1
|
Cole ES, Maier W, Joachimiak E, Jiang YY, Lee C, Collet E, Chmelik C, Romero DP, Chalker D, Alli NK, Ruedlin TM, Ozzello C, Gaertig J. The Tetrahymena bcd1 mutant implicates endosome trafficking in ciliate, cortical pattern formation. Mol Biol Cell 2023; 34:ar82. [PMID: 37163326 PMCID: PMC10398878 DOI: 10.1091/mbc.e22-11-0501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/15/2023] [Accepted: 05/01/2023] [Indexed: 05/11/2023] Open
Abstract
Ciliates, such as Tetrahymena thermophila, evolved complex mechanisms to determine both the location and dimensions of cortical organelles such as the oral apparatus (OA: involved in phagocytosis), cytoproct (Cyp: for eliminating wastes), and contractile vacuole pores (CVPs: involved in water expulsion). Mutations have been recovered in Tetrahymena that affect both the localization of such organelles along anterior-posterior and circumferential body axes and their dimensions. Here we describe BCD1, a ciliate pattern gene that encodes a conserved Beige-BEACH domain-containing protein a with possible protein kinase A (PKA)-anchoring activity. Similar proteins have been implicated in endosome trafficking and are linked to human Chediak-Higashi syndrome and autism. Mutations in the BCD1 gene broaden cortical organelle domains as they assemble during predivision development. The Bcd1 protein localizes to membrane pockets at the base of every cilium that are active in endocytosis. PKA activity has been shown to promote endocytosis in other organisms, so we blocked clathrin-mediated endocytosis (using "dynasore") and inhibited PKA (using H89). In both cases, treatment produced partial phenocopies of the bcd1 pattern mutant. This study supports a model in which the dimensions of diverse cortical organelle assembly-platforms may be determined by regulated balance between constitutive exocytic delivery and PKA-regulated endocytic retrieval of organelle materials and determinants.
Collapse
Affiliation(s)
- Eric S. Cole
- Biology Department, St. Olaf College, Northfield, MN 55057
| | - Wolfgang Maier
- Bioinformatics Group, Department of Computer Science, University of Freiburg, 79110 Freiburg, Germany
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Yu-yang Jiang
- Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
| | - Chinkyu Lee
- Department of Cellular Biology, University of Georgia, Athens, GA 30605
| | - Erik Collet
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Carl Chmelik
- Biology Department, St. Olaf College, Northfield, MN 55057
| | - Daniel P. Romero
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455
| | - Douglas Chalker
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63021
| | - Nurudeen K. Alli
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63021
| | - Tina M. Ruedlin
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63021
| | - Courtney Ozzello
- Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309
| | - Jacek Gaertig
- Department of Cellular Biology, University of Georgia, Athens, GA 30605
| |
Collapse
|
2
|
Li T, Cao H, Wu S, Zhong P, Ding J, Wang J, Wang F, He Z, Huang GL. Phosphorylated ATF1 at Thr184 promotes metastasis and regulates MMP2 expression in gastric cancer. J Transl Med 2022; 20:169. [PMID: 35397606 PMCID: PMC8994398 DOI: 10.1186/s12967-022-03361-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 03/26/2022] [Indexed: 12/24/2022] Open
Abstract
Background Studies have revealed an important role of activating transcription factor 1 (ATF1) and phosphorylated ATF1 at Ser63 in tumors. Our previous study identified Thr184 as a novel phosphorylation site of ATF1. However, the role of phosphorylated ATF1 at Thr184 (p-ATF1-T184) in tumor is unclear. This study figured out the role of p-ATF1-T184 in the metastasis of gastric cancer (GC) and in the regulation of Matrix metallopeptidase 2 (MMP2). Methods Immunohistochemical analysis (IHC) was performed to analyze the level of p-ATF1-T184 and its relationship with clinicopathological characteristics. Wound scratch test, Transwell assay were used to observe the role of p-ATF1-T184 in the invasion and metastasis of GC. The regulation of MMP2 by p-ATF1-T184 was investigated by a series of experiments including quantitative RT-PCR, western blot, gelatin zymography assay, Chromatin immunoprecipitation (ChIP), luciferase reporter assay and cycloheximide experiment. The Cancer Genome Atlas (TCGA) data were used to analyze the expression and prognostic role of ATF1 and MMP2 in GC. Mass spectrometry (MS) following co-immunoprecipitation (co-IP) assay was performed to identify potential upstream kinases that would phosphorylate ATF1 at Thr184. Results High expression level of p-ATF1-T184 was found and significantly associated with lymph node metastasis and poor survival in a GC cohort of 126 patients. P-ATF1-T184 promoted migration and invasion of gastric cancer cells. Phosphorylation of ATF1-T184 could regulate the mRNA, protein expression and extracellular activity of MMP2. P-ATF1-T184 further increased the DNA binding ability, transcription activity, and stabilized the protein expression of ATF1. Moreover, TCGA data and IHC results suggested that the mRNA level of ATF1 and MMP2, and protein level of p-ATF1-T184 and MMP2 could be prognosis markers of GC. Two protein kinase related genes, LRBA and S100A8, were identified to be correlated with the expression ATF1 in GC. Conclusion Our results indicated that p-ATF1-T184 promoted metastasis of GC by regulating MMP2. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03361-3.
Collapse
|
3
|
Moreno-Corona NC, Lopez-Ortega O, Flores Hermenegildo JM, Berron-Ruiz L, Rodriguez-Alba JC, Santos-Argumedo L, Lopez-Herrera G. Lipopolysaccharide-responsive beige-like anchor acts as a cAMP-dependent protein kinase anchoring protein in B cells. Scand J Immunol 2020; 92:e12922. [PMID: 32592188 DOI: 10.1111/sji.12922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 05/15/2020] [Accepted: 06/21/2020] [Indexed: 01/04/2023]
Abstract
Lipopolysaccharide (LPS)-responsive beige-like anchor (LRBA) protein was initially described as a monogenetic cause for common variable immune deficiency, a syndrome characterized by low levels of B cells, defects in memory B cell differentiation and hypogammaglobulinaemia. LRBA was identified as an LPS up-regulated gene in B cells, macrophages and T cells. LRBA weighs 320 kDa and has 2863 amino acids. Its sequence contains multiple domains, suggesting that LRBA can act as a scaffolding protein. It contains two putative binding sites for cAMP-dependent kinase (PKA) regulatory subunits, suggesting this protein can act as A-kinase anchor protein (AKAP); however, physical interactions involving LRBA and PKA have not been demonstrated to date, and functional roles for such interactions are unexplored. In this work, we investigated physical interactions involving LRBA with regulatory subunits of PKA in human B cell lines and primary human B cells. PKA is a holoenzyme composed of two regulatory subunits, which can be RIα, RIβ, RIIα or RIIβ, and two catalytic subunits, Cα or Cβ. We co-immunoprecipitated LRBA using Ramos B cell lymphoma cells and observed that LRBA interacts with RIIβ. Interestingly, St-Ht31, an inhibitory peptide that disrupts AKAP interactions with regulatory subunits, reduced the amount of interacting protein. Furthermore, in primary human B cells, LRBA was induced after CD40L and IL-4 stimulation, and under such activation, we found that LRBA interacts with RIIα and RIIβ, suggesting that LRBA acts as an AKAP and binds RII subunits. Interestingly, we also identified that LRBA interacts with activation-induced cytidine deaminase in primary B cells, suggesting that it is involved in B cell function.
Collapse
Affiliation(s)
- Nidia Carolina Moreno-Corona
- Biomedicina Molecular, Centro de Investigacion y de Estudios Avanzados, Mexico City, Mexico.,Unidad de Investigacion en Inmunodeficiencias, Instituto Nacional de Pediatria, Mexico City, Mexico
| | - Orestes Lopez-Ortega
- Biomedicina Molecular, Centro de Investigacion y de Estudios Avanzados, Mexico City, Mexico
| | - Jose Mizael Flores Hermenegildo
- Biomedicina Molecular, Centro de Investigacion y de Estudios Avanzados, Mexico City, Mexico.,Unidad de Investigacion en Inmunodeficiencias, Instituto Nacional de Pediatria, Mexico City, Mexico
| | - Laura Berron-Ruiz
- Unidad de Investigacion en Inmunodeficiencias, Instituto Nacional de Pediatria, Mexico City, Mexico
| | - Juan Carlos Rodriguez-Alba
- Unidad de Citometria de Flujo, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | | | - Gabriela Lopez-Herrera
- Unidad de Investigacion en Inmunodeficiencias, Instituto Nacional de Pediatria, Mexico City, Mexico
| |
Collapse
|
4
|
Tuand K, Stijnen P, Volders K, Declercq J, Nuytens K, Meulemans S, Creemers J. Nuclear Localization of the Autism Candidate Gene Neurobeachin and Functional Interaction with the NOTCH1 Intracellular Domain Indicate a Role in Regulating Transcription. PLoS One 2016; 11:e0151954. [PMID: 26999814 PMCID: PMC4801420 DOI: 10.1371/journal.pone.0151954] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 03/07/2016] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Neurobeachin (NBEA) is an autism spectrum disorders (ASD) candidate gene. NBEA deficiency affects regulated secretion, receptor trafficking, synaptic architecture and protein kinase A (PKA)-mediated phosphorylation. NBEA is a large multidomain scaffolding protein. From N- to C-terminus, NBEA has a concanavalin A-like lectin domain flanked by armadillo repeats (ACA), an A-kinase anchoring protein domain that can bind to PKA, a domain of unknown function (DUF1088) and a BEACH domain, preceded by a pleckstrin homology-like domain and followed by WD40 repeats (PBW). Although most of these domains mediate protein-protein interactions, no interaction screen has yet been performed. METHODS Yeast two-hybrid screens with the ACA and PBW domain modules of NBEA gave a list of interaction partners, which were analyzed for Gene Ontology (GO) enrichment. Neuro-2a cells were used for confocal microscopy and nuclear extraction analysis. NOTCH-mediated transcription was studied with luciferase reporter assays and qRT-PCR, combined with NBEA knockdown or overexpression. RESULTS Both domain modules showed a GO enrichment for the nucleus. PBW almost exclusively interacted with transcription regulators, while ACA interacted with a number of PKA substrates. NBEA was partially localized in the nucleus of Neuro-2a cells, albeit much less than in the cytoplasm. A nuclear localization signal was found in the DUF1088 domain, which was shown to contribute to the nuclear localization of an EGFP-DPBW fusion protein. Yeast two-hybrid identified the Notch1 intracellular domain as a physical interactor of the PBW domain and a role for NBEA as a negative regulator in Notch-mediated transcription was demonstrated. CONCLUSION Defining novel interaction partners of conserved NBEA domain modules identified a role for NBEA as transcriptional regulator in the nucleus. The physical interaction of NBEA with NOTCH1 is most relevant for ASD pathogenesis because NOTCH signaling is essential for neural development.
