1
|
Ng ML, Yarla NS, Menschikowski M, Sukocheva OA. Regulatory role of sphingosine kinase and sphingosine-1-phosphate receptor signaling in progenitor/stem cells. World J Stem Cells 2018; 10:119-133. [PMID: 30310531 PMCID: PMC6177561 DOI: 10.4252/wjsc.v10.i9.119] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/27/2018] [Accepted: 08/05/2018] [Indexed: 02/06/2023] Open
Abstract
Balanced sphingolipid signaling is important for the maintenance of homeostasis. Sphingolipids were demonstrated to function as structural components, second messengers, and regulators of cell growth and survival in normal and disease-affected tissues. Particularly, sphingosine kinase 1 (SphK1) and its product sphingosine-1-phosphate (S1P) operate as mediators and facilitators of proliferation-linked signaling. Unlimited proliferation (self-renewal) within the regulated environment is a hallmark of progenitor/stem cells that was recently associated with the S1P signaling network in vasculature, nervous, muscular, and immune systems. S1P was shown to regulate progenitor-related characteristics in normal and cancer stem cells (CSCs) via G-protein coupled receptors S1Pn (n = 1 to 5). The SphK/S1P axis is crucially involved in the regulation of embryonic development of vasculature and the nervous system, hematopoietic stem cell migration, regeneration of skeletal muscle, and development of multiple sclerosis. The ratio of the S1P receptor expression, localization, and specific S1P receptor-activated downstream effectors influenced the rate of self-renewal and should be further explored as regeneration-related targets. Considering malignant transformation, it is essential to control the level of self-renewal capacity. Proliferation of the progenitor cell should be synchronized with differentiation to provide healthy lifelong function of blood, immune systems, and replacement of damaged or dead cells. The differentiation-related role of SphK/S1P remains poorly assessed. A few pioneering investigations explored pharmacological tools that target sphingolipid signaling and can potentially confine and direct self-renewal towards normal differentiation. Further investigation is required to test the role of the SphK/S1P axis in regulation of self-renewal and differentiation.
Collapse
Affiliation(s)
- Mei Li Ng
- Centenary Institute of Cancer Medicine and Cell Biology, Sydney NSW 2050, Australia
| | - Nagendra S Yarla
- Department of Biochemistry and Bioinformatics, Institute of Science, GITAM University, Rushikonda, Visakhapatnam 530 045, Andhra Pradesh, India
| | - Mario Menschikowski
- Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technical University of Dresden, Dresden D-01307, Germany
| | - Olga A Sukocheva
- College of Nursing and Health Sciences, Flinders University of South Australia, Bedford Park SA 5042, Australia
| |
Collapse
|
2
|
Cheli VT, Santiago González DA, Spreuer V, Paez PM. Voltage-gated Ca2+ entry promotes oligodendrocyte progenitor cell maturation and myelination in vitro. Exp Neurol 2014; 265:69-83. [PMID: 25542980 DOI: 10.1016/j.expneurol.2014.12.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 11/14/2014] [Accepted: 12/12/2014] [Indexed: 11/16/2022]
Abstract
We have previously shown that the expression of voltage-operated Ca(++) channels (VOCCs) is highly regulated in the oligodendroglial lineage and is essential for proper oligodendrocyte progenitor cell (OPC) migration. Here we assessed the role of VOCCs, in particular the L-type, in oligodendrocyte maturation. We used pharmacological treatments to activate or block voltage-gated Ca(++) uptake and siRNAs to specifically knock down the L-type VOCC in primary cultures of mouse OPCs. Activation of VOCCs by plasma membrane depolarization increased OPC morphological differentiation as well as the expression of mature oligodendrocyte markers. On the contrary, inhibition of L-type Ca(++) channels significantly delayed OPC development. OPCs transfected with siRNAs for the Cav1.2 subunit that conducts L-type Ca(++) currents showed reduce Ca(++) influx by ~75% after plasma membrane depolarization, indicating that Cav1.2 is heavily involved in mediating voltage-operated Ca(++) entry in OPCs. Cav1.2 knockdown induced a decrease in the proportion of oligodendrocytes that expressed myelin proteins, and an increase in cells that retained immature oligodendrocyte markers. Moreover, OPC proliferation, but not cell viability, was negatively affected after L-type Ca(++) channel knockdown. Additionally, we have tested the ability of L-type VOCCs to facilitate axon-glial interaction during the first steps of myelin formation using an in vitro co-culture system of OPCs with cortical neurons. Unlike control OPCs, Cav1.2 deficient oligodendrocytes displayed a simple morphology, low levels of myelin proteins expression and appeared to be less capable of establishing contacts with neurites and axons. Together, this set of in vitro experiments characterizes the involvement of L-type VOCCs on OPC maturation as well as the role played by these Ca(++) channels during the early phases of myelination.
Collapse
Affiliation(s)
- V T Cheli
- Hunter James Kelly Research Institute, Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, SUNY, University at Buffalo, NYS Center of Excellence, 701 Ellicott St., Buffalo, NY 14203, USA
| | - D A Santiago González
- Hunter James Kelly Research Institute, Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, SUNY, University at Buffalo, NYS Center of Excellence, 701 Ellicott St., Buffalo, NY 14203, USA
| | - V Spreuer
- Hunter James Kelly Research Institute, Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, SUNY, University at Buffalo, NYS Center of Excellence, 701 Ellicott St., Buffalo, NY 14203, USA
| | - P M Paez
- Hunter James Kelly Research Institute, Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, SUNY, University at Buffalo, NYS Center of Excellence, 701 Ellicott St., Buffalo, NY 14203, USA.
