1
|
Gabir H, Gupta M, Meier M, Heide F, Koch M, Stetefeld J, Demeler B. Investigation of dynamic solution interactions between NET-1 and UNC-5B by multi-wavelength analytical ultracentrifugation. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:473-481. [PMID: 36939874 PMCID: PMC10509325 DOI: 10.1007/s00249-023-01644-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/21/2023]
Abstract
NET-1 is a key chemotropic ligand that signals commissural axon migration and change in direction. NET-1 and its receptor UNC-5B switch axon growth cones from attraction to repulsion. The biophysical properties of the NET-1 + UNC-5B complex have been poorly characterized. Using multi-wavelength-AUC by adding a fluorophore to UNC-5B, we were able to separate the UNC-5B sedimentation from NET-1. Using both multi-wavelength- and single-wavelength AUC, we investigated NET-1 and UNC-5B hydrodynamic parameters and complex formation. The sedimentation velocity experiments show that NET-1 exists in a monomer-dimer equilibrium. A close study of the association shows that NET-1 forms a pH-sensitive dimer that interacts in an anti-parallel orientation. UNC-5B can form equimolar NET-1 + UNC-5B heterocomplexes with both monomeric and dimeric NET-1.
Collapse
Affiliation(s)
- Haben Gabir
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | | | - Markus Meier
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Fabian Heide
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Manuel Koch
- Medical Faculty, Institute for Dental Research and Oral Musculoskeletal Biology, University of Cologne, Cologne, Germany
| | - Joerg Stetefeld
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Borries Demeler
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada.
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT, USA.
| |
Collapse
|
2
|
Cortés E, Pak JS, Özkan E. Structure and evolution of neuronal wiring receptors and ligands. Dev Dyn 2023; 252:27-60. [PMID: 35727136 PMCID: PMC10084454 DOI: 10.1002/dvdy.512] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 01/04/2023] Open
Abstract
One of the fundamental properties of a neuronal circuit is the map of its connections. The cellular and developmental processes that allow for the growth of axons and dendrites, selection of synaptic targets, and formation of functional synapses use neuronal surface receptors and their interactions with other surface receptors, secreted ligands, and matrix molecules. Spatiotemporal regulation of the expression of these receptors and cues allows for specificity in the developmental pathways that wire stereotyped circuits. The families of molecules controlling axon guidance and synapse formation are generally conserved across animals, with some important exceptions, which have consequences for neuronal connectivity. Here, we summarize the distribution of such molecules across multiple taxa, with a focus on model organisms, evolutionary processes that led to the multitude of such molecules, and functional consequences for the diversification or loss of these receptors.
Collapse
Affiliation(s)
- Elena Cortés
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA.,The Neuroscience Institute, University of Chicago, Chicago, Illinois, USA
| | - Joseph S Pak
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA.,The Neuroscience Institute, University of Chicago, Chicago, Illinois, USA
| | - Engin Özkan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA.,The Neuroscience Institute, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
3
|
Ahmed G, Shinmyo Y. Multiple Functions of Draxin/Netrin-1 Signaling in the Development of Neural Circuits in the Spinal Cord and the Brain. Front Neuroanat 2021; 15:766911. [PMID: 34899198 PMCID: PMC8655782 DOI: 10.3389/fnana.2021.766911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/22/2021] [Indexed: 11/30/2022] Open
Abstract
Axon guidance proteins play key roles in the formation of neural circuits during development. We previously identified an axon guidance cue, named draxin, that has no homology with other axon guidance proteins. Draxin is essential for the development of various neural circuits including the spinal cord commissure, corpus callosum, and thalamocortical projections. Draxin has been shown to not only control axon guidance through netrin-1 receptors, deleted in colorectal cancer (Dcc), and neogenin (Neo1) but also modulate netrin-1-mediated axon guidance and fasciculation. In this review, we summarize the multifaceted functions of draxin and netrin-1 signaling in neural circuit formation in the central nervous system. Furthermore, because recent studies suggest that the distributions and functions of axon guidance cues are highly regulated by glycoproteins such as Dystroglycan and Heparan sulfate proteoglycans, we discuss a possible function of glycoproteins in draxin/netrin-1-mediated axon guidance.
Collapse
Affiliation(s)
- Giasuddin Ahmed
- Department of Neuroscience and Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Yohei Shinmyo
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
4
|
Zhou X, Vachon C, Cizeron M, Romatif O, Bülow HE, Jospin M, Bessereau JL. The HSPG syndecan is a core organizer of cholinergic synapses. J Cell Biol 2021; 220:212450. [PMID: 34213535 PMCID: PMC8258370 DOI: 10.1083/jcb.202011144] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 04/13/2021] [Accepted: 05/26/2021] [Indexed: 12/15/2022] Open
Abstract
The extracellular matrix has emerged as an active component of chemical synapses regulating synaptic formation, maintenance, and homeostasis. The heparan sulfate proteoglycan (HSPG) syndecans are known to regulate cellular and axonal migration in the brain. They are also enriched at synapses, but their synaptic functions remain more elusive. Here, we show that SDN-1, the sole orthologue of syndecan in C. elegans, is absolutely required for the synaptic clustering of homomeric α7-like acetylcholine receptors (AChRs) and regulates the synaptic content of heteromeric AChRs. SDN-1 is concentrated at neuromuscular junctions (NMJs) by the neurally secreted synaptic organizer Ce-Punctin/MADD-4, which also activates the transmembrane netrin receptor DCC. Those cooperatively recruit the FARP and CASK orthologues that localize α7-like-AChRs at cholinergic NMJs through physical interactions. Therefore, SDN-1 stands at the core of the cholinergic synapse organization by bridging the extracellular synaptic determinants to the intracellular synaptic scaffold that controls the postsynaptic receptor content.
Collapse
Affiliation(s)
- Xin Zhou
- Université de Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique Unite Mixte de Recherche 5310, Institut National de la Santé et de la Recherche Médicale U1217, Institut NeuroMyoGène, Lyon, France
| | - Camille Vachon
- Université de Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique Unite Mixte de Recherche 5310, Institut National de la Santé et de la Recherche Médicale U1217, Institut NeuroMyoGène, Lyon, France
| | - Mélissa Cizeron
- Université de Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique Unite Mixte de Recherche 5310, Institut National de la Santé et de la Recherche Médicale U1217, Institut NeuroMyoGène, Lyon, France
| | - Océane Romatif
- Université de Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique Unite Mixte de Recherche 5310, Institut National de la Santé et de la Recherche Médicale U1217, Institut NeuroMyoGène, Lyon, France
| | - Hannes E Bülow
- Department of Genetics and Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY
| | - Maëlle Jospin
- Université de Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique Unite Mixte de Recherche 5310, Institut National de la Santé et de la Recherche Médicale U1217, Institut NeuroMyoGène, Lyon, France
| | - Jean-Louis Bessereau
- Université de Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique Unite Mixte de Recherche 5310, Institut National de la Santé et de la Recherche Médicale U1217, Institut NeuroMyoGène, Lyon, France
| |
Collapse
|
5
|
Company V, Andreu-Cervera A, Madrigal MP, Andrés B, Almagro-García F, Chédotal A, López-Bendito G, Martinez S, Echevarría D, Moreno-Bravo JA, Puelles E. Netrin 1-Mediated Role of the Substantia Nigra Pars Compacta and Ventral Tegmental Area in the Guidance of the Medial Habenular Axons. Front Cell Dev Biol 2021; 9:682067. [PMID: 34169076 PMCID: PMC8217627 DOI: 10.3389/fcell.2021.682067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/16/2021] [Indexed: 01/21/2023] Open
Abstract
The fasciculus retroflexus is an important fascicle that mediates reward-related behaviors and is associated with different psychiatric diseases. It is the main habenular efference and constitutes a link between forebrain regions, the midbrain, and the rostral hindbrain. The proper functional organization of habenular circuitry requires complex molecular programs to control the wiring of the habenula during development. However, the mechanisms guiding the habenular axons toward their targets remain mostly unknown. Here, we demonstrate the role of the mesodiencephalic dopaminergic neurons (substantia nigra pars compacta and ventral tegmental area) as an intermediate target for the correct medial habenular axons navigation along the anteroposterior axis. These neuronal populations are distributed along the anteroposterior trajectory of these axons in the mesodiencephalic basal plate. Using in vitro and in vivo experiments, we determined that this navigation is the result of netrin 1 attraction generated by the mesodiencephalic dopaminergic neurons. This attraction is mediated by the receptor deleted in colorectal cancer (DCC), which is strongly expressed in the medial habenular axons. The increment in our knowledge on the fasciculus retroflexus trajectory guidance mechanisms opens the possibility of analyzing if its alteration in mental health patients could account for some of their symptoms.
Collapse
Affiliation(s)
- Verónica Company
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Alicante, Spain
| | - Abraham Andreu-Cervera
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Alicante, Spain
| | - M Pilar Madrigal
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Alicante, Spain
| | - Belén Andrés
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Alicante, Spain
| | | | - Alain Chédotal
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Salvador Martinez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Alicante, Spain
| | - Diego Echevarría
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Alicante, Spain
| | - Juan A Moreno-Bravo
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Alicante, Spain
| | - Eduardo Puelles
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Alicante, Spain
| |
Collapse
|
6
|
Smock RG, Meijers R. Roles of glycosaminoglycans as regulators of ligand/receptor complexes. Open Biol 2018; 8:rsob.180026. [PMID: 30282658 PMCID: PMC6223220 DOI: 10.1098/rsob.180026] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 09/04/2018] [Indexed: 02/06/2023] Open
Abstract
Glycosaminoglycans (GAGs) play a widespread role in embryonic development, as deletion of enzymes that contribute to GAG synthesis lead to deficiencies in cell migration and tissue modelling. Despite the biochemical and structural characterization of individual protein/GAG interactions, there is no concept available that links the molecular mechanisms of GAG/protein engagements to tissue development. Here, we focus on the role of GAG polymers in mediating interactions between cell surface receptors and their ligands. We categorize several switches that lead to ligand activation, inhibition, selection and addition, based on recent structural studies of select receptor/ligand complexes. Based on these principles, we propose that individual GAG polymers may affect several receptor pathways in parallel, orchestrating a cellular response to an environmental cue. We believe that it is worthwhile to study the role of GAGs as molecular switches, as this may lead to novel drug candidates to target processes such as angiogenesis, neuroregeneration and tumour metastasis.
