1
|
Tong J, Williams B, Rusjan PM, Mizrahi R, Lacapère JJ, McCluskey T, Furukawa Y, Guttman M, Ang LC, Boileau I, Meyer JH, Kish SJ. Concentration, distribution, and influence of aging on the 18 kDa translocator protein in human brain: Implications for brain imaging studies. J Cereb Blood Flow Metab 2020; 40:1061-1076. [PMID: 31220997 PMCID: PMC7181090 DOI: 10.1177/0271678x19858003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Positron emission tomography (PET) imaging of the translocator protein (TSPO) is widely used as a biomarker of microglial activation. However, TSPO protein concentration in human brain has not been optimally quantified nor has its regional distribution been compared to TSPO binding. We determined TSPO protein concentration, change with age, and regional distribution by quantitative immunoblotting in autopsied human brain. Brain TSPO protein concentration (>0.1 ng/µg protein) was higher than those reported by in vitro binding assays by at least 2 to 70 fold. TSPO protein distributed widely in both gray and white matter regions, with distribution in major gray matter areas ranked generally similar to that of PET binding in second-generation radiotracer studies. TSPO protein concentration in frontal cortex was high at birth, declined precipitously during the first three months, and increased modestly during adulthood/senescence (10%/decade; vs. 30% for comparison astrocytic marker GFAP). As expected, TSPO protein levels were significantly increased (+114%) in degenerating putamen in multiple system atrophy, providing further circumstantial support for TSPO as a gliosis marker. Overall, findings show some similarities between TSPO protein and PET binding characteristics in the human brain but also suggest that part of the TSPO protein pool might be less available for radioligand binding.
Collapse
Affiliation(s)
- Junchao Tong
- Preclinical Imaging, Research Imaging
Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Human Brain Laboratory, Research Imaging
Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Research Imaging Centre and Campbell
Family Mental Health Research Institute, Centre for Addiction and Mental Health,
Toronto, Ontario, Canada
- Junchao Tong, Preclinical Imaging, Centre
for Addiction and Mental Health, 250 College Street, Toronto, Ontario M5T 1R8,
Canada.
| | - Belinda Williams
- Human Brain Laboratory, Research Imaging
Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Addiction Imaging Research Group,
Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario,
Canada
| | - Pablo M. Rusjan
- Research Imaging Centre and Campbell
Family Mental Health Research Institute, Centre for Addiction and Mental Health,
Toronto, Ontario, Canada
| | - Romina Mizrahi
- Research Imaging Centre and Campbell
Family Mental Health Research Institute, Centre for Addiction and Mental Health,
Toronto, Ontario, Canada
| | - Jean-Jacques Lacapère
- Sorbonne Universités-UPMC University of
Paris 06, Département de Chimie, École Normale Supérieure-PSL Research University,
Paris, France
| | - Tina McCluskey
- Human Brain Laboratory, Research Imaging
Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Research Imaging Centre and Campbell
Family Mental Health Research Institute, Centre for Addiction and Mental Health,
Toronto, Ontario, Canada
| | - Yoshiaki Furukawa
- Department of Neurology, Juntendo Tokyo
Koto Geriatric Medical Center, and Faculty of Medicine, University & Post
Graduate University of Juntendo, Tokyo, Japan
| | - Mark Guttman
- Centre for Movement Disorders, Toronto,
Ontario, Canada
| | - Lee-Cyn Ang
- Division of Neuropathology, London
Health Science Centre, University of Western Ontario, London, Ontario, Canada
| | - Isabelle Boileau
- Research Imaging Centre and Campbell
Family Mental Health Research Institute, Centre for Addiction and Mental Health,
Toronto, Ontario, Canada
- Addiction Imaging Research Group,
Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario,
Canada
| | - Jeffrey H Meyer
- Research Imaging Centre and Campbell
Family Mental Health Research Institute, Centre for Addiction and Mental Health,
Toronto, Ontario, Canada
| | - Stephen J Kish
- Human Brain Laboratory, Research Imaging
Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Research Imaging Centre and Campbell
Family Mental Health Research Institute, Centre for Addiction and Mental Health,
Toronto, Ontario, Canada
| |
Collapse
|
2
|
Shoshan-Barmatz V, Pittala S, Mizrachi D. VDAC1 and the TSPO: Expression, Interactions, and Associated Functions in Health and Disease States. Int J Mol Sci 2019; 20:ijms20133348. [PMID: 31288390 PMCID: PMC6651789 DOI: 10.3390/ijms20133348] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 12/12/2022] Open
Abstract
The translocator protein (TSPO), located at the outer mitochondrial membrane (OMM), serves multiple functions and contributes to numerous processes, including cholesterol import, mitochondrial metabolism, apoptosis, cell proliferation, Ca2+ signaling, oxidative stress, and inflammation. TSPO forms a complex with the voltage-dependent anion channel (VDAC), a protein that mediates the flux of ions, including Ca2+, nucleotides, and metabolites across the OMM, controls metabolism and apoptosis and interacts with many proteins. This review focuses on the two OMM proteins TSPO and VDAC1, addressing their structural interaction and associated functions. TSPO appears to be involved in the generation of reactive oxygen species, proposed to represent the link between TSPO activation and VDAC, thus playing a role in apoptotic cell death. In addition, expression of the two proteins in healthy brains and diseased states is considered, as is the relationship between TSPO and VDAC1 expression. Both proteins are over-expressed in in brains from Alzheimer’s disease patients. Finally, TSPO expression levels were proposed as a biomarker of some neuropathological settings, while TSPO-interacting ligands have been considered as a potential basis for drug development.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| | - Srinivas Pittala
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Dario Mizrachi
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
3
|
Papadopoulos V, Aghazadeh Y, Fan J, Campioli E, Zirkin B, Midzak A. Translocator protein-mediated pharmacology of cholesterol transport and steroidogenesis. Mol Cell Endocrinol 2015; 408:90-8. [PMID: 25818881 PMCID: PMC4417383 DOI: 10.1016/j.mce.2015.03.014] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/16/2015] [Accepted: 03/17/2015] [Indexed: 12/17/2022]
Abstract
Steroidogenesis begins with cholesterol transfer into mitochondria through the transduceosome, a complex composed of cytosolic proteins that include steroidogenesis acute regulatory protein (STAR), 14-3-3 adaptor proteins, and the outer mitochondrial membrane proteins Translocator Protein (TSPO) and Voltage-Dependent Anion Channel (VDAC). TSPO is a drug- and cholesterol-binding protein found at particularly high levels in steroid synthesizing cells. Its aberrant expression has been linked to cancer, neurodegeneration, neuropsychiatric disorders and primary hypogonadism. Brain steroids serve as local regulators of neural development and excitability. Reduced levels of these steroids have been linked to depression, anxiety and neurodegeneration. Reduced serum testosterone is common among subfertile young men and aging men, and is associated with depression, metabolic syndrome and reduced sexual function. Although testosterone-replacement therapy is available, there are undesired side-effects. TSPO drug ligands have been proposed as therapeutic agents to regulate steroid levels in the brain and testis.
Collapse
Affiliation(s)
- Vassilios Papadopoulos
- The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada; Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada; Departments of Biochemistry, McGill University, Montreal, Quebec, Canada.
| | - Yasaman Aghazadeh
- The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Jinjiang Fan
- The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Enrico Campioli
- The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Barry Zirkin
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Andrew Midzak
- The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Departments of Biochemistry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
4
|
The translocator protein as a potential molecular target for improved treatment efficacy in photodynamic therapy. Future Med Chem 2015; 6:775-92. [PMID: 24941872 DOI: 10.4155/fmc.14.37] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Since its serendipitous discovery over 30 years ago, the translocator protein (18 kDa) has been demonstrated to play an important role in a multitude of critical biological processes. Although implemented as a novel therapeutic and diagnostic tool for a variety of disease states, its most promising role is as a molecular target for anticancer treatments such as photodynamic therapy (PDT). This review gives an overview of the attempts made by researchers to design porphyrin-based photosensitizers for use as anticancer therapeutics in PDT as well as improved imaging agents for diagnostic purposes. With a better understanding of the structure and function of the translocator protein, the synthesis of porphyrins for use in PDT with optimum binding affinities will become ever more possible.
Collapse
|
5
|
Chua SW, Kassiou M, Ittner LM. The translocator protein as a drug target in Alzheimer's disease. Expert Rev Neurother 2014; 14:439-48. [PMID: 24625007 DOI: 10.1586/14737175.2014.896201] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The translocator protein (TSPO) recently emerged as a potential drug target in Alzheimer's disease (AD). This has been fuelled mainly by positron emission topography studies that show the upregulation of TSPO in AD, especially in relation to microgliosis and astrogliosis in amyloid-β and tau pathology. Although data as to the exact role of TSPO in AD is still inconclusive, TSPO appears to be involved in neuroinflammatory processes and AD has been shown to involve substantial inflammation. Therefore, further development and investigation of the pharmacological effect of TSPO ligands in AD pathology are warranted.
Collapse
Affiliation(s)
- Sook W Chua
- Dementia Research Unit, School of Medical Sciences, Wallace Wurth Building, University of New South Wales, Sydney, NSW 2052, Australia
| | | | | |
Collapse
|
6
|
Abstract
Adrenal gonadal, placental and brain mitochondria contain several steroidogenic enzymes, notably the cholesterol side chain cleavage enzyme, P450scc, which is the enzymatic rate-limiting step in steroidogenesis which determines cellular steroidogenic capacity. Even before this step, the access of cholesterol to this enzyme system is both rate-limiting and the site of acute regulation via the steroidogenic acute regulatory protein (StAR) which interacts with a complex multi-component 'transduceosome' on the outer mitochondrial membrane (OMM). The components of the transduceosome include the 18 kDa translocator protein (TSPO), the voltage-dependent anion channel (VDAC-1), TSPO-associated protein 7 (PAP7, ACBD3 for acyl-CoA-binding-domain 3), and protein kinase A regulatory subunit 1α (PKAR1A). The precise fashion in which these proteins interact and move cholesterol from the OMM to P450scc, and the means by which cholesterol is loaded into the OMM, remain unclear. Human deficiency diseases have been described for StAR and for P450scc. Mitochondria also contain several 'downstream' steroidogenic enzymes.