| |
Collapse
|
3
|
Shao M, Rossi S, Chelladurai B, Shimizu M, Ntukogu O, Ivan M, Calin GA, Matei D. PDGF induced microRNA alterations in cancer cells. Nucleic Acids Res 2011; 39:4035-47. [PMID: 21266476 PMCID: PMC3105413 DOI: 10.1093/nar/gkq1305] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Platelet derived growth factor (PDGF) regulates gene transcription by binding to specific receptors. PDGF plays a critical role in oncogenesis in brain and other tumors, regulates angiogenesis, and remodels the stroma in physiologic conditions. Here, we show by using microRNA (miR) arrays that PDGFs regulate the expression and function of miRs in glioblastoma and ovarian cancer cells. The two PDGF ligands AA and BB affect expression of several miRs in ligand-specific manner; the most robust changes consisting of let-7d repression by PDGF-AA and miR-146b induction by PDGF-BB. Induction of miR-146b by PDGF-BB is modulated via MAPK-dependent induction of c-fos. We demonstrate that PDGF regulates expression of some of its known targets (e.g. cyclin D1) through miR alterations and identify the epidermal growth factor receptor (EGFR) as a new PDGF-BB target. We show that its expression and function are repressed by PDGF-induced miR-146b and that mir-146b and EGFR correlate inversely in human glioblastomas. We propose that PDGF-regulated gene transcription involves alterations in non-coding RNAs and provide evidence for a miR-dependent feedback mechanism balancing growth factor receptor signaling in cancer cells.
Collapse
Affiliation(s)
- Minghai Shao
- Department of Medicine, Indiana University School of Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Angiogenesis inhibition in cancer therapy: platelet-derived growth factor (PDGF) and vascular endothelial growth factor (VEGF) and their receptors: biological functions and role in malignancy. Recent Results Cancer Res 2010; 180:51-81. [PMID: 20033378 DOI: 10.1007/978-3-540-78281-0_5] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Vascular endothelial growth factor (VEGF) is an endothelial cell-specific mitogen in vitro and an angiogenic inducer in a variety of in vivo models. VEGF gene transcription is induced in particular in hypoxic cells. In developmental angiogenesis, the role of VEGF is demonstrated by the finding that the loss of a single VEGF allele results in defective vascularization and early embryonic lethality. Substantial evidence also implicates VEGF as a mediator of pathological angiogenesis. In situ hybridization studies demonstrate expression of VEGF mRNA in the majority of human tumors. Platelet-derived growth factor (PDGF) is mainly believed to be an important mitogen for connective tissue, and also has important roles during embryonal development. Its overexpression has been linked to different types of malignancies. Thus, it is important to understand the physiology of VEGF and PDGF and their receptors as well as their roles in malignancies in order to develop antiangiogenic strategies for the treatment of malignant disease.
Collapse
|
5
|
Osteoblasts modulate Ca2+ signaling in bone-metastatic prostate and breast cancer cells. Clin Exp Metastasis 2009; 26:955-64. [PMID: 19768662 DOI: 10.1007/s10585-009-9286-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Accepted: 09/01/2009] [Indexed: 12/20/2022]
Abstract
Metastatic prostate and breast cancers display a predilection for the skeleton. The high incidence of skeletal metastasis may be a reflection of favorable reciprocal interactions between the bone microenvironment and disseminated cancer cells. Here we show that bone-metastatic PC3-ML prostate cancer cells and MDA-231 breast cancer cells-when co-cultured with human osteoblasts-down-regulate the increase in cytosolic free calcium (Ca(2+)) induced by agonist stimulation. This osteoblast promoted alteration of Ca(2+) signaling develops and reverts in a time-dependent manner. Most importantly, the Ca(2+) responses of cancer cells lacking bone metastatic potential are not affected by osteoblasts. The limited increase in cytosolic Ca(2+) observed in bone-metastatic cells does not result from depleted intracellular Ca(2+) stores but rather a decreased entry of Ca(2+) from the extracellular space. Interestingly, the inhibition of histone deacetylase in cancer cells replicates the changes in Ca(2+) signaling induced by osteoblasts, suggesting the participation of epigenetic mechanisms. Finally, cancer cells harvested from skeletal metastases induced in mice showed Ca(2+) responses identical to cells co-cultured with osteoblasts. However, Ca(2+) signaling in cancer cells recovered from metastases to soft-tissues was not affected, emphasizing the role of the bone microenvironment in regulating the functional behavior of bone-metastatic cells. We propose that osteoblasts protect selected malignant phenotypes from cell death caused by an excessive increase in cytosolic Ca(2+), thereby facilitating their progression into macroscopic skeletal metastases.
Collapse
|
6
|
Regulation of store-operated and voltage-operated Ca2+ channels in the proliferation and death of oligodendrocyte precursor cells by golli proteins. ASN Neuro 2009; 1:AN20090003. [PMID: 19570024 PMCID: PMC2695580 DOI: 10.1042/an20090003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
OPCs (oligodendrocyte precursor cells) express golli proteins which, through regulation of Ca2+ influx, appear to be important in OPC process extension/retraction and migration. The aim of the present study was to examine further the role of golli in regulating OPC development. The effects of golli ablation and overexpression were examined in primary cultures of OPCs prepared from golli-KO (knockout) and JOE (golli J37-overexpressing) mice. In OPCs lacking golli, or overexpressing golli, differentiation induced by growth factor withdrawal was impaired. Proliferation analysis in the presence of PDGF (platelet-derived growth factor), revealed that golli enhanced the mitogen-stimulated proliferation of OPCs through activation of SOCCs (store-operated Ca2+ channels). PDGF treatment induced a biphasic increase in OPC intracellular Ca2+, and golli specifically increased Ca2+ influx during the second SOCC-dependent phase that followed the initial release of Ca2+ from intracellular stores. This store-operated Ca2+ uptake appeared to be essential for cell division, since specific SOCC antagonists completely blocked the effects of PDGF and golli on OPC proliferation. Additionally, in OPCs overexpressing golli, increased cell death was observed after mitogen withdrawal. This phenomenon could be prevented by exposure to VOCC (voltage-operated Ca2+ channel) blockers, indicating that the effect of golli on cell death involved increased Ca2+ influx through VOCCs. The results showed a clear effect of golli on OPC development and support a role for golli in modulating multiple Ca2+-regulatory events through VOCCs and SOCCs. Our results also suggest that PDGF engagement of its receptor resulting in OPC proliferation proceeds through activation of SOCCs.