Collapse
Affiliation(s)
- Robert G Smock
- European Molecular Biology Laboratory (EMBL), Notkestrasse 85, 22607 Hamburg, Germany
| | - Rob Meijers
- European Molecular Biology Laboratory (EMBL), Notkestrasse 85, 22607 Hamburg, Germany
| |
Collapse
|
7
|
Synaptogenesis Is Modulated by Heparan Sulfate in Caenorhabditis elegans. Genetics 2018; 209:195-208. [PMID: 29559501 PMCID: PMC5937176 DOI: 10.1534/genetics.118.300837] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 03/06/2018] [Indexed: 01/06/2023] Open
Abstract
The nervous system regulates complex behaviors through a network of neurons interconnected by synapses. How specific synaptic connections are genetically determined is still unclear. Male mating is the most complex behavior in Caenorhabditis elegans It is composed of sequential steps that are governed by > 3000 chemical connections. Here, we show that heparan sulfates (HS) play a role in the formation and function of the male neural network. HS, sulfated in position 3 by the HS modification enzyme HST-3.1/HS 3-O-sulfotransferase and attached to the HS proteoglycan glypicans LON-2/glypican and GPN-1/glypican, functions cell-autonomously and nonautonomously for response to hermaphrodite contact during mating. Loss of 3-O sulfation resulted in the presynaptic accumulation of RAB-3, a molecule that localizes to synaptic vesicles, and disrupted the formation of synapses in a component of the mating circuits. We also show that the neural cell adhesion protein NRX-1/neurexin promotes and the neural cell adhesion protein NLG-1/neuroligin inhibits the formation of the same set of synapses in a parallel pathway. Thus, neural cell adhesion proteins and extracellular matrix components act together in the formation of synaptic connections.
Collapse
|
8
|
Marsh APL, Edwards TJ, Galea C, Cooper HM, Engle EC, Jamuar SS, Méneret A, Moutard ML, Nava C, Rastetter A, Robinson G, Rouleau G, Roze E, Spencer-Smith M, Trouillard O, Billette de Villemeur T, Walsh CA, Yu TW, Heron D, Sherr EH, Richards LJ, Depienne C, Leventer RJ, Lockhart PJ. DCC mutation update: Congenital mirror movements, isolated agenesis of the corpus callosum, and developmental split brain syndrome. Hum Mutat 2017; 39:23-39. [PMID: 29068161 DOI: 10.1002/humu.23361] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 10/08/2017] [Accepted: 10/11/2017] [Indexed: 12/12/2022]
Abstract
The deleted in colorectal cancer (DCC) gene encodes the netrin-1 (NTN1) receptor DCC, a transmembrane protein required for the guidance of commissural axons. Germline DCC mutations disrupt the development of predominantly commissural tracts in the central nervous system (CNS) and cause a spectrum of neurological disorders. Monoallelic, missense, and predicted loss-of-function DCC mutations cause congenital mirror movements, isolated agenesis of the corpus callosum (ACC), or both. Biallelic, predicted loss-of-function DCC mutations cause developmental split brain syndrome (DSBS). Although the underlying molecular mechanisms leading to disease remain poorly understood, they are thought to stem from reduced or perturbed NTN1 signaling. Here, we review the 26 reported DCC mutations associated with abnormal CNS development in humans, including 14 missense and 12 predicted loss-of-function mutations, and discuss their associated clinical characteristics and diagnostic features. We provide an update on the observed genotype-phenotype relationships of congenital mirror movements, isolated ACC and DSBS, and correlate this to our current understanding of the biological function of DCC in the development of the CNS. All mutations and their associated phenotypes were deposited into a locus-specific LOVD (https://databases.lovd.nl/shared/genes/DCC).
Collapse
Affiliation(s)
- Ashley P L Marsh
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Timothy J Edwards
- Queensland Brain Institute, The University of Queensland, St Lucia, Brisbane, Australia.,Faculty of Medicine, The University of Queensland, Herston, Brisbane, Australia
| | - Charles Galea
- Drug Delivery, Disposition and Dynamics (D4), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Helen M Cooper
- Queensland Brain Institute, The University of Queensland, St Lucia, Brisbane, Australia
| | - Elizabeth C Engle
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts.,Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts.,Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts.,Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts.,Department of Ophthalmology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts.,Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts
| | - Saumya S Jamuar
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts.,Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts.,Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts.,Department of Paediatrics, KK Women's and Children's Hospital, Paediatric Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Aurélie Méneret
- INSERM, U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France.,Département de Neurologie, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Marie-Laure Moutard
- Service de Neuropédiatrie, AP-HP, Hôpital Trousseau, Paris, France.,UPMC, GRC ConCer-LD, Sorbonne Université, Paris, France.,Centre de référence "Neurogénétique", Paris, France
| | - Caroline Nava
- INSERM, U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France.,Département de Génétique, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Agnès Rastetter
- INSERM, U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Gail Robinson
- Neuropsychology Research Unit, School of Psychology, The University of Queensland, Brisbane, Queensland, Australia
| | - Guy Rouleau
- Department of Neurology and Neurosurgery, McGill University Health Center, Montreal, Quebec, Canada.,Montreal Neurological Institute and Hospital, McGill University, Montréal, Quebec, Canada
| | - Emmanuel Roze
- INSERM, U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France.,Département de Neurologie, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Megan Spencer-Smith
- Clinical Sciences, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Clayton Campus, Clayton, Victoria, Australia
| | - Oriane Trouillard
- INSERM, U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Thierry Billette de Villemeur
- Service de Neuropédiatrie, AP-HP, Hôpital Trousseau, Paris, France.,UPMC, GRC ConCer-LD, Sorbonne Université, Paris, France.,Centre de Référence "déficiences intellectuelles de causes rares", Paris, France.,INSERM U1141, Paris, France
| | - Christopher A Walsh
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts.,Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts.,Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts.,Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts.,Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Timothy W Yu
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts.,Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | | | - Delphine Heron
- UPMC, GRC ConCer-LD, Sorbonne Université, Paris, France.,Département de Génétique, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Elliott H Sherr
- Department of Neurology, UCSF Benioff Children's Hospital, San Francisco, California
| | - Linda J Richards
- Queensland Brain Institute, The University of Queensland, St Lucia, Brisbane, Australia.,The University of Queensland, School of Biomedical Sciences, St Lucia, Brisbane, Australia
| | - Christel Depienne
- INSERM, U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France.,Département de Génétique, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France.,Département de Médicine translationnelle et Neurogénétique, IGBMC, CNRS UMR 7104, INSERM U964, Université de Strasbourg, Illkirch, France.,Laboratoires de génétique, Institut de génétique médicale d'Alsace, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Richard J Leventer
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia.,Neuroscience Research Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Department of Neurology, University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Paul J Lockhart
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
9
|
Dun XP, Parkinson DB. Role of Netrin-1 Signaling in Nerve Regeneration. Int J Mol Sci 2017; 18:ijms18030491. [PMID: 28245592 PMCID: PMC5372507 DOI: 10.3390/ijms18030491] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/20/2017] [Accepted: 02/22/2017] [Indexed: 01/06/2023] Open
Abstract
Netrin-1 was the first axon guidance molecule to be discovered in vertebrates and has a strong chemotropic function for axonal guidance, cell migration, morphogenesis and angiogenesis. It is a secreted axon guidance cue that can trigger attraction by binding to its canonical receptors Deleted in Colorectal Cancer (DCC) and Neogenin or repulsion through binding the DCC/Uncoordinated (Unc5) A–D receptor complex. The crystal structures of Netrin-1/receptor complexes have recently been revealed. These studies have provided a structure based explanation of Netrin-1 bi-functionality. Netrin-1 and its receptor are continuously expressed in the adult nervous system and are differentially regulated after nerve injury. In the adult spinal cord and optic nerve, Netrin-1 has been considered as an inhibitor that contributes to axon regeneration failure after injury. In the peripheral nervous system, Netrin-1 receptors are expressed in Schwann cells, the cell bodies of sensory neurons and the axons of both motor and sensory neurons. Netrin-1 is expressed in Schwann cells and its expression is up-regulated after peripheral nerve transection injury. Recent studies indicated that Netrin-1 plays a positive role in promoting peripheral nerve regeneration, Schwann cell proliferation and migration. Targeting of the Netrin-1 signaling pathway could develop novel therapeutic strategies to promote peripheral nerve regeneration and functional recovery.
Collapse
Affiliation(s)
- Xin-Peng Dun
- Peninsula Schools of Medicine and Dentistry, Plymouth University, Plymouth, Devon PL6 8BU, UK.
- School of Pharmacy, Hubei University of Science and Technology, Xianning 437100, China.
| | - David B Parkinson
- Peninsula Schools of Medicine and Dentistry, Plymouth University, Plymouth, Devon PL6 8BU, UK.
| |
Collapse
|
10
|
Abstract
Axon guidance relies on a combinatorial code of receptor and ligand interactions that direct adhesive/attractive and repulsive cellular responses. Recent structural data have revealed many of the molecular mechanisms that govern these interactions and enabled the design of sophisticated mutant tools to dissect their biological functions. Here, we discuss the structure/function relationships of four major classes of guidance cues (ephrins, semaphorins, slits, netrins) and examples of morphogens (Wnt, Shh) and of cell adhesion molecules (FLRT). These cell signaling systems rely on specific modes of receptor-ligand binding that are determined by selective binding sites; however, defined structure-encoded receptor promiscuity also enables cross talk between different receptor/ligand families and can also involve extracellular matrix components. A picture emerges in which a multitude of highly context-dependent structural assemblies determines the finely tuned cellular behavior required for nervous system development.
