1
|
Singh V. F 1F o adenosine triphosphate (ATP) synthase is a potential drug target in non-communicable diseases. Mol Biol Rep 2023; 50:3849-3862. [PMID: 36715790 DOI: 10.1007/s11033-023-08299-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/19/2023] [Indexed: 01/31/2023]
Abstract
F1Fo adenosine triphosphate (ATP) synthase, also known as the complex V, is the central ATP-producing unit in the cells arranged in the mitochondrial and plasma membranes. F1Fo ATP synthase also regulates the central metabolic processes in the human body driven by proton motive force (Δp). Numerous studies have immensely contributed toward highlighting its regulation in improving energy homeostasis and maintaining mitochondrial integrity, which otherwise gets compromised in illnesses. Yet, its role in the implication of non-communicable diseases remains unknown. F1Fo ATP synthase dysregulation at gene level leads to reduced activity and delocalization in the cristae and plasma membranes, which is directly associated with non-communicable diseases: cardiovascular diseases, diabetes, neurodegenerative disorders, cancer, and renal diseases. Individual subunits of the F1Fo ATP synthase target ligand-based competitive or non-competitive inhibition. After performing a systematic literature review to understand its specific functions and its novel drug targets, the present article focuses on the central role of F1Fo ATP synthase in primary non-communicable diseases. Next, it discusses its involvement through various pathways and the effects of multiple inhibitors, activators, and modulators specific to non-communicable diseases with a futuristic outlook.
Collapse
Affiliation(s)
- Varsha Singh
- Centre for Life Sciences, Chitkara School of Health Sciences, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
2
|
Song W, Shi X, Liu K, Li R, Niu L, Su L, Wu H. Detection of mitochondrial coupling factor 6 in placental tissues from preeclamptic pregnancies and its influence on biological behavior of trophoblast cells. Exp Ther Med 2021; 22:1185. [PMID: 34475975 PMCID: PMC8406808 DOI: 10.3892/etm.2021.10619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 03/15/2021] [Indexed: 12/21/2022] Open
Abstract
Increased levels of mitochondrial coupling factor 6 (CF6) are present in the peripheral blood of patients with preeclamptic pregnancies, and are particularly evident in cases of early-onset or severe preeclampsia. The present study examined the location and expression levels of CF6 in the placental tissue and its effect on the biological behavior of trophoblast cells. Placental tissue microarrays, including placental villous cytotrophoblast and extravillous cytotrophoblast microarrays, were used to detect the location and relative expression levels of CF6 in the placenta using immunohistochemistry. It was found that CF6 was expressed in both the normal and preeclamptic placenta, but its levels were higher in the preeclamptic tissues. In addition, the effects of the hypoxic environment on the biological behaviors of trophoblast cells were investigated in the JAR and JEG-3 cell lines. Following induction of hypoxia, the expression levels of CF6 were increased. Moreover, exogenous addition of human recombinant CF6 attenuated cell invasion, but exerted no effect on cell proliferation. At the molecular level, the expression levels of MMP-2 were decreased and were accompanied with a reduction in cell invasion following addition of exogenous CF6. In conclusion, the increased expression levels of CF6 and its effects in reducing the invasive abilities of trophoblast cells may be involved in the pathogenesis of severe preeclampsia.