Collapse
Affiliation(s)
- Vassilios Papadopoulos
- The Research Institute of the McGill University Health Centre, Department of Medicine, McGill University, Montreal, Quebec H3G 1A4, Canada.
| | | |
Collapse
|
7
|
Rupprecht R, Papadopoulos V, Rammes G, Baghai TC, Fan J, Akula N, Groyer G, Adams D, Schumacher M. Translocator protein (18 kDa) (TSPO) as a therapeutic target for neurological and psychiatric disorders. Nat Rev Drug Discov 2011; 9:971-88. [PMID: 21119734 DOI: 10.1038/nrd3295] [Citation(s) in RCA: 727] [Impact Index Per Article: 55.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The translocator protein (18 kDa) (TSPO) is localized primarily in the outer mitochondrial membrane of steroid-synthesizing cells, including those in the central and peripheral nervous system. One of its main functions is the transport of the substrate cholesterol into mitochondria, a prerequisite for steroid synthesis. TSPO expression may constitute a biomarker of brain inflammation and reactive gliosis that could be monitored by using TSPO ligands as neuroimaging agents. Moreover, initial clinical trials have indicated that TSPO ligands might be valuable in the treatment of neurological and psychiatric disorders. This Review focuses on the biology and pathophysiology of TSPO and the potential of currently available TSPO ligands for the diagnosis and treatment of neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians University, Nussbaumstrasse 7, 80336 Munich, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Midzak A, Akula N, Lecanu L, Papadopoulos V. Novel androstenetriol interacts with the mitochondrial translocator protein and controls steroidogenesis. J Biol Chem 2011; 286:9875-87. [PMID: 21209087 DOI: 10.1074/jbc.m110.203216] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Steroid hormones are metabolically derived from multiple enzymatic transformations of cholesterol. The controlling step in steroid hormone biogenesis is the delivery of cholesterol from intracellular stores to the cytochrome P450 enzyme CYP11A1 in the mitochondrial matrix. The 18-kDa translocator protein (TSPO) plays an integral part in this mitochondrial cholesterol transport. Consistent with its role in intracellular cholesterol movement, TSPO possesses a cholesterol recognition/interaction amino acid consensus (CRAC) motif that has been demonstrated to bind cholesterol. To further investigate the TSPO CRAC motif, we performed molecular modeling studies and identified a novel ligand, 3,17,19-androsten-5-triol (19-Atriol) that inhibits cholesterol binding at the CRAC motif. 19-Atriol could bind a synthetic CRAC peptide and rapidly inhibited hormonally induced steroidogenesis in MA-10 mouse Leydig tumor cells and constitutive steroidogenesis in R2C rat Leydig tumor cells at low micromolar concentrations. Inhibition at these concentrations was not due to toxicity or inhibition of the CYP11A1 enzyme and was reversed upon removal of the compound. In addition, 19-Atriol was an even more potent inhibitor of PK 11195-stimulated steroidogenesis, with activity in the high nanomolar range. This was accomplished without affecting PK 11195 binding or basal steroidogenesis. Finally, 19-Atriol inhibited mitochondrial import and processing of the steroidogenic acute regulatory protein without any effect on TSPO protein levels. In conclusion, we have identified a novel androstenetriol that can interact with the CRAC domain of TSPO, can control hormonal and constitutive steroidogenesis, and may prove to be a useful tool in the therapeutic control of diseases of excessive steroid formation.
Collapse
Affiliation(s)
- Andrew Midzak
- Research Institute of the McGill University Health Centre, Montreal, Quebec H3G 1A4, Canada
| | | | | | | |
Collapse
|
9
|
Two binding sites for [3H]PBR28 in human brain: implications for TSPO PET imaging of neuroinflammation. J Cereb Blood Flow Metab 2010; 30:1608-18. [PMID: 20424634 PMCID: PMC2949260 DOI: 10.1038/jcbfm.2010.63] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
[(11)C]PBR28, a radioligand targeting the translocator protein (TSPO), does not produce a specific binding signal in approximately 14% of healthy volunteers. This phenomenon has not been reported for [(11)C]PK11195, another TSPO radioligand. We measured the specific binding signals with [(3)H]PK11195 and [(3)H]PBR28 in brain tissue from 22 donors. Overall, 23% of the samples did not generate a visually detectable specific autoradiographic signal with [(3)H]PBR28, although all samples showed [(3)H]PK11195 binding. There was a marked reduction in the affinity of [(3)H]PBR28 for TSPO in samples with no visible [(3)H]PBR28 autoradiographic signal (K(i)=188+/-15.6 nmol/L), relative to those showing normal signal (K(i)=3.4+/-0.5 nmol/L, P<0.001). Of this latter group, [(3)H]PBR28 bound with a two-site fit in 40% of cases, with affinities (K(i)) of 4.0+/-2.4 nmol/L (high-affinity site) and 313+/-77 nmol/L (low-affinity site). There was no difference in K(d) or B(max) for [(3)H]PK11195 in samples showing no [(3)H]PBR28 autoradiographic signal relative to those showing normal [(3)H]PBR28 autoradiographic signal. [(3)H]PK11195 bound with a single site for all samples. The existence of three different binding patterns with PBR28 (high-affinity binding (46%), low-affinity binding (23%), and two-site binding (31%)) suggests that a reduction in [(11)C]PBR28 binding may not be interpreted simply as a reduction in TSPO density. The functional significance of differences in binding characteristics warrants further investigation.
Collapse
|
10
|
VDAC, a multi-functional mitochondrial protein regulating cell life and death. Mol Aspects Med 2010; 31:227-85. [PMID: 20346371 DOI: 10.1016/j.mam.2010.03.002] [Citation(s) in RCA: 552] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 03/17/2010] [Indexed: 01/22/2023]
Abstract
Research over the past decade has extended the prevailing view of the mitochondrion to include functions well beyond the generation of cellular energy. It is now recognized that mitochondria play a crucial role in cell signaling events, inter-organellar communication, aging, cell proliferation, diseases and cell death. Thus, mitochondria play a central role in the regulation of apoptosis (programmed cell death) and serve as the venue for cellular decisions leading to cell life or death. One of the mitochondrial proteins controlling cell life and death is the voltage-dependent anion channel (VDAC), also known as mitochondrial porin. VDAC, located in the mitochondrial outer membrane, functions as gatekeeper for the entry and exit of mitochondrial metabolites, thereby controlling cross-talk between mitochondria and the rest of the cell. VDAC is also a key player in mitochondria-mediated apoptosis. Thus, in addition to regulating the metabolic and energetic functions of mitochondria, VDAC appears to be a convergence point for a variety of cell survival and cell death signals mediated by its association with various ligands and proteins. In this article, we review what is known about the VDAC channel in terms of its structure, relevance to ATP rationing, Ca(2+) homeostasis, protection against oxidative stress, regulation of apoptosis, involvement in several diseases and its role in the action of different drugs. In light of our recent findings and the recently solved NMR- and crystallography-based 3D structures of VDAC1, the focus of this review will be on the central role of VDAC in cell life and death, addressing VDAC function in the regulation of mitochondria-mediated apoptosis with an emphasis on structure-function relations. Understanding structure-function relationships of VDAC is critical for deciphering how this channel can perform such a variety of functions, all important for cell life and death. This review also provides insight into the potential of VDAC1 as a rational target for new therapeutics.
Collapse
|
11
|
Fan J, Rone MB, Papadopoulos V. Translocator protein 2 is involved in cholesterol redistribution during erythropoiesis. J Biol Chem 2009; 284:30484-97. [PMID: 19729679 PMCID: PMC2781603 DOI: 10.1074/jbc.m109.029876] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 08/17/2009] [Indexed: 12/11/2022] Open
Abstract
Translocator protein (TSPO) is an 18-kDa cholesterol- and drug-binding protein conserved from bacteria to humans. While surveying for Tspo-like genes, we identified its paralogous gene, Tspo2, encoding an evolutionarily conserved family of proteins that arose by gene duplications before the divergence of avians and mammals. Comparative analysis of Tspo1 and Tspo2 functions suggested that Tspo2 has become subfunctionalized, typical of duplicated genes, characterized by the loss of diagnostic drug ligand-binding but retention of cholesterol-binding properties, hematopoietic tissue- and erythroid cell-specific distribution, and subcellular endoplasmic reticulum and nuclear membrane localization. Expression of Tspo2 in erythroblasts is strongly correlated with the down-regulation of the enzymes involved in cholesterol biosynthesis. Overexpression of TSPO2 in erythroid cells resulted in the redistribution of intracellular free cholesterol, an essential step in nucleus expulsion during erythrocyte maturation. Taken together, these data identify the TSPO2 family of proteins as mediators of cholesterol redistribution-dependent erythroblast maturation during mammalian erythropoiesis.
Collapse
Affiliation(s)
- Jinjiang Fan
- From the Research Institute of the McGill University Health Center and the Departments of Medicine, Biochemistry, and Pharmacology and Therapeutics, McGill University, Montréal, Québec H3A 1A4, Canada
| | - Malena B. Rone
- From the Research Institute of the McGill University Health Center and the Departments of Medicine, Biochemistry, and Pharmacology and Therapeutics, McGill University, Montréal, Québec H3A 1A4, Canada
| | - Vassilios Papadopoulos
- From the Research Institute of the McGill University Health Center and the Departments of Medicine, Biochemistry, and Pharmacology and Therapeutics, McGill University, Montréal, Québec H3A 1A4, Canada
| |
Collapse
|
12
|
VDAC activation by the 18 kDa translocator protein (TSPO), implications for apoptosis. J Bioenerg Biomembr 2009; 40:199-205. [PMID: 18670869 DOI: 10.1007/s10863-008-9142-1] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The voltage dependent anion channel (VDAC), located in the outer mitochondrial membrane, functions as a major channel allowing passage of small molecules and ions between the mitochondrial inter-membrane space and cytoplasm. Together with the adenine nucleotide translocator (ANT), which is located in the inner mitochondrial membrane, the VDAC is considered to form the core of a mitochondrial multiprotein complex, named the mitochondrial permeability transition pore (MPTP). Both VDAC and ANT appear to take part in activation of the mitochondrial apoptosis pathway. Other proteins also appear to be associated with the MPTP, for example, the 18 kDa mitochondrial Translocator Protein (TSPO), Bcl-2, hexokinase, cyclophylin D, and others. Interactions between VDAC and TSPO are considered to play a role in apoptotic cell death. As a consequence, due to its apoptotic functions, the TSPO has become a target for drug development directed to find treatments for neurodegenerative diseases and cancer. In this context, TSPO appears to be involved in the generation of reactive oxygen species (ROS). This generation of ROS may provide a link between activation of TSPO and of VDAC, to induce activation of the mitochondrial apoptosis pathway. ROS are known to be able to release cytochrome c from cardiolipins located at the inner mitochondrial membrane. In addition, ROS appear to be able to activate VDAC and allow VDAC mediated release of cytochrome c into the cytosol. Release of cytochrome c from the mitochondria forms the initiating step for activation of the mitochondrial apoptosis pathway. These data provide an understanding regarding the mechanisms whereby VDAC and TSPO may serve as targets to modulate apoptotic rates. This has implications for drug design to treat diseases such as neurodegeneration and cancer.