Collapse
|
7
|
Coelho RP, Saini HS, Sato-Bigbee C. Sphingosine-1-phosphate and oligodendrocytes: from cell development to the treatment of multiple sclerosis. Prostaglandins Other Lipid Mediat 2009; 91:139-44. [PMID: 19808013 DOI: 10.1016/j.prostaglandins.2009.04.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2009] [Revised: 03/25/2009] [Accepted: 04/02/2009] [Indexed: 11/18/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid that mediates a wide variety of biological effects in different cells and tissues. This review discusses the effects of S1P signaling in oligodendrocytes, the myelin making cells of the central nervous system (CNS). Results from different laboratories have uncovered direct actions of S1P at different maturational stages along the oligodendroglial lineage. There is also evidence for the existence in oligodendrocytes of interactions between S1P and signaling by factors which, like neurotrophin-3 (NT-3) and platelet-derived growth factor (PDGF), have profound effects on oligodendrocyte development and myelination. Moreover, S1P signaling in oligodendrocytes may not only play an important role during normal CNS development but also offer new therapeutic avenues to stimulate remyelination in demyelinating diseases like multiple sclerosis.
Collapse
Affiliation(s)
- Rochelle P Coelho
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | | | | |
Collapse
|
8
|
Abstract
Platelet-derived growth factors (PDGFs) and their receptors (PDGFRs) have served as prototypes for growth factor and receptor tyrosine kinase function for more than 25 years. Studies of PDGFs and PDGFRs in animal development have revealed roles for PDGFR-alpha signaling in gastrulation and in the development of the cranial and cardiac neural crest, gonads, lung, intestine, skin, CNS, and skeleton. Similarly, roles for PDGFR-beta signaling have been established in blood vessel formation and early hematopoiesis. PDGF signaling is implicated in a range of diseases. Autocrine activation of PDGF signaling pathways is involved in certain gliomas, sarcomas, and leukemias. Paracrine PDGF signaling is commonly observed in epithelial cancers, where it triggers stromal recruitment and may be involved in epithelial-mesenchymal transition, thereby affecting tumor growth, angiogenesis, invasion, and metastasis. PDGFs drive pathological mesenchymal responses in vascular disorders such as atherosclerosis, restenosis, pulmonary hypertension, and retinal diseases, as well as in fibrotic diseases, including pulmonary fibrosis, liver cirrhosis, scleroderma, glomerulosclerosis, and cardiac fibrosis. We review basic aspects of the PDGF ligands and receptors, their developmental and pathological functions, principles of their pharmacological inhibition, and results using PDGF pathway-inhibitory or stimulatory drugs in preclinical and clinical contexts.
Collapse
|
9
|
Dev KK, Mullershausen F, Mattes H, Kuhn RR, Bilbe G, Hoyer D, Mir A. Brain sphingosine-1-phosphate receptors: implication for FTY720 in the treatment of multiple sclerosis. Pharmacol Ther 2007; 117:77-93. [PMID: 17961662 DOI: 10.1016/j.pharmthera.2007.08.005] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Accepted: 08/16/2007] [Indexed: 10/22/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune, neurological disability with unknown etiology. The current therapies available for MS work by an immunomodulatory action, preventing T-cell- and macrophage-mediated destruction of brain-resident oligodendrocytes and axonal loss. Recently, FTY720 (fingolimod) was shown to significantly reduce relapse rates in MS patients and is currently in Phase III clinical trials. This drug attenuates trafficking of harmful T cells entering the brain by regulating sphingosine-1-phosphate (S1P) receptors. Here, we outline the direct roles that S1P receptors play in the central nervous system (CNS) and discuss additional modalities by which FTY720 may provide direct neuroprotection in MS.
Collapse
Affiliation(s)
- Kumlesh K Dev
- Department of Anatomy and Neuroscience, University College Cork, Windle Building, Cork, Ireland.
| | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
The function of oligodendrocytes is to myelinate CNS axons. Oligodendrocytes and the axons they myelinate are functional units, and neurotransmitters released by axons can influence all stages of oligodendrocyte development via calcium dependent mechanisms. Some of the clearest functional evidence is for adenosine, ATP, and glutamate, which are released by electrically active axons and regulate the migration and proliferation of oligodendrocyte progenitor cells and their differentiation into myelinating oligodendrocytes. Glutamate and ATP, released by both axons and astrocytes, continue to mediate Ca(2+) signaling in mature oligodendrocytes, acting via AMPA and NMDA glutamate receptors, and heterogeneous P2X and P2Y purinoceptors. Physiological signalling between axons, astrocytes, and oligodendrocytes is likely to play an important role in myelin maintenance throughout life. Significantly, ATP- and glutamate-mediated Ca(2+) signaling are also major components of oligodendrocyte and myelin damage in numerous pathologies, most notably ischemia, injury, periventricular leukomalacia, and multiple sclerosis. In addition, NG2-expressing glia (synantocytes) in the adult CNS are highly reactive cells that respond rapidly to any CNS insult by a characteristic gliosis, and are able to regenerate oligodendrocytes and possibly neurons. Glutamate and ATP released by neurons and astrocytes evoke Ca(2+) signaling in NG2-glia (synantocytes), and it is proposed these regulate their differentiation capacity and response to injury. In summary, clear roles have been demonstrated for neurotransmitter-mediated Ca(2+) signaling in oligodendrocyte development and pathology. A key issue for future studies is to determine the physiological roles of neurotransmitters in mature oligodendrocytes and NG2-glia (synantocytes).
