maintenance requires the ribonucleoprotein enzyme telomerase. Previously, we have shown that human telomerase reverse transcriptase (hTERT) contains a bipartite nuclear localization signal (NLS; residues 222–240) that is responsible for nuclear import, and that Akt-mediated phosphorylation of residue S227 is important for efficient nuclear import of hTERT. Here, we show that hTERT binds to importin-α proteins through the bipartite NLS and that this heterodimer then forms a complex with importin-β proteins to interact with the nuclear pore complex. Depletion of individual importin-α proteins results in a failure of hTERT nuclear import, and the resulting cytoplasmic hTERT is degraded by ubiquitin-dependent proteolysis. Crystallographic analysis reveals that the bipartite NLS interacts with both the major and minor sites of importin-α proteins. We also show that Akt-mediated phosphorylation of S227 increases the binding affinity for importin-α proteins and promotes nuclear import of hTERT, thereby resulting in increased telomerase activity. These data provide details of a binding mechanism that enables hTERT to interact with the nuclear import receptors and of the control of the dynamic nuclear transport of hTERT through phosphorylation.
Collapse
Affiliation(s)
- Sun Ah Jeong
- Department of Integrated Omics for Biomedical Science, Yonsei University, Seoul 120-749, Korea
| | - Kuglae Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Ji Hoon Lee
- Department of Integrated Omics for Biomedical Science, Yonsei University, Seoul 120-749, Korea
| | - Jeong Seok Cha
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Prabhat Khadka
- Department of Integrated Omics for Biomedical Science, Yonsei University, Seoul 120-749, Korea
| | - Hyun-Soo Cho
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - In Kwon Chung
- Department of Integrated Omics for Biomedical Science, Yonsei University, Seoul 120-749, Korea
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| |
Collapse
|
23
|
Involvement of the insulin-like growth factor binding proteins in the cancer cell response to DNA damage. J Cell Commun Signal 2015; 9:167-76. [PMID: 25617051 DOI: 10.1007/s12079-015-0262-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 01/12/2015] [Indexed: 10/24/2022] Open
Abstract
The complex mechanisms that cells have evolved to meet the challenge of constant exposure to DNA-damaging stimuli, also serve to protect cancer cells from the cytotoxic effects of chemo- and radiotherapy. IGFBPs appear to be involved, directly or indirectly, in some of these protective mechanisms. Activation of p53 is an early response to genotoxic stress, and all six human IGFBP genes have predicted p53 response elements in their promoter and/or intronic regions, at least some of which are functional. IGFBP3 has been extensively characterized as a p53-inducible gene, but in some cases it is suppressed by mutant p53 forms. DNA double-strand breaks (DSBs), induced by radiotherapy and some chemotherapies, potentially lead to apoptotic cell death, senescence, or repair and recovery. DSB damage can be repaired by homologous recombination or non-homologous end-joining (NHEJ), depending on the cell cycle stage, availability of key repair proteins, and other factors. The epidermal growth factor receptor (EGFR) has been implicated in the NHEJ pathway, and EGFR inhibition may inhibit repair, promoting apoptosis and thus improving sensitivity to chemotherapy or radiotherapy. Both IGFBP-3 and IGFBP-6 interact with components of the NHEJ pathway, and IGFBP-3 can facilitate this process through direct interaction with both EGFR and the catalytic subunit of DNA-PK. Cell fate after DNA damage may in part be regulated by the balance between the sphingolipids ceramide and sphingosine-1-phosphate, and IGFBPs can influence the production of both lipids. A better understanding of the involvement of IGFBPs in the DNA damage response in cancer cells may lead to improved methods of sensitizing cancers to DNA-damaging therapies.
Collapse
|
24
|
Chen J, Roberts JD. cGMP-dependent protein kinase I gamma encodes a nuclear localization signal that regulates nuclear compartmentation and function. Cell Signal 2014; 26:2633-44. [PMID: 25172423 PMCID: PMC4254301 DOI: 10.1016/j.cellsig.2014.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 08/15/2014] [Indexed: 10/24/2022]
Abstract
cGMP-dependent protein kinase I (PKGI) plays an important role in regulating how cGMP specifies vascular smooth muscle cell (SMC) phenotype. Although studies indicate that PKGI nuclear localization controls how cGMP regulates gene expression in SMC, information about the mechanisms that regulate PKGI nuclear compartmentation and its role in directly regulating cell phenotype is limited. Here we characterize a nuclear localization signal sequence (NLS) in PKGIγ, a proteolytically cleaved PKGI kinase fragment that translocates to the nucleus of SMC. Immuno-localization studies using cells expressing native and NLS-mutant PKGIγ, and treated with a small molecule nuclear transport inhibitor, indicated that PKGIγ encodes a constitutively active NLS that requires importin α and β for regulation of its compartmentation. Moreover, studies utilizing a genetically encoded nuclear phospho-CREB biosensor probe and fluorescence lifetime imaging microscopy demonstrated that this NLS controls PKGIγ nuclear function. In addition, although cytosolic PKGIγ-activity was observed to stimulate MAPK/ERK-mediated nuclear CREB signaling in SMC, NLS-mediated PKGIγ nuclear activity alone was determined to increase the expression of differentiation marker proteins in these cells. These results indicate that NLS-mediated nuclear PKGIγ localization plays an important role in how PKGI regulates vascular SMC phenotype.