Collapse
Affiliation(s)
- Wanyu Song
- Department of Gynecology and Obstetrics, Henan Provincial People's Hospital, Zhengzhou, Henan 450000, P.R. China
| | - Xufeng Shi
- Department of Gynecology and Obstetrics, Henan Provincial People's Hospital, Zhengzhou, Henan 450000, P.R. China
| | - Kan Liu
- Department of Gynecology and Obstetrics, Henan Provincial People's Hospital, Zhengzhou, Henan 450000, P.R. China
| | - Ranhong Li
- Department of Gynecology and Obstetrics, Henan Provincial People's Hospital, Zhengzhou, Henan 450000, P.R. China
| | - Leilei Niu
- Department of Gynecology and Obstetrics, Henan Provincial People's Hospital, Zhengzhou, Henan 450000, P.R. China
| | - Lijun Su
- Department of Gynecology and Obstetrics, Henan Provincial People's Hospital, Zhengzhou, Henan 450000, P.R. China
| | - Haiying Wu
- Department of Gynecology and Obstetrics, Henan Provincial People's Hospital, Zhengzhou, Henan 450000, P.R. China
| |
Collapse
|
3
|
Singhal NS, Bai M, Lee EM, Luo S, Cook KR, Ma DK. Cytoprotection by a naturally occurring variant of ATP5G1 in Arctic ground squirrel neural progenitor cells. eLife 2020; 9:55578. [PMID: 33050999 PMCID: PMC7671683 DOI: 10.7554/elife.55578] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023] Open
Abstract
Many organisms in nature have evolved mechanisms to tolerate severe hypoxia or ischemia, including the hibernation-capable Arctic ground squirrel (AGS). Although hypoxic or ischemia tolerance in AGS involves physiological adaptations, little is known about the critical cellular mechanisms underlying intrinsic AGS cell resilience to metabolic stress. Through cell survival-based cDNA expression screens in neural progenitor cells, we identify a genetic variant of AGS Atp5g1 that confers cell resilience to metabolic stress. Atp5g1 encodes a subunit of the mitochondrial ATP synthase. Ectopic expression in mouse cells and CRISPR/Cas9 base editing of endogenous AGS loci revealed causal roles of one AGS-specific amino acid substitution in mediating cytoprotection by AGS ATP5G1. AGS ATP5G1 promotes metabolic stress resilience by modulating mitochondrial morphological change and metabolic functions. Our results identify a naturally occurring variant of ATP5G1 from a mammalian hibernator that critically contributes to intrinsic cytoprotection against metabolic stress. When animals hibernate, they lower their body temperature and metabolism to conserve the energy they need to withstand cold harsh winters. One such animal is the Arctic ground squirrel, an extreme hibernator that can drop its body temperatures to below 0°C. This hibernation ability means the cells of Arctic ground squirrels can survive severe shortages of blood and oxygen. But, it is unclear how their cells are able to endure this metabolic stress. To answer this question, Singhal, Bai et al. studied the cells of Arctic ground squirrels for unique features that might make them more durable to stress. Examining the genetic code of these resilient cells revealed that Arctic ground squirrels may have a variant form of a protein called ATP5G1. This protein is found in a cellular compartment called the mitochondria, which is responsible for supplying energy to the rest of the cell and therefore plays an important role in metabolic processes. Singhal, Bai et al. found that when this variant form of ATP5G1 was introduced into the cells of mice, their mitochondria was better at coping with stress conditions, such as low oxygen, low temperature and poisoning. Using a gene editing tool to selectively substitute some of the building blocks, also known as amino acids, that make up the ATP5G1 protein revealed that improvements to the mitochondria were caused by switching specific amino acids. However, swapping these amino acids, which presumably affects the role of ATP5G1, did not completely remove the cells’ resilience to stress. This suggests that variants of other genes and proteins may also be involved in providing protection. These findings provide the first evidence of a protein variant that is responsible for protecting cells during the metabolic stress conditions caused by hibernation. The approach taken by Singhal, Bai et al. could be used to identify and study other proteins that increase resilience to metabolic stress. These findings could help develop new treatments for diseases caused by a limited blood supply to human organs, such as a stroke or heart attack.
Collapse
Affiliation(s)
- Neel S Singhal
- Department of Neurology, University of California-San Francisco, San Francisco, United States
| | - Meirong Bai
- Cardiovascular Research Institute, University of California-San Francisco, San Francisco, United States.,Department of Physiology, University of California-San Francisco, San Francisco, United States
| | - Evan M Lee
- Cardiovascular Research Institute, University of California-San Francisco, San Francisco, United States.,Department of Physiology, University of California-San Francisco, San Francisco, United States
| | - Shuo Luo
- Cardiovascular Research Institute, University of California-San Francisco, San Francisco, United States.,Department of Physiology, University of California-San Francisco, San Francisco, United States
| | - Kayleigh R Cook
- Cardiovascular Research Institute, University of California-San Francisco, San Francisco, United States.,Department of Physiology, University of California-San Francisco, San Francisco, United States
| | - Dengke K Ma
- Cardiovascular Research Institute, University of California-San Francisco, San Francisco, United States.,Department of Physiology, University of California-San Francisco, San Francisco, United States.,Innovative Genomics Institute, Berkeley, United States
| |
Collapse
|
4
|
Giorgio V, Fogolari F, Lippe G, Bernardi P. OSCP subunit of mitochondrial ATP synthase: role in regulation of enzyme function and of its transition to a pore. Br J Pharmacol 2019; 176:4247-4257. [PMID: 30291799 PMCID: PMC6887684 DOI: 10.1111/bph.14513] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/20/2018] [Accepted: 09/04/2018] [Indexed: 12/20/2022] Open
Abstract
The permeability transition pore (PTP) is a latent, high-conductance channel of the inner mitochondrial membrane. When activated, it plays a key role in cell death and therefore in several diseases. The investigation of the PTP took an unexpected turn after the discovery that cyclophilin D (the target of the PTP inhibitory effect of cyclosporin A) binds to FO F1 (F)-ATP synthase, thus inhibiting its catalytic activity by about 30%. This observation was followed by the demonstration that binding occurs at a particular subunit of the enzyme, the oligomycin sensitivity conferral protein (OSCP), and that F-ATP synthase can form Ca2+ -activated, high-conductance channels with features matching those of the PTP, suggesting that the latter originates from a conformational change in F-ATP synthase. This review is specifically focused on the OSCP subunit of F-ATP synthase, whose unique features make it a potential pharmacological target both for modulation of F-ATP synthase and its transition to a pore. LINKED ARTICLES: This article is part of a themed section on Mitochondrial Pharmacology: Featured Mechanisms and Approaches for Therapy Translation. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.22/issuetoc.