Collapse
Affiliation(s)
- Elena Seiradake
- Department of Biochemistry, Oxford University, Oxford OX1 3QU, United Kingdom;
| | - E Yvonne Jones
- Wellcome Trust Centre for Human Genetics, Oxford University, Oxford OX3 7BN, United Kingdom;
| | - Rüdiger Klein
- Max Planck Institute of Neurobiology, 82152 Munich-Martinsried, Germany;
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| |
Collapse
|
11
|
Abstract
Heparan sulfate proteoglycans (HSPGs) have long been implicated in a wide range of cell-cell signaling and cell-matrix interactions, both in vitro and in vivo in invertebrate models. Although many of the genes that encode HSPG core proteins and the biosynthetic enzymes that generate and modify HSPG sugar chains have not yet been analyzed by genetics in vertebrates, recent studies have shown that HSPGs do indeed mediate a wide range of functions in early vertebrate development, for example during left-right patterning and in cardiovascular and neural development. Here, we provide a comprehensive overview of the various roles of HSPGs in these systems and explore the concept of an instructive heparan sulfate sugar code for modulating vertebrate development. Summary: This Review article examines the role of heparan sulfate proteoglycans in vertebrate development and explores the concept of an instructive 'sugar code' for modulating development.
Collapse
Affiliation(s)
- Fabienne E Poulain
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - H Joseph Yost
- University of Utah, Department of Neurobiology and Anatomy, Department of Pediatrics, Salt Lake City, UT 84132, USA
| |
Collapse
|
12
|
Adepu S, Rosman CWK, Dam W, van Dijk MCRF, Navis G, van Goor H, Bakker SJL, van den Born J. Incipient renal transplant dysfunction associates with tubular syndecan-1 expression and shedding. Am J Physiol Renal Physiol 2015; 309:F137-45. [DOI: 10.1152/ajprenal.00127.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 05/08/2015] [Indexed: 01/31/2023] Open
Abstract
Syndecan-1 is a transmembrane heparan sulfate proteoglycan involved in regenerative growth and cellular adhesion. We hypothesized that the induction of tubular syndecan-1 is a repair response to incipient renal damage in apparently stable, uncomplicated renal transplant recipients. We quantified tubular syndecan-1 in unselected renal protocol biopsies taken 1 yr after transplantation. Spearman rank correlation analysis revealed an inverse correlation between tubular syndecan-1 expression and creatinine clearance at the time of biopsy ( r = −0.483, P < 0.03). In a larger panel of protocol and indication biopsies from renal transplant recipients, tubular syndecan-1 correlated with tubular proliferation marker Ki67 ( r = 0.518, P < 0.0001). In a rat renal transplantation model, 2 mo after transplantation, mRNA expression of syndecan-1 and its major sheddase, A disintegrin and metalloproteinase-17, were upregulated (both P < 0.03). Since shed syndecan-1 might end up in the circulation, in a stable cross-sectional human renal transplant population ( n = 510), we measured plasma syndecan-1. By multivariate regression analysis, we showed robust independent associations of plasma syndecan-1 with renal (plasma creatinine and plasma urea) and endothelial function parameters (plasma VEGF-A, all P < 0.01). By various approaches, we were not able to localize syndecan-1 in vessel wall or endothelial cells, which makes shedding of syndecan-1 from the endothelial glycocalyx unlikely. Our data suggest that early damage in transplanted kidneys induces repair mechanisms within the graft, namely, tubular syndecan-1 expression for tubular regeneration and VEGF production for endothelial repair. Elevated plasma syndecan-1 levels in renal transplantation patients might be interpreted as repair/survival factor related to loss of tubular and endothelial function in transplanted kidneys.
Collapse
Affiliation(s)
- Saritha Adepu
- Department of Nephrology, University Medical Center of Groningen, University of Groningen, Groningen, The Netherlands; and
| | - Colin W. K. Rosman
- Department of Nephrology, University Medical Center of Groningen, University of Groningen, Groningen, The Netherlands; and
| | - Wendy Dam
- Department of Nephrology, University Medical Center of Groningen, University of Groningen, Groningen, The Netherlands; and
| | - Marcory C. R. F. van Dijk
- Department of Pathology and Medical Biology, University Medical Center of Groningen, University of Groningen, Groningen, The Netherlands
| | - Gerjan Navis
- Department of Nephrology, University Medical Center of Groningen, University of Groningen, Groningen, The Netherlands; and
| | - Harry van Goor
- Department of Pathology and Medical Biology, University Medical Center of Groningen, University of Groningen, Groningen, The Netherlands
| | - Stephan J. L. Bakker
- Department of Nephrology, University Medical Center of Groningen, University of Groningen, Groningen, The Netherlands; and
| | - Jacob van den Born
- Department of Nephrology, University Medical Center of Groningen, University of Groningen, Groningen, The Netherlands; and
| |
Collapse
|
13
|
Glypican Is a Modulator of Netrin-Mediated Axon Guidance. PLoS Biol 2015; 13:e1002183. [PMID: 26148345 PMCID: PMC4493048 DOI: 10.1371/journal.pbio.1002183] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/15/2015] [Indexed: 11/19/2022] Open
Abstract
Netrin is a key axon guidance cue that orients axon growth during neural circuit formation. However, the mechanisms regulating netrin and its receptors in the extracellular milieu are largely unknown. Here we demonstrate that in Caenorhabditis elegans, LON-2/glypican, a heparan sulfate proteoglycan, modulates UNC-6/netrin signaling and may do this through interactions with the UNC-40/DCC receptor. We show that developing axons misorient in the absence of LON-2/glypican when the SLT-1/slit guidance pathway is compromised and that LON-2/glypican functions in both the attractive and repulsive UNC-6/netrin pathways. We find that the core LON-2/glypican protein, lacking its heparan sulfate chains, and secreted forms of LON-2/glypican are functional in axon guidance. We also find that LON-2/glypican functions from the epidermal substrate cells to guide axons, and we provide evidence that LON-2/glypican associates with UNC-40/DCC receptor-expressing cells. We propose that LON-2/glypican acts as a modulator of UNC-40/DCC-mediated guidance to fine-tune axonal responses to UNC-6/netrin signals during migration.
Collapse
|
14
|
Kim S, Martin KC. Neuron-wide RNA transport combines with netrin-mediated local translation to spatially regulate the synaptic proteome. eLife 2015; 4. [PMID: 25569157 PMCID: PMC4337609 DOI: 10.7554/elife.04158] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 01/08/2015] [Indexed: 11/13/2022] Open
Abstract
The persistence of experience-dependent changes in brain connectivity requires RNA localization and protein synthesis. Previous studies have demonstrated a role for local translation in altering the structure and function of synapses during synapse formation and experience-dependent synaptic plasticity. In this study, we ask whether in addition to promoting local translation, local stimulation also triggers directed trafficking of RNAs from nucleus to stimulated synapses. Imaging of RNA localization and translation in cultured Aplysia sensory-motor neurons revealed that RNAs were delivered throughout the arbor of the sensory neuron, but that translation was enriched only at sites of synaptic contact and/or synaptic stimulation. Investigation of the mechanisms that trigger local translation revealed a role for calcium-dependent retrograde netrin-1/DCC receptor signaling. Spatially restricting gene expression by regulating local translation rather than by directing the delivery of mRNAs from nucleus to stimulated synapses maximizes the readiness of the entire neuronal arbor to respond to local cues.
Collapse
Affiliation(s)
- Sangmok Kim
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, United States
| | - Kelsey C Martin
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, United States
| |
Collapse
|
15
|
Abstract
One of the most fascinating questions in the field of neurobiology is to understand how neuronal connections are properly formed. During development, neurons extend axons that are guided along defined paths by attractive and repulsive cues to reach their brain target. Most of these guidance factors are regulated by heparan sulfate proteoglycans (HSPGs), a family of cell-surface and extracellular core proteins with attached heparan sulfate (HS) glycosaminoglycans. The unique diversity and structural complexity of HS sugar chains, as well as the variety of core proteins, have been proposed to generate a complex "sugar code" essential for brain wiring. While the functions of HSPGs have been well characterized in C. elegans or Drosophila, relatively little is known about their roles in nervous system development in vertebrates. In this chapter, we describe the advantages and the different methods available to study the roles of HSPGs in axon guidance directly in vivo in zebrafish. We provide protocols for visualizing axons in vivo, including precise dye labeling and time-lapse imaging, and for disturbing the functions of HS-modifying enzymes and core proteins, including morpholino, DNA, or RNA injections.
Collapse
Affiliation(s)
- Fabienne E Poulain
- Department of Biological Sciences, University of South Carolina, Coker Life Science Building, 715 Sumter street, Columbia, SC, 29208, USA,
| |
Collapse
|
16
|
Finci LI, Krüger N, Sun X, Zhang J, Chegkazi M, Wu Y, Schenk G, Mertens HDT, Svergun DI, Zhang Y, Wang JH, Meijers R. The crystal structure of netrin-1 in complex with DCC reveals the bifunctionality of netrin-1 as a guidance cue. Neuron 2014; 83:839-849. [PMID: 25123307 DOI: 10.1016/j.neuron.2014.07.010] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2014] [Indexed: 01/01/2023]
Abstract
Netrin-1 is a guidance cue that can trigger either attraction or repulsion effects on migrating axons of neurons, depending on the repertoire of receptors available on the growth cone. How a single chemotropic molecule can act in such contradictory ways has long been a puzzle at the molecular level. Here we present the crystal structure of netrin-1 in complex with the Deleted in Colorectal Cancer (DCC) receptor. We show that one netrin-1 molecule can simultaneously bind to two DCC molecules through a DCC-specific site and through a unique generic receptor binding site, where sulfate ions staple together positively charged patches on both DCC and netrin-1. Furthermore, we demonstrate that UNC5A can replace DCC on the generic receptor binding site to switch the response from attraction to repulsion. We propose that the modularity of binding allows for the association of other netrin receptors at the generic binding site, eliciting alternative turning responses.