Collapse
Affiliation(s)
- Jingsi Chen
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Cambridge, MA, USA
| | - Jesse D Roberts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Cambridge, MA, USA; Departments of Anesthesia, Pediatrics, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
25
|
The ORF012 gene of Marek's disease virus type 1 produces a spliced transcript and encodes a novel nuclear phosphoprotein essential for virus growth. J Virol 2014; 89:1348-63. [PMID: 25392220 DOI: 10.1128/jvi.02687-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
UNLABELLED Marek's disease virus (MDV), an alphaherpesvirus, is the causative agent of a lethal disease in chickens characterized by generalized nerve inflammation and rapid lymphoma development. The extensive colinearity of the MDV genome with those of related herpesviruses has eased functional characterization of many MDV genes. However, MDV carries a number of unique open reading frames (ORFs) that have not yet been investigated regarding their coding potentials and the functions of their products. Among these unique ORFs are two putative ORFs, ORF011 and ORF012, which are found at the extreme left end of the MDV unique long region. Using reverse transcriptase PCR, we showed that ORF011 and ORF012 are not individual genes but form a single gene through mRNA splicing of a small intron, resulting in the novel ORF012. We generated an ORF012-null virus using an infectious clone of MDV strain RB-1B. The deletion virus had a marked growth defect in vitro and could not be passaged in cultured cells, suggesting an essential role for the ORF012 product in virus replication. Further studies revealed that protein 012 (p012) localized to the nucleus in transfected and infected cells, and we identified by site-directed mutagenesis and green fluorescent protein (GFP) reporter fusion assays a nuclear localization signal (NLS) that was mapped to a 23-amino-acid sequence at the protein's C terminus. Nuclear export was blocked using leptomycin B, suggesting a potential role for p012 as a nuclear/cytoplasmic shuttling protein. Finally, p012 is phosphorylated at multiple residues, a modification that could possibly regulate its subcellular distribution. IMPORTANCE Marek's disease virus (MDV) causes a devastating oncogenic disease in chickens with high morbidity and mortality. The costs for disease prevention reach several billion dollars annually. The functional investigation of MDV genes is necessary to understand its complex replication cycle, which eventually could help us to interfere with MDV and herpesviral pathogenesis. We have identified a previously unidentified phosphoprotein encoded by MDV ORF012. We were able to show experimentally that predicted splicing of the gene based on bioinformatics data does indeed occur during replication. The newly identified p012 is essential for MDV replication and localizes to the nucleus due to the presence of a transferable nuclear localization signal at its C terminus. Our results also imply that p012 could constitute a nucleocytoplasmic shuttle protein, a feature that could prove interesting and important.
Collapse
|
26
|
Overlapping binding sites for importin β1 and suppressor of fused (SuFu) on glioma-associated oncogene homologue 1 (Gli1) regulate its nuclear localization. Biochem J 2014; 461:469-76. [DOI: 10.1042/bj20130709] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The hedgehog signalling protein Gli1 has overlapping binding sites for the proteins importin β1 and SuFu at its N-terminus. These proteins compete to regulate the nuclear/cytoplasmic localization of Gli1, with importin β promoting nuclear import and SuFu preventing it.
Collapse
|
27
|
The Thr205 phosphorylation site within respiratory syncytial virus matrix (M) protein modulates M oligomerization and virus production. J Virol 2014; 88:6380-93. [PMID: 24672034 DOI: 10.1128/jvi.03856-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Human respiratory syncytial virus (RSV) is the most common cause of bronchiolitis and pneumonia in infants and the elderly worldwide; however, there is no licensed RSV vaccine or effective drug treatment available. The RSV matrix (M) protein plays key roles in virus assembly and budding, but the protein interactions that govern budding of infectious virus are not known. In this study, we focus on M protein and identify a key phosphorylation site (Thr205) in M that is critical for RSV infectious virus production. Recombinant virus with a nonphosphorylatable alanine (Ala) residue at the site was markedly attenuated, whereas virus with a phosphomimetic aspartate (Asp) resulted in a nonviable virus which could only be recovered with an additional mutation in M (serine to asparagine at position 220), strongly implying that Thr205 is critical for viral infectivity. Experiments in vitro showed that mutation of Thr205 does not affect M stability or the ability to form dimers but implicate an effect on higher-order oligomer assembly. In transfected and infected cells, Asp substitution of Thr205 appeared to impair M oligomerization; typical filamentous structures still formed at the plasma membrane, but M assembly during the ensuing elongation process seemed to be impaired, resulting in shorter and more branched filaments as observed using electron microscopy (EM). Our data thus imply for the first time that M oligomerization, regulated by a negative charge at Thr205, may be critical to production of infectious RSV. IMPORTANCE We show here for the first time that RSV M's role in virus assembly/release is strongly dependent on threonine 205 (Thr205), a consensus site for CK2, which appears to play a key regulatory role in modulating M oligomerization and association with virus filaments. Our analysis indicates that T205 mutations do not impair M dimerization or viruslike filament formation per se but rather the ability of M to assemble in ordered fashion on the viral filaments themselves. This appears to impact in turn upon the infectivity of released virus rather than on virus production or release itself. Thus, M oligomerization would appear to be a target of interest for the development of anti-RSV agents; further, the recombinant T205-substituted mutant viruses described here would appear to be the first RSV mutants affected in viral maturation to our knowledge and hence of considerable interest for vaccine approaches in the future.
Collapse
|
28
|
Prévost M, Chamousset D, Nasa I, Freele E, Morrice N, Moorhead G, Trinkle-Mulcahy L. Quantitative fragmentome mapping reveals novel, domain-specific partners for the modular protein RepoMan (recruits PP1 onto mitotic chromatin at anaphase). Mol Cell Proteomics 2013; 12:1468-86. [PMID: 23362328 DOI: 10.1074/mcp.m112.023291] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
RepoMan is a protein phosphatase 1 (PP1) regulatory subunit that targets the phosphatase to key substrates throughout the cell cycle. Most work to date has focused on the mitotic roles of RepoMan/PP1, although equally important interphase role(s) have been demonstrated. Initial mapping of the interactome of nuclear RepoMan, both endogenous and tagged, was complicated by various factors, including antibody cross-reactivity and low sensitivity of the detection of chromatin-associated partners above the high background of proteins that bind nonspecifically to affinity matrices. We therefore adapted the powerful combination of fluorescence imaging with labeling-based quantitative proteomics to map the "fragmentomes" of specific regions of RepoMan. These regions demonstrate distinct localization patterns and turnover dynamics that reflect underlying binding events. The increased sensitivity and signal-to-noise ratio provided by this unique approach facilitated identification of a large number of novel RepoMan interactors, several of which were rigorously validated in follow-up experiments, including the association of RepoMan/PP1 with a specific PP2A-B56γ complex, interaction with ribosomal proteins and import factors involved in their nucleocytoplasmic transport and interaction with proteins involved in the response to DNA damage. This same strategy can be used to investigate the cellular roles of other modular proteins.