Collapse
Affiliation(s)
- Arthur M Butt
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| |
Collapse
|
11
|
Saini HS, Coelho RP, Goparaju SK, Jolly PS, Maceyka M, Spiegel S, Sato-Bigbee C. Novel role of sphingosine kinase 1 as a mediator of neurotrophin-3 action in oligodendrocyte progenitors. J Neurochem 2006; 95:1298-310. [PMID: 16313513 DOI: 10.1111/j.1471-4159.2005.03451.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We had found previously that neurotrophin-3 (NT-3) is a potent stimulator of cAMP-response element binding protein (CREB) phosphorylation in cultured oligodendrocyte progenitors. Here, we show that CREB phosphorylation in these cells is also highly stimulated by sphingosine-1-phosphate (S1P), a sphingolipid metabolite that is known to be a potent mediator of numerous biological processes. Moreover, CREB phosphorylation in response to NT-3 involves sphingosine kinase 1 (SphK1), the enzyme that synthesizes S1P. Immunocytochemistry and confocal microscopy indicated that NT-3 induces translocation of SphK1 from the cytoplasm to the plasma membrane of oligodendrocytes, a process accompanied by increased SphK1 activity in the membrane fraction where its substrate sphingosine resides. To examine the involvement of SphK1 in NT-3 function, SphK1 expression was down-regulated by treatment with SphK1 sequence-specific small interfering RNA. Remarkably, the capacity of NT-3 to protect oligodendrocyte progenitors from apoptotic cell death induced by growth factor deprivation was abolished by down-regulating the expression of SphK1, as assessed by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay. Altogether, these results suggest that SphK1 plays a crucial role in the stimulation of oligodendrocyte progenitor survival by NT-3, and demonstrate a functional link between NT-3 and S1P signaling, adding to the complexity of mechanisms that modulate neurotrophin function and oligodendrocyte development.
Collapse
Affiliation(s)
- Harsimran S Saini
- Department of Biochemistry, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298-0614, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Wilke S, Thomas R, Allcock N, Fern R. Mechanism of acute ischemic injury of oligodendroglia in early myelinating white matter: the importance of astrocyte injury and glutamate release. J Neuropathol Exp Neurol 2004; 63:872-81. [PMID: 15330341 DOI: 10.1093/jnen/63.8.872] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In developing CNS white matter (WM), the period of early myelination is characterized by a heightened sensitivity to ischemic injury. Using an in situ (isolated) preparation, we show that the mechanism of acute ischemic injury of immature WM oligodendroglial involves Ca2+ influx though non-NMDA type glutamate receptors (GluRs). The Ca2+-influx and acute cell death that was evoked by ischemic conditions (oxygen and glucose withdrawal) in identified P10 rat optic nerve oligodendroglia were blocked by removing extracellular Ca2+ or by CNQX, a selective non-NMDA GluR antagonist. The selective Na-K-Cl cotransport (NKCC) inhibitor bumetanide was also highly protective, even though NKCC expression is restricted to astrocytes in this tissue. Bumetanide largely prevented the non-NMDA GluR-mediated [Ca2+]i rise evoked by ischemia in oligodendroglia, suggesting that it interfered with ischemic glutamate release. In control WM, glutamate-like reactivity was located mainly in astrocytes and oligodendroglia identified using ultrastructural criteria. In ischemic WM, astrocyte glutamate-like reactivity was reduced, an effect countered by bumetanide. We suggest a model in which NKCC-dependent injury and release of glutamate from astrocytes activates glutamate receptors on oligodendroglia, resulting in Ca2+-influx and acute cell death.
Collapse
Affiliation(s)
- Scott Wilke
- Department of Neurology, University of Washington, Seattle, Washington, USA
| | | | | | | |
Collapse
|
13
|
Thomas R, Salter MG, Wilke S, Husen A, Allcock N, Nivison M, Nnoli AN, Fern R. Acute ischemic injury of astrocytes is mediated by Na-K-Cl cotransport and not Ca2+ influx at a key point in white matter development. J Neuropathol Exp Neurol 2004; 63:856-71. [PMID: 15330340 DOI: 10.1093/jnen/63.8.856] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cerebral palsy is a common birth disorder that frequently involves ischemic-type injury to developing white matter (WM). Dead glial cells are a common feature of this injury and here we describe a novel form of acute ischemic cell death in developing WM astrocytes. Ischemia, modeled by the withdrawal of oxygen and glucose, evoked [Ca2+]i increases and cell death in astrocytes in post-natal day 10 (P10) rat optic nerve (RON). Removing extracellular Ca2+ prevented increases in [Ca2+]i but increased the amount of cell death. Astrocytes showed rapid [Na+]i increases during ischemia and cell death was reduced to control levels by substitution of extracellular Na+ or Cl- or by perfusion with bumetanide, a selective Na-K-Cl cotransport (NKCC) blocker. Astrocytes showed marked swelling during ischemia in the absence of extracellular Ca2+, which was blocked by bumetanide. Raising the extracellular osmolarity to limit water uptake reduced ischemic astrocyte death to control levels. Ultrastructural examination showed that post-ischemic astrocytes had lost their processes and frequently were necrotic, effects partially prevented by bumetanide. At this point in development, therefore, NKCC activation in astrocytes during ischemia produces an osmo-regulatory challenge. Astrocytes can subsequently regulate their cell volume in a Ca2+-dependent fashion but this will require ATP hydrolysis and does not protect the cells against acute cell death.
Collapse
Affiliation(s)
- Robert Thomas
- Department of Neurology, University of Washington, Seattle, Washington, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Yu N, Lariosa-Willingham KD, Lin FF, Webb M, Rao TS. Characterization of lysophosphatidic acid and sphingosine-1-phosphate-mediated signal transduction in rat cortical oligodendrocytes. Glia 2003; 45:17-27. [PMID: 14648542 DOI: 10.1002/glia.10297] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) have been proposed to play a key role in oligodendrocyte maturation and myelinogenesis. In this study, we examined lysophospholipid receptor gene expression in differentiated rat oligodendrocyte cultures and signaling downstream of lysophospholipid receptor activation by LPA and S1P. Differentiated oligodendrocytes express mRNAs encoding lysophospholipid receptors with the relative abundance of lpa1>s1p5>s1p1=s1p2=lpa3>s1p3. LPA and S1P transiently increased phosphorylation of extracellular signal-regulated kinase (ERK) with EC50 values of 956 and 168 nM, respectively. LPA- and S1P-induced ERK phosphorylation was dependent on the activation of mitogen-activated protein kinase (MAPK), phospholipase C (PLC), and protein kinase C (PKC), but was insensitive to pertussis toxin (PTX). LPA increased intracellular calcium levels in oligodendrocytes and these increases were partially blocked by a PLC inhibitor but not by PTX. In contrast, S1P was not found to induce measurable changes of intracellular calcium. These results taken together suggest that lysophospholipid receptor activation involves receptor coupling to heterotrimeric Gq subunits with consequent activation of PLC, PKC, and MAPK pathways leading to ERK phosphorylation.