Collapse
|
13
|
Varga B, Markó K, Hádinger N, Jelitai M, Demeter K, Tihanyi K, Vas A, Madarász E. Translocator protein (TSPO 18kDa) is expressed by neural stem and neuronal precursor cells. Neurosci Lett 2009; 462:257-62. [PMID: 19545604 DOI: 10.1016/j.neulet.2009.06.051] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 05/13/2009] [Accepted: 06/17/2009] [Indexed: 10/20/2022]
Abstract
Translocator protein 18 kDa, the peripheral benzodiazepine receptor by its earlier name, is a mitochondrial membrane protein associated with the mitochondrial permeability pore. While the function of the protein is not properly understood, it is known to play roles in necrotic and apoptotic processes of the neural tissue. In the healthy adult brain, TSPO expression is restricted to glial cells. In developing or damaged neural regions, however, TSPO appears in differentiating/regenerating neurons. Using immunocytochemical, molecular biological and cell biological techniques, we demonstrate that TSPO mRNA and protein, while missing from mature neurons, are present in neural stem cells and also in postmitotic neuronal precursors. Investigating some distinct stages of in vitro differentiation of NE-4C neural stem cells, TSPO 18 kDa was found to be repressed in a relatively late phase of neuron formation, when mature neuron-specific features appear. This timing indicates that mitochondria in fully developed neurons display specific characteristics and provides an additional marker for characterising neuronal differentiation.
Collapse
Affiliation(s)
- Balázs Varga
- Institute of Experimental Medicine of Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Scarf AM, Ittner LM, Kassiou M. The Translocator Protein (18 kDa): Central Nervous System Disease and Drug Design. J Med Chem 2009; 52:581-92. [DOI: 10.1021/jm8011678] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alana M. Scarf
- Brain and Mind Research Institute, 100 Mallett Street, Camperdown, NSW 2050, Australia, and Department of Pharmacology, School of Medical Sciences, Discipline of Medical Radiation Sciences, and School of Chemistry, University of Sydney, NSW 2006, Australia
| | - Lars M. Ittner
- Brain and Mind Research Institute, 100 Mallett Street, Camperdown, NSW 2050, Australia, and Department of Pharmacology, School of Medical Sciences, Discipline of Medical Radiation Sciences, and School of Chemistry, University of Sydney, NSW 2006, Australia
| | - Michael Kassiou
- Brain and Mind Research Institute, 100 Mallett Street, Camperdown, NSW 2050, Australia, and Department of Pharmacology, School of Medical Sciences, Discipline of Medical Radiation Sciences, and School of Chemistry, University of Sydney, NSW 2006, Australia
| |
Collapse
|
15
|
Aon MA, Roussel MR, Cortassa S, O'Rourke B, Murray DB, Beckmann M, Lloyd D. The scale-free dynamics of eukaryotic cells. PLoS One 2008; 3:e3624. [PMID: 18982073 PMCID: PMC2575856 DOI: 10.1371/journal.pone.0003624] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Accepted: 10/11/2008] [Indexed: 01/19/2023] Open
Abstract
Temporal organization of biological processes requires massively parallel processing on a synchronized time-base. We analyzed time-series data obtained from the bioenergetic oscillatory outputs of Saccharomyces cerevisiae and isolated cardiomyocytes utilizing Relative Dispersional (RDA) and Power Spectral (PSA) analyses. These analyses revealed broad frequency distributions and evidence for long-term memory in the observed dynamics. Moreover RDA and PSA showed that the bioenergetic dynamics in both systems show fractal scaling over at least 3 orders of magnitude, and that this scaling obeys an inverse power law. Therefore we conclude that in S. cerevisiae and cardiomyocytes the dynamics are scale-free in vivo. Applying RDA and PSA to data generated from an in silico model of mitochondrial function indicated that in yeast and cardiomyocytes the underlying mechanisms regulating the scale-free behavior are similar. We validated this finding in vivo using single cells, and attenuating the activity of the mitochondrial inner membrane anion channel with 4-chlorodiazepam to show that the oscillation of NAD(P)H and reactive oxygen species (ROS) can be abated in these two evolutionarily distant species. Taken together these data strongly support our hypothesis that the generation of ROS, coupled to redox cycling, driven by cytoplasmic and mitochondrial processes, are at the core of the observed rhythmicity and scale-free dynamics. We argue that the operation of scale-free bioenergetic dynamics plays a fundamental role to integrate cellular function, while providing a framework for robust, yet flexible, responses to the environment.
Collapse
Affiliation(s)
- Miguel A. Aon
- The Johns Hopkins University Institute of Molecular Cardiobiology, Baltimore, Maryland, United States of America
| | - Marc R. Roussel
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Sonia Cortassa
- The Johns Hopkins University Institute of Molecular Cardiobiology, Baltimore, Maryland, United States of America
| | - Brian O'Rourke
- The Johns Hopkins University Institute of Molecular Cardiobiology, Baltimore, Maryland, United States of America
| | - Douglas B. Murray
- Institute for Advanced Biosciences, Keio University, Tsuruoka City, Yamagata, Japan
| | - Manfred Beckmann
- Institute of Biological Sciences, University of Wales, Aberystwyth, Wales, United Kingdom
| | - David Lloyd
- Microbiology Group, Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| |
Collapse
|
16
|
Tárnok K, Kiss E, Luiten PGM, Nyakas C, Tihanyi K, Schlett K, Eisel ULM. Effects of Vinpocetine on mitochondrial function and neuroprotection in primary cortical neurons. Neurochem Int 2008; 53:289-95. [PMID: 18793690 DOI: 10.1016/j.neuint.2008.08.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Accepted: 08/21/2008] [Indexed: 10/21/2022]
Abstract
Vinpocetine (ethyl apovincaminate), a synthetic derivative of the Vinca minor alkaloid vincamine, is widely used for the treatment of cerebrovascular-related diseases. One of the proposed mechanisms underlying its action is to protect against the cytotoxic effects of glutamate overexposure. Glutamate excitotoxicity leads to the disregulation of mitochondrial function and neuronal metabolism. As Vinpocetine has a binding affinity to the peripheral-type benzodiazepine receptor (PBR) involved in the mitochondrial transition pore complex, we investigated whether neuroprotection can be at least partially due to Vinpocetine's effects on PBRs. Neuroprotective effects of PK11195 and Ro5-4864, two drugs with selective and high affinity to PBR, were compared to Vinpocetine in glutamate excitotoxicity assays on primary cortical neuronal cultures. Vinpocetine exerted a neuroprotective action in a 1-50microM concentration range while PK11195 and Ro5-4864 were only slightly neuroprotective, especially in high (>25microM) concentrations. Combined pretreatment of neuronal cultures with Vinpocetine and PK11195 or Ro5-4864 showed increased neuroprotection in a dose-dependent manner, indicating that the different drugs may have different targets. To test this hypothesis, mitochondrial membrane potential (MMP) of cultured neurons was measured by flow cytometry. 25microM Vinpocetine reduced the decrease of mitochondrial inner membrane potential induced by glutamate exposure, but Ro5-4864 in itself was found to be more potent to block glutamate-evoked changes in MMP. Combination of Ro5-4864 and Vinpocetine treatment was found to be even more effective. In summary, the present results indicate that the neuroprotective action of vinpocetine in culture can not be explained by its effect on neuronal PBRs alone and that additional drug targets are involved.
Collapse
Affiliation(s)
- K Tárnok
- Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary.
| | | | | | | | | | | | | |
Collapse
|
17
|
Ji C, Yue Y, Lang SY, Yang N, Liu YY, Ge QS, Zuo PP. Effects of long-term low-dose hormone replacement therapy on the binding capacity of platelet peripheral-type benzodiazepine receptor in postmenopausal women. Psychoneuroendocrinology 2008; 33:670-5. [PMID: 18378096 DOI: 10.1016/j.psyneuen.2008.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Revised: 12/20/2007] [Accepted: 02/18/2008] [Indexed: 11/26/2022]
Abstract
The effects of long-term low-dose hormone replacement therapy (HRT) on the level of hormone in plasma and on the binding capacity of peripheral-type benzodiazepine receptor (PBR) on the platelet membranes were investigated among women. This study was a retrospective and case-controlled study where 64 women using long-term low-dose HRT for over 4 years entered the study and 99 women, age and education matched, were enrolled as control. Plasma hormone level and platelet PBR binding capacity of two groups were analyzed. A significant increase in plasma estradiol level in women using HRT was observed, compared to those in the control group. Meanwhile, women in the HRT group displayed higher platelet PBR binding capacity. Further analysis demonstrated that the binding capacity of platelet PBR was closely related to estradiol plasma level in all subjects. These results suggest that long-term low-dose HRT could relieve the decrease of estradiol level in plasma and PBR binding capacity on platelets in postmenopausal women, alleviate the endocrine imbalance process, and might be beneficial for reducing the risks of some diseases.