Collapse
Affiliation(s)
- Michèle Prévost
- Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
29
|
Pandya H, Debinski W. Toward intracellular targeted delivery of cancer therapeutics: progress and clinical outlook for brain tumor therapy. BioDrugs 2012; 26:235-44. [PMID: 22671766 DOI: 10.2165/11631600-000000000-00000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A number of anti-cancer drugs have their targets localized to particular intracellular compartments. These drugs reach the targets mainly through diffusion, dependent on biophysical and biochemical forces that allow cell penetration. This means that both cancer cells and normal cells will be subjected to such diffusion; hence many of these drugs, like chemotherapeutics, are potentially toxic and the concentration achieved at the site of their action is often suboptimal. The same relates to radiation that indiscriminately affects normal and diseased cells. However, nature-designed systems enable compounds present in the extracellular environment to end up inside the cell and even travel to more specific intracellular compartments. For example, viruses and bacterial toxins can more or less specifically recognize eukaryotic cells, enter these cells, and direct some protein portions to designated intracellular areas. These phenomena have led to creative thinking, such as employing viruses or bacterial toxins for cargo delivery to cells and, more specifically, to cancer cells. Proteins can be genetically engineered in order to not only mimic what viruses and bacterial toxins can do, but also to add new functions, extending or changing the intracellular routes. It is possible to make conjugates or, more preferably, single-chain proteins that recognize cancer cells and deliver cargo inside the cells, even to the desired subcellular compartment. These findings offer new opportunities to deliver drugs/labels only to cancer cells and only to their site of action within the cells. The development of such dual-specificity vectors for targeting cancer cells is an attractive and potentially safer and more efficacious way of delivering drugs. We provide examples of this approach for delivering brain cancer therapeutics, using a specific biomarker on glioblastoma tumor cells.
Collapse
Affiliation(s)
- Hetal Pandya
- The Brain Tumor Center of Excellence, Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | |
Collapse
|
30
|
|
31
|
Ivermectin is a specific inhibitor of importin α/β-mediated nuclear import able to inhibit replication of HIV-1 and dengue virus. Biochem J 2012; 443:851-6. [PMID: 22417684 PMCID: PMC3327999 DOI: 10.1042/bj20120150] [Citation(s) in RCA: 501] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The movement of proteins between the cytoplasm and nucleus mediated by the importin superfamily of proteins is essential to many cellular processes, including differentiation and development, and is critical to disease states such as viral disease and oncogenesis. We recently developed a high-throughput screen to identify specific and general inhibitors of protein nuclear import, from which ivermectin was identified as a potential inhibitor of importin α/β-mediated transport. In the present study, we characterized in detail the nuclear transport inhibitory properties of ivermectin, demonstrating that it is a broad-spectrum inhibitor of importin α/β nuclear import, with no effect on a range of other nuclear import pathways, including that mediated by importin β1 alone. Importantly, we establish for the first time that ivermectin has potent antiviral activity towards both HIV-1 and dengue virus, both of which are strongly reliant on importin α/β nuclear import, with respect to the HIV-1 integrase and NS5 (non-structural protein 5) polymerase proteins respectively. Ivermectin would appear to be an invaluable tool for the study of protein nuclear import, as well as the basis for future development of antiviral agents.
Collapse
|
32
|
Pandya H, Gibo DM, Debinski W. Molecular targeting of intracellular compartments specifically in cancer cells. Genes Cancer 2011; 1:421-33. [PMID: 20740056 DOI: 10.1177/1947601910375274] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 05/14/2010] [Accepted: 05/16/2010] [Indexed: 11/15/2022] Open
Abstract
We have implemented a strategy in which a genetically engineered, single-chain protein specifically recognizes cancer cells and is trafficked to a targeted subcellular compartment, such as the nucleus. The recombinant protein termed IL-13.E13K-D2-NLS has a triple functional property: (1) it binds a cancer-associated receptor, interleukin 13 receptor alpha 2 (IL-13Rα2), using modified IL-13 ligand, IL-13.E13K; (2) it exports its C-terminal portion out of the endosomal compartment using Pseudomonas aeruginosa exotoxin A (PE) translocation domain (D2); and (3) it travels to and accumulates in the nucleus guided by the nuclear localization signal (NLS). Here, we have demonstrated that this protein is transported into the brain tumor cells' nucleus, using 3 different methods of protein conjugation to dyes for the purpose of direct visualization of the protein's intracellular trafficking. IL-13.E13K-D2-NLS, and not the controls such as IL-13.E13K-D2, IL-13.E13K-NLS, or IL-13.E13K, accumulated in nuclei very efficiently, which increased with the time the cells were exposed to the protein. Also, IL-13.E13K-D2-NLS did not exhibit nuclear transport in cells with low expression levels of IL-13Rα2. Thus, it is possible to recognize cancer cells through their specific receptors and deliver a conjugated protein that travels specifically to the nucleus. Hence, our molecular targeting strategy succeeded in generating a single-chain proteinaceous agent capable of delivering drugs/labels needed to be localized to the cells' nuclei or potentially any other subcellular compartment, for their optimal efficacy or ability to exert their specific action.