Collapse
Affiliation(s)
- Valentina Giorgio
- Consiglio Nazionale delle Ricerche Institute of Neuroscience and Department of Biomedical SciencesUniversity of PadovaPadovaItaly
| | - Federico Fogolari
- Department of Mathematics, Computer Sciences and PhysicsUniversity of UdineUdineItaly
| | - Giovanna Lippe
- Department of Agricultural, Food, Environmental and Animal SciencesUniversity of UdineUdineItaly
| | - Paolo Bernardi
- Consiglio Nazionale delle Ricerche Institute of Neuroscience and Department of Biomedical SciencesUniversity of PadovaPadovaItaly
| |
Collapse
|
5
|
Wigington CP, Morris KJ, Newman LE, Corbett AH. The Polyadenosine RNA-binding Protein, Zinc Finger Cys3His Protein 14 (ZC3H14), Regulates the Pre-mRNA Processing of a Key ATP Synthase Subunit mRNA. J Biol Chem 2016; 291:22442-22459. [PMID: 27563065 DOI: 10.1074/jbc.m116.754069] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 08/25/2016] [Indexed: 12/23/2022] Open
Abstract
Polyadenosine RNA-binding proteins (Pabs) regulate multiple steps in gene expression. This protein family includes the well studied Pabs, PABPN1 and PABPC1, as well as the newly characterized Pab, zinc finger CCCH-type containing protein 14 (ZC3H14). Mutations in ZC3H14 are linked to a form of intellectual disability. To probe the function of ZC3H14, we performed a transcriptome-wide analysis of cells depleted of either ZC3H14 or the control Pab, PABPN1. Depletion of PABPN1 affected ∼17% of expressed transcripts, whereas ZC3H14 affected only ∼1% of expressed transcripts. To assess the function of ZC3H14 in modulating target mRNAs, we selected the gene encoding the ATP synthase F0 subunit C (ATP5G1) transcript. Knockdown of ZC3H14 significantly reduced ATP5G1 steady-state mRNA levels. Consistent with results suggesting that ATP5G1 turnover increases upon depletion of ZC3H14, double knockdown of ZC3H14 and the nonsense-mediated decay factor, UPF1, rescues ATP5G1 transcript levels. Furthermore, fractionation reveals an increase in the amount of ATP5G1 pre-mRNA that reaches the cytoplasm when ZC3H14 is depleted and that ZC3H14 binds to ATP5G1 pre-mRNA in the nucleus. These data support a role for ZC3H14 in ensuring proper nuclear processing and retention of ATP5G1 pre-mRNA. Consistent with the observation that ATP5G1 is a rate-limiting component for ATP synthase activity, knockdown of ZC3H14 decreases cellular ATP levels and causes mitochondrial fragmentation. These data suggest that ZC3H14 modulates pre-mRNA processing of select mRNA transcripts and plays a critical role in regulating cellular energy levels, observations that have broad implications for proper neuronal function.