Collapse
Affiliation(s)
- Krizia Tuand
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Leuven Autism Research consortium (LAuRes), KU Leuven, Leuven, Belgium
| | - Pieter Stijnen
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Karolien Volders
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Leuven Autism Research consortium (LAuRes), KU Leuven, Leuven, Belgium
| | | | - Kim Nuytens
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Leuven Autism Research consortium (LAuRes), KU Leuven, Leuven, Belgium
| | | | - John Creemers
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|
5
|
Wise A, Tenezaca L, Fernandez RW, Schatoff E, Flores J, Ueda A, Zhong X, Wu CF, Simon AF, Venkatesh T. Drosophila mutants of the autism candidate gene neurobeachin (rugose) exhibit neuro-developmental disorders, aberrant synaptic properties, altered locomotion, and impaired adult social behavior and activity patterns. J Neurogenet 2015; 29:135-43. [PMID: 26100104 DOI: 10.3109/01677063.2015.1064916] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder in humans characterized by complex behavioral deficits, including intellectual disability, impaired social interactions, and hyperactivity. ASD exhibits a strong genetic component with underlying multigene interactions. Candidate gene studies have shown that the neurobeachin (NBEA) gene is disrupted in human patients with idiopathic autism ( Castermans et al., 2003 ). The NBEA gene spans the common fragile site FRA 13A and encodes a signal scaffold protein ( Savelyeva et al., 2006 ). In mice, NBEA has been shown to be involved in the trafficking and function of a specific subset of synaptic vesicles. ( Medrihan et al., 2009 ; Savelyeva et al., 2006 ). Rugose (rg) is the Drosophila homolog of the mammalian and human NBEA. Our previous genetic and molecular analyses have shown that rg encodes an A kinase anchor protein (DAKAP 550), which interacts with components of the epidermal growth factor receptor or EGFR and Notch-mediated signaling pathways, facilitating cross talk between these and other pathways ( Shamloula et al., 2002 ). We now present functional data from studies on the larval neuromuscular junction that reveal abnormal synaptic architecture and physiology. In addition, adult rg loss-of-function mutants exhibit defective social interactions, impaired habituation, aberrant locomotion, and hyperactivity. These results demonstrate that Drosophila NBEA (rg) mutants exhibit phenotypic characteristics reminiscent of human ASD and thus could serve as a genetic model for studying ASDs.
Collapse
Affiliation(s)
- Alexandria Wise
- a Department of Biology , City College of New York , NY , USA
| | - Luis Tenezaca
- a Department of Biology , City College of New York , NY , USA
| | - Robert W Fernandez
- b Department of Molecular Biophysics and Biochemistry , Yale University , New Haven, Connecticut , USA
| | - Emma Schatoff
- a Department of Biology , City College of New York , NY , USA
| | - Julian Flores
- a Department of Biology , City College of New York , NY , USA
| | - Atsushi Ueda
- c Department of Biology , University of Iowa , Iowa City , IA , USA
| | - Xiaotian Zhong
- c Department of Biology , University of Iowa , Iowa City , IA , USA
| | - Chun-Fang Wu
- c Department of Biology , University of Iowa , Iowa City , IA , USA
| | - Anne F Simon
- d Department of Biology,Western University , Ontario , Canada
| | | |
Collapse
|
6
|
Akhade VS, Arun G, Donakonda S, Satyanarayana Rao MR. Genome wide chromatin occupancy of mrhl RNA and its role in gene regulation in mouse spermatogonial cells. RNA Biol 2014; 11:1262-79. [PMID: 25584904 PMCID: PMC4615903 DOI: 10.1080/15476286.2014.996070] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 09/11/2014] [Accepted: 09/27/2014] [Indexed: 10/22/2022] Open
Abstract
Mrhl RNA is a nuclear lncRNA encoded in the mouse genome and negatively regulates Wnt signaling in spermatogonial cells through p68/Ddx5 RNA helicase. Mrhl RNA is present in the chromatin fraction of mouse spermatogonial Gc1-Spg cells and genome wide chromatin occupancy of mrhl RNA by ChOP (Chromatin oligo affinity precipitation) technique identified 1370 statistically significant genomic loci. Among these, genes at 37 genomic loci also showed altered expression pattern upon mrhl RNA down regulation which are referred to as GRPAM (Genes Regulated by Physical Association of Mrhl RNA). p68 interacted with mrhl RNA in chromatin at these GRPAM loci. p68 silencing drastically reduced mrhl RNA occupancy at 27 GRPAM loci and also perturbed the expression of GRPAM suggesting a role for p68 mediated mrhl RNA occupancy in regulating GRPAM expression. Wnt3a ligand treatment of Gc1-Spg cells down regulated mrhl RNA expression and also perturbed expression of these 27 GRPAM genes that included genes regulating Wnt signaling pathway and spermatogenesis, one of them being Sox8, a developmentally important transcription factor. We also identified interacting proteins of mrhl RNA associated chromatin fraction which included Pc4, a chromatin organizer protein and hnRNP A/B and hnRNP A2/B1 which have been shown to be associated with lincRNA-Cox2 function in gene regulation. Our findings in the Gc1-Spg cell line also correlate with the results from analysis of mouse testicular tissue which further highlights the in vivo physiological significance of mrhl RNA in the context of gene regulation during mammalian spermatogenesis.
Collapse
Affiliation(s)
- Vijay Suresh Akhade
- Molecular Biology and Genetics Unit; Jawaharlal Nehru Center for Advanced Scientific Research; Jakkur P. O.; Bangalore, India
- Present address: Cold Spring Harbor Laboratory; New York, NY USA
- Present address: Biotechnologisches Zentrum; Dresden, Germany
| | - Gayatri Arun
- Present address: Cold Spring Harbor Laboratory; New York, NY USA
| | | | | |
Collapse
|
7
|
Drosophila rugose is a functional homolog of mammalian Neurobeachin and affects synaptic architecture, brain morphology, and associative learning. J Neurosci 2013; 32:15193-204. [PMID: 23100440 DOI: 10.1523/jneurosci.6424-11.2012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neurobeachin (Nbea) is implicated in vesicle trafficking in the regulatory secretory pathway, but details on its molecular function are currently unknown. We have used Drosophila melanogaster mutants for rugose (rg), the Drosophila homolog of Nbea, to further elucidate the function of this multidomain protein. Rg is expressed in a granular pattern reminiscent of the Golgi network in neuronal cell bodies and colocalizes with transgenic Nbea, suggesting a function in secretory regulation. In contrast to Nbea(-/-) mice, rg null mutants are viable and fertile and exhibit aberrant associative odor learning, changes in gross brain morphology, and synaptic architecture as determined at the larval neuromuscular junction. At the same time, basal synaptic transmission is essentially unaffected, suggesting that structural and functional aspects are separable. Rg phenotypes can be rescued by a Drosophila rg+ transgene, whereas a mouse Nbea transgene rescues aversive odor learning and synaptic architecture; it fails to rescue brain morphology and appetitive odor learning. This dissociation between the functional redundancy of either the mouse or the fly transgene suggests that their complex composition of numerous functional and highly conserved domains support independent functions. We propose that the detailed compendium of phenotypes exhibited by the Drosophila rg null mutant provided here will serve as a test bed for dissecting the different functional domains of BEACH (for beige and human Chediak-Higashi syndrome) proteins, such as Rugose, mouse Nbea, or Nbea orthologs in other species, such as human.
Collapse
|
8
|
Lauks J, Klemmer P, Farzana F, Karupothula R, Zalm R, Cooke NE, Li KW, Smit AB, Toonen R, Verhage M. Synapse associated protein 102 (SAP102) binds the C-terminal part of the scaffolding protein neurobeachin. PLoS One 2012; 7:e39420. [PMID: 22745750 PMCID: PMC3380004 DOI: 10.1371/journal.pone.0039420] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 05/23/2012] [Indexed: 12/22/2022] Open
Abstract
Neurobeachin (Nbea) is a multidomain scaffold protein abundant in the brain, where it is highly expressed during development. Nbea-null mice have severe defects in neuromuscular synaptic transmission resulting in lethal paralysis of the newborns. Recently, it became clear that Nbea is important also for the functioning of central synapses, where it is suggested to play a role in trafficking membrane proteins to both, the pre- and post-synaptic sites. So far, only few binding partners of Nbea have been found and the precise mechanism of their trafficking remains unclear. Here, we used mass spectrometry to identify SAP102, a MAGUK protein implicated in trafficking of the ionotropic glutamate AMPA- and NMDA-type receptors during synaptogenesis, as a novel Nbea interacting protein in mouse brain. Experiments in heterologous cells confirmed this interaction and revealed that SAP102 binds to the C-terminal part of Nbea that contains the DUF, PH, BEACH and WD40 domains. Furthermore, we discovered that introducing a mutation in Nbea's PH domain, which disrupts its interaction with the BEACH domain, abolishes this binding, thereby creating an excellent starting point to further investigate Nbea-SAP102 function in the central nervous system.