Collapse
Affiliation(s)
- Naichen Yu
- Molecular Neuroscience, Merck Research Laboratories, San Diego, California 92121, USA.
| | | | | | | | | |
Collapse
|
15
|
Soliven B, Ma L, Bae H, Attali B, Sobko A, Iwase T. PDGF upregulates delayed rectifier via Src family kinases and sphingosine kinase in oligodendroglial progenitors. Am J Physiol Cell Physiol 2003; 284:C85-93. [PMID: 12475761 DOI: 10.1152/ajpcell.00145.2002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An increase in the expression of the delayed rectifier current (I(K)) has been shown to correlate with mitogenesis in many cell types. However, pathways involved in the upregulation of I(K) by growth factors in oligodendroglial progenitors (OPs) have not been well-elucidated. In this study, we found that treatment with platelet-derived growth factor (PDGF) and basic fibroblast growth factor but not ciliary neurotrophic factor resulted in increased I(K) density and upregulation of Kv1.5 and Kv1.6 mRNA transcripts. The effect of PDGF on I(K) was blocked by mimosine, a cell cycle inhibitor, and by genistein, a tyrosine kinase inhibitor. Using inhibitors of PDGF-activated pathways, we found that PDGF-induced upregulation of Kv1.5 and I(K) density involves Src family tyrosine kinases, sphingosine kinase, and intracellular Ca(2+) but not ERK1/2 or phosphatidylinositol 3-kinase pathways. Furthermore, agents that were effective inhibitors of PDGF-induced I(K) upregulation also attenuated OP proliferation, supporting the concept that I(K) is an important link between PDGF-activated signaling cascades and cell cycle progression.
Collapse
Affiliation(s)
- Betty Soliven
- Department of Neurology and Committee on Neurobiology, The Brain Research Institute, University of Chicago, 5841 S. Maryland, Chicago, IL 60637, USA.
| | | | | | | | | | | |
Collapse
|
16
|
De Marchis F, Ribatti D, Giampietri C, Lentini A, Faraone D, Scoccianti M, Capogrossi MC, Facchiano A. Platelet-derived growth factor inhibits basic fibroblast growth factor angiogenic properties in vitro and in vivo through its alpha receptor. Blood 2002; 99:2045-53. [PMID: 11877278 DOI: 10.1182/blood.v99.6.2045] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Basic fibroblast growth factor (bFGF) and platelet-derived growth factor-BB (PDGF-BB) modulate vascular wall cell function in vitro and angiogenesis in vivo. The aim of the current study was to determine how bovine aorta endothelial cells (BAECs) respond to the simultaneous exposure to PDGF-BB and bFGF. It was found that bFGF-dependent BAEC migration, proliferation, and differentiation into tubelike structures on reconstituted extracellular matrix (Matrigel) were inhibited by PDGF-BB. The role played by PDGF receptor alpha (PDGF-Ralpha) was investigated by selective stimulation with PDGF-AA, by blocking PDGF-BB-binding to PDGF-Ralpha with neomycin, or by transfecting cells with dominant-negative forms of the receptors to selectively impair either PDGF-Ralpha or PDGF-Rbeta function. In all cases, PDGF-Ralpha impairment abolished the inhibitory effect of PDGF-BB on bFGF-directed BAEC migration. In addition, PDGF-Ralpha phosphorylation was increased in the presence of bFGF and PDGF, as compared to PDGF alone, whereas mitogen-activated protein kinase phosphorylation was decreased in the presence of PDGF-BB and bFGF compared with bFGF alone. In vivo experiments showed that PDGF-BB and PDGF-AA inhibited bFGF-induced angiogenesis in vivo in the chick embryo chorioallantoic membrane assay and that PDGF-BB inhibited bFGF-induced angiogenesis in Matrigel plugs injected subcutaneously in CD1 mice. Taken together these results show that PDGF inhibits the angiogenic properties of bFGF in vitro and in vivo, likely through PDGF-Ralpha stimulation.
Collapse
Affiliation(s)
- Francesco De Marchis
- Laboratorio di Patologia Vascolare, Istituto Dermopatico dell'Immacolata, Via dei Monti di Creta 104, 00167 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Deng W, McKinnon RD, Poretz RD. Lead exposure delays the differentiation of oligodendroglial progenitors in vitro. Toxicol Appl Pharmacol 2001; 174:235-44. [PMID: 11485384 DOI: 10.1006/taap.2001.9219] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lead (Pb) is an environmental neurotoxicant that can cause hypo- and demyelination. Oligodendrocytes (OLs), the myelin-forming cells in the central nervous system, may be a possible target for Pb toxicity. The present study describes the effect of Pb on the maturation of rat OL progenitor (OP) cells and the developmental expression of myelin-specific galactolipids. Dose-response studies showed that OP cultures were more sensitive to Pb than mature OLs. Pb delayed the differentiation of OL progenitors, as demonstrated by cell morphology and immunostaining with a panel of stage-specific differentiation markers. Pb given prior to and during differentiation caused a decrease in the biosynthesis of galactolipids in both undifferentiated and differentiated OLs, as detected by metabolic radiolabeling with 3H-D-galactose. While the ratios of galacto/gluco-cerebrosides, hydroxy fatty acid/nonhydroxy fatty acid galactolipids, and galactocerebrosides/sulfatides increased in control cultures during cell differentiation, Pb treatment prevented these changes. The results suggest that chronic Pb exposure may impact brain development by interfering with the timely developmental maturation of OL progenitors.