Collapse
Affiliation(s)
- Lorenzo I Finci
- State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing, 100871, China.,Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA. 02215, USA
| | - Nina Krüger
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, Notkestrasse 85, 22607, Hamburg, Germany
| | - Xiaqin Sun
- State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Jie Zhang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Magda Chegkazi
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, Notkestrasse 85, 22607, Hamburg, Germany
| | - Yu Wu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Gundolf Schenk
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, Notkestrasse 85, 22607, Hamburg, Germany
| | - Haydyn D T Mertens
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, Notkestrasse 85, 22607, Hamburg, Germany
| | - Dmitri I Svergun
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, Notkestrasse 85, 22607, Hamburg, Germany
| | - Yan Zhang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing, 100871, China.,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Jia-Huai Wang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing, 100871, China.,Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA. 02215, USA
| | - Rob Meijers
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, Notkestrasse 85, 22607, Hamburg, Germany
| |
Collapse
|
17
|
García-Peña CM, Kim M, Frade-Pérez D, Avila-González D, Téllez E, Mastick GS, Tamariz E, Varela-Echavarría A. Ascending midbrain dopaminergic axons require descending GAD65 axon fascicles for normal pathfinding. Front Neuroanat 2014; 8:43. [PMID: 24926237 PMCID: PMC4046268 DOI: 10.3389/fnana.2014.00043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/19/2014] [Indexed: 12/22/2022] Open
Abstract
The Nigrostriatal pathway (NSP) is formed by dopaminergic axons that project from the ventral midbrain to the dorsolateral striatum as part of the medial forebrain bundle. Previous studies have implicated chemotropic proteins in the formation of the NSP during development but little is known of the role of substrate-anchored signals in this process. We observed in mouse and rat embryos that midbrain dopaminergic axons ascend in close apposition to descending GAD65-positive axon bundles throughout their trajectory to the striatum. To test whether such interaction is important for dopaminergic axon pathfinding, we analyzed transgenic mouse embryos in which the GAD65 axon bundle was reduced by the conditional expression of the diphtheria toxin. In these embryos we observed dopaminergic misprojection into the hypothalamic region and abnormal projection in the striatum. In addition, analysis of Robo1/2 and Slit1/2 knockout embryos revealed that the previously described dopaminergic misprojection in these embryos is accompanied by severe alterations in the GAD65 axon scaffold. Additional studies with cultured dopaminergic neurons and whole embryos suggest that NCAM and Robo proteins are involved in the interaction of GAD65 and dopaminergic axons. These results indicate that the fasciculation between descending GAD65 axon bundles and ascending dopaminergic axons is required for the stereotypical NSP formation during brain development and that known guidance cues may determine this projection indirectly by instructing the pathfinding of the axons that are part of the GAD65 axon scaffold.
Collapse
Affiliation(s)
- Claudia M García-Peña
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México Querétaro, México
| | - Minkyung Kim
- Department of Biology, University of Nevada Reno, NV, USA
| | - Daniela Frade-Pérez
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México Querétaro, México
| | - Daniela Avila-González
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México Querétaro, México
| | - Elisa Téllez
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México Querétaro, México
| | | | - Elisa Tamariz
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México Querétaro, México
| | - Alfredo Varela-Echavarría
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México Querétaro, México
| |
Collapse
|
18
|
Mirror movement-like defects in startle behavior of zebrafish dcc mutants are caused by aberrant midline guidance of identified descending hindbrain neurons. J Neurosci 2014; 34:2898-909. [PMID: 24553931 DOI: 10.1523/jneurosci.2420-13.2014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mirror movements are involuntary movements on one side of the body that occur simultaneously with intentional movements on the contralateral side. Humans with heterozygous mutations in the axon guidance receptor DCC display such mirror movements, where unilateral stimulation results in inappropriate bilateral motor output. Currently, it is unclear whether mirror movements are caused by incomplete midline crossing and reduced commissural connectivity of DCC-dependent descending pathways or by aberrant ectopic ipsilateral axonal projections of normally commissural neurons. Here, we show that in response to unilateral tactile stimuli, zebrafish dcc mutant larvae perform involuntary turns on the inappropriate body side. We show that these mirror movement-like deficits are associated with axonal guidance defects of two identified groups of commissural reticulospinal hindbrain neurons. Moreover, we demonstrate that in dcc mutants, axons of these identified neurons frequently fail to cross the midline and instead project ipsilaterally. Whereas laser ablation of these neurons in wild-type animals does not affect turning movements, their ablation in dcc mutants restores turning movements. Thus, our results demonstrate that in dcc mutants, turns on the inappropriate side of the body are caused by aberrant ipsilateral axonal projections, and suggest that aberrant ipsilateral connectivity of a very small number of descending axons is sufficient to induce incorrect movement patterns.
Collapse
|
19
|
O'Leary C, Cole SJ, Langford M, Hewage J, White A, Cooper HM. RGMa regulates cortical interneuron migration and differentiation. PLoS One 2013; 8:e81711. [PMID: 24312340 PMCID: PMC3842424 DOI: 10.1371/journal.pone.0081711] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 10/23/2013] [Indexed: 11/24/2022] Open
Abstract
The etiology of neuropsychiatric disorders, including schizophrenia and autism, has been linked to a failure to establish the intricate neural network comprising excitatory pyramidal and inhibitory interneurons during neocortex development. A large proportion of cortical inhibitory interneurons originate in the medial ganglionic eminence (MGE) of the ventral telencephalon and then migrate through the ventral subventricular zone, across the corticostriatal junction, into the embryonic cortex. Successful navigation of newborn interneurons through the complex environment of the ventral telencephalon is governed by spatiotemporally restricted deployment of both chemorepulsive and chemoattractive guidance cues which work in concert to create a migratory corridor. Despite the expanding list of interneuron guidance cues, cues responsible for preventing interneurons from re-entering the ventricular zone of the ganglionic eminences have not been well characterized. Here we provide evidence that the chemorepulsive axon guidance cue, RGMa (Repulsive Guidance Molecule a), may fulfill this function. The ventricular zone restricted expression of RGMa in the ganglionic eminences and the presence of its receptor, Neogenin, in the ventricular zone and on newborn and maturing MGE-derived interneurons implicates RGMa-Neogenin interactions in interneuron differentiation and migration. Using an in vitro approach, we show that RGMa promotes interneuron differentiation by potentiating neurite outgrowth. In addition, using in vitro explant and migration assays, we provide evidence that RGMa is a repulsive guidance cue for newborn interneurons migrating out of the ganglionic eminence ventricular zone. Intriguingly, the alternative Neogenin ligand, Netrin-1, had no effect on migration. However, we observed complete abrogation of RGMa-induced chemorepulsion when newborn interneurons were simultaneously exposed to RGMa and Netrin-1 gradients, suggesting a novel mechanism for the tight regulation of RGMa-guided interneuron migration. We propose that during peak neurogenesis, repulsive RGMa-Neogenin interactions drive interneurons into the migratory corridor and prevent re-entry into the ventricular zone of the ganglionic eminences.
Collapse
Affiliation(s)
- Conor O'Leary
- The University of Queensland, Queensland Brain Institute, Brisbane, Queensland, Australia
| | | | | | | | | | | |
Collapse
|
20
|
Bell CH, Healey E, van Erp S, Bishop B, Tang C, Gilbert RJ, Aricescu AR, Pasterkamp RJ, Siebold C. Structure of the repulsive guidance molecule (RGM)-neogenin signaling hub. Science 2013; 341:77-80. [PMID: 23744777 PMCID: PMC4730555 DOI: 10.1126/science.1232322] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Repulsive guidance molecule family members (RGMs) control fundamental and diverse cellular processes, including motility and adhesion, immune cell regulation, and systemic iron metabolism. However, it is not known how RGMs initiate signaling through their common cell-surface receptor, neogenin (NEO1). Here, we present crystal structures of the NEO1 RGM-binding region and its complex with human RGMB (also called dragon). The RGMB structure reveals a previously unknown protein fold and a functionally important autocatalytic cleavage mechanism and provides a framework to explain numerous disease-linked mutations in RGMs. In the complex, two RGMB ectodomains conformationally stabilize the juxtamembrane regions of two NEO1 receptors in a pH-dependent manner. We demonstrate that all RGM-NEO1 complexes share this architecture, which therefore represents the core of multiple signaling pathways.
Collapse
Affiliation(s)
- Christian H. Bell
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Eleanor Healey
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Susan van Erp
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, CG Utrecht 3584, Netherlands
| | - Benjamin Bishop
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Chenxiang Tang
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Robert J.C. Gilbert
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - A. Radu Aricescu
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - R. Jeroen Pasterkamp
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, CG Utrecht 3584, Netherlands
| | - Christian Siebold
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| |
Collapse
|
21
|
Kee N, Wilson N, Key B, Cooper HM. Netrin-1 is required for efficient neural tube closure. Dev Neurobiol 2012; 73:176-87. [PMID: 22888057 DOI: 10.1002/dneu.22051] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 07/02/2012] [Accepted: 08/08/2012] [Indexed: 12/19/2022]
Abstract
During neural tube formation, neural plate cells migrate from the lateral aspects of the dorsal surface towards the midline. Elevation of the lateral regions of the neural plate produces the neural folds which then migrate to the midline where they fuse at their dorsal tips, generating a closed neural tube comprising an apicobasally polarized neuroepithelium. Our previous study identified a novel role for the axon guidance receptor neogenin in Xenopus neural tube formation. We demonstrated that loss of neogenin impeded neural fold apposition and neural tube closure. This study also revealed that neogenin, via its interaction with its ligand, RGMa, promoted cell-cell adhesion between neural plate cells as the neural folds elevated and between neuroepithelial cells within the neural tube. The second neogenin ligand, netrin-1, has been implicated in cell migration and epithelial morphogenesis. Therefore, we hypothesized that netrin-1 may also act as a ligand for neogenin during neurulation. Here we demonstrate that morpholino knockdown of Xenopus netrin-1 results in delayed neural fold apposition and neural tube closure. We further show that netrin-1 functions in the same pathway as neogenin and RGMa during neurulation. However, contrary to the role of neogenin-RGMa interactions, neogenin-netrin-1 interactions are not required for neural fold elevation or adhesion between neuroepithelial cells. Instead, our data suggest that netrin-1 contributes to the migration of the neural folds towards the midline. We conclude that both neogenin ligands work synergistically to ensure neural tube closure.