Collapse
Affiliation(s)
- Juliane Lauks
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, Amsterdam, The Netherlands
| | - Patricia Klemmer
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, Amsterdam, The Netherlands
| | - Fatima Farzana
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, Amsterdam, The Netherlands
| | - Ramesh Karupothula
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, Amsterdam, The Netherlands
| | - Robbert Zalm
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, Amsterdam, The Netherlands
| | - Nancy E. Cooke
- Department of Genetics and Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ka Wan Li
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, Amsterdam, The Netherlands
| | - August B. Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, Amsterdam, The Netherlands
| | - Ruud Toonen
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, Amsterdam, The Netherlands
| | - Matthijs Verhage
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, Amsterdam, The Netherlands
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam and VU Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Hadad M, Bresler-Musikant T, Neuman-Silberberg FS. Drosophila spoonbill encodes a dual-specificity A-kinase anchor protein essential for oogenesis. Mech Dev 2011; 128:471-82. [PMID: 21983075 DOI: 10.1016/j.mod.2011.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 08/25/2011] [Accepted: 09/23/2011] [Indexed: 01/07/2023]
Abstract
spoonbill is a Drosophila female-sterile mutation, which interferes with normal egg patterning during oogenesis. Previous analyzes linked the mutation to a number of seemingly unrelated pathways, including GRK/EGFR and DPP, two major pathways essential for Drosophila and vertebrate development. Further work suggested that spoonbill may also function in actin polymerization and border-cell migration. Here we describe the molecular cloning of the spoonbill gene and characterize new mutant alleles, further demonstrating that spoonbill's function is essential during oogenesis. We found spoonbill to be allelic to CG3249 (also known as yu), which encodes the only known dual-specificity A-kinase anchor protein in Drosophila. Our data indicate that similar to mammalian AKAPs, Spoonbill protein contains a number of potential kinase and phosphatase binding motifs, and is targeted, in the ovary, to mitochondria and Golgi. Finally, we address some of spoonbill's mutant phenotypes from the perspective of the published data on the AKAP protein family.
Collapse
Affiliation(s)
- Meytal Hadad
- Department of Virology and Developmental Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | |
Collapse
|
10
|
The lens in focus: a comparison of lens development in Drosophila and vertebrates. Mol Genet Genomics 2011; 286:189-213. [PMID: 21877135 DOI: 10.1007/s00438-011-0643-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 08/04/2011] [Indexed: 12/24/2022]
Abstract
The evolution of the eye has been a major subject of study dating back centuries. The advent of molecular genetics offered the surprising finding that morphologically distinct eyes rely on conserved regulatory gene networks for their formation. While many of these advances often stemmed from studies of the compound eye of the fruit fly, Drosophila melanogaster, and later translated to discoveries in vertebrate systems, studies on vertebrate lens development far outnumber those in Drosophila. This may be largely historical, since Spemann and Mangold's paradigm of tissue induction was discovered in the amphibian lens. Recent studies on lens development in Drosophila have begun to define molecular commonalities with the vertebrate lens. Here, we provide an overview of Drosophila lens development, discussing intrinsic and extrinsic factors controlling lens cell specification and differentiation. We then summarize key morphological and molecular events in vertebrate lens development, emphasizing regulatory factors and networks strongly associated with both systems. Finally, we provide a comparative analysis that highlights areas of research that would help further clarify the degree of conservation between the formation of dioptric systems in invertebrates and vertebrates.
Collapse
|
11
|
Hou T, Li Y, Wang W. Prediction of peptides binding to the PKA RIIalpha subunit using a hierarchical strategy. ACTA ACUST UNITED AC 2011; 27:1814-21. [PMID: 21586518 DOI: 10.1093/bioinformatics/btr294] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
MOTIVATION Favorable interaction between the regulatory subunit of the cAMP-dependent protein kinase (PKA) and a peptide in A-kinase anchoring proteins (AKAPs) is critical for translocating PKA to the subcellular sites where the enzyme phosphorylates its substrates. It is very hard to identify AKAPs peptides binding to PKA due to the high sequence diversity of AKAPs. RESULTS We propose a hierarchical and efficient approach, which combines molecular dynamics (MD) simulations, free energy calculations, virtual mutagenesis (VM) and bioinformatics analyses, to predict peptides binding to the PKA RIIα regulatory subunit in the human proteome systematically. Our approach successfully retrieved 15 out of 18 documented RIIα-binding peptides. Literature curation supported that many newly predicted peptides might be true AKAPs. Here, we present the first systematic search for AKAP peptides in the human proteome, which is useful to further experimental identification of AKAPs and functional analysis of their biological roles.
Collapse
Affiliation(s)
- Tingjun Hou
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, PR China.
| | | | | |
Collapse
|
12
|
Mechanisms of protein kinase A anchoring. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 283:235-330. [PMID: 20801421 DOI: 10.1016/s1937-6448(10)83005-9] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The second messenger cyclic adenosine monophosphate (cAMP), which is produced by adenylyl cyclases following stimulation of G-protein-coupled receptors, exerts its effect mainly through the cAMP-dependent serine/threonine protein kinase A (PKA). Due to the ubiquitous nature of the cAMP/PKA system, PKA signaling pathways underlie strict spatial and temporal control to achieve specificity. A-kinase anchoring proteins (AKAPs) bind to the regulatory subunit dimer of the tetrameric PKA holoenzyme and thereby target PKA to defined cellular compartments in the vicinity of its substrates. AKAPs promote the termination of cAMP signals by recruiting phosphodiesterases and protein phosphatases, and the integration of signaling pathways by binding additional signaling proteins. AKAPs are a heterogeneous family of proteins that only display similarity within their PKA-binding domains, amphipathic helixes docking into a hydrophobic groove formed by the PKA regulatory subunit dimer. This review summarizes the current state of information on compartmentalized cAMP/PKA signaling with a major focus on structural aspects, evolution, diversity, and (patho)physiological functions of AKAPs and intends to outline newly emerging directions of the field, such as the elucidation of AKAP mutations and alterations of AKAP expression in human diseases, and the validation of AKAP-dependent protein-protein interactions as new drug targets. In addition, alternative PKA anchoring mechanisms employed by noncanonical AKAPs and PKA catalytic subunit-interacting proteins are illustrated.
Collapse
|
13
|
Hundsrucker C, Skroblin P, Christian F, Zenn HM, Popara V, Joshi M, Eichhorst J, Wiesner B, Herberg FW, Reif B, Rosenthal W, Klussmann E. Glycogen synthase kinase 3beta interaction protein functions as an A-kinase anchoring protein. J Biol Chem 2009; 285:5507-21. [PMID: 20007971 DOI: 10.1074/jbc.m109.047944] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A-kinase anchoring proteins (AKAPs) include a family of scaffolding proteins that target protein kinase A (PKA) and other signaling proteins to cellular compartments and thereby confine the activities of the associated proteins to distinct regions within cells. AKAPs bind PKA directly. The interaction is mediated by the dimerization and docking domain of regulatory subunits of PKA and the PKA-binding domain of AKAPs. Analysis of the interactions between the dimerization and docking domain and various PKA-binding domains yielded a generalized motif allowing the identification of AKAPs. Our bioinformatics and peptide array screening approaches based on this signature motif identified GSKIP (glycogen synthase kinase 3beta interaction protein) as an AKAP. GSKIP directly interacts with PKA and GSK3beta (glycogen synthase kinase 3beta). It is widely expressed and facilitates phosphorylation and thus inactivation of GSK3beta by PKA. GSKIP contains the evolutionarily conserved domain of unknown function 727. We show here that this domain of GSKIP and its vertebrate orthologues binds both PKA and GSK3beta and thereby provides a mechanism for the integration of PKA and GSK3beta signaling pathways.
Collapse
Affiliation(s)
- Christian Hundsrucker
- Leibniz Institute for Molecular Pharmacology, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Wilson J, Huynh C, Kennedy KA, Ward DM, Kaplan J, Aderem A, Andrews NW. Control of parasitophorous vacuole expansion by LYST/Beige restricts the intracellular growth of Leishmania amazonensis. PLoS Pathog 2008; 4:e1000179. [PMID: 18927622 PMCID: PMC2562527 DOI: 10.1371/journal.ppat.1000179] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 09/16/2008] [Indexed: 12/27/2022] Open
Abstract
The intracellular protozoan Leishmania replicates in parasitophorous vacuoles (PV) that share many features with late endosomes/lysosomes. L. amazonensis PVs expand markedly during infections, but the impact of PV size on parasite intracellular survival is still unknown. Here we show that host cells infected with L. amazonensis upregulate transcription of LYST/Beige, which was previously shown to regulate lysosome size. Mutations in LYST/Beige caused further PV expansion and enhanced L. amazonensis replication. In contrast, LYST/Beige overexpression led to small PVs that did not sustain parasite growth. Treatment of LYST/Beige over-expressing cells with vacuolin-1 reversed this phenotype, expanding PVs and promoting parasite growth. The opposite was seen with E-64d, which reduced PV size in LYST-Beige mutant cells and inhibited L. amazonensis replication. Enlarged PVs appear to protect parasites from oxidative damage, since inhibition of nitric oxide synthase had no effect on L. amazonensis viability within large PVs, but enhanced their growth within LYST/Beige-induced small PVs. Thus, the upregulation of LYST/Beige in infected cells functions as a host innate response to limit parasite growth, by reducing PV volume and inhibiting intracellular survival. The protozoan parasite Leishmania causes serious infections in humans throughout the world. After being inoculated into the skin through the bite of infected sandflies, the parasites enter host cells and replicate. The lysosome-like intracellular vacuoles where Leishmania amazonensis replicates expand dramatically as the infection progresses. Here we studied the impact of vacuole expansion on the ability of the parasites to survive and replicate inside host cells. We found that the host cell responds to infection with Leishmania amazonensis by upregulating expression of LYST/Beige, a gene that regulates the size of lysosomes and of parasite-containing vacuoles. The parasites replicated more efficiently in the large vacuoles formed in cells that have a mutation in LYST/Beige, whereas the same cells overexpressing functional LYST/Beige generated small vacuoles that were not able to sustain parasite growth. Drug treatments that reduced or enhanced the size of parasite-containing vacuoles had a corresponding effect on intracellular replication, demonstrating that large vacuoles provide a growth advantage to Leishmania amazonensis. Our results indicate that host cells respond to Leishmania infections by producing a protein capable of reducing vacuole size, as a strategy to inhibit parasite growth.