Collapse
Affiliation(s)
- Chao Ji
- Department of Pharmacology, School of Basic Medicine, Peking Union Medical College and Institute of Basic Medical Science, Chinese Academy of Medical Sciences, Beijing 100005, China
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
In work spanning more than a century, mitochondria have been recognized for their multifunctional roles in metabolism, energy transduction, ion transport, inheritance, signaling, and cell death. Foremost among these tasks is the continuous production of ATP through oxidative phosphorylation, which requires a large electrochemical driving force for protons across the mitochondrial inner membrane. This process requires a membrane with relatively low permeability to ions to minimize energy dissipation. However, a wealth of evidence now indicates that both selective and nonselective ion channels are present in the mitochondrial inner membrane, along with several known channels on the outer membrane. Some of these channels are active under physiological conditions, and others may be activated under pathophysiological conditions to act as the major determinants of cell life and death. This review summarizes research on mitochondrial ion channels and efforts to identify their molecular correlates. Except in a few cases, our understanding of the structure of mitochondrial ion channels is limited, indicating the need for focused discovery in this area.
Collapse
Affiliation(s)
- Brian O'Rourke
- Institute of Molecular Cardiobiology, Division of Cardiology, Department of Medicine, The Johns Hopkins University, Baltimore, Maryland 21205, USA.
| |
Collapse
|
19
|
Miller WL. StAR Search—What We Know about How the Steroidogenic Acute Regulatory Protein Mediates Mitochondrial Cholesterol Import. Mol Endocrinol 2007; 21:589-601. [PMID: 16973755 DOI: 10.1210/me.2006-0303] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cholesterol is the starting point for biosynthesis of steroids, oxysterols and bile acids, and is also an essential component of cellular membranes. The mechanisms directing the intracellular trafficking of this insoluble molecule have received attention through the discovery of the steroidogenic acute regulatory protein (StAR) and related proteins containing StAR-related lipid transfer domains. Much of our understanding of the physiology of StAR derives from studies of congenital lipoid adrenal hyperplasia, which is caused by StAR mutations. Multiple lines of evidence show that StAR moves cholesterol from the outer to inner mitochondrial membrane, but acts exclusively on the outer membrane. The precise mechanism by which StAR's action on the outer mitochondrial membrane stimulates the flow of cholesterol to the inner membrane remains unclear. When StAR interacts with protonated phospholipid head groups on the outer mitochondrial membrane, it undergoes a conformational change (molten globule transition) that opens and closes StAR's cholesterol-binding pocket; this conformational change is required for cholesterol binding, which is required for StAR activity. The action of StAR probably requires interaction with the peripheral benzodiazepine receptor.
Collapse
Affiliation(s)
- Walter L Miller
- Department of Pediatrics, Box 0978, University of California, San Francisco, San Francisco, California 94143-0978, USA.
| |
Collapse
|
20
|
Papadopoulos V, Liu J, Culty M. Is there a mitochondrial signaling complex facilitating cholesterol import? Mol Cell Endocrinol 2007; 265-266:59-64. [PMID: 17280776 DOI: 10.1016/j.mce.2006.12.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cholesterol transport into mitochondria is the rate-determining and hormone-sensitive step in steroid biosynthesis. During the last few years two proteins were shown to be critical for this process: the mitochondrial translocator protein, previously known as peripheral-type benzodiazepine receptor, and the steroidogenic acute regulatory protein. In this manuscript we review evidence suggesting that these two proteins functionally interact to facilitate cholesterol transport and may be part of a larger multimeric mitochondrial complex of proteins assembled to facilitate the hormone-induced cholesterol transfer into mitochondria. This complex might include proteins such as the mitochondrial voltage-dependent anion channel, the translocator protein-associated protein PAP7 which also functions as an A kinase anchor protein that binds and brings into the complex the regulatory subunit Ialpha of the cAMP-dependent protein kinase.
Collapse
Affiliation(s)
- Vassilios Papadopoulos
- Department of Biochemistry & Molecular and Cellular Biology, Georgetown University Medical Center, 3900 Reservoir Road, NW, Washington, DC 20057, USA.
| | | | | |
Collapse
|
21
|
Brady NR, Hamacher-Brady A, Westerhoff HV, Gottlieb RA. A wave of reactive oxygen species (ROS)-induced ROS release in a sea of excitable mitochondria. Antioxid Redox Signal 2006; 8:1651-65. [PMID: 16987019 DOI: 10.1089/ars.2006.8.1651] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Once considered simply as the main source of ATP, mitochondria are now implicated in the control of many additional aspects of cell physiology, such as calcium signaling, and pathology, as in injury incurred on ischemia and subsequent reperfusion (I/R). Mitochondrial respiration is ordinarily accompanied by low-level ROS production, but they can respond to elevated ROS concentrations by increasing their own ROS production, a phenomenon termed ROS-induced ROS release (RIRR). Two modes of RIRR have been described. In the first mode of RIRR, enhanced ROS leads to mitochondrial depolarization via activation of the MPTP, yielding a short-lived burst of ROS originating from the mitochondrial electron transport chain (ETC). The second mode of RIRR is MPTP independent but is regulated by the mitochondrial benzodiazepine receptor (mBzR). Increased ROS in the mitochondrion triggers opening of the inner mitochondrial membrane anion channel (IMAC), resulting in a brief increase in ETC-derived ROS. Both modes of RIRR have been shown to transmit localized mitochondrial perturbations throughout the cardiac cell in the form of oscillations or waves but are kinetically distinct and may involve different ROS that serve as second messengers. In this review, we discuss the mechanisms of these different modes of RIRR.
Collapse
Affiliation(s)
- Nathan R Brady
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
22
|
Chen CF, Lang SY, Zuo PP, Yang N, Wang XQ, Xia C. Effects of D-galactose on the expression of hippocampal peripheral-type benzodiazepine receptor and spatial memory performances in rats. Psychoneuroendocrinology 2006; 31:805-11. [PMID: 16707226 DOI: 10.1016/j.psyneuen.2006.03.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Revised: 03/14/2006] [Accepted: 03/17/2006] [Indexed: 11/26/2022]
Abstract
The changes in spatial memory performances and the binding of hippocampal peripheral-type benzodiazepine receptor (PBR) induced by D-galactose (D-gal) were investigated in rats. The animals were randomly divided into two groups: saline-treated group and D-gal-induced aging group. All rats received 56 days of injection followed by 5 days of behavioral tests. The D-gal-induced aging rats presented significant impairment in water maze performance, compared with that in the saline-treated rats. A significant decrease in [3H]PK11195 binding in the synaptosomes from hippocampus in the D-gal-induced aging rats was observed, compared to that in the saline-treated rats. Meanwhile, the Scatchard analysis revealed that there was a decrease in Bmax, with no significant change in KD. Further analysis demonstrated that water maze performance was closely related to the PK11195 binding in all rats. These results suggest that D-gal decreased the density of PBR in hippocampal synaptosomes, which may be attributable to the progressive pathogenesis of aging in rats.
Collapse
Affiliation(s)
- C F Chen
- Department of Neurology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853, China
| | | | | | | | | | | |
Collapse
|
23
|
Aon MA, Cortassa S, Akar FG, O'Rourke B. Mitochondrial criticality: a new concept at the turning point of life or death. Biochim Biophys Acta Mol Basis Dis 2005; 1762:232-40. [PMID: 16242921 PMCID: PMC2692535 DOI: 10.1016/j.bbadis.2005.06.008] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2005] [Revised: 06/06/2005] [Accepted: 06/20/2005] [Indexed: 11/26/2022]
Abstract
A variety of stressors can cause the collapse of mitochondrial membrane potential (DeltaPsi(m)), but the events leading up to this catastrophic cellular event are not well understood at the mechanistic level. Based on our recent studies of oscillations in mitochondrial energetics, we have coined the term "mitochondrial criticality" to describe the state in which the mitochondrial network of cardiomyocytes becomes very sensitive to small perturbations in reactive oxygen species (ROS), resulting in the scaling of local mitochondrial uncoupling and DeltaPsi(m) loss to the whole cell, and the myocardial syncytium. At the point of criticality, the dynamics of the mitochondrial network bifurcate to oscillatory behavior. These energetic changes are translated into effects on the electrical excitability of the cell, inducing dramatic changes in the morphology and the threshold for activating an action potential. Emerging evidence suggests that this mechanism, by creating spatial and temporal heterogeneity of excitability in the heart during ischemia and reperfusion, underlies the genesis of potentially lethal cardiac arrhythmias.
Collapse
Affiliation(s)
| | | | | | - Brian O'Rourke
- Corresponding author. Tel.: +1 410 614 0034; fax: +1 410 955 7953. E-mail address: (B. O'Rourke)
| |
Collapse
|
24
|
Corsi L, Geminiani E, Avallone R, Baraldi M. Nuclear location–dependent role of peripheral benzodiazepine receptor (PBR) in hepatic tumoral cell lines proliferation. Life Sci 2005; 76:2523-33. [PMID: 15769477 DOI: 10.1016/j.lfs.2004.08.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2004] [Accepted: 08/13/2004] [Indexed: 11/18/2022]
Abstract
PBR is involved in numerous biological functions, including steroid biosynthesis, mitochondrial oxidative phosphorylation and cell proliferation. The presence of PBR at the perinuclear/nuclear subcellular level has been demonstrated in aggressive breast cancer cell lines and human glioma cells where it seems to be involved in cell proliferation. In our study we investigated the presence of perinuclear/nuclear PBR in different hepatic tumor cell lines with regard to binding to [3H] PK 11195 and protein analysis. The results obtained by saturation binding experiments and scatchard analysis of perinuclear/nuclear PBR density in parallel with the results on the growth curves of the cell lines tested, indicate that the perinuclear/nuclear PBR density correlates inversely with cell doubling time. Moreover, the cell line with high perinuclear/nuclear PBR proliferated in response to PBR ligand, whereas that with low perinuclear/nuclear PBR did not. Our results reinforce the idea that the subcellular localisation of PBR defines its function and that this receptor could be a possible target for new strategies against cancer.