Collapse
Affiliation(s)
- Hetal Pandya
- Departments of Neurosurgery, Radiation Oncology, and Cancer Biology, The Brain Tumor Center of Excellence, Wake Forest University, School of Medicine, Winston-Salem, NC, USA
| | | | | |
Collapse
|
33
|
Alvisi G, Marin O, Pari G, Mancini M, Avanzi S, Loregian A, Jans DA, Ripalti A. Multiple phosphorylation sites at the C-terminus regulate nuclear import of HCMV DNA polymerase processivity factor ppUL44. Virology 2011; 417:259-67. [PMID: 21741668 DOI: 10.1016/j.virol.2011.06.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 06/13/2011] [Accepted: 06/14/2011] [Indexed: 12/31/2022]
Abstract
The processivity factor of human cytomegalovirus DNA polymerase, phosphoprotein ppUL44, is essential for viral replication. During viral infection ppUL44 is phosphorylated by the viral kinase pUL97, but neither the target residues on ppUL44 nor the effect of phosphorylation on ppUL44's activity are known. We report here that ppUL44 is phosphorylated when transiently expressed in mammalian cells and coimmunoprecipitates with cellular kinases. Of three potential phosphorylation sites (S413, S415, S418) located upstream of ppUL44's nuclear localization signal (NLS) and one (T427) within the NLS itself, protein kinase CK2 (CK2) specifically phosphorylates S413, to trigger a cascade of phosphorylation of S418 and S415 by CK1 and CK2, respectively. Negative charge at the CK2/CK1 target serine residues facilitates optimal nuclear accumulation of ppUL44, whereas negative charge on T427, a potential cyclin-dependent 1 phosphorylation site, strongly decreases nuclear accumulation. Thus, nuclear transport of ppUL44 is finely tuned during viral infection through complex phosphorylation events.
Collapse
Affiliation(s)
- Gualtiero Alvisi
- Department of Hematology and Oncology Lorenzo e Ariosto Seràgnoli, University of Bologna, Medical School, Bologna, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Wagstaff KM, Rawlinson SM, Hearps AC, Jans DA. An AlphaScreen®-based assay for high-throughput screening for specific inhibitors of nuclear import. ACTA ACUST UNITED AC 2011; 16:192-200. [PMID: 21297106 DOI: 10.1177/1087057110390360] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Specific viral proteins enter the nucleus of infected cells to perform essential functions, as part of the viral life cycle. The integrase (IN) molecule of human immunodeficiency virus (HIV)-1 is of particular interest in this context due to its integral role in integrating the HIV genome into that of the infected host cell. Most IN-based antiviral compounds target the IN/DNA interaction, but since IN must first enter the nucleus before it can perform these critical functions, nuclear transport of IN is also an attractive target for therapeutic intervention. Here the authors describe a novel high-throughput screening assay for identifying inhibitors of nuclear import, particularly IN, based on amplified luminescent proximity homogeneous assay (AlphaScreen(®)) technology, which is high throughput, requires low amounts of material, and is efficient and cost-effective. The authors use the assay to screen for specific inhibitors of the interaction between IN and its nuclear transport receptor importin α/β, successfully identifying several inhibitors of the IN/importin α/β interaction. Importantly, they demonstrate that one of the identified compounds, mifepristone, is effective in preventing active nuclear transport of IN in transfected cells and hence may represent a useful anti-HIV therapeutic. The screen also identified broad-spectrum importin α/β inhibitors such as ivermectin, which may represent useful tools for nuclear transport research in the future. The authors validate the activity and specificity of mifepristone and ivermectin in inhibiting nuclear protein import in living cells, underlining the utility of the screening approach.
Collapse
Affiliation(s)
- Kylie M Wagstaff
- Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | | | | | | |
Collapse
|
35
|
Regulation of nucleocytoplasmic trafficking of viral proteins: an integral role in pathogenesis? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:2176-90. [PMID: 21530593 PMCID: PMC7114211 DOI: 10.1016/j.bbamcr.2011.03.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 03/15/2011] [Accepted: 03/30/2011] [Indexed: 12/24/2022]
Abstract
Signal-dependent targeting of proteins into and out of the nucleus is mediated by members of the importin (IMP) family of transport receptors, which recognise targeting signals within a cargo protein and mediate passage through the nuclear envelope-embedded nuclear pore complexes. Regulation of this process is paramount to processes such as cell division and differentiation, but is also critically important for viral replication and pathogenesis; phosphorylation appears to play a major role in regulating viral protein nucleocytoplasmic trafficking, along with other posttranslational modifications. This review focuses on viral proteins that utilise the host cell IMP machinery in order to traffic into/out of the nucleus, and in particular those where trafficking is critical to viral replication and/or pathogenesis, such as simian virus SV40 large tumour antigen (T-ag), human papilloma virus E1 protein, human cytomegalovirus processivity factor ppUL44, and various gene products from RNA viruses such as Rabies. Understanding of the mechanisms regulating viral protein nucleocytoplasmic trafficking is paramount to the future development of urgently needed specific and effective anti-viral therapeutics. This article was originally intended for the special issue "Regulation of Signaling and Cellular Fate through Modulation of Nuclear Protein Import". The Publisher apologizes for any inconvenience caused.
Collapse
|
36
|
Roth DM, Moseley GW, Pouton CW, Jans DA. Mechanism of microtubule-facilitated "fast track" nuclear import. J Biol Chem 2011; 286:14335-51. [PMID: 21339293 DOI: 10.1074/jbc.m110.210302] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Although the microtubule (MT) cytoskeleton has been shown to facilitate nuclear import of specific cancer-regulatory proteins including p53, retinoblastoma protein, and parathyroid hormone-related protein (PTHrP), the MT association sequences (MTASs) responsible and the nature of the interplay between MT-dependent and conventional importin (IMP)-dependent nuclear translocation are unknown. Here we used site-directed mutagenesis, live cell imaging, and direct IMP and MT binding assays to map the MTAS of PTHrP for the first time, finding that it is within a short modular region (residues 82-108) that overlaps with the IMPβ1-recognized nuclear localization signal (residues 66-108) of PTHrP. Importantly, fluorescence recovery after photobleaching experiments indicated that disruption of the MT network or mutation of the MTAS of PTHrP decreases the rate of nuclear import by 2-fold. Moreover, MTAS functions depend on mutual exclusivity of binding of PTHrP to MTs and IMPβ1 such that, following MT-dependent trafficking toward the nucleus, perinuclear PTHrP can be displaced from MTs by IMPβ1 prior to import into the nucleus. This is the first molecular definition of an MTAS that facilitates protein nuclear import as well as the first delineation of the mechanism whereby cargo is transferred directly from the cytoskeleton to the cellular nuclear import apparatus. The results have broad significance with respect to fundamental processes regulating cell physiology/transformation.