Collapse
Affiliation(s)
- Jude Wilson
- Section of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Chau Huynh
- Section of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Kathleen A. Kennedy
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Diane M. Ward
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Jerry Kaplan
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Alan Aderem
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Norma W. Andrews
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
15
|
Goehring AS, Pedroja BS, Hinke SA, Langeberg LK, Scott JD. MyRIP anchors protein kinase A to the exocyst complex. J Biol Chem 2007; 282:33155-67. [PMID: 17827149 PMCID: PMC3508720 DOI: 10.1074/jbc.m705167200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The movement of signal transduction enzymes in and out of multi-protein complexes coordinates the spatial and temporal resolution of cellular events. Anchoring and scaffolding proteins are key to this process because they sequester protein kinases and phosphatases with a subset of their preferred substrates. The protein kinase A-anchoring family of proteins (AKAPs), which target the cAMP-dependent protein kinase (PKA) and other enzymes to defined subcellular microenvironments, represent a well studied group of these signal-organizing molecules. In this report we demonstrate that the Rab27a GTPase effector protein MyRIP is a member of the AKAP family. The zebrafish homolog of MyRIP (Ze-AKAP2) was initially detected in a two-hybrid screen for AKAPs. A combination of biochemical, cell-based, and immunofluorescence approaches demonstrate that the mouse MyRIP ortholog targets the type II PKA holoenzyme via an atypical mechanism to a specific perinuclear region of insulin-secreting cells. Similar approaches show that MyRIP interacts with the Sec6 and Sec8 components of the exocyst complex, an evolutionarily conserved protein unit that controls protein trafficking and exocytosis. These data indicate that MyRIP functions as a scaffolding protein that links PKA to components of the exocytosis machinery.
Collapse
Affiliation(s)
- April S. Goehring
- Howard Hughes Medical Institute, Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239
| | - Benjamin S. Pedroja
- Howard Hughes Medical Institute, Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239
| | - Simon A. Hinke
- Howard Hughes Medical Institute, Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239
| | - Lorene K. Langeberg
- Howard Hughes Medical Institute, Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239
| | - John D. Scott
- Howard Hughes Medical Institute, Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239
| |
Collapse
|
16
|
Lu Y, Lu YS, Shuai Y, Feng C, Tully T, Xie Z, Zhong Y, Zhou HM. The AKAP Yu is required for olfactory long-term memory formation in Drosophila. Proc Natl Acad Sci U S A 2007; 104:13792-7. [PMID: 17690248 PMCID: PMC1959461 DOI: 10.1073/pnas.0700439104] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Extensive neurogenetic analysis has shown that memory formation depends critically on cAMP-protein kinase A (PKA) signaling. Details of how this pathway is involved in memory formation, however, remain to be fully elucidated. From a large-scale behavioral screen in Drosophila, we identified the yu mutant to be defective in one-day memory after spaced training. The yu mutation disrupts a gene encoding an A-kinase anchoring protein (AKAP). AKAPs comprise a family of proteins, which determine the subcellular localization of PKAs and thereby critically restrict cAMP signaling within a cell. Further behavioral characterizations revealed that long-term memory (LTM) was disrupted specifically in the yu mutant, whereas learning, short-term memory and anesthesia-resistant memory all appeared normal. Another independently isolated mutation of the yu gene failed to complement the LTM defect associated with the yu mutation, and this phenotypic defect could be rescued by induced acute expression of a yu(+) transgene, suggesting that yu functions physiologically during memory formation. AKAP Yu is expressed preferentially in the mushroom body (MB) neuroanatomical structure, and expression of a yu(+) transgene to the MB, but not to other brain regions, is sufficient to rescue the LTM defect of the yu mutant. These observations lead us to conclude that proper localization of PKA by Yu AKAP in MB neurons is required for the formation of LTM.
Collapse
Affiliation(s)
- Yubing Lu
- *Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
| | - Yi-Sheng Lu
- *Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
| | - Yichun Shuai
- *Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
| | | | - Tim Tully
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Zuoping Xie
- *Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
| | - Yi Zhong
- *Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
- To whom correspondence may be addressed. E-mail: or
| | - Hai-Meng Zhou
- *Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
- To whom correspondence may be addressed. E-mail: or
| |
Collapse
|
17
|
Kypri E, Schmauch C, Maniak M, De Lozanne A. The BEACH Protein LvsB Is Localized on Lysosomes and Postlysosomes and Limits Their Fusion with Early Endosomes. Traffic 2007; 8:774-83. [PMID: 17488289 DOI: 10.1111/j.1600-0854.2007.00567.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The Chediak-Higashi syndrome (CHS) is a genetic disorder caused by the loss of the BEACH protein Lyst. Impaired lysosomal function in CHS patients results in many physiological problems, including immunodeficiency, albinism and neurological problems. Dictyostelium LvsB is the ortholog of mammalian Lyst and is also important for lysosomal function. A knock-in approach was used to tag LvsB with green fluorescent protein (GFP) and express it from its single chromosomal locus. GFP-LvsB was observed on late lysosomes and postlysosomes. Loss of LvsB resulted in enlarged postlysosomes, in the abnormal localization of proton pumps on postlysosomes and their abnormal acidification. The abnormal postlysosomes in LvsB-null cells were produced by the inappropriate fusion of early endosomal compartments with postlysosomal compartments. The intermixing of compartments resulted in a delayed transit of fluid-phase marker through the endolysosomal system. These results support the model that LvsB and Lyst proteins act as negative regulators of fusion by limiting the heterotypic fusion of early endosomes with postlysosomal compartments.
Collapse
Affiliation(s)
- Elena Kypri
- Section of Molecular Cell and Developmental Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | |
Collapse
|
18
|
de Souza N, Vallier LG, Fares H, Greenwald I. SEL-2, theC. elegansneurobeachin/LRBA homolog, is a negative regulator oflin-12/Notchactivity and affects endosomal traffic in polarized epithelial cells. Development 2007; 134:691-702. [PMID: 17215302 DOI: 10.1242/dev.02767] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The vulval precursor cells (VPCs) of Caenorhabditis elegans are polarized epithelial cells that adopt a precise pattern of fates through regulated activity of basolateral LET-23/EGF receptor and apical LIN-12/Notch. During VPC patterning, there is reciprocal modulation of endocytosis and trafficking of both LET-23 and LIN-12. We identified sel-2 as a negative regulator of lin-12/Notch activity in the VPCs, and found that SEL-2 is the homolog of two closely related human proteins, neurobeachin(also known as BCL8B) and LPS-responsive, beige-like anchor protein (LRBA). SEL-2, neurobeachin and LRBA belong to a distinct subfamily of BEACH-WD40 domain-containing proteins. Loss of sel-2 activity leads to basolateral mislocalization and increased accumulation of LIN-12 in VPCs in which LET-23 is not active, and to impaired downregulation of basolateral LET-23 in VPCs in which LIN-12 is active. Downregulation of apical LIN-12 in the VPC in which LET-23 is active is not affected. In addition, in sel-2 mutants, the polarized cells of the intestinal epithelium display an aberrant accumulation of the lipophilic dye FM4-64 when the dye is presented to the basolateral surface. Our observations indicate that SEL-2/neurobeachin/LRBA is involved in endosomal traffic and may be involved in efficient delivery of cell surface proteins to the lysosome. Our results also suggest that sel-2 activity may contribute to the appropriate steady-state level of LIN-12 or to trafficking events that affect receptor activation.
Collapse
Affiliation(s)
- Natalie de Souza
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, 701 W. 168th Street, Hammer Health Sciences, New York, NY 10032, USA
| | | | | | | |
Collapse
|
19
|
Wech I, Nagel AC. Mutations in rugose promote cell type-specific apoptosis in the Drosophila eye. Cell Death Differ 2005; 12:145-52. [PMID: 15647755 DOI: 10.1038/sj.cdd.4401538] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
RUGOSE (RG): encodes an A kinase anchor protein and was isolated as a genetic interactor of the Notch and epidermal growth factor receptor (EGFR) pathways during eye development in Drosophila. rg mutants display a small, rough eye phenotype primarily caused by the loss of cone cells. Here we show that the basis of this phenotype is cell type-specific apoptosis rather than transformation and hence can be rescued by reduction of proapoptotic signals. Moreover, a nearly complete rescue is observed by an increased Notch signal suggesting an antiapoptotic function of Notch in this developmental context. Cone cell loss in rg mutants is accompanied by enhanced Jun N-terminal kinase activity and, concomitantly, by a reduction of EGFR signalling activity. Together, these findings support the idea that rg plays an important role in the integration of different signals required for the exact regulation of cone cell development and survival.
Collapse
Affiliation(s)
- I Wech
- Institute of Genetics (240), University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | | |
Collapse
|
20
|
Abstract
Most eukaryotes have several members of the BEACH family of proteins but the molecular function of these large proteins remains unknown. The Dictyostelium BEACH protein LvsA is essential for cytokinesis and contractile vacuole activity. The functional contribution of different portions of LvsA was tested here by deletion analysis. The C-terminal WD domain was important for protein stability and C-terminal deletions resulted in loss of LvsA function. In contrast, N-terminal deletions yielded abundant protein expression that could be assayed for function. Despite very low sequence conservation of the N-terminal portion of LvsA, this region is important for its function in vivo. Deletion of 689 N-terminal amino acids produced a protein that was functional in cytokinesis but partially functional in osmoregulation. Further deletions resulted in the complete loss of LvsA function. Using in vitro fractionation assays we found that LvsA sedimented with membranes but that this association does not require the N-terminal portion of LvsA. Interestingly, the association of LvsA with the contractile vacuole was perturbed by the loss of drainin, a protein important for vacuole function. In drainin-null cells, LvsA bound irreversibly to engorged contractile vacuoles that fail to expel water. These experiments help delineate the biochemical and physiological requirements for function of one important BEACH protein, LvsA.