Collapse
Affiliation(s)
- Callie P Wigington
- From the Department of Biochemistry and.,the Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, Georgia 30322
| | - Kevin J Morris
- From the Department of Biochemistry and.,the Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, Georgia 30322
| | - Laura E Newman
- From the Department of Biochemistry and.,the Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, Georgia 30322
| | - Anita H Corbett
- From the Department of Biochemistry and .,the Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, Georgia 30322
| |
Collapse
|
6
|
Potential role of subunit c of F0F1-ATPase and subunit c of storage body in the mitochondrial permeability transition. Effect of the phosphorylation status of subunit c on pore opening. Cell Calcium 2014; 55:69-77. [DOI: 10.1016/j.ceca.2013.12.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/25/2013] [Accepted: 12/08/2013] [Indexed: 01/27/2023]
|
7
|
Hou WR, Hou YL, Ding X, Wang T. cDNA, genomic sequence cloning and overexpression of giant panda (Ailuropoda melanoleuca) mitochondrial ATP synthase ATP5G1. GENETICS AND MOLECULAR RESEARCH 2012; 11:3164-74. [PMID: 23007995 DOI: 10.4238/2012.september.3.5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The ATP5G1 gene is one of the three genes that encode mitochondrial ATP synthase subunit c of the proton channel. We cloned the cDNA and determined the genomic sequence of the ATP5G1 gene from the giant panda (Ailuropoda melanoleuca) using RT-PCR technology and touchdown-PCR, respectively. The cloned cDNA fragment contains an open reading frame of 411 bp encoding 136 amino acids; the length of the genomic sequence is of 1838 bp, containing three exons and two introns. Alignment analysis revealed that the nucleotide sequence and the deduced protein sequence are highly conserved compared to Homo sapiens, Mus musculus, Rattus norvegicus, Bos taurus, and Sus scrofa. The homologies for nucleotide sequences of the giant panda ATP5G1 to those of these species are 93.92, 92.21, 92.46, 93.67, and 92.46%, respectively, and the homologies for amino acid sequences are 90.44, 95.59, 93.38, 94.12, and 91.91%, respectively. Topology prediction showed that there is one protein kinase C phosphorylation site, one casein kinase II phosphorylation site, five N-myristoylation sites, and one ATP synthase c subunit signature in the ATP5G1 protein of the giant panda. The cDNA of ATP5G1 was transfected into Escherichia coli, and the ATP5G1 fused with the N-terminally GST-tagged protein gave rise to accumulation of an expected 40-kDa polypeptide, which had the characteristics of the predicted protein.
Collapse
Affiliation(s)
- W-R Hou
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, College of Life Science, China West Normal University, P.R. China.
| | | | | | | |
Collapse
|
8
|
Kim DH, Joo JI, Choi JW, Yun JW. Differential expression of skeletal muscle proteins in high-fat diet-fed rats in response to capsaicin feeding. Proteomics 2010; 10:2870-81. [PMID: 20517883 DOI: 10.1002/pmic.200900815] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this study, the effects of capsaicin on expression of skeletal muscle proteins in Sprague-Dawley rats fed with a high-fat diet (HFD) were investigated. Rats were fed a HFD with or without capsaicin treatment for 8 wk. After HFD feeding, capsaicin-treated rats weighed an average of 8% less than those of the HFD control group. Gastrocnemius muscle tissue from lean and obese rats with or without capsaicin treatment was arrayed using 2-DE for detection of HFD-associated markers. Proteomic analysis using 2-DE demonstrated that 36 spots from a total of approximately 600 matched spots showed significantly different expression; 27 spots were identified as gastrocnemius muscle proteins that had been altered in response to capsaicin feeding, and 6 spots could not be identified by mass fingerprinting. Expression of various muscle proteins was determined by immunoblot analysis for the determination of molecular mechanisms, whereby capsaicin caused inhibition of adipogenesis. Immunoblot analysis revealed increased uncoupling protein 3 (UCP3) protein expression in HFD-fed rats, whereas contents were reduced with capsaicin treatment. Compared with the HFD control group, capsaicin treatment increased phosphorylation of AMP-activated protein kinase (AMPIC) CP3 and acetyl-CoA carboxylase (ACC). To support this result, we also analyzed in vitro differential protein expression in L6 skeletal muscle cells. These data suggest that the AMPK-ACC-malonyl-CoA metabolic signaling pathway is one of the targets of capsaicin action. To the best of our knowledge, this is the first proteomic study to report on analysis of diet-induced alterations of protein expression that are essential for energy expenditure in rat muscle.