Collapse
Affiliation(s)
- Daniela Martino Roth
- Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | |
Collapse
|
37
|
Nardozzi JD, Lott K, Cingolani G. Phosphorylation meets nuclear import: a review. Cell Commun Signal 2010; 8:32. [PMID: 21182795 PMCID: PMC3022542 DOI: 10.1186/1478-811x-8-32] [Citation(s) in RCA: 184] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 12/23/2010] [Indexed: 12/18/2022] Open
Abstract
Phosphorylation is the most common and pleiotropic modification in biology, which plays a vital role in regulating and finely tuning a multitude of biological pathways. Transport across the nuclear envelope is also an essential cellular function and is intimately linked to many degeneration processes that lead to disease. It is therefore not surprising that phosphorylation of cargos trafficking between the cytoplasm and nucleus is emerging as an important step to regulate nuclear availability, which directly affects gene expression, cell growth and proliferation. However, the literature on phosphorylation of nucleocytoplasmic trafficking cargos is often confusing. Phosphorylation, and its mirror process dephosphorylation, has been shown to have opposite and often contradictory effects on the ability of cargos to be transported across the nuclear envelope. Without a clear connection between attachment of a phosphate moiety and biological response, it is difficult to fully understand and predict how phosphorylation regulates nucleocytoplasmic trafficking. In this review, we will recapitulate clue findings in the field and provide some general rules on how reversible phosphorylation can affect the nuclear-cytoplasmic localization of substrates. This is only now beginning to emerge as a key regulatory step in biology.
Collapse
Affiliation(s)
- Jonathan D Nardozzi
- Dept, of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA 19107, USA.
| | | | | |
Collapse
|
38
|
Fulcher AJ, Dias MM, Jans DA. Binding of p110 retinoblastoma protein inhibits nuclear import of simian virus SV40 large tumor antigen. J Biol Chem 2010; 285:17744-53. [PMID: 20356831 PMCID: PMC2878538 DOI: 10.1074/jbc.m109.055491] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 03/29/2010] [Indexed: 01/19/2023] Open
Abstract
Nuclear import of the simian virus 40 large tumor antigen (T-ag) is dependent on its nuclear localization signal (NLS) within amino acids 126-132 that is recognized by the importin alpha/beta1 heterodimer, as well as a protein kinase CK2 site at serine 112 upstream of the NLS, which enhances the interaction approximately 50-fold. Here we show for the first time that T-ag nuclear import is negatively regulated by N-terminal sequences (amino acids 102-110), which represent the binding site (BS) for the retinoblastoma (Rb) tumor suppressor protein (p110(Rb)). Quantitative confocal laser scanning microscopic analysis of the transport properties of T-ag constructs with or without Rb binding site mutations in living transfected cells or in a reconstituted nuclear transport system indicates that the presence of the RbBS significantly reduces nuclear accumulation of T-ag. A number of approaches, including the analysis of T-ag nuclear import in an isogenic cell pair with and without functional p110(Rb) implicate p110(Rb) binding as being responsible for the reduced nuclear accumulation, with the Ser(106) phosphorylation site within the RbBS appearing to enhance the inhibitory effect. Immunoprecipitation experiments confirmed association of T-ag and p110(Rb) and dependence thereof on negative charge at Ser(106). The involvement of p110(Rb) in modulating T-ag nuclear transport has implications for the regulation of nuclear import of other proteins from viruses of medical significance that interact with p110(Rb), and how this may relate to transformation.
Collapse
Affiliation(s)
- Alex James Fulcher
- From the Nuclear Signaling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Victoria, Clayton 3800, Australia and
| | - Manisha M. Dias
- From the Nuclear Signaling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Victoria, Clayton 3800, Australia and
| | - David A. Jans
- From the Nuclear Signaling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Victoria, Clayton 3800, Australia and
- the ARC Centre of Excellence for Biotechnology and Development, Victoria, Melbourne 3000, Australia
| |
Collapse
|
39
|
Fulcher AJ, Roth DM, Fatima S, Alvisi G, Jans DA. The BRCA‐1 binding protein BRAP2 is a novel, negative regulator of nuclear import of viral proteins, dependent on phosphorylation flanking the nuclear localization signal. FASEB J 2009; 24:1454-66. [DOI: 10.1096/fj.09-136564] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Alex J. Fulcher
- Nuclear Signaling LaboratoryDepartment of Biochemistry and Molecular BiologyMonash UniversityClaytonVictoriaAustralia
| | - Daniela M. Roth
- Nuclear Signaling LaboratoryDepartment of Biochemistry and Molecular BiologyMonash UniversityClaytonVictoriaAustralia
| | - Shadma Fatima
- Nuclear Signaling LaboratoryDepartment of Biochemistry and Molecular BiologyMonash UniversityClaytonVictoriaAustralia
| | - Gualtiero Alvisi
- Nuclear Signaling LaboratoryDepartment of Biochemistry and Molecular BiologyMonash UniversityClaytonVictoriaAustralia
| | - David A. Jans
- Nuclear Signaling LaboratoryDepartment of Biochemistry and Molecular BiologyMonash UniversityClaytonVictoriaAustralia
| |
Collapse
|
40
|
Systematic identification of cell cycle-dependent yeast nucleocytoplasmic shuttling proteins by prediction of composite motifs. Proc Natl Acad Sci U S A 2009; 106:10171-6. [PMID: 19520826 DOI: 10.1073/pnas.0900604106] [Citation(s) in RCA: 907] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cell cycle-dependent nucleocytoplasmic transport of proteins is predominantly regulated by CDK kinase activities; however, it is currently difficult to predict the proteins thus regulated, largely because of the low prediction efficiency of the motifs involved. Here, we report the successful prediction of CDK1-regulated nucleocytoplasmic shuttling proteins using a prediction system for nuclear localization signals (NLSs). By systematic amino acid replacement analyses in budding yeast, we created activity-based profiles for different classes of importin-alpha-dependent NLSs that represent the functional contributions of different amino acids at each position within an NLS class. We then developed a computer program for prediction of the classical importin-alpha/beta pathway-specific NLSs (cNLS Mapper, available at http//nls-mapper.iab.keio.ac.jp/) that calculates NLS activities by using these profiles and an additivity-based motif scoring algorithm. This calculation method achieved significantly higher prediction accuracy in terms of both sensitivity and specificity than did current methods. The search for NLSs that overlap the consensus CDK1 phosphorylation site by using cNLS Mapper identified all previously reported and 5 previously uncharacterized yeast proteins (Yen1, Psy4, Pds1, Msa1, and Dna2) displaying CDK1- and cell cycle-regulated nuclear transport. CDK1 activated or repressed their nuclear import activity, depending on the position of CDK1-phosphorylation sites within NLSs. The application of this strategy to other functional linear motifs should be useful in systematic studies of protein-protein networks.