Collapse
Affiliation(s)
- Wei-I Wu
- Section of Molecular Cell & Developmental Biology and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | |
Collapse
|
21
|
Su Y, Balice-Gordon RJ, Hess DM, Landsman DS, Minarcik J, Golden J, Hurwitz I, Liebhaber SA, Cooke NE. Neurobeachin is essential for neuromuscular synaptic transmission. J Neurosci 2004; 24:3627-36. [PMID: 15071111 PMCID: PMC6729756 DOI: 10.1523/jneurosci.4644-03.2004] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We report a random disruption in the mouse genome that resulted in lethal paralysis in homozygous newborns. The disruption blocked expression of neurobeachin, a protein containing a BEACH (beige and Chediak-Higashi) domain implicated in synaptic vesicle trafficking and an AKAP (A-kinase anchor protein) domain linked to localization of cAMP-dependent protein kinase activity. nbea-null mice demonstrated a complete block of evoked synaptic transmission at neuromuscular junctions, whereas nerve conduction, synaptic structure, and spontaneous synaptic vesicle release were completely normal. These findings support an essential role for neurobeachin in evoked neurotransmitter release at neuromuscular junctions and suggest that it plays an important role in synaptic transmission.
Collapse
MESH Headings
- Action Potentials/physiology
- Animals
- Animals, Newborn
- Brain/embryology
- Brain/pathology
- Carrier Proteins/biosynthesis
- Carrier Proteins/genetics
- Carrier Proteins/physiology
- Cells, Cultured
- Dwarfism/genetics
- Dwarfism/pathology
- Gene Expression
- Genes, Dominant
- Genes, Lethal
- Genes, Recessive
- Homozygote
- Humans
- Membrane Proteins
- Mice
- Mice, Transgenic
- Mutagenesis, Insertional
- Nerve Tissue Proteins/biosynthesis
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/physiology
- Neural Conduction/physiology
- Neuromuscular Junction/embryology
- Neuromuscular Junction/physiology
- Neuromuscular Junction/ultrastructure
- Organ Specificity
- Paralysis/congenital
- Paralysis/genetics
- Phenotype
- RNA, Messenger/analysis
- RNA, Messenger/biosynthesis
- Sequence Analysis, DNA
- Synaptic Transmission/genetics
- Synaptic Transmission/physiology
- Transgenes
Collapse
Affiliation(s)
- Yuhua Su
- Department of Genetics and Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Shiflett SL, Vaughn MB, Huynh D, Kaplan J, Ward DM. Bph1p, the Saccharomyces cerevisiae Homologue of CHS1/Beige, Functions in Cell Wall Formation and Protein Sorting. Traffic 2004; 5:700-10. [PMID: 15296494 DOI: 10.1111/j.1600-0854.2004.00213.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mutations in the Chediak-Higashi syndrome gene (CHS1) and its murine homologue Beige result in the formation of enlarged lysosomes. BPH1 (Beige Protein Homologue 1) encodes the Saccharomyces cerevisiae homologue of CHS1/Beige. BPH1 is not essential and the encoded protein was found to be both cytosolic and peripherally bound to a membrane. Neither disruption nor overexpression of BPH1 affected vacuole morphology as assessed by fluorescence microscopy. The deltabph1 strain showed an impaired growth on defined synthetic media containing potassium acetate buffered below pH 4.25, increased sensitivity to calcofluor white, and increased agglutination in response to low pH. A library screen identified VPS9, FLO1, FLO9, BTS1 and OKP1 as high copy suppressors of the growth defect of deltabph1 on both low pH potassium acetate and calcofluor white. The deltabph1 strain demonstrated a mild defect in sorting vacuolar components, including increased secretion of carboxypeptidase Y and missorting of alkaline phosphatase. Overexpression of VPS9, BTS1 and OKP1 suppressed the carboxypeptidase Y secretion defect of deltabph1. Overexpression of BPH1 was found to suppress the calcofluor white sensitivity of a class E VPS deletion strain, deltavta1. Together, these data suggest that Bph1p associates with a membrane and is involved in protein sorting and cell wall formation.
Collapse
Affiliation(s)
- Shelly L Shiflett
- Department of Pathology, Division of Cell Biology and Immunology, University of Utah Health Science Center, Salt Lake City, Utah 84132, USA
| | | | | | | | | |
Collapse
|
23
|
Wang JW, Gamsby JJ, Highfill SL, Mora LB, Bloom GC, Yeatman TJ, Pan TC, Ramne AL, Chodosh LA, Cress WD, Chen J, Kerr WG. Deregulated expression of LRBA facilitates cancer cell growth. Oncogene 2004; 23:4089-97. [PMID: 15064745 DOI: 10.1038/sj.onc.1207567] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
LRBA expression is induced by mitogens in lymphoid and myeloid cells. The Drosophila LRBA orthologue rugose/DAKAP550 is involved in Notch, Ras and EGFR pathways. These findings suggest that LRBA could play a role in cell types that have increased proliferative and survival capacity. Here, we show by microarray and real-time PCR analyses that LRBA is overexpressed in several different cancers relative to their normal tissue controls. We also show that LRBA promoter activity and endogenous LRBA mRNA levels are reduced by p53 and increased by E2F1, indicating that mutations in the tumor suppressors p53 and Rb could contribute to the deregulation of LRBA. Furthermore, inhibition of LRBA expression by RNA interference, or inhibition of its function by a dominant-negative mutant, leads to significant growth inhibition of cancer cells, demonstrating that deregulated expression of LRBA contributes to the altered growth properties of a cancer cell. Finally, we show that the phosphorylation of EGFR is affected by the dominant-negative mutant, suggesting LRBA plays a role in the mammalian EGFR pathway. These findings demonstrate that LRBA facilitates cancer cell growth and thus LRBA may represent a novel molecular target for cancer therapy.
Collapse
Affiliation(s)
- Jia-Wang Wang
- Immunology Programs and Department of Interdisciplinary Oncology, H Lee Moffitt Comprehensive Cancer Center and Research Institute, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Taskén K, Aandahl EM. Localized effects of cAMP mediated by distinct routes of protein kinase A. Physiol Rev 2004; 84:137-67. [PMID: 14715913 DOI: 10.1152/physrev.00021.2003] [Citation(s) in RCA: 577] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
More than 20% of the human genome encodes proteins involved in transmembrane and intracellular signaling pathways. The cAMP-protein kinase A (PKA) pathway is one of the most common and versatile signal pathways in eukaryotic cells and is involved in regulation of cellular functions in almost all tissues in mammals. Various extracellular signals converge on this signal pathway through ligand binding to G protein-coupled receptors, and the cAMP-PKA pathway is therefore tightly regulated at several levels to maintain specificity in the multitude of signal inputs. Ligand-induced changes in cAMP concentration vary in duration, amplitude, and extension into the cell, and cAMP microdomains are shaped by adenylyl cyclases that form cAMP as well as phosphodiesterases that degrade cAMP. Different PKA isozymes with distinct biochemical properties and cell-specific expression contribute to cell and organ specificity. A kinase anchoring proteins (AKAPs) target PKA to specific substrates and distinct subcellular compartments providing spatial and temporal specificity for mediation of biological effects channeled through the cAMP-PKA pathway. AKAPs also serve as scaffolding proteins that assemble PKA together with signal terminators such as phosphatases and cAMP-specific phosphodiesterases as well as components of other signaling pathways into multiprotein signaling complexes that serve as crossroads for different paths of cell signaling. Targeting of PKA and integration of a wide repertoire of proteins involved in signal transduction into complex signal networks further increase the specificity required for the precise regulation of numerous cellular and physiological processes.
Collapse
Affiliation(s)
- Kjetil Taskén
- The Biotechnology Centre of Oslo, University of Oslo, Norway.
| | | |
Collapse
|
25
|
Ward DM, Shiflett SL, Huynh D, Vaughn MB, Prestwich G, Kaplan J. Use of expression constructs to dissect the functional domains of the CHS/beige protein: identification of multiple phenotypes. Traffic 2003; 4:403-15. [PMID: 12753649 DOI: 10.1034/j.1600-0854.2003.00093.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The Chediak-Higashi Syndrome (CHS) and the orthologous murine disorder beige are characterized at the cellular level by the presence of giant lysosomes. The CHS1/Beige protein is a 3787 amino acid protein of unknown function. To determine functional domains of the CHS1/Beige protein, we generated truncated constructs of the gene/protein. These truncated proteins were transiently expressed in Cos-7 or HeLa cells and their effect on membrane trafficking was examined. Beige is apparently a cytosolic protein, as are most transiently expressed truncated Beige constructs. Expression of the Beige construct FM (amino acids 1-2037) in wild-type cells led to enlarged lysosomes. Similarly, expression of a 5.5-kb region (amino acids 2035-3787) of the carboxyl terminal of Beige (22B) also resulted in enlarged lysosomes. Expression of FM solely affected lysosome size, whereas expression of 22B led to alterations in lysosome size, changes in the Golgi and eventually cell death. The two constructs could be used to further dissect phenotypes resulting from loss of the Beige protein. CHS or beigej fibroblasts show an absence of nuclear staining using a monoclonal antibody directed against phosphatidylinositol 4,5 bisphosphate [PtdIns(4,5) P2]. Transformation of beige j fibroblasts with a YAC containing the full-length Beige gene resulted in the normalization of lysosome size and nuclear PtdIns(4,5)P2 staining. Expression of the carboxyl dominant negative construct 22B led to loss of nuclear PtdIns(4,5)P2 staining. Expression of the FM dominant negative clone did not alter nuclear PtdIns(4,5) P2 localization. These results suggest that the Beige protein interacts with at least two different partners and that the Beige protein affects cellular events, such as nuclear PtdIns(4,5)P2 localization, in addition to lysosome size.
Collapse
Affiliation(s)
- Diane McVey Ward
- Department of Pathology, School of Medicine, University of Utah, Salt Lake City, Utah 84132, USA
| | | | | | | | | | | |
Collapse
|
26
|
Khundmiri SJ, Rane MJ, Lederer ED. Parathyroid hormone regulation of type II sodium-phosphate cotransporters is dependent on an A kinase anchoring protein. J Biol Chem 2003; 278:10134-41. [PMID: 12496250 DOI: 10.1074/jbc.m211775200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Parathyroid hormone inhibits sodium-phosphate cotransport in proximal renal tubule cells through activation of several kinases. We tested the hypothesis that the activity of these kinases was coordinated by an A kinase anchoring protein (AKAP) by demonstrating that the type II sodium-phosphate cotransporter (NaPi-4) physically associated with an AKAP and that this association was necessary for regulation of phosphate transport by parathyroid hormone. Immunoprecipitation with anti-NaPi-4 antiserum and glutathione S-transferase pull-down with GST-NaPi-4 showed that NaPi-4 associated with AKAP79, protein kinase A catalytic and regulatory subunits, and the parathyroid hormone receptor in opossum kidney cells. When the regulatory subunit of protein kinase A was uncoupled from the AKAP by a competing peptide, parathyroid hormone lost the ability to inhibit phosphate transport. This result was confirmed by co-transfecting HEK293 cells with the sodium-phosphate cotransporter and wild type AKAP, a mutant AKAP79, or the empty vector. 8-Bromo-cAMP was able to inhibit phosphate transport in cells expressing the wild type AKAP79 but not empty vector or mutant AKAP79. We conclude that parathyroid hormone inhibits proximal renal tubule sodium-phosphate cotransport through a signaling complex dependent upon an AKAP.