Collapse
Affiliation(s)
- L Corsi
- Dept. of Pharmaceutical Sciences, University of Modena and Reggio Emilia, Campi 183, 41100, Modena, Italy.
| | | | | | | |
Collapse
|
25
|
da Silva MBS, Farges RC, Fröde TS. Involvement of steroids in anti-inflammatory effects of PK11195 in a murine model of pleurisy. Mediators Inflamm 2005; 13:93-103. [PMID: 15203550 PMCID: PMC1781550 DOI: 10.1080/09629350410001688486] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Studies on peripheral benzodiazepine receptor function have yielded a diverse list of activities of which the anti-inflammatory effects need to be further examined. AIMS To evaluate the role of steroids, nitric oxide and adenosine-deaminase in the anti-inflammatory effect of PK11195. METHODS Pleurisy was induced by intrapleural injection of carrageenan in mice pre-treated or not with PK11195. Leukocytes, exudation, adenosine-deaminase (ADA) activity and nitric oxide (NO) level were measured. Steroid involvement was evaluated by pre-treatment with D,L-aminogluthetimide before PK11195. RESULTS Leukocytes, exudation and NO levels were reduced by PK11195 in the early (4 h) phase. In the late (48 h) phase, PK11195 decreased leukocytes and ADA activity. D,L-aminogluthetimide reversed the effect of PK11195 on exudate (4 h), as well as total and differential leukocytes and NO levels (48 h). CONCLUSIONS Steroids, NO and ADA are implicated in the anti-inflammatory action of PK11195.
Collapse
Affiliation(s)
- Marcelo Barreto Spillere da Silva
- Department of Clinical Analysis, Center of Health Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis, SC, Brazil
| | | | | |
Collapse
|
26
|
Lindemann P, Koch A, Degenhardt B, Hause G, Grimm B, Papadopoulos V. A Novel Arabidopsis thaliana Protein is a Functional Peripheral-Type Benzodiazepine Receptor. ACTA ACUST UNITED AC 2004; 45:723-33. [PMID: 15215507 DOI: 10.1093/pcp/pch088] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A key element in the regulation of mammalian steroid biosynthesis is the 18 kDa peripheral-type benzodiazepine receptor (PBR), which mediates mitochondrial cholesterol import. PBR also possess an affinity to the tetrapyrrole metabolite protoporphyrin. The bacterial homolog to the mammalian PBR, the Rhodobacter TspO (CrtK) protein, was shown to be involved in the bacterial tetrapyrrole metabolism. Looking for a similar mitochondrial import mechanism in plants, protein sequences from Arabidopsis and several other plants were found with significant similarities to the mammalian PBR and to the Rhodobacter TspO protein. A PBR-homologous Arabidopsis sequence was cloned and expressed in E. coli. The recombinant gene product showed specific high affinity benzodiazepine ligand binding. Moreover, the protein applied to E. coli protoplasts caused an equal benzodiazepine-stimulated uptake of cholesterol and protoporphyrin IX. These results suggest that the PBR like protein is involved in steroid import and is directing protoporphyrinogen IX to the mitochondrial site of protoheme formation.
Collapse
MESH Headings
- Arabidopsis/drug effects
- Arabidopsis/genetics
- Arabidopsis/metabolism
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/isolation & purification
- Arabidopsis Proteins/metabolism
- Benzodiazepines/metabolism
- Binding, Competitive/genetics
- Carrier Proteins/genetics
- Carrier Proteins/isolation & purification
- Carrier Proteins/metabolism
- Cholesterol/metabolism
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Evolution, Molecular
- Heme/biosynthesis
- Ligands
- Microscopy, Electron
- Mitochondria/genetics
- Mitochondria/metabolism
- Mitochondria/ultrastructure
- Molecular Sequence Data
- Phylogeny
- Protoporphyrins/metabolism
- Radioligand Assay
- Receptors, GABA-A/genetics
- Receptors, GABA-A/isolation & purification
- Receptors, GABA-A/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Steroids/metabolism
Collapse
Affiliation(s)
- Peter Lindemann
- Institut für Pharmazeutische Biologie, Martin-Luther-Universität Halle-Wittenberg, Hoher Weg 8, D-06120 Halle, Germany.
| | | | | | | | | | | |
Collapse
|
27
|
Niu N, Rice SR, Heston LL, Sobell JL. Multiple missense mutations in the diazepam binding inhibitor (DBI) gene identified in schizophrenia but lack of disease association. Am J Med Genet B Neuropsychiatr Genet 2004; 125B:10-9. [PMID: 14755437 DOI: 10.1002/ajmg.b.20102] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The diazepam binding inhibitor (DBI), alternatively known as the acyl-CoA binding protein (ACBP), is involved in multiple biological actions. The polypeptide binds to the peripheral, or mitochondrial, benzodiazepine receptor and facilitates transport of cholesterol to the inner membrane to stimulate steroid synthesis. Through this action, DBI indirectly modulates gamma-aminobutyric acid (GABA)-mediated inhibitory neurotransmission. DBI can be postulated as a candidate gene for psychiatric phenotypes including anxiety, mood, and psychotic disorders. In an examination of the DBI gene among 112 individuals with schizophrenia, our laboratory has identified 18 novel single nucleotide polymorphisms (SNPs), including three missense changes in conserved amino acids, a coding region microdeletion, and multiple SNPs in the putative promoter region. Case-control association analyses were performed for the missense changes, but none was found to be significantly associated with disease.
Collapse
Affiliation(s)
- N Niu
- Division of Molecular Medicine, City of Hope National Medical Center, Duarte, California, USA
| | | | | | | |
Collapse
|
28
|
Walter RB, Raden BW, Cronk MR, Bernstein ID, Appelbaum FR, Banker DE. The peripheral benzodiazepine receptor ligand PK11195 overcomes different resistance mechanisms to sensitize AML cells to gemtuzumab ozogamicin. Blood 2004; 103:4276-84. [PMID: 14962898 DOI: 10.1182/blood-2003-11-3825] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The antibody-targeted therapeutic, gemtuzumab ozogamicin (GO, Mylotarg), is approved for treatment of relapsed acute myeloid leukemia (AML). We previously showed that AML blasts from GO refractory patients frequently express the drug transporters P-glycoprotein (Pgp) and/or multidrug resistance protein (MRP). We also previously reported that inhibition of drug transport by the Pgp modulator, cyclosporine A (CSA), can increase GO sensitivity in Pgp(+) AML cells and that the peripheral benzodiazepine receptor ligand, PK11195, sensitizes AML cells to standard chemotherapeutics both by inhibiting Pgp-mediated efflux and by promoting mitochondrial apoptosis. We now show that PK11195 also can overcome multiple resistance mechanisms to increase GO sensitivity in AML cells, including resistance associated with expression of drug transporters and/or antiapoptotic proteins. PK11195 substantially increases GO cytotoxicity in AML cells from many different cell lines and primary patient samples, often more effectively than CSA. We also show that PK11195 is nontoxic in NOD/SCID mice and can sensitize xenografted human AML cells to GO. Since PK11195 is well tolerated in humans as a single agent, its further study as a multifunctional chemosensitizer for anti-AML therapies, including GO-based therapies, is warranted.
Collapse
MESH Headings
- Acute Disease
- Aminoglycosides/pharmacology
- Animals
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal, Humanized
- Antineoplastic Agents/pharmacology
- Cyclosporine/pharmacology
- Drug Resistance, Neoplasm
- Gemtuzumab
- Gene Expression Regulation, Leukemic/drug effects
- HL-60 Cells
- Humans
- Immunosuppressive Agents/pharmacology
- Isoquinolines/pharmacology
- Leukemia, Myeloid/drug therapy
- Leukemia, Myeloid/metabolism
- Leukotriene Antagonists/pharmacology
- Ligands
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Propionates/pharmacology
- Proto-Oncogene Proteins c-bcl-2/genetics
- Quinolines/pharmacology
- Receptors, GABA-A/metabolism
- Xenograft Model Antitumor Assays
- bcl-X Protein
Collapse
Affiliation(s)
- Roland B Walter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, D1-100, PO Box 19024, Seattle, WA 98109-1024, USA
| | | | | | | | | | | |
Collapse
|
29
|
Aon MA, Cortassa S, Marbán E, O'Rourke B. Synchronized whole cell oscillations in mitochondrial metabolism triggered by a local release of reactive oxygen species in cardiac myocytes. J Biol Chem 2003; 278:44735-44. [PMID: 12930841 DOI: 10.1074/jbc.m302673200] [Citation(s) in RCA: 414] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Reactive oxygen species (ROS) and/or Ca2+ overload can trigger depolarization of mitochondrial inner membrane potential (DeltaPsim) and cell injury. Little is known about how loss of DeltaPsim in a small number of mitochondria might influence the overall function of the cell. Here we employ the narrow focal excitation volume of the two-photon microscope to examine the effect of local mitochondrial depolarization in guinea pig ventricular myocytes. Remarkably, a single local laser flash triggered synchronized and self-sustained oscillations in DeltaPsim, NADH, and ROS after a delay of approximately 40s, in more than 70% of the mitochondrial population. Oscillations were initiated only after a specific threshold level of mitochondrially produced ROS was exceeded, and did not involve the classical permeability transition pore or intracellular Ca2+ overload. The synchronized transitions were abolished by several respiratory inhibitors or a superoxide dismutase mimetic. Anion channel inhibitors potentiated matrix ROS accumulation in the flashed region, but blocked propagation to the rest of the myocyte, suggesting that an inner membrane, superoxide-permeable, anion channel opens in response to free radicals. The transitions in mitochondrial energetics were tightly coupled to activation of sarcolemmal KATP currents, causing oscillations in action potential duration, and thus might contribute to catastrophic arrhythmias during ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Miguel A Aon
- Johns Hopkins University, Institute of Molecular Cardiobiology, Baltimore, Maryland 21205-2195, USA
| | | | | | | |
Collapse
|
30
|
Wendler G, Lindemann P, Lacapère JJ, Papadopoulos V. Protoporphyrin IX binding and transport by recombinant mouse PBR. Biochem Biophys Res Commun 2003; 311:847-52. [PMID: 14623258 DOI: 10.1016/j.bbrc.2003.10.070] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The mitochondrial 18kDa peripheral-type benzodiazepine receptor (PBR), a high affinity cholesterol binding protein, has been shown to interact with protoporphyrin IX (PPIX) and this interaction was assumed to be involved in the regulation of heme biosynthesis and porphyrin-based photodynamic therapy in cancer. In order to test this hypothesis recombinant mouse PBR was expressed in Escherichia coli. The recombinant gene product showed in E. coli protoplasts specific affinity for PPIX binding. PPIX could displace PK 11195 binding. Moreover, induced PBR protein expression in E. coli protoplasts caused an uptake of PPIX that could be completely inhibited by cholesterol and to a lesser extent inhibited by PK 11195 and Ro5-4864. These results suggest that PBR, in addition to its role in cholesterol and coproporphyrinogen III transport, is also directing the mitochondrial PPIX import, a function that can be ascribed to the 18kDa PBR protein alone.