Collapse
|
41
|
Jordan BA, Kreutz MR. Nucleocytoplasmic protein shuttling: the direct route in synapse-to-nucleus signaling. Trends Neurosci 2009; 32:392-401. [PMID: 19524307 DOI: 10.1016/j.tins.2009.04.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2008] [Revised: 04/16/2009] [Accepted: 04/24/2009] [Indexed: 02/06/2023]
Abstract
In neurons multiple signaling pathways converge in the nucleus to regulate the expression of genes associated with long-term structural changes of synapto-dendritic input. Of pivotal importance for this type of transcriptional regulation is synapse-to-nucleus communication. Several studies suggest that the nuclear transport of proteins from synapses is involved in this signaling process, including evidence that synapses contain proteins with nuclear localization sequences and components of the nuclear import machinery. Here, we review the evidence for synapse-to-nucleus signaling by means of retrograde transport of proteins from distal processes. We discuss the mechanisms involved in their translocation and their role in the control of nuclear gene expression. Finally, we summarize the current thinking regarding the functional implications of nuclear signaling and address open questions in this evolving area of neuroscience.
Collapse
Affiliation(s)
- Bryen A Jordan
- Albert Einstein College of Medicine, Dominick P. Purpura Department of Neuroscience, Bronx, NY 10461, USA
| | | |
Collapse
|
42
|
Rawlinson SM, Pryor MJ, Wright PJ, Jans DA. CRM1-mediated nuclear export of dengue virus RNA polymerase NS5 modulates interleukin-8 induction and virus production. J Biol Chem 2009; 284:15589-97. [PMID: 19297323 PMCID: PMC2708855 DOI: 10.1074/jbc.m808271200] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 02/27/2009] [Indexed: 11/06/2022] Open
Abstract
Although all established functions of dengue virus NS5 (nonstructural protein 5) occur in the cytoplasm, its nuclear localization, mediated by dual nuclear localization sequences, is essential for virus replication. Here, we have determined the mechanism by which NS5 can localize in the cytoplasm to perform its role in replication, establishing for the first time that it is able to be exported from the nucleus by the exportin CRM1 and hence can shuttle between the nucleus and cytoplasm. We define the nuclear export sequence responsible to be residues 327-343 and confirm interaction of NS5 and CRM1 by pulldown assay. Significantly, greater nuclear accumulation of NS5 during infection due to CRM1 inhibition coincided with altered kinetics of virus production and decreased induction of the antiviral chemokine interleukin-8. This is the first report of a nuclear export sequence within NS5 for any member of the Flavivirus genus; because of its high conservation within the genus, it may represent a target for the treatment of diseases caused by several medically important flaviviruses.
Collapse
Affiliation(s)
| | | | | | - David A. Jans
- From the Departments ofBiochemistry and Molecular Biology and
| |
Collapse
|
43
|
Yamada PM, Lee KW. Perspectives in mammalian IGFBP-3 biology: local vs. systemic action. Am J Physiol Cell Physiol 2009; 296:C954-76. [PMID: 19279229 DOI: 10.1152/ajpcell.00598.2008] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Insulin-like growth factor (IGF) binding protein (IGFBP)-3 has traditionally been defined by its role as a binding protein and its association with IGF delivery and availability. Development of non-IGF binding IGFBP-3 analogs and the use of cell lines devoid of type 1 IGF receptors (IGF-R) have led to critical advances in the field of IGFBP-3 biology. These studies show that IGFBP-3 has IGF-independent roles in inhibiting cell proliferation in cancer cell lines. Nuclear transcription factor, retinoid X receptor (RXR)-alpha, and IGFBP-3 functionally interact to reduce prostate tumor growth and prostate-specific antigen in vivo. Moreover, IGFBP-3 inhibits insulin-stimulated glucose uptake into adipocytes independent of IGF. The purpose of this review is to highlight IGFBP-3 as a novel effector molecule and not just another "binding protein" by discussing its IGF-independent actions on metabolism and cell growth. Although this review presents studies that assume the role of IGFBP-3 as either an endocrine or autocrine/paracrine molecule, these systems may not exist as distinct entities, justifying the examination of IGFBP-3 in an integrated model. Also, we provide an overview of factors that regulate IGFBP-3 availability, including its production, methylation, and ubiquitination. We conclude with the role of IGFBP-3 in whole body systems and possible future applications of IGFBP-3 in physiology.