Collapse
Affiliation(s)
- Nigel Kee
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | |
Collapse
|
22
|
Rabe Bernhardt N, Memic F, Gezelius H, Thiebes AL, Vallstedt A, Kullander K. DCC mediated axon guidance of spinal interneurons is essential for normal locomotor central pattern generator function. Dev Biol 2012; 366:279-89. [DOI: 10.1016/j.ydbio.2012.03.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 03/21/2012] [Accepted: 03/27/2012] [Indexed: 11/16/2022]
|
23
|
Wei P, Pattarini R, Rong Y, Guo H, Bansal PK, Kusnoor SV, Deutch AY, Parris J, Morgan JI. The Cbln family of proteins interact with multiple signaling pathways. J Neurochem 2012; 121:717-29. [PMID: 22220752 DOI: 10.1111/j.1471-4159.2012.07648.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cerebellin precursor protein (Cbln1) is essential for synapse integrity in cerebellum through assembly into complexes that bridge pre-synaptic β-neurexins (Nrxn) to post-synaptic GluRδ2. However, GluRδ2 is largely cerebellum-specific, yet Cbln1 and its little studied family members, Cbln2 and Cbln4, are expressed throughout brain. Therefore, we investigated whether additional proteins mediate Cbln family actions. Whereas Cbln1 and Cbln2 bound to GluRδ2 and Nrxns1-3, Cbln4 bound weakly or not at all, suggesting it has distinct binding partners. In a candidate receptor-screening assay, Cbln4 (but not Cbln1 or Cbln2) bound selectively to the netrin receptor, (deleted in colorectal cancer (DCC) in a netrin-displaceable fashion. To determine whether Cbln4 had a netrin-like function, Cbln4-null mice were generated. Cbln4-null mice did not phenocopy netrin-null mice. Cbln1 and Cbln4 were likely co-localized in neurons thought to be responsible for synaptic changes in striatum of Cbln1-null mice. Furthermore, complexes containing Cbln1 and Cbln4 had greatly reduced affinity to DCC but increased affinity to Nrxns, suggesting a functional interaction. However, Cbln4-null mice lacked the striatal synaptic changes seen in Cbln null mice. Thus, Cbln family members interact with multiple receptors/signaling pathways in a subunit composition-dependent manner and have independent functions with Cbln4 potentially involved in the less well-characterized role of netrin/DCC in adult brain.
Collapse
Affiliation(s)
- Peng Wei
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Lai Wing Sun K, Correia JP, Kennedy TE. Netrins: versatile extracellular cues with diverse functions. Development 2011; 138:2153-69. [PMID: 21558366 DOI: 10.1242/dev.044529] [Citation(s) in RCA: 318] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Netrins are secreted proteins that were first identified as guidance cues, directing cell and axon migration during neural development. Subsequent findings have demonstrated that netrins can influence the formation of multiple tissues, including the vasculature, lung, pancreas, muscle and mammary gland, by mediating cell migration, cell-cell interactions and cell-extracellular matrix adhesion. Recent evidence also implicates the ongoing expression of netrins and netrin receptors in the maintenance of cell-cell organisation in mature tissues. Here, we review the mechanisms involved in netrin signalling in vertebrate and invertebrate systems and discuss the functions of netrin signalling during the development of neural and non-neural tissues.
Collapse
Affiliation(s)
- Karen Lai Wing Sun
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | | | | |
Collapse
|
25
|
Phan KD, Croteau LP, Kam JWK, Kania A, Cloutier JF, Butler SJ. Neogenin may functionally substitute for Dcc in chicken. PLoS One 2011; 6:e22072. [PMID: 21779375 PMCID: PMC3133656 DOI: 10.1371/journal.pone.0022072] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 06/14/2011] [Indexed: 11/22/2022] Open
Abstract
Dcc is the key receptor that mediates attractive responses of axonal growth cones to netrins, a family of axon guidance cues used throughout evolution. However, a Dcc homolog has not yet been identified in the chicken genome, raising the possibility that Dcc is not present in avians. Here we show that the closely related family member neogenin may functionally substitute for Dcc in the developing chicken spinal cord. The expression pattern of chicken neogenin in the developing spinal cord is a composite of the distribution patterns of both rodent Dcc and neogenin. Moreover, whereas the loss of mouse neogenin has no effect on the trajectory of commissural axons, removing chicken neogenin by RNA interference results in a phenotype similar to the functional inactivation of Dcc in mouse. Taken together, these data suggest that the chick neogenin is functionally equivalent to rodent Dcc.
Collapse
Affiliation(s)
- Keith Dai Phan
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | | | - Joseph Wai Keung Kam
- Montreal Neurological Institute, McGill University, Montréal, Québec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Artur Kania
- Institut de Recherches Cliniques de Montréal, Montréal, Québec, Canada
- Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
- Departments of Anatomy and Cell Biology and Biology, McGill University, Montréal, Québec, Canada
| | - Jean-François Cloutier
- Montreal Neurological Institute, McGill University, Montréal, Québec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Samantha Joanna Butler
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
26
|
Wierman ME, Kiseljak-Vassiliades K, Tobet S. Gonadotropin-releasing hormone (GnRH) neuron migration: initiation, maintenance and cessation as critical steps to ensure normal reproductive function. Front Neuroendocrinol 2011; 32:43-52. [PMID: 20650288 PMCID: PMC3008544 DOI: 10.1016/j.yfrne.2010.07.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 07/08/2010] [Accepted: 07/14/2010] [Indexed: 12/23/2022]
Abstract
GnRH neurons follow a carefully orchestrated journey from their birth in the olfactory placode area. Initially, they migrate along with the vomeronasal nerve into the brain at the cribriform plate, then progress caudally to sites within the hypothalamus where they halt and send projections to the median eminence to activate pituitary gonadotropes. Many factors controlling this precise journey have been elucidated by the silencing or over-expression of candidate genes in mouse models. Importantly, a number of these factors may not only play a role in normal physiology of the hypothalamic-pituitary-gonadal axis but also be mis-expressed to cause human disorders of GnRH deficiency, presenting as a failure to undergo normal pubertal development. This review outlines the current cadre of candidates thought to modulate GnRH neuronal migration. The further elucidation and characterization of these factors that impact GnRH neuron development may shed new light on human reproductive disorders and provide potential targets to develop new pro-fertility or contraceptive agents.
Collapse
Affiliation(s)
- Margaret E Wierman
- Department of Medicine, University of Colorado-Denver, Aurora, CO 80045, USA
| | | | | |
Collapse
|
27
|
Yang F, West AP, Bjorkman PJ. Crystal structure of a hemojuvelin-binding fragment of neogenin at 1.8Å. J Struct Biol 2010; 174:239-44. [PMID: 20971194 PMCID: PMC3074981 DOI: 10.1016/j.jsb.2010.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 10/12/2010] [Accepted: 10/13/2010] [Indexed: 01/24/2023]
Abstract
Neogenin is a type I transmembrane glycoprotein with a large ectodomain containing tandem immunoglobulin-like and fibronectin type III (FNIII) domains. Closely related to the tumor suppressor gene DCC, neogenin functions in critical biological processes through binding to various ligands, including netrin, repulsive guidance molecules, and the iron regulatory protein hemojuvelin. We previously reported that neogenin binds to hemojuvelin through its membrane-proximal fifth and sixth FNIII domains (FN5-6), with domain 6 (FN6) contributing the majority of critical binding interactions. Here we present the crystal structure of FN5-6, the hemojuvelin-binding fragment of human neogenin, at 1.8Å. The two FNIII domains are orientated nearly linearly, a domain arrangement most similar to that of a tandem FNIII-containing fragment within the cytoplasmic tail of the β4 integrin. By mapping surface-exposed residues that differ between neogenin FN5-6 and the comparable domains from DCC, which does not bind hemojuvelin, we identified a potential hemojuvelin-binding site on neogenin FN6. Neogenin FN5, which does not bind hemojuvelin in isolation, exhibits a highly electropositive surface, which may be involved in interactions with negatively-charged polysaccharides or phospholipids in the membrane bilayer. The neogenin FN5-6 structure can be used to facilitate a molecular understanding of neogenin's interaction with hemojuvelin to regulate iron homeostasis and with hemojuvelin-related repulsive guidance molecules to mediate axon guidance.
Collapse
Affiliation(s)
- Fan Yang
- Graduate Option in Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | |
Collapse
|
28
|
Roles of heparan sulfate in mammalian brain development current views based on the findings from Ext1 conditional knockout studies. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 93:133-52. [PMID: 20807644 DOI: 10.1016/s1877-1173(10)93007-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Development of the mammalian central nervous system proceeds roughly in four major steps, namely the patterning of the neural tube, generation of neurons from neural stem cells and their migration to genetically predetermined destinations, extension of axons and dendrites toward target neurons to form neural circuits, and formation of synaptic contacts. Earlier studies on spatiotemporal expression patterns and in vitro function of heparan sulfate (HS) suggested that HS is functionally involved in various aspects of neural development. Recent studies using knockout of genes involved in HS biosynthesis have provided more physiologically relevant information as to the role of HS in mammalian neural development. This chapter reviews the current understanding of the in vivo function of HS deduced from the phenotypes of conditional Ext1 knockout mice.
Collapse
|
29
|
Netrin-DCC, Robo-Slit, and heparan sulfate proteoglycans coordinate lateral positioning of longitudinal dopaminergic diencephalospinal axons. J Neurosci 2009; 29:8914-26. [PMID: 19605629 DOI: 10.1523/jneurosci.0568-09.2009] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Longitudinal axons provide connectivity between remote areas of the nervous system. Although the molecular determinants driving commissural pathway formation have been well characterized, mechanisms specifying the formation of longitudinal axon tracts in the vertebrate nervous system are largely unknown. Here, we study axon guidance mechanisms of the longitudinal dopaminergic (DA) diencephalospinal tract. This tract is established by DA neurons located in the ventral diencephalon and is thought to be involved in modulating locomotor activity. Using mutant analysis as well as gain of function and loss of function experiments, we demonstrate that longitudinal DA axons navigate by integrating long-range signaling of midline-derived cues. Repulsive Robo2/Slit signaling keeps longitudinal DA axons away from the midline. In the absence of repulsive Robo2/Slit function, DA axons are attracted toward the midline by DCC (deleted in colorectal cancer)/Netrin1 signaling. Thus, Slit-based repulsion counteracts Netrin-mediated attraction to specify lateral positions of the DA diencephalospinal tract. We further identified heparan sulfate proteglycans as essential modulators of DA diencephalospinal guidance mechanisms. Our findings provide insight into the complexity of positioning far-projecting longitudinal axons and allow us to provide a model for DA diencephalospinal pathfinding. Simultaneous integrations of repulsive and attractive long-range cues from the midline act in a concerted manner to define lateral positions of DA longitudinal axon tracts.