Collapse
Affiliation(s)
- Gregor Wendler
- Division of Hormone Research, Departments of Cell Biology, Pharmacology and Neurosciences, Georgetown University School of Medicine, 3900 Reservoir Road, NW, Washington, DC, USA
| | | | | | | |
Collapse
|
31
|
Lacapère JJ, Papadopoulos V. Peripheral-type benzodiazepine receptor: structure and function of a cholesterol-binding protein in steroid and bile acid biosynthesis. Steroids 2003; 68:569-85. [PMID: 12957662 DOI: 10.1016/s0039-128x(03)00101-6] [Citation(s) in RCA: 256] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Cholesterol transport from the outer to the inner mitochondrial membrane is the rate-determining step in steroid and bile acid biosyntheses. Biochemical, pharmacological and molecular studies have demonstrated that the peripheral-type benzodiazepine receptor (PBR) is a five transmembrane domain mitochondrial protein involved in the regulation of cholesterol transport. PBR gene disruption in Leydig cells completely blocked cholesterol transport into mitochondria and steroid formation, while PBR expression in bacteria, devoid of endogenous PBR and cholesterol, induced cholesterol uptake and transport. Molecular modeling of PBR suggested that cholesterol might cross the membrane through the five helices of the receptor and that synthetic and endogenous ligands might bind to common sites in the cytoplasmic loops. A cholesterol recognition/interaction amino acid consensus (CRAC) sequence in the cytoplasmic carboxy-terminus of the PBR was identified by mutagenesis studies. In vitro reconstitution of PBR into proteoliposomes demonstrated that PBR binds both drug ligands and cholesterol with high affinity. In vivo polymeric forms of PBR were observed and polymer formation was reproduced in vitro, using recombinant PBR protein reconstituted into proteoliposomes, associated with an increase in drug ligand binding and reduction of cholesterol-binding capacity. This suggests that the various polymeric states of PBR might be part of a cycle mediating cholesterol uptake and release into the mitochondria, with PBR functioning as a cholesterol exchanger against steroid product(s) arising from cytochrome P450 action. Taking into account the widespread presence of PBR in many tissues, a more general role of PBR in intracellular cholesterol transport and compartmentalization might be considered.
Collapse
Affiliation(s)
- Jean Jacques Lacapère
- Unité INSERM U410, Faculté de Médecine Xavier Bichat, 16 rue Henri Huchard, 75870 Paris Cedex 18, France.
| | | |
Collapse
|
32
|
O'Hara MF, Nibbio BJ, Craig RC, Nemeth KR, Charlap JH, Knudsen TB. Mitochondrial benzodiazepine receptors regulate oxygen homeostasis in the early mouse embryo. Reprod Toxicol 2003; 17:365-75. [PMID: 12849846 DOI: 10.1016/s0890-6238(03)00035-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The peripheral benzodiazepine receptor (Bzrp) has been implicated in the control of several processes, including mitochondrial biogenesis and embryo development. The present study examined the impact that specific Bzrp ligands have on oxygen homeostasis in the early mouse embryo. Day 9 embryos at the 16-18 somite pair stage were exposed to standard (21% oxygen) and suboptimal (5% oxygen) oxygen tensions in whole embryo culture. Analysis of gene expression used relative PCR to monitor changes in nuclear respiratory factor-1 (Nrf1), mitochondrial 16S ribosomal RNA (16S rRNA), and genes for several glycolytic enzymes. Ocular development was highly sensitive to periods of hypoxia through a mechanism blocked with the potent Bzrp ligand PK11195. Hypoxia led to a decline of Nrf1 and 16S rRNA levels also through a mechanism blocked with PK11195. Similar activity was observed for FGIN-1-27 whereas Ro5-4864 had contradictory effects. Morpholino-based gene knockdown of Nrf1 (anti-NRF1) produced a sequence-specific decrease in 16S rRNA insensitive to PK11195. These functional relationships suggest that Bzrp-dependent signals regulate the Nrf1 --> Tfam1 --> mtDNA --> 16S rRNA pathway in response to oxygen levels. The activity of PK11195 most likely has a pharmacodynamic basis with regards to specific embryonic precursor target cell populations, transducing a mitochondrial signal to an Nrf1 response analogous to retrograde regulation in yeast for mitochondria-to-nucleus signaling.
Collapse
Affiliation(s)
- Michael F O'Hara
- Department of Pathology, Anatomy and Cell Biology, Jefferson Medical College, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | | | | | | | | | | |
Collapse
|
33
|
Delavoie F, Li H, Hardwick M, Robert JC, Giatzakis C, Péranzi G, Yao ZX, Maccario J, Lacapère JJ, Papadopoulos V. In vivo and in vitro peripheral-type benzodiazepine receptor polymerization: functional significance in drug ligand and cholesterol binding. Biochemistry 2003; 42:4506-19. [PMID: 12693947 DOI: 10.1021/bi0267487] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peripheral-type benzodiazepine receptor (PBR) is an 18 kDa high-affinity drug ligand and cholesterol binding protein involved in various cell functions. Antisera for distinct PBR areas identified immunoreactive proteins of 18, 40, and 56 kDa and occasionally 72, 90, and 110 kDa in testicular Leydig and breast cancer cells. These sizes may correspond to PBR polymers and correlated to the levels of reactive oxygen species. Treatment of Leydig cells with human chorionic gonadotropin rapidly induced free radical, PBR polymer, and steroid formation. UV photoirradiation generates ROS species, which increased the size of intramembraneous particles of recombinant PBR reconstituted into proteoliposomes consistent with polymer formation, determined both by SDS-PAGE and by freeze-fracture electron microscopy. Spectroscopic analysis revealed the formation of dityrosines as the covalent cross-linker between PBR monomers. Moreover, photoirradiation increased PK 11195 drug ligand binding and reduced cholesterol binding capacity of proteoliposomes. Further addition of PK 11195 drug ligand to polymers increased the rate of cholesterol binding. These data indicate that reactive oxygen species induce in vivo and in vitro the formation of covalent PBR polymers. We propose that the PBR polymer might be the functional unit responsible for ligand-activated cholesterol binding and that PBR polymerization is a dynamic process modulating the function of this receptor in cholesterol transport and other cell-specific PBR-mediated functions.
Collapse
Affiliation(s)
- Franck Delavoie
- Division of Hormone Research, Department of Cell Biology, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Martini C, Chelli B, Betti L, Montali M, Mancuso M, Giannaccini G, Rocchi A, Murri L, Siciliano G. Peripheral Benzodiazepine Binding Sites in Platelets of Patients Affected by Mitochondrial Diseases and Large Scale Mitochondrial DNA Rearrangements. Mol Med 2002. [DOI: 10.1007/bf03402089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
35
|
Everett H, Barry M, Sun X, Lee SF, Frantz C, Berthiaume LG, McFadden G, Bleackley RC. The myxoma poxvirus protein, M11L, prevents apoptosis by direct interaction with the mitochondrial permeability transition pore. J Exp Med 2002; 196:1127-39. [PMID: 12417624 PMCID: PMC2194110 DOI: 10.1084/jem.20011247] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
M11L, an antiapoptotic protein essential for the virulence of the myxoma poxvirus, is targeted to mitochondria and prevents the loss of mitochondrial membrane potential that accompanies cell death. In this study we show, using a cross-linking approach, that M11L physically associates with the mitochondrial peripheral benzodiazepine receptor (PBR) component of the permeability transition (PT) pore. Close association of M11L and the PBR is also indicated by fluorescence resonance energy transfer (FRET) analysis. Stable expression of M11L prevents the release of mitochondrial cytochrome c induced by staurosporine or protoporphyrin IX (PPIX), a ligand of the PBR. Transiently expressed M11L also prevents mitochondrial membrane potential loss induced by PPIX, or induced by staurosporine in combination with PK11195, another ligand of the PBR. Myxoma virus infection and the associated expression of early proteins, including M11L, protects cells from staurosporine- and Fas-mediated mitochondrial membrane potential loss and this effect is augmented by the presence of PBR. We conclude that M11L regulates the mitochondrial permeability transition pore complex, most likely by direct modulation of the PBR.
Collapse
Affiliation(s)
- Helen Everett
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G2H7, Canada
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Desjardins P, Butterworth RF. The "peripheral-type" benzodiazepine (omega 3) receptor in hyperammonemic disorders. Neurochem Int 2002; 41:109-14. [PMID: 12020611 DOI: 10.1016/s0197-0186(02)00031-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Increased levels of brain ammonia occur in both congenital and acquired hyperammonemic syndromes including hepatic encephalopathy, fulminant hepatic failure, Reye's syndrome and congenital urea cycle disorders. In addition to its effect on neurotransmission and energy metabolism, ammonia modulates the expression of various genes including the astrocytic "peripheral-type" benzodiazepine (or omega 3) receptor (PTBR). Increased expression of the isoquinoline carboxamide binding protein (IBP), one of the components of the PTBR complex, is observed in brain and peripheral tissues following chronic liver failure as well as in cultured astrocytes exposed to ammonia. Increased densities of binding sites for the PTBR ligand [3H]-PK11195 are also observed in these conditions as well as in brains of animals with acute liver failure, congenital urea cycle disorders and in patients who died in hepatic coma. The precise role of PTBR in brain function has not yet fully elucidated, but among other functions, PTBR mediates the transport of cholesterol across the mitochondrial membrane and thus plays a key role in the biosynthesis of neurosteroids some of which modulate major neurotransmitter systems such as the gamma-aminobutyric acid (GABA(A)) and glutamate (N-methyl-D-aspartate (NMDA)) receptors. Activation of PTBR in chronic and acute hyperammonemia results in increased synthesis of neurosteroids which could lead to an imbalance between excitatory and inhibitory neurotransmission in the CNS. Preliminary reports suggest that positron emission tomography (PET) studies using [11C]-PK11195 may be useful for the assessment of the neurological consequences of chronic liver failure.