Collapse
Affiliation(s)
- Paulette M Yamada
- Dept. of Pediatrics, Mattel Children's Hospital, Los Angeles, CA 90095-1752, USA
| | | |
Collapse
|
44
|
Kosugi S, Hasebe M, Matsumura N, Takashima H, Miyamoto-Sato E, Tomita M, Yanagawa H. Six classes of nuclear localization signals specific to different binding grooves of importin alpha. J Biol Chem 2009; 284:478-485. [PMID: 19001369 DOI: 10.1074/jbc.m807017200] [Citation(s) in RCA: 429] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The importin alpha/beta pathway mediates nuclear import of proteins containing the classical nuclear localization signals (NLSs). Although the consensus sequences of the classical NLSs have been defined, there are still many NLSs that do not match the consensus rule and many nonfunctional sequences that match the consensus. We report here six different NLS classes that specifically bind to distinct binding pockets of importin alpha. By screening of random peptide libraries using an mRNA display, we selected peptides bound by importin alpha and identified six classes of NLSs, including three novel classes. Two noncanonical classes (class 3 and class 4) specifically bound the minor binding pocket of importin alpha, whereas the classical monopartite NLSs (class 1 and class 2) bound to the major binding pocket. Using a newly developed universal green fluorescent protein expression system, we found that these NLS classes, including plant-specific class 5 NLSs and bipartite NLSs, fundamentally require the regions outside the core basic residues for their activity and have specific residues or patterns that confer the activities differently between yeast, plants, and mammals. Furthermore, amino acid replacement analyses revealed that the consensus basic patterns of the classical NLSs are not essential for activity, thereby generating more unconventional patterns, including redox-sensitive NLSs. These results explain the causes of the NLS diversity. The defined consensus patterns and properties of importin alpha-dependent NLSs provide useful information for identifying NLSs.
Collapse
Affiliation(s)
- Shunichi Kosugi
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0017, Japan and the Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan; Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0017, Japan and the Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Masako Hasebe
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0017, Japan and the Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Nobutaka Matsumura
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0017, Japan and the Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Hideaki Takashima
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0017, Japan and the Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Etsuko Miyamoto-Sato
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0017, Japan and the Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0017, Japan and the Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Hiroshi Yanagawa
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0017, Japan and the Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan; Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0017, Japan and the Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan.
| |
Collapse
|
45
|
Nuclear import of the varicella-zoster virus latency-associated protein ORF63 in primary neurons requires expression of the lytic protein ORF61 and occurs in a proteasome-dependent manner. J Virol 2008; 82:8673-86. [PMID: 18562514 DOI: 10.1128/jvi.00685-08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Varicella-zoster virus (VZV) open reading frame (ORF) 63 protein (ORF63p) is one of six VZV ORFs shown to be transcribed and translated in latently infected human dorsal root ganglia. ORF63p accumulates exclusively in the cytoplasm of latently infected sensory neurons, whereas it is both nuclear and cytoplasmic during lytic infection and following reactivation from latency. Here, we demonstrate that infection of primary guinea pig enteric neurons (EN) with an adenovirus expressing ORF63p results in the exclusive cytoplasmic localization of the protein reminiscent of its distribution during latent VZV infection in humans. We show that the addition of the simian virus 40 large-T-antigen nuclear localization signal (NLS) results in the nuclear import of ORF63p in EN and that the ORF63p endogenous NLSs are functional in EN when fused to a heterologous protein. These data suggest that the cytoplasmic localization of ORF63p in EN results from the masking of the NLSs, thus blocking nuclear import. However, the coexpression of ORF61p, a strictly lytic VZV protein, and ORF63p in EN results in the nuclear import of ORF63p in a proteasome-dependent manner, and both ORF63p NLSs are required for this event. We propose that the cytoplasmic localization of ORF63p in neurons results from NLS masking and that the expression of ORF61p removes this block, allowing nuclear import to proceed.
Collapse
|
46
|
Fulcher AJ, Ahmed CMI, Noon-Song EN, Kwan RYQ, Subramaniam PS, Johnson HM, Jans DA. Interferon gamma is recognised by importin alpha/beta: enhanced nuclear localising and transactivation activities of an interferon gamma mimetic. FEBS Lett 2008; 582:1569-74. [PMID: 18405666 DOI: 10.1016/j.febslet.2008.03.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 03/04/2008] [Accepted: 03/07/2008] [Indexed: 11/30/2022]
Abstract
Interferon (IFN) gamma's ability to localise in the nucleus and function in gene activation has been known for some time, although the role of the conventional nuclear transporting importin molecules is unclear. Here, we demonstrate for the first time the direct recognition of IFNgamma and an IFNgamma mimetic peptide by IMPalpha and the IMPalpha/beta heterodimer, where the IFNgamma mimetic shows higher affinity. Significantly, this correlates well both with in vivo ability to target green fluorescent protein to the nucleus in transfected cells as determined by quantitative confocal laser scanning microscopy, as well as GAS promoter activity of a luciferase reporter. This has important implications for IFNgamma's anti-viral action, and the potential use of the IFNgamma mimetic in antiviral therapies.
Collapse
Affiliation(s)
- Alex J Fulcher
- Nuclear Signaling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, P.O. Box 13D, Victoria, Clayton 3800, Australia
| | | | | | | | | | | | | |
Collapse
|
47
|
Wagstaff KM, Fan JY, De Jesus MA, Tremethick DJ, Jans DA. Efficient gene delivery using reconstituted chromatin enhanced for nuclear targeting. FASEB J 2008; 22:2232-42. [PMID: 18356302 DOI: 10.1096/fj.07-099911] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Nonviral gene delivery is hampered by difficulties associated with transporting negatively charged DNA through the cell membrane and, more importantly, the nuclear envelope of target cells. Here we show for the first time that chromatin reconstituted with histone H2B proteins optimized for nuclear targeting can be used as an efficient means to deliver DNA to the nucleus of intact living mammalian cells, resulting in high levels of transgene expression that were approximately 6-fold more than those achieved by commercial liposomal preparations. The high efficiency is due in part to DNA condensation and protection against degradation in the reconstituted chromatin, as well as its ability to interact with high affinity with the importin proteins of the cellular nuclear import machinery. "Chromofection," gene delivery by protein transduction using chromatin enhanced for nuclear targeting represents an efficient means to deliver DNA to a wide variety of cell types, with the potential to treat complex genetic disorders.