Collapse
|
30
|
Larrivée B, Freitas C, Suchting S, Brunet I, Eichmann A. Guidance of vascular development: lessons from the nervous system. Circ Res 2009; 104:428-41. [PMID: 19246687 DOI: 10.1161/circresaha.108.188144] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The vascular system of vertebrates consists of an organized, branched network of arteries, veins, and capillaries that penetrates all the tissues of the body. One of the most striking features of the vascular system is that its branching pattern is highly stereotyped, with major and secondary branches forming at specific sites and developing highly conserved organ-specific vascular patterns. The factors controlling vascular patterning are not yet completely understood. Recent studies have highlighted the anatomic and structural similarities between blood vessels and nerves. The 2 networks are often aligned, with nerve fibers and blood vessels following parallel routes. Furthermore, both systems require precise control over their guidance and growth. Several molecules with attractive and repulsive properties have been found to modulate the proper guidance of both nerves and blood vessels. These include the Semaphorins, the Slits, and the Netrins and their receptors. In this review, we describe the molecular mechanisms by which blood vessels and axons achieve proper path finding and the molecular cues that are involved in their guidance.
Collapse
Affiliation(s)
- Bruno Larrivée
- Institut National de la Santé et de la Recherche Médicale, U833 and Collège de France, Paris, France
| | | | | | | | | |
Collapse
|
31
|
Abstract
Netrins are a family of proteins that direct cell and axon migration during development. Three secreted netrins (netrin-1, -3 and -4) have been identified in mammals, in addition to two GPI-anchored membrane proteins, netrin-G1 and G2. Orthologues of netrin-1 play a highly conserved role as guidance cues at the midline of the developing CNS of vertebrates and some bilaterally symmetric invertebrates. In vertebrates, floor plate cells at the ventral midline of the embryonic neural tube secrete netrin-1, generating a circumferential gradient of netrin protein in the neuroepithelium. This protein gradient is bifunctional, attracting some axons to the midline and repelling others. Receptors for the secreted netrins include DCC (deleted in colorectal cancer) and the UNC5 homologues: UNC5A, B, C and D in mammals. DCC mediates chemoattraction, while repulsion requires an UNC5 homologue and, in some cases, DCC. The netrin-G proteins bind NGLs (netrin G ligands), single pass transmembrane proteins unrelated to either DCC or the UNC5 homologues. Netrin function is not limited to the developing CNS midline. Various netrins direct cell and axon migration throughout the embryonic CNS, and in some cases continue to be expressed in the mature nervous system. Furthermore, although initially identified for their ability to guide axons, functional roles for netrins have now been identified outside the nervous system where they influence tissue morphogenesis by directing cell migration and regulating cell-cell and cell-matrix adhesion.
Collapse
|
32
|
Murakami M, Nguyen LT, Zhuang ZW, Zhang ZW, Moodie KL, Carmeliet P, Stan RV, Simons M. The FGF system has a key role in regulating vascular integrity. J Clin Invest 2008; 118:3355-66. [PMID: 18776942 DOI: 10.1172/jci35298] [Citation(s) in RCA: 232] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Accepted: 07/30/2008] [Indexed: 11/17/2022] Open
Abstract
The integrity of the endothelial monolayer is essential to blood vessel homeostasis and active regulation of endothelial permeability. The FGF system plays important roles in a wide variety of physiologic and pathologic conditions; however, its role in the adult vasculature has not been defined. To assess the role of the FGF system in the adult endothelial monolayer, we disrupted FGF signaling in bovine aortic endothelial cells and human saphenous vein endothelial cells in vitro and in adult mouse and rat endothelial cells in vivo using soluble FGF traps or a dominant inhibitor of all FGF receptors. The inhibition of FGF signaling using these approaches resulted in dissociation of the VE-cadherin/p120-catenin complex and disassembly of adherens and tight junctions, which progressed to loss of endothelial cells, severe impairment of the endothelial barrier function, and finally, disintegration of the vasculature. Thus, FGF signaling plays a key role in the maintenance of vascular integrity.
Collapse
Affiliation(s)
- Masahiro Murakami
- Angiogenesis Research Center and Section of Cardiology, Dartmouth Medical School, Lebanon, New Hampshire, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Matsumoto Y, Irie F, Inatani M, Tessier-Lavigne M, Yamaguchi Y. Netrin-1/DCC signaling in commissural axon guidance requires cell-autonomous expression of heparan sulfate. J Neurosci 2007; 27:4342-50. [PMID: 17442818 PMCID: PMC6672322 DOI: 10.1523/jneurosci.0700-07.2007] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
There is increasing evidence that heparan sulfate (HS) plays an essential role in various axon guidance processes. These observations, however, have not addressed whether HS is required cell autonomously as an axonal coreceptor or as an environmental factor that modulates the localization of guidance molecules in the terrain in which growing axons navigate. Here we demonstrate that netrin-1-mediated commissural axon guidance requires cell-autonomous expression of HS in commissural neurons in vivo. We used the Wnt1-Cre transgene to drive region-specific ablation of Ext1, which encodes an enzyme essential for HS synthesis, in the dorsal part of the spinal cord. Remarkably, Wnt1-Cre-mediated ablation of Ext1 causes commissural axon pathfinding defects that share similarities with those of Netrin-1-deficient and DCC (deleted in colorectal cancer)-deficient mice. Neither Ext1-deficient dorsal spinal cord explants nor wild-type explants in which HS expression was ablated could extend axons in response to netrin-1. Intracellular signaling downstream of netrin-1 and DCC was defective in Ext1-deficient commissural neurons and in DCC-transfected HEK293T cells from which HS was removed. These results demonstrate that the expression of HS by commissural neurons is essential for these neurons to transduce netrin-1 signals, thus providing evidence for a cell-autonomous role of HS in netrin-1/DCC-mediated axon guidance.
Collapse
Affiliation(s)
| | - Fumitoshi Irie
- Developmental Neurobiology and
- Glycobiology Programs, Burnham Institute for Medical Research, La Jolla, California 92037, and
| | | | | | - Yu Yamaguchi
- Developmental Neurobiology and
- Glycobiology Programs, Burnham Institute for Medical Research, La Jolla, California 92037, and
| |
Collapse
|
34
|
de Wit J, Verhaagen J. Proteoglycans as modulators of axon guidance cue function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 600:73-89. [PMID: 17607948 DOI: 10.1007/978-0-387-70956-7_7] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Organizing a functional neuronal network requires the precise wiring of neuronal connections. In order to find their correct targets, growth cones navigate through the extracellular matrix guided by secreted and membrane-bound molecules of the slit, netrin, ephrin and semaphorin families. Although many of these axon guidance molecules are able to bind to heparan sulfate proteoglycans, the role of proteoglycans in regulating axon guidance cue function is only now beginning to be understood. Recent developmental studies in a wide range of model organisms have revealed a crucial role for heparan sulfate proteoglycans as modulators of key signaling pathways in axon guidance. In addition, emerging evidence indicates an essential role for chondroitin sulfate proteoglycans in modifying the guidance function of semaphorins. It is becoming increasingly clear that extracellular matrix molecules, rather than just constituting a structural scaffold, can critically influence axon guidance cue function in development, and may continue to do so in the injured adult nervous system.
Collapse
Affiliation(s)
- Joris de Wit
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands.
| | | |
Collapse
|
35
|
Abstract
Currently there is an intense effort being made to elucidate the factors that control stem and progenitor cell fate. Developments in our understanding of the FGF/FGFR pathway and its role as an effector of stem cell pluripotency have heightened expectations that a therapeutic use for stem cells will move from a possibility to a probability. Mounting evidence is revealing the molecular mechanisms by which fibroblast growth factor (FGF) signaling, together with a large number of other growth and adhesive factors, is controlled by the extracellular sugar, heparan sulfate (HS). What has resulted is a novel means of augmenting and thus regulating the growth factor control of stem and progenitor cell fate. Here, we review the numerous bioactivities of HS, and the development of strategies to implement HS-induced control of cell fate decisions.
Collapse
Affiliation(s)
- Simon M Cool
- Laboratory of Stem Cells and Tissue Repair, Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore 138673.
| | | |
Collapse
|
36
|
Gonzalez-Brito MR, Bixby JL. Differential activities in adhesion and neurite growth of fibronectin type III repeats in the PTP-delta extracellular domain. Int J Dev Neurosci 2006; 24:425-9. [PMID: 17034983 PMCID: PMC1702485 DOI: 10.1016/j.ijdevneu.2006.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 07/20/2006] [Accepted: 08/29/2006] [Indexed: 01/01/2023] Open
Abstract
The full-length extracellular domain (ECD) of protein tyrosine phosphatase delta (PTP-delta) functions as a ligand to promote cell adhesion and neurite outgrowth; this ECD contains three immunoglobulin (Ig) repeats and eight fibronectin type III (FN III) repeats. However, it is not known which regions of the ECD regulate its ligand functions. Therefore, we constructed and expressed a fusion protein of the PTP-delta ECD lacking FN III repeats 4-8, and tested this protein for neuronal adhesion and neurite-promoting ability. Compared to the full-length isoform, the truncated ECD was poorer at promoting adhesion, but a more potent promoter of neurite growth. The results suggest that distal FN III repeats of PTP-delta are important in adhesive functions, but dispensable for neurite outgrowth promotion. As the predominant isoform of PTP-delta during neural development (type D) also lacks distal FN III repeats, the functional properties we observe may be relevant to periods of axon extension, suggesting that splice variants of receptor PTPs play distinct roles in neural development.
Collapse
Affiliation(s)
| | - John L. Bixby
- Molecular & Cellular Pharmacology
- Neurological Surgery, and
- Neuroscience Program The Miami Project to Cure Paralysis University of Miami Miller School of Medicine Lois Pope LIFE Center, Room 4-17 1095 NW 14th Terrace, Miami, Florida 33136
- Address correspondence to: John L. Bixby, The Miami Project to Cure Paralysis, LPLC 4-17, University of Miami School of Medicine, 1095 NW 14 Terrace, Miami, FL 33136, Phone number: 305-243-4874, Fax number: 305-243-3921, e-mail:
| |
Collapse
|
37
|
Abstract
Metastatic growth is a selective, non-random process, which in the case of colorectal cancer, frequently occurs in the liver and is the major cause of cancer related death in these patients. This review summarises attempts to find biological and molecular markers of metastasis and their role in establishment of secondary tumours. Recent evidence suggests that liver metastases are phenotypically different to the primary from which they were derived and thus represent a separate disease entity.