Collapse
Affiliation(s)
- Syed Jalal Khundmiri
- Kidney Disease Program, Department of Medicine, University of Louisville, Kentucky 40202, USA
| | | | | |
Collapse
|
27
|
Wang N, Wu WI, De Lozanne A. BEACH family of proteins: phylogenetic and functional analysis of six Dictyostelium BEACH proteins. J Cell Biochem 2003; 86:561-70. [PMID: 12210762 DOI: 10.1002/jcb.10254] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The beige and Chediak-Higashi syndrome (BEACH)-domain containing proteins constitute a new family of proteins found in all eukaryotes. The function of these proteins, which include the Chediak-Higashi syndrome (CHS) protein, Neurobeachin, LvsA, and FAN, is still poorly understood. To understand the diversity of this novel protein family, we analyzed a large array of BEACH-family protein sequences from several organisms. Comparison of all these sequences suggests that they can be classified into five distinct groups that may represent five distinct functional classes. In Dictyostelium we identified six proteins in this family, named LvsA-F, that belong to four of those classes. To test the function of these proteins in Dictyostelium we created disruption mutants in each of the lvs genes. Phenotypic analyses of these mutants indicate that LvsA is required for cytokinesis and osmoregulation and LvsB functions in lysosomal traffic. The LvsC-F proteins are not required for these or other processes such as growth and development. These results strongly support the concept that BEACH proteins from different classes have distinct cellular functions. Having six distinct BEACH proteins, Dictyostelium should be an excellent model system to dissect the molecular function of this interesting family of proteins.
Collapse
Affiliation(s)
- Ning Wang
- Section of Molecular Cell and Developmental Biology and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | | | | |
Collapse
|
28
|
Li H, Adamik R, Pacheco-Rodriguez G, Moss J, Vaughan M. Protein kinase A-anchoring (AKAP) domains in brefeldin A-inhibited guanine nucleotide-exchange protein 2 (BIG2). Proc Natl Acad Sci U S A 2003; 100:1627-32. [PMID: 12571360 PMCID: PMC149883 DOI: 10.1073/pnas.0337678100] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Like other guanine nucleotide-exchange proteins (GEPs) that activate ADP-ribosylation factor (ARF) GTPases, brefeldin A-inhibited GEP2, BIG2, contains an approximately 200-aa Sec7 domain that is responsible for this catalytic activity and its inhibition by brefeldin A. The Sec7 domain is located near the center of the molecule and serves to accelerate replacement of GDP bound to ARF with GTP. To explore possible functions of the N-terminal region of BIG2 (1-832), we used three coding-region constructs as bait to screen a human heart cDNA library in a yeast two-hybrid system, retrieving two unique clones that encode a type I protein kinase A (PKA) regulatory subunit, RI alpha. Coimmunoprecipitation experiments confirmed interaction of in vitro translated BIG2 and RI alpha, as well as of the endogenous proteins in cytosol of cultured HepG2 cells. Using 28 deletion mutants, we found three regions of BIG2 that interacted with R subunits of PKA. Residues 27-48 (domain A) interacted with RI alpha and RI beta, 284-301 (domain B) interacted with RII alpha and RII beta, and 517-538 (domain C) interacted with RI alpha, RII alpha, and RII beta. Sequence analysis and helical wheel projection of amino acids in the three domains revealed potential amphipathic wheel structures characteristic for binding of PKA R subunits. Western blot analysis of subcellular fractions demonstrated translocation of BIG2 (and BIG1) from cytosol to the Golgi and other membrane structures after incubation of cells with 8-Br-cAMP or forskolin. All findings are consistent with a role for BIG2 as an A kinase-anchoring protein (or AKAP) that could coordinate cAMP and ARF regulatory pathways.
Collapse
Affiliation(s)
- Hewang Li
- Pulmonary-Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
29
|
Abstract
The BEACH family of proteins is a novel group of proteins with diverse roles in eukaryotic cells. The identifying feature of these proteins is the BEACH domain named after the founding members of this family, the mouse beige and the human Chediak-Higashi syndrome proteins. Although all BEACH proteins share a similar structural organization, they appear to have very distinct cellular roles, ranging from lysosomal traffic to apoptosis and cytokinesis. Very little is currently known about the function of most of these proteins, few binding-partner proteins have been identified, and no molecular mechanism for any of these proteins has been discovered. Thus, it is important to establish good model systems for the study of these novel proteins. Dictyostelium contains six BEACH proteins that can be classified into four subclasses. Two of them, LvsA and LvsB, have clearly distinct roles in the cell. LvsA is localized on the contractile vacuole membrane and is essential for cytokinesis and osmoregulation. LvsB is most similar in sequence to the mammalian beige/Chediak-Higashi syndrome proteins and shares with them a common function in lysosomal trafficking. Structural and functional analysis of these proteins in Dictyostelium will help elucidate the function of this enigmatic novel family of proteins.
Collapse
Affiliation(s)
- Arturo De Lozanne
- Section of Molecular Cell & Developmental Biology and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
30
|
Jackson SM, Berg CA. An A-kinase anchoring protein is required for Protein kinase A regulatory subunit localization and morphology of actin structures during oogenesis inDrosophila. Development 2002; 129:4423-33. [PMID: 12223401 DOI: 10.1242/dev.129.19.4423] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Protein kinase A (PKA) holoenzyme is anchored to specific subcellular regions by interactions between regulatory subunits (Pka-R) and A-kinase anchoring proteins (AKAPs). We examine the functional importance of PKA anchoring during Drosophila oogenesis by analyzing membrane integrity and actin structures in mutants with disruptions in Akap200, an AKAP. In wild-type ovaries, Pka-RII and Akap200 localized to membranes and to the outer rim of ring canals, actin-rich structures that connect germline cells. In Akap200 mutant ovaries, Pka-RII membrane localization decreased, leading to a destabilization of membrane structures and the formation of binucleate nurse cells. Defects in membrane integrity could be mimicked by expressing a constitutively active PKA catalytic subunit (Pka-C) throughout germline cells. Unexpectedly, nurse cells in Akap200 mutant ovaries also had enlarged, thin ring canals. In contrast, overexpressing Akap200 in the germline resulted in thicker, smaller ring canals. To investigate the role of Akap200 in regulating ring canal growth, we examined genetic interactions with other genes that are known to regulate ring canal morphology. Akap200 mutations suppressed the small ring canal phenotype produced by Src64B mutants, linking Akap200 with the non-receptor tyrosine kinase pathway. Together, these results provide the first evidence that PKA localization is required for morphogenesis of actin structures in an intact organism.
Collapse
Affiliation(s)
- Stephen M Jackson
- Department of Genome Sciences, Box 357730, University of Washington, 1705 Pacific Street, Seattle, WA 98195-7730, USA.
| | | |
Collapse
|
31
|
Jogl G, Shen Y, Gebauer D, Li J, Wiegmann K, Kashkar H, Krönke M, Tong L. Crystal structure of the BEACH domain reveals an unusual fold and extensive association with a novel PH domain. EMBO J 2002; 21:4785-95. [PMID: 12234919 PMCID: PMC126298 DOI: 10.1093/emboj/cdf502] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The BEACH domain is highly conserved in a large family of eukaryotic proteins, and is crucial for their functions in vesicle trafficking, membrane dynamics and receptor signaling. However, it does not share any sequence homology with other proteins. Here we report the crystal structure at 2.9 A resolution of the BEACH domain of human neurobeachin. It shows that the BEACH domain has a new and unusual polypeptide backbone fold, as the peptide segments in its core do not assume regular secondary structures. Unexpectedly, the structure also reveals that the BEACH domain is in extensive association with a novel, weakly conserved pleckstrin-homology (PH) domain. Consistent with the structural analysis, biochemical studies show that the PH and BEACH domains have strong interactions, suggesting they may function as a single unit. Functional studies in intact cells demonstrate the requirement of both the PH and the BEACH domains for activity. A prominent groove at the interface between the two domains may be used to recruit their binding partners.
Collapse
Affiliation(s)
- Gerwald Jogl
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Dyomin VG, Chaganti SR, Dyomina K, Palanisamy N, Murty VVVS, Dalla-Favera R, Chaganti RSK. BCL8 is a novel, evolutionarily conserved human gene family encoding proteins with presumptive protein kinase A anchoring function. Genomics 2002; 80:158-65. [PMID: 12160729 DOI: 10.1006/geno.2002.6822] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BCL8 is a novel human gene family initially identified through cloning of BCL8A, located at the t(14;15)(q32;q11-q13) translocation breakpoint, in a case of diffuse large B-cell lymphoma. Multiple copies of BCL8A map to the 1-Mb proximal duplicated region at 15q. We identified additional copies on human chromosomes 13 (BCL8B), 22 (BCL8C), 2 (BCL8D), and 10 (BCL8E) by cDNA cloning and sequence analysis. BCL8A, BCL8C, BCL8D, and BCL8E are truncated at the genomic level and are presumably pseudogenes or sterile transcripts. BCL8B is expressed predominantly in human brain and encodes a 327-kDa protein with extensive homology to the Drosophila melanogaster protein kinase A anchoring protein RG. LRBA, a human gene with a ubiquitous expression pattern mapping to 4q32, encodes a protein closely related to BCL8. The phylogenetically conserved BCL8 gene family evolved by transchromosomal and intrachromosomal duplications within the human genome.