Collapse
Affiliation(s)
- Paul Desjardins
- Neuroscience Research Unit, Hôpital Saint-Luc du Chum, University of Montreal, 1058 St-Denis Street, Que., H2X 3J4, Montreal, Canada
| | | |
Collapse
|
37
|
Korkhov VM, Tkachuk NA, Makan SYU, Pavlovsky VI, Andronati SA. Affinities of gidazepam and its analogs for mitochondrial benzodiazepine receptors. J Recept Signal Transduct Res 2002; 22:411-20. [PMID: 12503630 DOI: 10.1081/rrs-120014610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Mitochondrial benzodiazepine receptors (MBRs) participate in many physiological processes, such as calcium flow regulation, proliferative and respiratory cell functions, mitochondrial steroidogenesis and adaptational reactions to stress. We have found that the selective anxiolytic gidazepam has a higher affinity for CNS MBRs as compared to central benzodiazepine receptors. The ability of gidazepam to bind to MBRs probably underlies a wide spectrum of its pharmacological effects. We have studied affinities of gidazepam analogs for CNS MBRs in search for the ligands possessing higher affinity and selectivity. The experiments were carried out with male Wistar rats weighing between 200-220 g. Affinities of the investigated compounds were assessed on their ability to displace radioligand Ro5-4864 from its specific binding sites on MBRs of rat brain. Within the series of tested compounds three substances comparable on affinity with Ro5-4864 were found. Experimental results have shown that the presence of chlorine atom in o-position of 5-phenyl substituent leads to a 10 to 15-fold increase in affinity for CNS MBRs. We have also found that the essential contribution in affinity of the investigated series is brought by lipophilicity of substituent in IN-position. Our data may be useful in design and synthesis of novel potent selectively acting ligands of CNS MBRs.
Collapse
Affiliation(s)
- V M Korkhov
- I. I. Mechnikov National University of Odessa, Ukraine.
| | | | | | | | | |
Collapse
|
38
|
Banker DE, Cooper JJ, Fennell DA, Willman CL, Appelbaum FR, Cotter FE. PK11195, a peripheral benzodiazepine receptor ligand, chemosensitizes acute myeloid leukemia cells to relevant therapeutic agents by more than one mechanism. Leuk Res 2002; 26:91-106. [PMID: 11734307 DOI: 10.1016/s0145-2126(01)00112-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Like Bcl-2, peripheral benzodiazepine receptors (pBzRs) reside in mitochondrial pores, are frequently over-expressed in tumor cells, and can protect cells from apoptotic cell death. We now show that the high-affinity, pBzR-specific ligand, PK11195, chemosensitizes AML cells to relevant chemotherapeutics, but is relatively non-toxic as a single agent, and does not chemosensitize normal myeloid cells. PK11195 can block p-glycoprotein efflux in AMLs, contributing to increased daunomycin toxicity in efflux-competent AMLs, but can also sensitize AMLs to cytarabine and DNR-sensitize efflux-incompetent AMLs, presumably via mitochondrial pore effects documented in other models. Therefore, PK11195 might contribute to improved clinical outcomes in AML.
Collapse
Affiliation(s)
- Deborah E Banker
- Clinical Research Division, FHCRC, D1-100, 1124 Columbia Street, Seattle, WA 98104, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Golani I, Weizman A, Leschiner S, Spanier I, Eckstein N, Limor R, Yanai J, Maaser K, Scherübl H, Weisinger G, Gavish M. Hormonal regulation of peripheral benzodiazepine receptor binding properties is mediated by subunit interaction. Biochemistry 2001; 40:10213-22. [PMID: 11513599 DOI: 10.1021/bi010431+] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The peripheral benzodiazepine receptor (PBR) is composed of three subunits with molecular masses of 18, 30, and 32 kDa. Many physiological functions have been attributed to the PBR, including regulation of steroidogenesis. Furthermore, the PBR itself is under hormonal regulation. In the current study, we investigated the role of female gonadal sex hormones in the regulation of PBR expression in steroidogenic and nonsteroidogenic tissues. To accomplish this, adult female rats were pharmacologically castrated using chronic administration of the gonadotropin-releasing hormone agonist decapeptyl (triptorelin-D-Trp(6)-LHRH). Half of these rats received 17beta-estradiol as hormone replacement, while a control group received daily injections of vehicle only. We found that PBR binding capacity dropped by 40 and 48% in ovaries and adrenals, respectively, following decapeptyl administration, as opposed to no change in the kidney. This down-regulation of PBR densities was prevented by estradiol replacement. We did not find evidence for transcriptional, posttranscriptional, and translational mechanisms in this decapeptyl-induced down-regulation. In contrast, immunoprecipitation of the PBR complex, using antibodies against the 18- and 32-kDa subunits of the complex, demonstrated that there were changes in PBR subunit interactions, consistent with the down-regulation of PBR binding capacity. These findings represent a novel hormone-dependent posttranslational regulatory mechanism.
Collapse
Affiliation(s)
- I Golani
- Department of Pharmacology, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, 31096 Haifa, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Fennell DA, Corbo M, Pallaska A, Cotter FE. Bcl-2 resistant mitochondrial toxicity mediated by the isoquinoline carboxamide PK11195 involves de novo generation of reactive oxygen species. Br J Cancer 2001; 84:1397-404. [PMID: 11355954 PMCID: PMC2363650 DOI: 10.1054/bjoc.2001.1788] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Resistance to apoptosis is a major obstacle preventing effective therapy for malignancy. Mitochondria localized anti-death proteins of the Bcl-2 family play a central role in inhibiting apoptosis and therefore present valid targets for novel therapy. The peripheral benzodiazepine receptor (PBR) shares a close physical association with the permeability transition pore complex (PTPC), a pivotal regulator of cell death located at mitochondrial contact sites. In this study we investigated the cytotoxicity of the PBR ligand, PK11195, in the micromolar concentration range. PK11195 induced antioxidant inhibitable collapse of the inner mitochondrial membrane potential (DeltaPsi(m)) and mitochondrial swelling in HL60 human leukaemia cells, but not in SUDHL4 lymphoma cells (which exhibited a higher level of reduced glutathione and relative tolerance to chemotherapy or pro-oxidant induced DeltaPsi(m)dissipation). PK11195 induced the production of hydrogen peroxide that was not inhibited by Bcl-2 transfection, nor depletion of mitochondrial DNA. ROS production was however blocked by protonophore, implicating a requirement for DeltaPsi(m). Our findings suggest that PK11195-induced cytotoxicity relies upon Bcl-2 resistant generation of oxidative stress; a process only observed at concentrations several orders of magnitude higher that required to saturate its receptor.
Collapse
Affiliation(s)
- D A Fennell
- Department of Experimental Haematology, St Bartholomew's & The Royal London School of Medicine, Turner Street, London, E1 2AD, UK
| | | | | | | |
Collapse
|
41
|
Lacapère JJ, Delavoie F, Li H, Péranzi G, Maccario J, Papadopoulos V, Vidic B. Structural and functional study of reconstituted peripheral benzodiazepine receptor. Biochem Biophys Res Commun 2001; 284:536-41. [PMID: 11394915 DOI: 10.1006/bbrc.2001.4975] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recombinant mouse 18 kDa peripheral-type benzodiazepine receptor (PBR) protein was overexpressed in Escherichia coli and isolated using a His. Bind metal chelation resin. Recombinant PBR protein was purified with sodium dodecyl sulfate and reincorporated into liposomes using Bio-Beads SM2 as a detergent removing agent. Negative staining of the reconstituted PBR samples, examined by electron microscopy, showed the formation of proteoliposomes. Freeze-fracture of these proteoliposomes revealed the presence of transmembranous particles of an average size of 3.5 +/- 0.25 nm, consistent with the presence of a monomeric form of the recombinant PBR protein. The reconstituted protein exhibited the ability to bind both the PBR drug ligand isoquinoline carboxamide PK 11195 and cholesterol with nanomolar affinities. These data suggest that a PBR monomer is the minimal functional unit, binding drug ligands and cholesterol.
Collapse
Affiliation(s)
- J J Lacapère
- Unité INSERM U410, Faculté de Médecine Xavier Bichat, 16 rue Henri Huchard, Paris Cedex 18, 75870, France
| | | | | | | | | | | | | |
Collapse
|
42
|
Rao VL, Bowen KK, Rao AM, Dempsey RJ. Up-regulation of the peripheral-type benzodiazepine receptor expression and [(3)H]PK11195 binding in gerbil hippocampus after transient forebrain ischemia. J Neurosci Res 2001; 64:493-500. [PMID: 11391704 DOI: 10.1002/jnr.1101] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In mammalian CNS, the peripheral-type benzodiazepine receptor (PTBR) is localized on the outer mitochondrial membrane within the astrocytes and microglia. The main function of PTBR is to transport cholesterol across the mitochondrial membrane to the site of neurosteroid biosynthesis. The present study evaluated the changes in the PTBR density, gene expression and immunoreactivity in gerbil hippocampus as a function of reperfusion time after transient forebrain ischemia. Between 3 to 7 days of reperfusion, there was a significant increase in the maximal binding site density (B(max)) of the PTBR antagonist [(3)H]PK11195 (by 94-156%; P < 0.01) and PTBR mRNA levels (by 1.8- to 2.9-fold; P < 0.01). At 7 days of reperfusion, in the hippocampal CA1 (the brain region manifesting selective neuronal death), PTBR immunoreactivity increased significantly. Increased PTBR expression after transient forebrain ischemia may lead to increased neurosteroid biosynthesis, and thus may play a role in the ischemic pathophysiology.