Collapse
Affiliation(s)
- W Deng
- Department of Biochemistry and Microbiology, Rutgers University, 76 Lipman Drive, New Brunswick, New Jersey 08901, USA
| | | | | |
Collapse
|
18
|
Sparks and puffs in oligodendrocyte progenitors: cross talk between ryanodine receptors and inositol trisphosphate receptors. J Neurosci 2001. [PMID: 11356874 DOI: 10.1523/jneurosci.21-11-03860.2001] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Investigating how calcium release from the endoplasmic reticulum (ER) is triggered and coordinated is crucial to our understanding of how oligodendrocyte progenitor cells (OPs) develop into myelinating cells. Sparks and puffs represent highly localized Ca(2+) release from the ER through ryanodine receptors (RyRs) and inositol trisphosphate receptors (IP(3)Rs), respectively. To study whether sparks or puffs trigger Ca(2+) waves in OPs, we performed rapid high-resolution line scan recordings in fluo-4-loaded OP processes. We found spontaneous and evoked sparks and puffs, and we have identified functional cross talk between IP(3)Rs and RyRs. Local events evoked using the IP(3)-linked agonist methacholine (MeCh) showed significantly different morphology compared with events evoked using the caffeine analog 3,7-dimethyl-1-propargylxanthine (DMPX). Pretreatment with MeCh potentiated DMPX-evoked events, whereas inhibition of RyRs potentiated events evoked by low concentrations of MeCh. Furthermore, activation of IP(3)Rs but not RyRs was critical for Ca(2+) wave initiation. Using immunocytochemistry, we show OPs express the specific Ca(2+) release channel subtypes RyR3 and IP(3)R2 in patches along OP processes. RyRs are coexpressed with IP(3)Rs in some patches, but IP(3)Rs are also found alone. This differential distribution pattern may underlie the differences in local and global Ca(2+) signals mediated by these two receptors. Thus, in OPs, interactions between IP(3)Rs and RyRs determine the spatial and temporal characteristics of calcium signaling, from microdomains to intracellular waves.
Collapse
|
19
|
Abstract
Intracellular Ca2+ is the key signal that regulates the efficacy of neurotransmitter release and synaptic plasticity in neurons but is also an important second messenger involved in the signal transduction and modulation of gene expression in both excitable and non-excitable cells. Glial cells, including cells of oligodendroglial (OLG) lineage, are capable of responding to extracellular stimuli via changes in the intracellular Ca2+. This review article focuses on the mechanisms of Ca2+ signalling in cells of OLG lineage with the goal of providing the basis for understanding the relevance of receptor- and non-receptor-mediated signalling to oligodendroglial development, myelination, and demyelination. Conclusions to date indicate that cells of OLG lineage exhibit remarkable plasticity with regard to the expression of ion channels and receptors linked to Ca2+ signalling and that perturbation of [Ca2](i) homeostasis contributes to the pathogenesis of demyelinating diseases.
Collapse
Affiliation(s)
- B Soliven
- Department of Neurology and Comm. on Neurobiology, The Brain Research Institute, University of Chicago, 5841 S. Maryland, Chicago, IL 60637, USA.
| |
Collapse
|
20
|
King CC, Gardiner EM, Zenke FT, Bohl BP, Newton AC, Hemmings BA, Bokoch GM. p21-activated kinase (PAK1) is phosphorylated and activated by 3-phosphoinositide-dependent kinase-1 (PDK1). J Biol Chem 2000; 275:41201-9. [PMID: 10995762 DOI: 10.1074/jbc.m006553200] [Citation(s) in RCA: 177] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In this study, we show that phosphorylated 3-phosphoinositide-dependent kinase 1 (PDK1) phosphorylates p21-activated kinase 1 (PAK1) in the presence of sphingosine. We identify threonine 423, a conserved threonine in the activation loop of kinase subdomain VIII, as the PDK1 phosphorylation site on PAK1. Threonine 423 is a previously identified PAK1 autophosphorylation site that lies within a PAK consensus phosphorylation sequence. After pretreatment with phosphatases, autophosphorylation of PAK1 occurred at all major sites except threonine 423. A phosphothreonine 423-specific antibody detected phosphorylation of recombinant, catalytically inactive PAK1 after incubation with wild-type PAK1, indicating phosphorylation of threonine 423 occurs by an intermolecular mechanism. The biological significance of PDK1 phosphorylation of PAK1 at threonine 423 in vitro is supported by the observation that these two proteins interact in vivo and that PDK1-phosphorylated PAK1 has an increased activity toward substrate. An increase of phosphorylation of catalytically inactive PAK1 was observed in COS-7 cells expressing wild-type, but not catalytically inactive, PDK1 upon elevation of intracellular sphingosine levels. PDK1 phosphorylation of PAK1 was not blocked by pretreatment with wortmannin or when PDK1 was mutated to prevent phosphatidylinositol binding, indicating this process is independent of phosphatidylinositol 3-kinase activity. The data presented here provide evidence for a novel mechanism for PAK1 regulation and activation.