Collapse
Affiliation(s)
- Vadim G Dyomin
- Cell Biology Program, Sloan-Kettering Institute and the Department of Medicine, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Shiflett SL, Kaplan J, Ward DM. Chediak-Higashi Syndrome: a rare disorder of lysosomes and lysosome related organelles. PIGMENT CELL RESEARCH 2002; 15:251-7. [PMID: 12100490 DOI: 10.1034/j.1600-0749.2002.02038.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Chediak-Higashi Syndrome (CHS) is a rare autosomal recessive disorder characterized by severe immunologic defects including recurrent bacterial infections, impaired chemotaxis and abnormal natural killer (NK) cell function. Patients with this syndrome exhibit other symptoms such as an associated lymphoproliferative syndrome, bleeding tendencies, partial albinism and peripheral neuropathies. The classic diagnostic feature of CHS is the presence of huge lysosomes and cytoplasmic granules within cells. Similar defects are found in other mammals, the most well studied being the beige mouse and Aleutian mink. A positional cloning approach resulted in the identification of the Beige gene on chromosome 13 in mice and the CHS1/LYST gene on chromosome 1 in humans. The protein encoded by this gene is 3801 amino acids and is highly conserved throughout evolution. The identification of CHS1/Beige has defined a family of genes containing a common BEACH motif. The function of these proteins in vesicular trafficking remains unknown.
Collapse
Affiliation(s)
- Shelly L Shiflett
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | | | | |
Collapse
|
34
|
Schreiber SL, Preiss A, Nagel AC, Wech I, Maier D. Genetic screen for modifiers of the rough eye phenotype resulting from overexpression of the Notch antagonist hairless in Drosophila. Genesis 2002; 33:141-52. [PMID: 12124948 DOI: 10.1002/gene.10102] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Hairless was identified as antagonist in the Notch signaling pathway based on genetic interactions. Molecularly, Hairless inhibits Notch target gene activation by directly binding to the Notch signal transducer Su(H). Additional functional domains apart from the Su(H) binding domain, however, suggest additional roles for the Hairless protein. To further our understanding of Hairless functions, we have performed a genetic screen for modifiers of a rough eye phenotype caused by overexpression of Hairless during eye development. A number of enhancers were identified that comprise mutations in components of Notch- and EGFR-signaling pathways, some unknown genes and the gene rugose. Mutant alleles of rugose display manifold genetic interactions with mutants in Notch and EGFR signaling pathway components. Accordingly, the rugose eye phenotype is rescued by Hairless and enhanced by Delta. Molecularly, interactions might occur at the protein level because rugose appears not to be a direct transcriptional target of Notch.
Collapse
|
35
|
Shamloula HK, Mbogho MP, Pimentel AC, Chrzanowska-Lightowlers ZMA, Hyatt V, Okano H, Venkatesh TR. rugose (rg), a Drosophila A kinase anchor protein, is required for retinal pattern formation and interacts genetically with multiple signaling pathways. Genetics 2002; 161:693-710. [PMID: 12072466 PMCID: PMC1462145 DOI: 10.1093/genetics/161.2.693] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In the developing Drosophila eye, cell fate determination and pattern formation are directed by cell-cell interactions mediated by signal transduction cascades. Mutations at the rugose locus (rg) result in a rough eye phenotype due to a disorganized retina and aberrant cone cell differentiation, which leads to reduction or complete loss of cone cells. The cone cell phenotype is sensitive to the level of rugose gene function. Molecular analyses show that rugose encodes a Drosophila A kinase anchor protein (DAKAP 550). Genetic interaction studies show that rugose interacts with the components of the EGFR- and Notch-mediated signaling pathways. Our results suggest that rg is required for correct retinal pattern formation and may function in cell fate determination through its interactions with the EGFR and Notch signaling pathways.
Collapse
Affiliation(s)
- Hoda K Shamloula
- Department of Biology, City College and The Graduate Center, City University of New York, New York 10031, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Over the past few years, significant progress has been made in characterizing the expression and localization of proteins that act as scaffolds for cAMP-dependent protein kinase (PK-A). These A-kinase anchor proteins (AKAPs) tether PK-A to intracellular organelles and structures, sequestering the kinase near its physiological substrates. The compartmentalization of distinct pockets of PK-A activity serves to provide spatial regulation of this signaling pathway. In addition, other signaling proteins bind to AKAPs, as do some newly described proteins of unknown function, suggesting that proteins of various pathways are anchored through AKAPs.
Collapse
Affiliation(s)
- S B Moss
- Center for Research on Reproduction and Women's Health, University of Pennsylvania Medical Center, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
37
|
Kiger JA, O'Shea C. Genetic evidence for a protein kinase A/cubitus interruptus complex that facilitates processing of cubitus interruptus in Drosophila. Genetics 2001; 158:1157-66. [PMID: 11454764 PMCID: PMC1461713 DOI: 10.1093/genetics/158.3.1157] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hedgehog (Hh) activates a signal transduction pathway regulating Cubitus interruptus (Ci). In the absence of Hh, full-length Ci (Ci-155) is bound in a complex that includes Costal2 (Cos2) and Fused (Fu). Ci-155 is phosphorylated by protein kinase A (PKA), inducing proteolysis to Ci-75, a transcriptional repressor. Hh signaling blocks proteolysis and produces an activated Ci-155 transcriptional activator. The relationship between PKA and the Ci/Cos2/Fu complex is unclear. Here we examine Hh target gene expression caused by mutant forms of PKA regulatory (PKAr) and catalytic (PKAc) subunits and by the PKAc inhibitor PKI(1-31). The mutant PKAr*, defective in binding cAMP, is shown to activate Hh target genes solely through its ability to bind and inhibit endogenous PKAc. Surprisingly, PKAcA75, a catalytically impaired mutant, also activates Hh target genes. To account for this observation, we propose that PKAc phosphorylation targeting Ci-155 for proteolysis is regulated within a complex that includes PKAc and Ci-155 and excludes PKI(1-31). This complex may permit processive phosphorylation of Ci-155 molecules, facilitating their processing to Ci-75.
Collapse
Affiliation(s)
- J A Kiger
- Molecular and Cellular Biology, University of California, Davis, California 95616, USA.
| | | |
Collapse
|
38
|
Abstract
cAMP-dependent protein kinase is targeted to discrete subcellular locations by a family of specific anchor proteins (A-kinase anchor proteins, AKAPs). Localization recruits protein kinase A (PKA) holoenzyme close to its substrate/effector proteins, directing and amplifying the biological effects of cAMP signaling.AKAPs include two conserved structural modules: (i) a targeting domain that serves as a scaffold and membrane anchor; and (ii) a tethering domain that interacts with PKA regulatory subunits. Alternative splicing can shuffle targeting and tethering domains to generate a variety of AKAPs with different targeting specificity. Although AKAPs have been identified on the basis of their interaction with PKA, they also bind other signaling molecules, mainly phosphatases and kinases, that regulate AKAP targeting and activate other signal transduction pathways. We suggest that AKAP forms a "transduceosome" by acting as an autonomous multivalent scaffold that assembles and integrates signals derived from multiple pathways. The transduceosome amplifies cAMP and other signals locally and, by stabilizing and reducing the basal activity of PKA, it also exerts long-distance effects. The AKAP transduceosome thus optimizes the amplitude and the signal/noise ratio of cAMP-PKA stimuli travelling from the membrane to the nucleus and other subcellular compartments.
Collapse
Affiliation(s)
- A Feliciello
- Dipartimento di Biologia, Centro di Endocrinologia ed Oncologia Sperimentale CNR, Facoltá di Medicina, via S. Pansini, 5, Universitá Federico II, 80131, Napoli, Italy.
| | | | | |
Collapse
|
39
|
Wang JW, Howson J, Haller E, Kerr WG. Identification of a novel lipopolysaccharide-inducible gene with key features of both A kinase anchor proteins and chs1/beige proteins. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:4586-95. [PMID: 11254716 DOI: 10.4049/jimmunol.166.7.4586] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mutations in chs1/beige result in a deficiency in intracellular transport of vesicles that leads to a generalized immunodeficiency in mice and humans. The function of NK cells, CTL, and granulocytes is impaired by these mutations, indicating that polarized trafficking of vesicles is controlled by CHS1/beige proteins. However, a molecular explanation for this defect has not been identified. Here we describe a novel gene with orthologues in mice, humans, and flies that contains key features of both chs1/beige and A kinase anchor genes. We designate this novel gene lba for LPS-responsive, beige-like anchor gene. Expression of lba is induced after LPS stimulation of B cells and macrophages. In addition, lba is expressed in many other tissues in the body and has three distinct mRNA isoforms that are differentially expressed in various tissues. Strikingly, LBA-green-fluorescent protein (GFP) fusion proteins are localized to vesicles after LPS stimulation. Confocal microscopy indicates this protein is colocalized with the trans-Golgi complex and some lysosomes. Further analysis by immunoelectron microscopy demonstrates that LBA-GFP fusion protein can localize to endoplasmic reticulum, plasma membrane, and endocytosis vesicles in addition to the trans-Golgi complex and lysosomes. We hypothesize that LBA/CHS1/BG proteins function in polarized vesicle trafficking by guiding intracellular vesicles to activated receptor complexes and thus facilitate polarized secretion and/or membrane deposition of immune effector molecules.