Collapse
Affiliation(s)
- V L Rao
- Department of Neurological Surgery, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI 53792, USA.
| | | | | | | |
Collapse
|
43
|
Fennell DA, Corbo MV, Dean NM, Monia BP, Cotter FE. In vivo suppression of Bcl-XL expression facilitates chemotherapy-induced leukaemia cell death in a SCID/NOD-Hu model. Br J Haematol 2001; 112:706-13. [PMID: 11260076 DOI: 10.1046/j.1365-2141.2001.02603.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bcl-XL, a member of the Bcl-2-related anti-apoptosis protein family, antagonizes a diverse range of apoptosis-inducing stimuli by preventing mitochondrial permeability transition, release of apoptogenic factors including cytochrome C, and caspase activation. We have tested the hypothesis that the susceptibility of Bcl-XL-expressing leukaemic cells to apoptosis induced by VP16 (etoposide) can be enhanced by pharmacological downregulation of Bcl-XL in vivo. Two subcutaneous xenograft models of B-cell leukaemia-employing SEMK-2 and BV173 cell lines were established in severe combined immunodeficient/non-obese diabetic mice followed by 14 d of continuous subcutaneous administration of Bcl-XL-specific second generation oligonucleotides ISIS 16009 or ISIS 15999. Tumours were disaggregated, enabling investigation of Bcl-XL expression and apoptosis susceptibility at single-cell resolution using cytofluorimetry. Marked sequence-specific reduction of Bcl-XL was associated with sequence-specific enhancement of VP16-induced mitochondrial permeability transition, caspase-3 activation and loss of membrane asymmetry. A negative correlation between Bcl-XL expression and apoptosis susceptibility was observed, together with a positive correlation with respect to a reduced redox state. Bcl-XL downregulation reduces the threshold for VP16-induced apoptosis by potentiating mitochondrial dysfunction and its sequelae, and therefore presents a novel therapeutic strategy for reversing chemoresistance.
Collapse
Affiliation(s)
- D A Fennell
- Department of Experimental Haematology, St Bartholomew's and The Royal London School of Medicine & Dentistry, Turner Street, London E1 2AD, UK
| | | | | | | | | |
Collapse
|
44
|
Beurdeley-Thomas A, Miccoli L, Oudard S, Dutrillaux B, Poupon MF. The peripheral benzodiazepine receptors: a review. J Neurooncol 2001; 46:45-56. [PMID: 10896204 DOI: 10.1023/a:1006456715525] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Peripheral benzodiazepine receptors (PBRs) have been identified in various peripheral tissues as well as in glial cells in the brain. This review describes the tissue and subcellular distribution of the PBR in mammalian tissues and analyzes its many putative endogenous ligands. It deals with the pharmacological, structural and molecular characterization of the PBR, the proteins associated with the receptor (VDAC, ANC, PRAX-1) and their roles in cell growth and differentiation, cancer, steroid biosynthesis, and other physiological roles.
Collapse
Affiliation(s)
- A Beurdeley-Thomas
- Laboratoire de Cytogénétique Moléculaire et Oncologie, CNRS UMR 147, Institut Curie, Paris, France
| | | | | | | | | |
Collapse
|
45
|
Affiliation(s)
- D A Fennell
- Department of Experimental Haematology, St Bartholomew's and The Royal London School of Medicine, UK
| | | |
Collapse
|
46
|
Fennell DA, Cotter FE. Controlling the mitochondrial gatekeeper for effective chemotherapy. Br J Haematol 2000. [DOI: 10.1111/j.1365-2141.2000.02271.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Beinlich A, Strohmeier R, Kaufmann M, Kuhl H. Relation of cell proliferation to expression of peripheral benzodiazepine receptors in human breast cancer cell lines. Biochem Pharmacol 2000; 60:397-402. [PMID: 10856435 DOI: 10.1016/s0006-2952(00)00325-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peripheral benzodiazepine receptor (PBR) agonist [(3)H]Ro5-4864 has been shown to bind with high affinity to the human breast cancer cell line BT-20. Therefore, we investigated different human breast cancer cell lines with regard to binding to [(3)H]Ro5-4864 and staining with the PBR-specific monoclonal antibody 8D7. Results were correlated with cell proliferation characteristics. In flow cytometric analysis, the estrogen receptor (ER)-negative breast cancer cell lines BT-20, MDA-MB-435-S, and SK-BR-3 showed significantly higher PBR expression (relative fluorescence intensity) than the ER-positive cells T47-D, MCF-7 and BT-474 (P<0.05). Accordingly, BT-20 and MDA-MB-435-S had the highest capacity for binding [(3)H]-Ro5-4864, while the ER-positive cells exhibited only low binding of the benzodiazepine. PBR expression correlated inversely with cell doubling time (r = 0.78) and positively with Ki-67 expression (r = 0.77). The amount of mitochondria was significantly higher in cells with high PBR expression. As PBR could be demonstrated only after permeabilization of cells, PBR is suggested to be localized within the cytoplasm. Moreover, colocalization of PBR and mitochondria was shown by confocal microscopy analysis. The highest amounts of both PBR and mitochondria were found in cell lines with high mitotic activity. Therefore, it is concluded that the level of PBR is dependent on the number of mitochondria. PBR and its putative endogenous ligand diazepam-binding inhibitor are possibly involved in the regulation of cell proliferation of human breast cancer cell lines.
Collapse
Affiliation(s)
- A Beinlich
- Department of Gynecology and Obstetrics, Johann-Wolfgang-Goethe University, 60590, Frankfurt, Germany
| | | | | | | |
Collapse
|
48
|
Raghavendra Rao VL, Dogan A, Bowen KK, Dempsey RJ. Traumatic brain injury leads to increased expression of peripheral-type benzodiazepine receptors, neuronal death, and activation of astrocytes and microglia in rat thalamus. Exp Neurol 2000; 161:102-14. [PMID: 10683277 DOI: 10.1006/exnr.1999.7269] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In mammalian CNS, the peripheral-type benzodiazepine receptor (PTBR) is localized on the outer mitochondrial membrane within the astrocytes and microglia. PTBR transports cholesterol to the site of neurosteroid biosynthesis. Several neurodegenerative disorders were reported to be associated with increased densities of PTBR. In the present study, we evaluated the changes in the PTBR density and gene expression in the brains of rats as a function of time (6 h to 14 days) after traumatic brain injury (TBI). Sham-operated rats served as control. Between 3 and 14 days after TBI, there was a significant increased in the binding of PTBR antagonist [(3)H]PK11195 (by 106 to 185%, P < 0.01, as assessed by quantitative autoradiography and in vitro filtration binding) and PTBR mRNA expression (by 2- to 3. 4-fold, P < 0.01, as assessed by RT-PCR) in the ipsilateral thalamus. At 14 days after the injury, the neuronal number decreased significantly (by 85 to 90%, P < 0.01) in the ipsilateral thalamus. At the same time point, the ipsilateral thalamus also showed increased numbers of the glial fibrillary acidic protein positive cells (astrocytes, by approximately 3.5-fold) and the ED-1 positive cells (microglia/macrophages, by approximately 36-fold), the two cell types known to be associated with PTBR. Increased PTBR expression following TBI seems to be associated with microglia/macrophages than astrocytes as PTBR density at different periods after TBI correlated better with the number of ED-1 positive cells (r(2) = 0.95) than the GFAP positive cells (r(2) = 0.56). TBI-induced increased PTBR expression is possibly an adaptive response to cellular injury and may play a role in the pathophysiology of TBI.
Collapse
Affiliation(s)
- V L Raghavendra Rao
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | | | | |
Collapse
|
49
|
|
50
|
Hirsch T, Decaudin D, Susin SA, Marchetti P, Larochette N, Resche-Rigon M, Kroemer G. PK11195, a ligand of the mitochondrial benzodiazepine receptor, facilitates the induction of apoptosis and reverses Bcl-2-mediated cytoprotection. Exp Cell Res 1998; 241:426-34. [PMID: 9637784 DOI: 10.1006/excr.1998.4084] [Citation(s) in RCA: 204] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
One critical step of the apoptotic process is the opening of the mitochondrial permeability transition (PT) pore leading to the disruption of mitochondrial membrane integrity and to the dissipation of the inner transmembrane proton gradient (Delta Psim). The mitochondrial PT pore is a polyprotein structure which is inhibited by the apoptosis-inhibitory oncoprotein Bcl-2 and which is closely associated with the mitochondrial benzodiazepine receptor (mBzR). Here we show that PK11195, a prototypic ligand of the 18-kDa mBzR, facilitates the induction of Delta Psim disruption and subsequent apoptosis by a number of different agents,including agonists of the glucocorticoid receptor,chemotherapeutic agents (etoposide, doxorubicin),gamma irradiation, and the proapoptotic second messenger ceramide. Whereas PK11195 itself has no cytotoxic effect, it enhances apoptosis induction by these agents. This effect is not observed for benzodiazepine diazepam, whose binding site in the mBzR differs from PK11195. PK11195 partially reverses Bcl-2 mediated inhibition of apoptosis in two different cell lines. Thus, transfection-enforced Bcl-2 overexpression confers protection against glucocorticoids and chemotherapeutic agents, and this protection is largely reversed by the addition of PK11195. This effect is observed at the level of Delta Psim dissipation as well as at the level of nuclear apoptosis. To gain insights into the site of action of PK11195, we performed experiments on isolated organelles. PK11195 reverses the Bcl-2-mediated mitochondrial retention of apoptogenic factors which cause isolated nuclei to undergo apoptosis in a cell-free system. Mitochondria from control cells, but not mitochondria from Bcl-2-overexpressing cells, readily release such apoptogenic factors in response to atractyloside, a ligand of the adenine nucleotide translocator. However, control and Bcl-2-overexpressing mitochondria respond equally well to a combination of atractyloside and PK11195. Altogether, these findings indicate that PK11195 abolishes apoptosis inhibition by Bcl-2 via a direct effect on mitochondria. Moreover, they suggest a novel strategy for enhancing the susceptibility of cells to apoptosis induction and, concomitantly, for reversing Bcl-2-mediated cytoprotection.
Collapse
Affiliation(s)
- T Hirsch
- UnitéPropre de Recherche 420, Centre National de la Recherche Scientifique, 19 rue Guy Môquet, Villejuif, F-94801, France
| | | | | | | | | | | | | |
Collapse
|