Collapse
Affiliation(s)
- C C King
- Departments of Immunology and Cell Biology, Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Facchiano A, De Marchis F, Turchetti E, Facchiano F, Guglielmi M, Denaro A, Palumbo R, Scoccianti M, Capogrossi MC. The chemotactic and mitogenic effects of platelet-derived growth factor-BB on rat aorta smooth muscle cells are inhibited by basic fibroblast growth factor. J Cell Sci 2000; 113 ( Pt 16):2855-63. [PMID: 10910770 DOI: 10.1242/jcs.113.16.2855] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
In response to endovascular injury, platelet-derived growth factor-BB (PDGF-BB) and basic fibroblast growth factor (bFGF) are released locally and modulate vascular smooth muscle cells (SMC) proliferation and migration within the vascular wall. The aim of the present in vitro study was to determine how rat aorta SMC respond to the simultaneous exposure to PDGF-BB and bFGF. In a modified Boyden chamber assay bFGF exhibited a dose-dependent effect to inhibit the chemotactic action of PDGF-BB. A comparable result was observed in proliferation assays. In contrast, MIP-1 beta, epidermal growth factor (EGF), fibronectin and acidic FGF (aFGF) did not inhibit the chemotactic effect of PDGF-BB. Denatured bFGF did not exert an inhibitory effect and neutralizing antibodies either to bFGF or to bFGF-receptor abolished the inhibition observed in the presence of bFGF. The role played by PDGF receptor alpha (PDGF-Ralpha) was investigated in PDGF-Ralpha-dominant negative-transfected SMC, by selectively blocking PDGF-BB-binding to PDGF-Ralpha with neomycin, by neutralizing PDGF-Ralpha with a monoclonal antibody and by selectively stimulating PDGF-Ralpha with PDGF-AA; in all cases the effect of bFGF to inhibit PDGF-BB-directed SMC migration was abolished. These in vitro studies show that bFGF significantly inhibits PDGF-BB-induced SMC migration and proliferation and that this effect is mediated by both PDGF-Ralpha and bFGF receptor.
Collapse
Affiliation(s)
- A Facchiano
- Laboratorio di Patologia Vascolare, Istituto Dermopatico dell'Immacolata, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Schmidt C, Ohlemeyer C, Kettenmann H, Reutter W, Horstkorte R. Incorporation of N-propanoylneuraminic acid leads to calcium oscillations in oligodendrocytes upon the application of GABA. FEBS Lett 2000; 478:276-80. [PMID: 10930582 DOI: 10.1016/s0014-5793(00)01868-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sialylation of glycoproteins and glycolipids plays an important role during development, regeneration and pathogenesis. It has been shown that unnatural sialylation within glial cell cultures can have distinct effects on their proliferation and antigenic profiles. These cultures metabolize N-propanoylmannosamine (N-propanoylneuraminic acid precursor=P-NAP), a synthetic non-physiological precursor of neuraminic acid, resulting in the expression of N-propanoylneuraminic acid in glycoconjugates of their cell membranes [Schmidt, C., Stehling, P., Schnitzer, J., Reutter, W. and Horstkorte, R. (1998) J. Biol. Chem. 273, 19146-19152]. To determine whether these biochemically engineered sialic acids influence calcium concentrations in cells of the oligodendrocyte lineage, mixed glial cultures of oligodendrocytes growing on top of an astrocyte monolayer were exposed to glutamate, histamine, adrenaline, gamma-aminobutyric acid (GABA), high potassium (high K(+)) and ATP. Calcium responses in P-NAP-treated oligodendrocytes were determined by confocal microscopy with the calcium indicator fluo-3 AM, and compared with control cultures. We showed that P-NAP differentially modulated the calcium responses of individual oligodendrocytes when GABA was applied. GABA induced calcium oscillations with up to four spikes per min in 60% of oligodendrocytes when treated with P-NAP.
Collapse
Affiliation(s)
- C Schmidt
- Max Delbrück Centrum für Molekulare Medizin, Berlin-Buch, Germany.
| | | | | | | | | |
Collapse
|
23
|
King CC, Zenke FT, Dawson PE, Dutil EM, Newton AC, Hemmings BA, Bokoch GM. Sphingosine is a novel activator of 3-phosphoinositide-dependent kinase 1. J Biol Chem 2000; 275:18108-13. [PMID: 10748151 DOI: 10.1074/jbc.m909663199] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
3-Phosphoinositide-dependent kinase 1 (PDK1) has previously been shown to phosphorylate the activation loop of several AGC kinase family members. In this study, we show that p21-activated kinase 1, the activity of which is regulated by the GTP-bound form of Cdc42 and Rac and by sphingosine, is phosphorylated by PDK1. Phosphorylation of p21-activated kinase 1 by PDK1 occurred only in the presence of sphingosine, which increased PDK1 autophosphorylation 25-fold. Sphingosine increased PDK1 autophosphorylation in a concentration-dependent manner and significantly increased phosphate incorporation into known PDK1 substrates. Studies on the lipid requirement for PDK1 activation found that both sphingosine isoforms and stearylamine also increased PDK1 autophosphorylation. However, C(10)-sphingosine, octylamine, and stearic acid were unable to increase PDK1 autophosphorylation, indicating that both a positive charge and a lipid tail containing at least a C(10)-carbon backbone were required for PDK1 activation. Three PDK1 autophosphorylation sites were identified after stimulation with sphingosine in a serine-rich region located between the kinase domain and the pleckstrin homology domain using two-dimensional phosphopeptide maps and matrix assisted laser desorption/ionization mass spectroscopy. Increased phosphorylation of endogenous Akt at threonine 308 was observed in COS-7 cells expressing wild type PDK1, but not catalytically inactive PDK1, when cellular sphingosine levels were elevated by treatment with sphingomyelinase. Sphingosine thus appears to be a true PDK1 activator.
Collapse
Affiliation(s)
- C C King
- Departments of Immunology, Cell Biology, and Chemistry and the Skaggs Institute for Chemical Biology, Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Saqr HE, Guan Z, Yates AJ, Stokes BT. Mechanisms through which PDGF alters intracellular calcium levels in U-1242 MG human glioma cells. Neurochem Int 1999; 35:411-22. [PMID: 10524708 DOI: 10.1016/s0197-0186(99)00092-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PDGF-BB induces a rapid, sustained increase in intracellular calcium levels in U-1242 MG cells. We used several calcium channel blockers to identify the types of channels involved. L channel blockers (verapamil, nimodipine, nicardipine, nitrendipine and taicatoxin) had no effect on PDGF-BB induced alterations in intracellular calcium. Blockers of P, Q and N channels (omega-agatoxin-IVA, omega-conotoxin MVIIC and omega-conotoxin GVIA) also had no effect. This indicates that these channels play an insignificant role in supplying the Ca2+ necessary for PDGF stimulated events in U-1242 MG cells. However, a T channel blocker (NDGA) and the non-specific (NS) calcium channel blockers (FFA and SK&F 9365) abolished PDGF-induced increases in intracellular calcium. This indicates that PDGF causes calcium influx through both non-specific cationic channels and T channels. To study the participation of intracellular calcium stores in this process, we used thapsigargin, caffeine and ryanodine, all of which cause depletion of intracellular calcium stores. The PDGF effect was abolished using both thapsigargin and caffeine but not ryanodine. Collectively, these data indicate that in these human glioma cells PDGF-BB induces release of intracellular calcium from caffeine- and thapsigargin-sensitive calcium stores which in turn lead to further calcium influx through both NS and T channels.