Collapse
Affiliation(s)
- J W Wang
- Immunology Program and Department of Interdisciplinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | | | | | | |
Collapse
|
40
|
Neurobeachin: A protein kinase A-anchoring, beige/Chediak-higashi protein homolog implicated in neuronal membrane traffic. J Neurosci 2001. [PMID: 11102458 DOI: 10.1523/jneurosci.20-23-08551.2000] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We describe the identification and initial characterization of neurobeachin, a neuron-specific multidomain protein of 327 kDa with a high-affinity binding site (K(d), 10 nm) for the type II regulatory subunit of protein kinase A (PKA RII). Neurobeachin is peripherally associated with pleomorphic tubulovesicular endomembranes near the trans sides of Golgi stacks and throughout the cell body and cell processes. It is also found in a subpopulation of synapses, where it is concentrated at the postsynaptic plasma membrane. In live cells, perinuclear neurobeachin is dispersed by brefeldin A (BFA) within 1 min, and in permeabilized cells a recruitment of neurobeachin from cytosol to Golgi-near membranes is stimulated by GTPgammaS and prevented by brefeldin A. Spots of neurobeachin recruitment are close to but distinct from recruitment sites of COP-I, AP-1, and AP-3 coat proteins involved in vesicle budding. These observations indicate that neurobeachin binding to membranes close to the trans-Golgi requires an ADP-ribosylation factor-like GTPase, possibly in association with a novel type of protein coat. A neurobeachin isoform that does not bind RII, beige-like protein (BGL), is expressed in many tissues. Neurobeachin, BGL, and approximately 10 other mammalian gene products share a characteristic C-terminal BEACH-WD40 sequence module, which is also present in gene products of invertebrates, plants, protozoans, and yeasts, thus defining a new protein family. The prototype member of this family of BEACH domain proteins, lysosomal trafficking regulator (LYST), is deficient in genetic defects of protein sorting in lysosome biogenesis (the beige mouse and Chediak-Higashi syndrome). Neurobeachin's subcellular localization, its coat protein-like membrane recruitment, and its sequence similarity to LYST suggest an involvement in neuronal post-Golgi membrane traffic, one of its functions being to recruit protein kinase A to the membranes with which it associates.
Collapse
|
41
|
Angelo RG, Rubin CS. Characterization of structural features that mediate the tethering of Caenorhabditis elegans protein kinase A to a novel A kinase anchor protein. Insights into the anchoring of PKAI isoforms. J Biol Chem 2000; 275:4351-62. [PMID: 10660605 DOI: 10.1074/jbc.275.6.4351] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Caenorhabditis elegans protein kinase A (PKAI(CE)) is tethered to organelles in vivo. A unique A kinase anchor protein (AKAP(CE)) avidly binds the RI-like regulatory subunits (R(CE)) of PKAI(CE) and stringently discriminates against RIIalpha and RIIbeta subunits, the preferred ligands for classical AKAPs. We elucidated structural features that stabilize AKAP(CE).R(CE) complexes and confer atypical R isoform specificity on the anchor protein. Three large aliphatic amino acids (Leu(236), Ile(248), and Leu(252)) in the tethering domain of AKAP(CE) (residues 236-255) are crucial for ligation of R(CE). Their side chains apparently generate a precisely configured hydrophobic binding pocket that accommodates an apolar surface on R(CE) dimers. Basic residues (His(254)-Arg(255)-Lys(256)) at the C terminus of the tethering site set an upper limit on affinity for R(CE.) A central dipeptide (Phe(243)-Ser(244)) contributes critical and distinctive properties of the tethering site. Ser(244) is essential for selective binding of R(CE) and exclusion of RII isoforms. The aromatic hydrophobic character of Phe(243) ensures maximal R(CE) binding activity, thereby supporting a "gatekeeper" function of Ser(244). Substitution of Phe(243)-Ser(244) with Leu-Val generated an RII-specific AKAP. R(CE) and RII subunits contain similar dimerization domains. AKAP-binding domains of R(CE) (residues 23-47) and RII differ markedly in size, amino acid sequence, and docking specificity. Four hydrophobic residues (Cys(23), Val(27), Ile(32), and Cys(44)) in R(CE) are crucial for avid binding with AKAP(CE), whereas side chains from Leu(20), Leu(35), Val(36), Ile(40), and Ile(41) have little impact on complex formation. Tyr(26) is embedded in the docking domain, but its aromatic ring is required for R(CE)-R(CE) dimerization. Residues 236-255 in AKAP(CE) also constitute a binding site for mammalian RIalpha. RIalpha (PKAIalpha) is tightly sequestered by AKAP(CE) in vitro (K(D) = approximately 10 nM) and in the environment of intact cells. The tethering domain of AKAP(CE) provides a molecular module for manipulating intracellular localization of RI and elucidating functions of anchored PKAI in eukaryotes.
Collapse
Affiliation(s)
- R G Angelo
- Department of Molecular Pharmacology, Atran Laboratories, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
42
|
Li Z, Rossi EA, Hoheisel JD, Kalderon D, Rubin CS. Generation of a novel A kinase anchor protein and a myristoylated alanine-rich C kinase substrate-like analog from a single gene. J Biol Chem 1999; 274:27191-200. [PMID: 10480936 DOI: 10.1074/jbc.274.38.27191] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A unique Drosophila gene encodes two novel signaling proteins. Drosophila A kinase anchor protein 200 (DAKAP200) (753 amino acids) binds regulatory subunits of protein kinase AII (PKAII) isoforms in vitro and in intact cells. The acidic DAKAP200 polypeptide (pI approximately 3.8) contains an optimal N-terminal myristoylation site and a positively charged domain that resembles the multifunctional phosphorylation site domain of vertebrate myristoylated alanine-rich C kinase substrate proteins. The 15-kilobase pair DAKAP200 gene contains six exons and encodes a second protein, DeltaDAKAP200. DeltaDAKAP200 is derived from DAKAP200 transcripts by excision of exon 5 (381 codons), which encodes the PKAII binding region and a Pro-rich sequence. DeltaDAKAP200 appears to be a myristoylated alanine-rich C kinase substrate analog. DAKAP200 and DeltaDAKAP200 are evident in vivo at all stages of Drosophila development. Thus, both proteins may play important physiological roles throughout the life span of the organism. Nevertheless, DAKAP200 gene expression is regulated. Maximal levels of DAKAP200 are detected in the pupal phase of development; DeltaDAKAP200 content is elevated 7-fold in adult head (brain) relative to other body parts. Enhancement or suppression of exon 5 excision during DAKAP200 pre-mRNA processing provides potential mechanisms for regulating anchoring of PKAII and targeting of cAMP signals to effector sites in cytoskeleton and/or organelles.
Collapse
Affiliation(s)
- Z Li
- Department of Molecular Pharmacology, Atran Laboratories, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
43
|
Abstract
Compartmentalization of signalling molecules through association with anchoring proteins ensures specificity in signal transduction by placing enzymes close to their appropriate effectors and substrates. For example, 'A-kinase anchoring proteins' (AKAPs) bind to the regulatory subunit of cAMP-dependent protein kinase (PKA) to direct the kinase to discrete intracellular locations. Recently, functional studies aimed at disrupting AKAP-PKA complexes have demonstrated a role for anchored PKA in various cellular processes, including gene transcription, hormone-mediated insulin secretion and ion-channel modulation. By binding to additional signalling molecules, AKAPs might function to coordinate multiple components of signal-transduction pathways.
Collapse
Affiliation(s)
- M Colledge
- Howard Hughes Medical Institute, L-474, Vollum Institute, Oregon Health Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97201, USA
| | | |
Collapse
|
44
|
|
45
|
Turner RM, Johnson LR, Haig-Ladewig L, Gerton GL, Moss SB. An X-linked gene encodes a major human sperm fibrous sheath protein, hAKAP82. Genomic organization, protein kinase A-RII binding, and distribution of the precursor in the sperm tail. J Biol Chem 1998; 273:32135-41. [PMID: 9822690 DOI: 10.1074/jbc.273.48.32135] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian sperm motility is regulated by a cascade of cAMP-dependent protein phosphorylation events mediated by protein kinase A. A-kinase anchor proteins (AKAPs) direct protein kinase A activity by tethering the enzyme near its physiological substrates. We have characterized a major human sperm fibrous sheath AKAP, hAKAP82, and its precursor, pro-hAKAP82, the homologues of the mouse fibrous sheath proteins mAKAP82 and pro-mAKAP82. The cDNA sequence of pro-hAKAP82 was highly homologous to the mouse sequence, and the functional domains of the pro-hAKAP82 protein, the protein kinase A binding, and the pro-hAKAP82/hAKAP82 cleavage sites were identical to those of the mouse protein. The genomic organization of mouse pro-AKAP82 was determined. Alternative splicing occurred in both the mouse and human pro-AKAP82 genes that resulted in at least two distinct transcripts and possibly two different proteins. Compared with pro-mAKAP82, considerably less pro-hAKAP82 was processed to hAKAP82 in human sperm. Although pro-mAKAP82 localizes only to the proximal portion of the principal piece of the flagellum, pro-hAKAP82 localized to the entire length of the principal piece. The pro-hAKAP82 gene mapped to human chromosome Xp11.2, indicating that defects in this gene are maternally inherited. These studies suggest several roles for hAKAP82 in sperm motility, including the regulation of signal transduction pathways.
Collapse
Affiliation(s)
- R M Turner
- Center for Research on Reproduction and Women's Health, Department of Obstetrics and Gynecology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
46
|
Angelo R, Rubin CS. Molecular characterization of an anchor protein (AKAPCE) that binds the RI subunit (RCE) of type I protein kinase A from Caenorhabditis elegans. J Biol Chem 1998; 273:14633-43. [PMID: 9603981 DOI: 10.1074/jbc.273.23.14633] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Classical A kinase anchor proteins (AKAPs) preferentially tether type II protein kinase A (PKAII) isoforms to sites in the cytoskeleton and organelles. It is not known if distinct proteins selectively sequester regulatory (R) subunits of type I PKAs, thereby diversifying functions of these critical enzymes. In Caenorhabditis elegans, a single type I PKA mediates all aspects of cAMP signaling. We have discovered a cDNA that encodes a binding protein (AKAPCE) for the regulatory subunit (RCE) of C. elegans PKAICE. AKAPCE is a novel, highly acidic RING finger protein composed of 1,280 amino acids. It binds RI-like RCE with high affinity and neither RIIalpha nor RIIbeta competitively inhibits formation of AKAPCE.RCE complexes. The RCE-binding site was mapped to a segment of 20 amino acids in an N-terminal region of AKAPCE. Several hydrophobic residues in the binding site align with essential Leu and Ile residues in the RII-selective tethering domain of prototypic mammalian AKAPs. However, the RCE-binding region in AKAPCE diverges sharply from consensus RII-binding sites by inclusion of three aromatic amino acids, exclusion of a highly conserved Leu or Ile at position 8 and replacement of C-terminal hydrophobic amino acids with basic residues. AKAPCE.RCE complexes accumulate in intact cells.
Collapse
Affiliation(s)
- R Angelo
- Department of Molecular Pharmacology, Atran Laboratories, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|