Collapse
Affiliation(s)
- Dong Hyun Kim
- Department of Biotechnology, Daegu University, Kynungsan, Kyungbuk, Republic of Korea
| | | | | | | |
Collapse
|
9
|
Vives-Bauza C, Magrané J, Andreu AL, Manfredi G. Novel role of ATPase subunit C targeting peptides beyond mitochondrial protein import. Mol Biol Cell 2009; 21:131-9. [PMID: 19889836 PMCID: PMC2801706 DOI: 10.1091/mbc.e09-06-0483] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Mammals have three isoforms of F1F0-ATP synthase subunit c, only differing by their mitochondrial targeting peptides. Here, we show that these isoforms are non-redundant, because of different functions conferred by the targeting peptides, which in addition to mediating protein import, play a yet undiscovered role in respiratory chain maintenance. In mammals, subunit c of the F1F0-ATP synthase has three isoforms (P1, P2, and P3). These isoforms differ by their cleavable mitochondrial targeting peptides, whereas the mature peptides are identical. To investigate this apparent genetic redundancy, we knocked down each of the three subunit c isoform by RNA interference in HeLa cells. Silencing any of the subunit c isoforms individually resulted in an ATP synthesis defect, indicating that these isoforms are not functionally redundant. We found that subunit c knockdown impaired the structure and function of the mitochondrial respiratory chain. In particular, P2 silencing caused defective cytochrome oxidase assembly and function. Because the expression of exogenous P1 or P2 was able to rescue the respective silencing phenotypes, but the two isoforms were unable to cross-complement, we hypothesized that their functional specificity resided in their targeting peptides. In fact, the expression of P1 and P2 targeting peptides fused to GFP variants rescued the ATP synthesis and respiratory chain defects in the silenced cells. Our results demonstrate that the subunit c isoforms are nonredundant, because they differ functionally by their targeting peptides, which, in addition to mediating mitochondrial protein import, play a yet undiscovered role in respiratory chain maintenance.
Collapse
Affiliation(s)
- Cristofol Vives-Bauza
- Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | | |
Collapse
|
10
|
Muhlia-Almazan A, Martinez-Cruz O, Navarrete del Toro MDLA, Garcia-Carreño F, Arreola R, Sotelo-Mundo R, Yepiz-Plascencia G. Nuclear and mitochondrial subunits from the white shrimp Litopenaeus vannamei F(0)F(1) ATP-synthase complex: cDNA sequence, molecular modeling, and mRNA quantification of atp9 and atp6. J Bioenerg Biomembr 2008; 40:359-69. [PMID: 18770013 DOI: 10.1007/s10863-008-9162-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Accepted: 05/16/2008] [Indexed: 01/29/2023]
Abstract
We studied for the first time the ATP-synthase complex from shrimp as a model to understand the basis of crustacean bioenergetics since they are exposed to endogenous processes as molting that demand high amount of energy. We analyzed the cDNA sequence of two subunits of the Fo sector from mitochondrial ATP-synthase in the white shrimp Litopenaeus vannamei. The nucleus encoded atp9 subunit presents a 773 bp sequence, containing a signal peptide sequence only observed in crustaceans, and the mitochondrial encoded atp6 subunit presents a sequence of 675 bp, and exhibits high identity with homologous sequences from invertebrate species. ATP9 and ATP6 protein structural models interaction suggest specific functional characteristics from both proteins in the mitochondrial enzyme. Differences in the steady-state mRNA levels of atp9 and atp6 from five different tissues correlate with tissue function. Moreover, significant changes in the mRNA levels of both subunits at different molt stages were detected. We discussed some insights about the enzyme structure and the regulation mechanisms from both ATP-synthase subunits related to the energy requirements of shrimp.