Collapse
Affiliation(s)
- H E Saqr
- Department of Pathology, The Ohio State University, Columbus 43210, USA
| | | | | | | |
Collapse
|
25
|
Fatatis A, Miller RJ. Cell cycle control of PDGF-induced Ca(2+) signaling through modulation of sphingolipid metabolism. FASEB J 1999; 13:1291-301. [PMID: 10428754 DOI: 10.1096/fasebj.13.11.1291] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The effects of growth factors have been shown to depend on the position of a cell in the cell cycle. However, the physiological basis for this phenomenon remains unclear. Here we show that the majority of both CEINGE clone3 (cl3) and human embryonic kidney 293 cells, when arrested in a quiescent phase (G(0)), responded to platelet-derived growth factor BB (PDGF-BB) with non-oscillatory Ca(2+) signals. Furthermore, the same type of Ca(2+) response was also observed in CEINGE cl3 cells (and to a lesser extent in HEK 293 cells) blocked at the G(1)/S boundary. In contrast, CEINGE cl3 cells synchronized in early G(1) or released from G(1)/S arrest responded in an oscillatory fashion. This cell cycle-dependent modulation of Ca(2+) signaling was not observed on epidermal growth factor and G-protein-coupled receptor stimulation and was not due to differences in the expression of PDGF receptors (PDGFRs) during the cell cycle. We demonstrate that inhibition of sphingosine-kinase, which converts sphingosine to sphingosine-1-phosphate, caused G(0) as well as G(1)/S synchronized cells to restore the oscillatory Ca(2+) response to PDGF-BB. In addition, we show that the synthesis of sphingosine and sphingosine-1-phosphate is regulated by the cell cycle and may underlie the differences in Ca(2+) signaling after PDGFR stimulation.
Collapse
Affiliation(s)
- A Fatatis
- Department of Pharmacological and Physiological Sciences, The University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
26
|
|
27
|
Heldin CH, Ostman A, Rönnstrand L. Signal transduction via platelet-derived growth factor receptors. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1378:F79-113. [PMID: 9739761 DOI: 10.1016/s0304-419x(98)00015-8] [Citation(s) in RCA: 273] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Platelet-derived growth factor (PDGF) exerts its stimulatory effects on cell growth and motility by binding to two related protein tyrosine kinase receptors. Ligand binding induces receptor dimerization and autophosphorylation, allowing binding and activation of cytoplasmic SH2-domain containing signal transduction molecules. Thereby, a number of different signaling pathways are initiated leading to cell growth, actin reorganization migration and differentiation. Recent observations suggest that extensive cross-talk occurs between different signaling pathways, and that stimulatory signals are modulated by inhibitory signals arising in parallel.
Collapse
Affiliation(s)
- C H Heldin
- Ludwig Institute for Cancer Research, Biomedical Center, Uppsala, Sweden
| | | | | |
Collapse
|
28
|
Van Brocklyn JR, Lee MJ, Menzeleev R, Olivera A, Edsall L, Cuvillier O, Thomas DM, Coopman PJ, Thangada S, Liu CH, Hla T, Spiegel S. Dual actions of sphingosine-1-phosphate: extracellular through the Gi-coupled receptor Edg-1 and intracellular to regulate proliferation and survival. J Cell Biol 1998; 142:229-40. [PMID: 9660876 PMCID: PMC2133030 DOI: 10.1083/jcb.142.1.229] [Citation(s) in RCA: 394] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/1998] [Revised: 05/06/1998] [Indexed: 02/08/2023] Open
Abstract
Sphingosine-1-phosphate (SPP), a bioactive lipid, acts both intracellularly and extracellularly to cause pleiotropic biological responses. Recently, we identified SPP as a ligand for the G protein-coupled receptor Edg-1 (Lee, M.-J., J.R. Van Brocklyn, S. Thangada, C.H. Liu, A.R. Hand, R. Menzeleev, S. Spiegel, and T. Hla. 1998. Science. 279:1552-1555). Edg-1 binds SPP with remarkable specificity as only sphinganine-1-phosphate displaced radiolabeled SPP, while other sphingolipids did not. Binding of SPP to Edg-1 resulted in inhibition of forskolin-stimulated cAMP accumulation, in a pertussis toxin-sensitive manner. In contrast, two well-characterized biological responses of SPP, mitogenesis and prevention of apoptosis, were clearly unrelated to binding to Edg-1 and correlated with intracellular uptake. SPP also stimulated signal transduction pathways, including calcium mobilization, activation of phospholipase D, and tyrosine phosphorylation of p125(FAK), independently of edg-1 expression. Moreover, DNA synthesis in Swiss 3T3 fibroblasts was significantly and specifically increased by microinjection of SPP. Finally, SPP suppresses apoptosis of HL-60 and pheochromocytoma PC12 cells, which do not have specific SPP binding or expression of Edg-1 mRNA. Conversely, sphinganine-1-phosphate, which binds to and signals via Edg-1, does not have any significant cytoprotective effect. Thus, SPP is a prototype for a novel class of lipid mediators that act both extracellularly as ligands for cell surface receptors and intracellularly as second messengers.
Collapse
Affiliation(s)
- J R Van Brocklyn
- Department of Biochemistry and Molecular Biology, Lombardi Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|