Collapse
Affiliation(s)
- Kylie M Wagstaff
- Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800 Australia
| | | | | | | | | |
Collapse
|
48
|
Roth DM, Moseley GW, Glover D, Pouton CW, Jans DA. A microtubule-facilitated nuclear import pathway for cancer regulatory proteins. Traffic 2007; 8:673-86. [PMID: 17511743 DOI: 10.1111/j.1600-0854.2007.00564.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nuclear protein import is dependent on specific targeting signals within cargo proteins recognized by importins (IMPs) that mediate translocation through the nuclear pore. Recent evidence, however, implicates a role for the microtubule (MT) network in facilitating nuclear import of the cancer regulatory proteins parathyroid hormone-related protein (PTHrP) and p53 tumor suppressor. Here we assess the extent to which MT and actin integrity may be generally required for nuclear protein import for the first time. We examine 10 nuclear-localizing proteins with diverse IMP-dependent nuclear import pathways, our results indicating that the cytoskeleton does not have a general mechanistic role in nuclear localization sequence-dependent nuclear protein import. Of the proteins examined, only the p110(Rb) tumor suppressor protein Rb, together with p53 and PTHrP, was found to require MT integrity for optimal nuclear import. Fluorescence recovery after photobleaching experiments indicated that the MT-dependent nuclear transport pathway increases both the rate and extent of Rb nuclear import but does not affect Rb nuclear export. Dynamitin overexpression experiments implicate the MT motor dynein in the import process. The results indicate that, additional to IMP/diffusion-dependent processes, certain cancer regulatory proteins utilize an MT-enhanced pathway for accelerated nuclear import that is presumably required for their nuclear functions.
Collapse
Affiliation(s)
- Daniela Martino Roth
- Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Monash, Victoria 3800, Australia
| | | | | | | | | |
Collapse
|
49
|
Moseley GW, Roth DM, DeJesus MA, Leyton DL, Filmer RP, Pouton CW, Jans DA. Dynein light chain association sequences can facilitate nuclear protein import. Mol Biol Cell 2007; 18:3204-13. [PMID: 17567954 PMCID: PMC1949364 DOI: 10.1091/mbc.e07-01-0030] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Nuclear localization sequence (NLS)-dependent nuclear protein import is not conventionally held to require interaction with microtubules (MTs) or components of the MT motor, dynein. Here we report for the first time the role of sequences conferring association with dynein light chains (DLCs) in NLS-dependent nuclear accumulation of the rabies virus P-protein. We find that P-protein nuclear accumulation is significantly enhanced by its dynein light chain association sequence (DLC-AS), dependent on MT integrity and association with DLCs, and that P-protein-DLC complexes can associate with MT cytoskeletal structures. We also find that P-protein DLC-AS, as well as analogous sequences from other proteins, acts as an independent module that can confer enhancement of nuclear accumulation to proteins carrying the P-protein NLS, as well as several heterologous NLSs. Photobleaching experiments in live cells demonstrate that the MT-dependent enhancement of NLS-mediated nuclear accumulation by the P-protein DLC-AS involves an increased rate of nuclear import. This is the first report of DLC-AS enhancement of NLS function, identifying a novel mechanism regulating nuclear transport with relevance to viral and cellular protein biology. Importantly, this data indicates that DLC-ASs represent versatile modules to enhance nuclear delivery with potential therapeutic application.
Collapse
Affiliation(s)
- Gregory W. Moseley
- *Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Monash, Victoria 3800, Australia; and
| | - Daniela Martino Roth
- *Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Monash, Victoria 3800, Australia; and
- Department of Pharmaceutical Biology, Victorian College of Pharmacy, Monash University, Parkville, Victoria 3052, Australia
| | - Michelle A. DeJesus
- *Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Monash, Victoria 3800, Australia; and
| | - Denisse L. Leyton
- *Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Monash, Victoria 3800, Australia; and
| | - Richard P. Filmer
- *Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Monash, Victoria 3800, Australia; and
| | - Colin W. Pouton
- Department of Pharmaceutical Biology, Victorian College of Pharmacy, Monash University, Parkville, Victoria 3052, Australia
| | - David A. Jans
- *Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Monash, Victoria 3800, Australia; and
| |
Collapse
|
50
|
Pryor MJ, Rawlinson SM, Butcher RE, Barton CL, Waterhouse TA, Vasudevan SG, Bardin PG, Wright PJ, Jans DA, Davidson AD. Nuclear localization of dengue virus nonstructural protein 5 through its importin alpha/beta-recognized nuclear localization sequences is integral to viral infection. Traffic 2007; 8:795-807. [PMID: 17537211 DOI: 10.1111/j.1600-0854.2007.00579.x] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Dengue virus nonstructural protein 5 (NS5) is a large multifunctional protein with a central role in viral replication. We previously identified two nuclear localization sequences (NLSs) within the central region of dengue virus type-2 (DENV-2) NS5 ('aNLS' and 'bNLS') that are recognized by the importin alpha/beta and importin beta1 nuclear transporters, respectively. Here, we demonstrate the importance of the kinetics of NS5 nuclear localization to virus production for the first time and show that the aNLS is responsible. Site-specific mutations in the bipartite-type aNLS or bNLS region were introduced into a reporter plasmid encoding green fluorescent protein fused to the N-terminus of DENV-2 NS5, as well as into DENV-2 genomic length complementary DNA. Mutation of basic residues in the highly conserved region of the bNLS did not affect nuclear import of NS5. In contrast, mutations in either basic cluster of the aNLS decreased NS5 nuclear accumulation and reduced virus production, with the greatest reduction observed for mutation of the second cluster (K(387)K(388)K(389)); mutagenesis of both clusters abolished NS5 nuclear import and DENV-2 virus production completely. The latter appeared to relate to the impaired ability of virus lacking nuclear-localizing NS5, as compared with wild-type virus expressing nuclear-localizing NS5, to reduce interleukin-8 production as part of the antiviral response. The results overall indicate that NS5 nuclear localization through the aNLS is integral to viral infection, with significant implications for other flaviviruses of medical importance, such as yellow fever and West Nile viruses.
Collapse
Affiliation(s)
- Melinda J Pryor
- Department of Biochemistry and Molecular Biology, Monash University, Monash, Victoria 3800, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|