Collapse
Affiliation(s)
- Adriana Muhlia-Almazan
- Molecular Biology Lab, Centro de Investigación en Alimentación y Desarrollo (CIAD), A. C., Sonora, Mexico.
| | | | | | | | | | | | | |
Collapse
|
11
|
Stiburek L, Fornuskova D, Wenchich L, Pejznochova M, Hansikova H, Zeman J. Knockdown of human Oxa1l impairs the biogenesis of F1Fo-ATP synthase and NADH:ubiquinone oxidoreductase. J Mol Biol 2007; 374:506-16. [PMID: 17936786 DOI: 10.1016/j.jmb.2007.09.044] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 09/17/2007] [Accepted: 09/17/2007] [Indexed: 11/26/2022]
Abstract
The Oxa1 protein is a founding member of the evolutionarily conserved Oxa1/Alb3/YidC protein family, which is involved in the biogenesis of membrane proteins in mitochondria, chloroplasts and bacteria. The predicted human homologue, Oxa1l, was originally identified by partial functional complementation of the respiratory growth defect of the yeast oxa1 mutant. Here we demonstrate that both the endogenous human Oxa1l, with an apparent molecular mass of 42 kDa, and the Oxa1l-FLAG chimeric protein localize exclusively to mitochondria in HEK293 cells. Furthermore, human Oxa1l was found to be an integral membrane protein, and, using two-dimensional blue native/denaturing PAGE, the majority of the protein was identified as part of a 600-700 kDa complex. The stable short hairpin (sh)RNA-mediated knockdown of Oxa1l in HEK293 cells resulted in markedly decreased steady-state levels and ATP hydrolytic activity of the F(1)F(o)-ATP synthase and moderately reduced levels and activity of NADH:ubiquinone oxidoreductase (complex I). However, no significant accumulation of corresponding sub-complexes could be detected on blue native immunoblots. Intriguingly, the achieved depletion of Oxa1l protein did not adversely affect the assembly or activity of cytochrome c oxidase or the cytochrome bc(1) complex. Taken together, our results indicate that human Oxa1l represents a mitochondrial integral membrane protein required for the correct biogenesis of F(1)F(o)-ATP synthase and NADH:ubiquinone oxidoreductase.
Collapse
Affiliation(s)
- Lukas Stiburek
- Department of Pediatrics and Center of Applied Genomics, 1st Faculty of Medicine, Charles University, Prague, 128 08, Czech Republic
| | | | | | | | | | | |
Collapse
|
12
|
Houstek J, Pícková A, Vojtísková A, Mrácek T, Pecina P, Jesina P. Mitochondrial diseases and genetic defects of ATP synthase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:1400-5. [PMID: 16730639 DOI: 10.1016/j.bbabio.2006.04.006] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Revised: 03/31/2006] [Accepted: 04/04/2006] [Indexed: 11/16/2022]
Abstract
ATP synthase is a key enzyme of mitochondrial energy conversion. In mammals, it produces most of cellular ATP. Alteration of ATP synthase biogenesis may cause two types of isolated defects: qualitative when the enzyme is structurally modified and does not function properly, and quantitative when it is present in insufficient amounts. In both cases the cellular energy provision is impaired, and diminished use of mitochondrial DeltamuH+ promotes ROS production by the mitochondrial respiratory chain. The primary genetic defects have so far been localized in mtDNA ATP6 gene and nuclear ATP12 gene, however, involvement of other nuclear genes is highly probable.
Collapse
Affiliation(s)
- Josef Houstek
- Institute of Physiology and Centre for Applied Genomics, Academy of Sciences of the Czech Republic, Vídenská 1083, CZ 142 20 Prague, Czech Republic.
| | | | | | | | | | | |
Collapse
|
13
|
Saccone C, Lanave C, De Grassi A. Metazoan OXPHOS gene families: Evolutionary forces at the level of mitochondrial and nuclear genomes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:1171-8. [PMID: 16781661 DOI: 10.1016/j.bbabio.2006.04.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Revised: 04/19/2006] [Accepted: 04/20/2006] [Indexed: 11/25/2022]
Abstract
Mitochondrial and nuclear DNAs contribute to encode the whole mitochondrial protein complement. The two genomes possess highly divergent features and properties, but the forces influencing their evolution, even if different, require strong coordination. The gene content of mitochondrial genome in all Metazoa is in a frozen state with only few exceptions and thus mitochondrial genome plasticity especially concerns some molecular features, i.e. base composition, codon usage, evolutionary rates. In contrast the high plasticity of nuclear genomes is particularly evident at the macroscopic level, since its redundancy represents the main feature able to introduce genetic material for evolutionary innovations. In this context, genes involved in oxidative phosphorylation (OXPHOS) represent a classical example of the different evolutionary behaviour of mitochondrial and nuclear genomes. The simple DNA sequence of Cytochrome c oxidase I (encoded by the mitochondrial genome) seems to be able to distinguish intra- and inter-species relations between organisms (DNA Barcode). Some OXPHOS subunits (cytochrome c, subunit c of ATP synthase and MLRQ) are encoded by several nuclear duplicated genes which still represent the trace of an ancient segmental/genome duplication event at the origin of vertebrates.