Collapse
Affiliation(s)
- Nigel C Bird
- Liver Research Group, Clinical Sciences (South), Royal Hallamshire Hospital, Sheffield, United Kingdom.
| | | | | |
Collapse
|
38
|
Porcionatto MA. The extracellular matrix provides directional cues for neuronal migration during cerebellar development. Braz J Med Biol Res 2006; 39:313-20. [PMID: 16501810 DOI: 10.1590/s0100-879x2006000300001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Normal central nervous system development relies on accurate intrinsic cellular programs as well as on extrinsic informative cues provided by extracellular molecules. Migration of neuronal progenitors from defined proliferative zones to their final location is a key event during embryonic and postnatal development. Extracellular matrix components play important roles in these processes, and interactions between neurons and extracellular matrix are fundamental for the normal development of the central nervous system. Guidance cues are provided by extracellular factors that orient neuronal migration. During cerebellar development, the extracellular matrix molecules laminin and fibronectin give support to neuronal precursor migration, while other molecules such as reelin, tenascin, and netrin orient their migration. Reelin and tenascin are extracellular matrix components that attract or repel neuronal precursors and axons during development through interaction with membrane receptors, and netrin associates with laminin and heparan sulfate proteoglycans, and binds to the extracellular matrix receptor integrins present on the neuronal surface. Altogether, the dynamic changes in the composition and distribution of extracellular matrix components provide external cues that direct neurons leaving their birthplaces to reach their correct final location. Understanding the molecular mechanisms that orient neurons to reach precisely their final location during development is fundamental to understand how neuronal misplacement leads to neurological diseases and eventually to find ways to treat them.
Collapse
Affiliation(s)
- M A Porcionatto
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
39
|
Van Vactor D, Wall DP, Johnson KG. Heparan sulfate proteoglycans and the emergence of neuronal connectivity. Curr Opin Neurobiol 2006; 16:40-51. [PMID: 16417999 DOI: 10.1016/j.conb.2006.01.011] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Accepted: 01/09/2006] [Indexed: 12/20/2022]
Abstract
With the identification of the molecular determinants of neuronal connectivity, our understanding of the extracellular information that controls axon guidance and synapse formation has evolved from single factors towards the complexity that neurons face in a living organism. As we move in this direction - ready to see the forest for the trees - attention is returning to one of the most ancient regulators of cell-cell interaction: the extracellular matrix. Among many matrix components that influence neuronal connectivity, recent studies of the heparan sulfate proteoglycans suggest that these ancient molecules function as versatile extracellular scaffolds that both sculpt the landscape of extracellular cues and modulate the way that neurons perceive the world around them.
Collapse
Affiliation(s)
- David Van Vactor
- Departments of Cell Biology and Program in Neuroscience and Systems Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 02115, USA
| | | | | |
Collapse
|
40
|
Grobe K, Inatani M, Pallerla SR, Castagnola J, Yamaguchi Y, Esko JD. Cerebral hypoplasia and craniofacial defects in mice lacking heparan sulfate Ndst1 gene function. Development 2005; 132:3777-86. [PMID: 16020517 PMCID: PMC7851831 DOI: 10.1242/dev.01935] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Mutant mice bearing a targeted disruption of the heparan sulfate (HS) modifying enzyme GlcNAc N-deacetylase/N-sulfotransferase 1 (Ndst1) exhibit severe developmental defects of the forebrain and forebrain-derived structures, including cerebral hypoplasia, lack of olfactory bulbs, eye defects and axon guidance errors. Neural crest-derived facial structures are also severely affected. We show that properly synthesized heparan sulfate is required for the normal development of the brain and face, and that Ndst1 is a modifier of heparan sulfate-dependent growth factor/morphogen signalling in those tissues. Among the multiple heparan sulfate-binding factors potentially affected in Ndst1 mutant embryos, the facial phenotypes are consistent with impaired sonic hedgehog (Shh) and fibroblast growth factor (Fgf) interaction with mutant heparan sulfate. Most importantly, the data suggest the possibility that defects in heparan sulfate synthesis could give rise to or contribute to a number of developmental brain and facial defects in humans.
Collapse
Affiliation(s)
- Kay Grobe
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0687, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Kruger RP, Lee J, Li W, Guan KL. Mapping netrin receptor binding reveals domains of Unc5 regulating its tyrosine phosphorylation. J Neurosci 2005; 24:10826-34. [PMID: 15574733 PMCID: PMC6730211 DOI: 10.1523/jneurosci.3715-04.2004] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Netrin and its receptors Unc5 and deleted in colorectal carcinoma (DCC) regulate axon guidance and cell migration. We defined domains involved in the interactions between netrin-1, DCC, and Unc5c. We show that Unc5 requires both Ig domains to interact with netrin. DCC binds through the fourth fibronectin type III domain, whereas netrin binds through multiple domains to both receptors. We examined the functional consequences of removing the netrin binding and nonbinding domains from Unc5 in vitro and in vivo. In human embryonic kidney 293 cells, removal of the netrin binding second Ig domain causes an increase in basal tyrosine phosphorylation, whereas removal of the netrin nonbinding thrombospondin domains decreases tyrosine phosphorylation. Moreover, experiments in Caenorhabditis elegans indicate that both netrin binding and nonbinding domains are necessary for phenotypic rescue of an unc-5 loss of function mutation.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- COS Cells
- Caenorhabditis elegans/genetics
- Caenorhabditis elegans Proteins/chemistry
- Caenorhabditis elegans Proteins/metabolism
- Cell Adhesion Molecules/chemistry
- Cell Adhesion Molecules/metabolism
- Cell Line
- Chickens
- Chlorocebus aethiops
- DCC Receptor
- Genes, DCC
- Genetic Complementation Test
- Humans
- Microscopy, Confocal
- Microscopy, Fluorescence
- Models, Molecular
- Nerve Growth Factors/chemistry
- Nerve Growth Factors/genetics
- Nerve Growth Factors/metabolism
- Netrin Receptors
- Netrin-1
- Phosphorylation
- Phosphotyrosine/analysis
- Protein Binding
- Protein Conformation
- Protein Interaction Mapping
- Protein Processing, Post-Translational
- Protein Structure, Tertiary
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/deficiency
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/metabolism
- Sequence Deletion
- Structure-Activity Relationship
- Transfection
- Tumor Suppressor Proteins/chemistry
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
Collapse
Affiliation(s)
- Robert P Kruger
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|
42
|
Lent R, Uziel D, Baudrimont M, Fallet C. Cellular and molecular tunnels surrounding the forebrain commissures of human fetuses. J Comp Neurol 2005; 483:375-82. [PMID: 15700272 DOI: 10.1002/cne.20427] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Glial cells and extracellular matrix (ECM) molecules surround developing fiber tracts and are implicated in axonal pathfinding. These and other molecules are produced by these strategically located glial cells and have been shown to influence axonal growth across the midline in rodents. We searched for similar cellular and molecular structures surrounding the telencephalic commissures of fetal human brains. Paraffin-embedded brain sections were immunostained for glial fibrillary acidic protein (GFAP) and vimentin (VN) to identify glial cells; for microtubule-associated protein-2 (MAP-2) and neuronal nuclear protein (NeuN) to document neurons; for neurofilament (NF) to identify axons; and for chondroitin sulfate (CS), tenascin (TN), and fibronectin (FN) to show the ECM. As in rodents, three cellular clusters surrounding the corpus callosum were identified by their expression of GFAP and VN (but not MAP-2 or NeuN) from 13 to at least 18 weeks postovulation (wpo): the glial wedge, the glia of the indusium griseum, and the midline sling. CS and TN (but not FN) were expressed pericellularly in these cell groups. The anterior commissure was surrounded by a GFAP+/VN+ glial tunnel from 12 wpo, with TN expression seen between the GFAP+ cell bodies. The fimbria showed GFAP+/VN+ cells at its lateral and medial borders from 12 wpo, with pericellular expression of CS. The fornix showed GFAP+ cells somewhat later (16 wpo). Because these structures are similar to those described for rodents, we concluded that the axon guiding mechanisms postulated for commissural formation in nonhuman mammals may also be operant in the developing human brain.
Collapse
Affiliation(s)
- Roberto Lent
- Departamento de Anatomia, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941-590 Rio de Janeiro, Brazil.
| | | | | | | |
Collapse
|
43
|
Lee JS, Chien CB. When sugars guide axons: insights from heparan sulphate proteoglycan mutants. Nat Rev Genet 2004; 5:923-35. [PMID: 15573124 DOI: 10.1038/nrg1490] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although there have previously been hints that heparan sulphate proteoglycans (HSPGs) are important for axon guidance, as they are for many other biological processes, there has been little in vivo evidence for interaction with known axon-guidance pathways. Genetic analyses of fly, mouse, nematode and zebrafish mutants now confirm the role of HSPGs in axon guidance and are beginning to show that they might have a key role in modulating the action of axon-guidance ligands and receptors.
Collapse
Affiliation(s)
- Jeong-Soo Lee
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, 20 North 1900 East, Salt Lake City, Utah 84132, USA
| | | |
Collapse
|
44
|
Mehlen P, Fearon ER. Role of the dependence receptor DCC in colorectal cancer pathogenesis. J Clin Oncol 2004; 22:3420-8. [PMID: 15310786 DOI: 10.1200/jco.2004.02.019] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
More than a decade ago, the DCC (deleted in colorectal cancer) gene was proposed as a putative tumor suppressor gene. Data supporting this proposal included observations that one DCC allele was deleted in roughly 70% of colorectal cancers, some cancers had somatic mutations of the DCC gene, and DCC expression was often reduced or absent in colorectal cancer tissues and cell lines. Despite subsequent studies which have supported DCC's potential role as a tumor suppressor gene, the rarity of point mutations identified in DCC coding sequences, the lack of a tumor predisposition phenotype in mice heterozygous for DCC inactivating mutations, and the presence of other known and candidate tumor suppressor genes on chromosome 18q have raised questions about DCC's candidacy. Following its initial characterization, the DCC protein was identified as a transmembrane receptor for netrins, key factors in axon guidance in the developing nervous system. At first glance, the established role of DCC and netrin-1 during organization of the spinal cord could be viewed as a further challenge to the position that DCC inactivation might play a significant role in tumorigenesis. However, recent observations on DCC's functions in intracellular signaling have renewed interest in the potential contribution of DCC inactivation to cancer. In particular, data indicate that, when engaged by netrin ligands, DCC may activate downstream signaling pathways. Moreover, in settings where netrin is absent or at low levels, DCC can promote apoptosis. Here, we review DCC's candidacy as a tumor suppressor gene, with an emphasis on how recent molecular analyses of DCC have offered support for the notion that DCC may function as a tumor suppressor gene.