Collapse
Affiliation(s)
- Cecilia Saccone
- Istituto di Tecnologie Biomediche, Sede di Bari, CNR, Bari, Italy.
| | | | | |
Collapse
|
14
|
Houstek J, Mrácek T, Vojtísková A, Zeman J. Mitochondrial diseases and ATPase defects of nuclear origin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1658:115-21. [PMID: 15282182 DOI: 10.1016/j.bbabio.2004.04.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2004] [Revised: 04/01/2004] [Accepted: 04/20/2004] [Indexed: 10/26/2022]
Abstract
Dysfunctions of the F(1)F(o)-ATPase complex cause severe mitochondrial diseases affecting primarily the paediatric population. While in the maternally inherited ATPase defects due to mtDNA mutations in the ATP6 gene the enzyme is structurally and functionally modified, in ATPase defects of nuclear origin mitochondria contain a decreased amount of otherwise normal enzyme. In this case biosynthesis of ATPase is down-regulated due to a block at the early stage of enzyme assembly-formation of the F(1) catalytic part. The pathogenetic mechanism implicates dysfunction of Atp12 or other F(1)-specific assembly factors. For cellular energetics, however, the negative consequences may be quite similar irrespective of whether the ATPase dysfunction is of mitochondrial or nuclear origin.
Collapse
Affiliation(s)
- Josef Houstek
- Institute of Physiology and Centre for Integrated Genomics, Academy of Sciences of the Czech Republic, Vídenská 1083, CZ 142 20 Prague 4-Krc, Czech Republic.
| | | | | | | |
Collapse
|
15
|
Osanai T, Sasaki S, Kamada T, Fujiwara N, Nakano T, Tomita H, Matsunaga T, Magota K, Okumura K. Circulating coupling factor 6 in human hypertension. J Hypertens 2003; 21:2323-8. [PMID: 14654753 DOI: 10.1097/00004872-200312000-00021] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Coupling factor 6 is an endogenous inhibitor of prostacyclin synthesis and might function as an endogenous vasoconstrictor in the fashion of a circulating hormone in rats. We investigated the role of coupling factor 6 in human hypertension. METHODS AND RESULTS The patients with essential hypertension (EH) (n = 30) received a series of normal salt diet (12 g salt/day) for 3 days, low salt diet (2 g salt/day) for 7 days, and high salt diet (20-23 g salt/day) for 7 days. Normotensive control subjects (n = 27) received normal and low salt diets. The plasma level of coupling factor 6, measured by radioimmunoassay, during normal salt diet was higher in patients with EH than in normotensive subjects (17.6 +/- 1.7 versus 12.8 +/- 0.5 ng/ml, P < 0.01). Whereas the plasma level of coupling factor 6 was unchanged after salt restriction in normotensive subjects, it was decreased after salt restriction (from 12 g/day to 2 g/day) and was increased after salt loading (from 2 g/day to 20-23 g/day) in patients with EH. This increase in plasma level of coupling factor 6 was abolished by oral administration of ascorbic acid, but the level of blood pressure was unaffected. The percentage changes in plasma coupling factor 6 level after salt restriction and loading were positively correlated with those in mean blood pressure (r = 0.57, P < 0.01), and negatively correlated with those in plasma nitric oxide level (r = -0.51, P < 0.05). CONCLUSION These indicate that circulating coupling factor 6 is elevated in human hypertension and modulated by salt intake presumably via reactive oxygen species.