Collapse
Affiliation(s)
- Patrick Mehlen
- Apoptosis/Differentiation Laboratory Equipe labelisée La Ligue Molecular and Cellular Genetic Center, CNRS UMR 5534, University of Lyon, 69622 Villeurbanne, France.
| | | |
Collapse
|
45
|
Bülow HE, Hobert O. Differential sulfations and epimerization define heparan sulfate specificity in nervous system development. Neuron 2004; 41:723-36. [PMID: 15003172 DOI: 10.1016/s0896-6273(04)00084-4] [Citation(s) in RCA: 211] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2003] [Revised: 12/15/2003] [Accepted: 01/07/2004] [Indexed: 01/17/2023]
Abstract
Heparan sulfate proteoglycans (HSPG) are components of the extracellular matrix through which axons navigate to reach their targets. The heparan sulfate (HS) side chains of HSPGs show complex and differentially regulated patterns of secondary modifications, including sulfations of distinct hydroxyl groups and epimerization of an asymmetric carbon atom. These modifications endow the HSPG-containing extracellular matrix with the potential to code for an enormous molecular diversity. Attempting to decode this diversity, we analyzed C. elegans animals lacking three HS-modifying enzymes, glucuronyl C5-epimerase, heparan 6O-sulfotransferase, and 2O-sulfotransferase. Each of the mutant animals exhibit distinct as well as overlapping axonal and cellular guidance defects in specific neuron classes. We have linked individual HS modifications to two specific guidance systems, the sax-3/Robo and kal-1/Anosmin-1 systems, whose activity is dependent on different HS modifications in different cellular contexts. Our results demonstrate that the molecular diversity in HS encodes information that is crucial for different aspects of neuronal development.
Collapse
Affiliation(s)
- Hannes E Bülow
- Department of Biochemistry and Molecular Biophysics, Center for Neurobiology and Behavior, Columbia University, College of Physicians and Surgeons, New York, NY 10032 USA
| | | |
Collapse
|
46
|
Geisbrecht BV, Dowd KA, Barfield RW, Longo PA, Leahy DJ. Netrin binds discrete subdomains of DCC and UNC5 and mediates interactions between DCC and heparin. J Biol Chem 2003; 278:32561-8. [PMID: 12810718 DOI: 10.1074/jbc.m302943200] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Netrins are secreted proteins that elicit both attractive and repulsive responses in migrating cells in the central and peripheral nervous systems. Netrins interact with members of two distinct families of transmembrane receptors, represented by DCC (deleted in colorectal cancer) and UNC5. A human netrin fragment (soluble netrin; sNetrin) was purified from an engineered Chinese hamster ovary cell line and used in a pull-down assay to map the interactions between netrin and its receptors. We find that sNetrin binds exclusively to the fifth fibronectin type III repeat of DCC and to each immunoglobulin repeat of UNC5. Both DCC and UNC5 bind to sNetrin with 1:1 stoichiometry in solution, and the minimal receptor fragments behave similarly to larger fragments in cross-linking experiments with purified sNetrin. We find no evidence for formation of a ternary complex between sNetrin and soluble forms of DCC and UNC5. We also find no evidence for an interaction between DCC and heparin and instead demonstrate that a loop on the fifth fibronectin type III repeat of DCC previously implicated in mediating interactions with heparin is important for sNetrin binding. Since netrin binds heparin, our results suggest that interactions between DCC and heparin are probably mediated by netrin.
Collapse
Affiliation(s)
- Brian V Geisbrecht
- Howard Hughes Medical Institute and the Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
47
|
Braga-de-Souza S, Lent R. Temporal and spatial regulation of chondroitin sulfate, radial glial cells, growing commissural axons, and other hippocampal efferents in developing hamsters. J Comp Neurol 2003; 468:217-32. [PMID: 14648681 DOI: 10.1002/cne.10947] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We investigated the time and space relationship between growth of hippocampal efferents, particularly those forming the hippocampal commissure, and expression of extracellular matrix components related to radial glial cells. Developing hamster brains from embryonic day (E) 13 to postnatal day (P) 7 had 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI) crystals implanted into the hippocampus or were processed for fluorescent immunohistochemistry against chondroitin sulfate (CS) glycosaminoglycans and glial fibrillary acidic protein (GFAP). The first, pioneer fibers from the hippocampus were seen crossing the midline at E15 and arriving at the contralateral hippocampus 24-48 hours later (P1), followed closely by a thick front of growing fibers. Before E15, CS expression was preceded by septal fusion and was concomitant with formation of the commissural tract. On E15, CS expression formed a U-shaped border below the fimbria. From E15 to P3, CS became expressed between the hippocampal commissure and the third ventricle and at the caudal borders of the fornix columns. As the hippocampal commissure expanded, CS expression became gradually lighter to virtually disappear by P7. On E15 and P1, GFAP-positive radial glial cells were present caudal (but not rostral) to the commissure at the midline, partially overlapping CS expression. Similar cells were present dorsal to the fimbria, extending their processes perpendicularly over the growing axons. The data reveal that CS and radial glial cells form a tunnel surrounding the developing fimbria and a border at the midline caudal to the hippocampal commissure. It is suggested that these cellular and molecular borders play a role in guidance of hippocampal efferents.
Collapse
Affiliation(s)
- Suzana Braga-de-Souza
- Departamento de Anatomia, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941-590 Rio de Janeiro, Brazil
| | | |
Collapse
|
48
|
Cavalcante LA, Garcia-Abreu J, Moura Neto V, Silva LC, Weissmüller G. Modulators of axonal growth and guidance at the brain midline with special reference to glial heparan sulfate proteoglycans. AN ACAD BRAS CIENC 2002; 74:691-716. [PMID: 12563418 DOI: 10.1590/s0001-37652002000400010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Bilaterally symmetric organisms need to exchange information between the left and right sides of their bodies to integrate sensory input and to coordinate motor control. Thus, an important choice point for developing axons is the Central Nervous System (CNS) midline. Crossing of this choice point is influenced by highly conserved, soluble or membrane-bound molecules such as the L1 subfamily, laminin, netrins, slits, semaphorins, Eph-receptors and ephrins, etc. Furthermore, there is much circumstantial evidence for a role of proteoglycans (PGs) or their glycosaminoglycan (GAG) moieties on axonal growth and guidance, most of which was derived from simplified models. A model of intermediate complexity is that of cocultures of young neurons and astroglial carpets (confluent cultures) obtained from medial and lateral sectors of the embryonic rodent midbrain soon after formation of its commissures. Neurite production in these cocultures reveals that, irrespective of the previous location of neurons in the midbrain, medial astrocytes exerted an inhibitory or non-permissive effect on neuritic growth that was correlated to a higher content of both heparan and chondroitin sulfates (HS and CS). Treatment with GAG lyases shows minor effects of CS and discloses a major inhibitory or non-permissive role for HS. The results are discussed in terms of available knowledge on the binding of HSPGs to interative proteins and underscore the importance of understanding glial polysaccharide arrays in addition to its protein complement for a better understanding of neuron-glial interactions.
Collapse
Affiliation(s)
- Leny A Cavalcante
- Instituto de Biofísica Carlos Chagas Filho, CCS, Universidade Federal do Rio de Janeiro, 21949-900, Rio de Janeiro, Brazil.
| | | | | | | | | |
Collapse
|
49
|
Ferrer-Martínez A, Ruiz-Lozano P, Chien KR. Mouse PeP: a novel peroxisomal protein linked to myoblast differentiation and development. Dev Dyn 2002; 224:154-67. [PMID: 12112469 DOI: 10.1002/dvdy.10099] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The identification of several peroxisomal proteins in the past decade has deepened our understanding of the biology of peroxisomes and their involvement in human disorders. We report the cloning and expression pattern during the mouse development of a cDNA encoding a novel protein, named PeP, and show that its product is imported specifically to the peroxisome matrix in a variety of cell types. We also demonstrate that PeP is imported to the organelle through the PEX5 receptor pathway, which indicates that the C-terminal tripeptide SKI behaves as a type 1 peroxisomal targeting signal (PTS1). PeP expression is tightly regulated, as shown by Northern and in situ hybridization experiments. Thus during embryonic development in the mouse, PeP mRNA is detected almost exclusively in the skeletal muscle, whereas in adult mice, strong expression is also found in the heart and brain. In addition, PeP mRNA accumulation is induced after myoblast differentiation in vitro, when myotube formation is promoted. Sequence analysis reveals that PeP has no significant homology to any known protein, except for a short stretch of amino acids containing the fingerprint of the fibronectin type III superfamily, a domain present in proteins often related to molecular and cellular recognition and binding processes. Thus our data suggest a connection between the function of PeP and murine cell differentiation and development.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Bezafibrate/pharmacology
- Blotting, Northern
- Cell Differentiation
- Cell Line
- Cells, Cultured
- Cloning, Molecular
- DNA/metabolism
- DNA, Complementary/metabolism
- Fibronectins/metabolism
- Gene Expression Regulation, Developmental
- Gene Library
- Green Fluorescent Proteins
- Humans
- Hypolipidemic Agents/pharmacology
- In Situ Hybridization
- Luminescent Proteins/metabolism
- Male
- Mice
- Microscopy, Fluorescence
- Models, Genetic
- Molecular Sequence Data
- Muscles/cytology
- Muscles/embryology
- Myoblasts/cytology
- Peptides/chemistry
- Peroxisomes/metabolism
- Plasmids/metabolism
- Polymerase Chain Reaction
- Protein Biosynthesis
- Protein Structure, Tertiary
- Proteins/chemistry
- Proteins/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Time Factors
- Tissue Distribution
- Transfection
- Up-Regulation
Collapse
Affiliation(s)
- Andreu Ferrer-Martínez
- Institute of Molecular Medicine, School of Medicine, University of California, San Diego, California, USA.
| | | | | |
Collapse
|
50
|
|