Collapse
Affiliation(s)
- Tomohiro Osanai
- Second Deparment of Internal Medicine, Hirosaki University School of Medicine, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Picková A, Paul J, Petruzzella V, Houstek J. Differential expression of ATPAF1 and ATPAF2 genes encoding F(1)-ATPase assembly proteins in mouse tissues. FEBS Lett 2003; 551:42-6. [PMID: 12965202 DOI: 10.1016/s0014-5793(03)00890-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Atp11p (Atpaf1p; F(1)-ATPase assembly factor 1) and Atp12p (Atpaf2p; F(1)-ATPase assembly factor 2) are proteins required for the assembly of beta (F(1)-beta) and alpha (F(1)-alpha) subunits into the mitochondrial ATPase. Here we report about 100 times lower levels of ATPAF1 and ATPAF2 transcripts in relation to the mRNA levels of F(1)-alpha and F(1)-beta in a range of mouse tissues. Quantitative reverse-transcription polymerase chain reaction revealed nearly constant ATPAF1 expression in all tissues in both adult and 5-day-old mice (up to two-fold differences), indicating that ATPAF1 rather behaves like a maintenance gene. In contrast, ATPAF2 expression differed up to 30-fold in the tissues analysed. ATPAF2 tissue-specific expression was also found to correlate well with mRNA levels of both F(1)-alpha and F(1)-beta (BATz.Gt;kidney, liver>heart, brain>skeletal muscle), showing the highest mRNA level in the thermogenic, ATPase-poor brown adipose tissue, which is characterised by a 10-fold decrease in ATPase/respiratory chain stoichiometry relative to the other tissues.
Collapse
Affiliation(s)
- Andrea Picková
- Institute of Physiology and Centre for Integrated Genomics, Academy of Sciences of the Czech Republic, 142 20 4 - Krc, Prague, Czech Republic
| | | | | | | |
Collapse
|
17
|
Itoi S, Kinoshita S, Kikuchi K, Watabe S. Changes of carp FoF1-ATPase in association with temperature acclimation. Am J Physiol Regul Integr Comp Physiol 2003; 284:R153-63. [PMID: 12388464 DOI: 10.1152/ajpregu.00182.2002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previously we have shown, using two-dimensional electrophoresis, that mitochondrial ATP synthase (F(o)F(1)-ATPase) beta-subunit is the 55-kDa protein increased in cold-acclimated carp Cyprinus carpio (Kikuchi K, Itoi S, and Watabe S. Fisheries Sci 65: 629-636, 1999). To clarify the coordinate expression in various subunits of carp F(o)F(1)-ATPase with temperature acclimation, we examined the differences in mRNA levels of mitochondrial proteins encoded by both nuclear and mitochondrial genes in fast muscle of carp acclimated to 10 and 30 degrees C. The mRNA levels of nuclear genes per unit weight of total RNA were nearly twofold higher in the 10 degrees C- than 30 degrees C-acclimated carp. However, the transcripts of mitochondrial genes for the 10 degrees C-acclimated carp in terms of the same comparing unit were six to seven times as much as those for the 30 degrees C-acclimated carp. The F(o)F(1)-ATPase activities measured at 10, 25, and 30 degrees C were nearly twofold higher for the cold-acclimated fish than their warm-acclimated counterparts. Such quantitative and qualitative changes in carp F(o)F(1)-ATPase may contribute to extra ATP production required to compensate for energy balance at suboptimal temperatures.
Collapse
Affiliation(s)
- Shiro Itoi
- Laboratory of Aquatic Molecular Biology and Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113 - 8657, Japan
| | | | | | | |
Collapse
|
18
|
Osanai T, Tanaka M, Kamada T, Nakano T, Takahashi K, Okada S, Sirato K, Magota K, Kodama S, Okumura K. Mitochondrial coupling factor 6 as a potent endogenous vasoconstrictor. J Clin Invest 2001; 108:1023-30. [PMID: 11581303 PMCID: PMC200946 DOI: 10.1172/jci11076] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We demonstrated recently that coupling factor 6, an essential component of the energy-transducing stalk of mitochondrial ATP synthase, suppresses the synthesis of prostacyclin in vascular endothelial cells. Here, we tested the hypothesis that coupling factor 6 is present on the cell surface and is involved in the regulation of systemic circulation. This peptide is present on the surface of CRL-2222 vascular endothelial cells and is released by these cells into the medium. In vivo, the peptide circulates in the vascular system of the rat, and its gene expression and plasma concentration are higher in spontaneously hypertensive rats (SHRs) than in normotensive controls. Elevation of blood pressure with norepinephrine did not affect the plasma concentration of coupling factor 6. Intravenous injection of recombinant peptide increased blood pressure, apparently by suppressing prostacyclin synthesis, whereas a specific Ab to coupling factor 6 decreased systemic blood pressure concomitantly with an increase in plasma prostacyclin. Interestingly, the antibody's hypotensive effect could be abolished by treating with the cyclooxygenase inhibitor indomethacin. These findings indicate that mitochondrial coupling factor 6 functions as a potent endogenous vasoconstrictor in the fashion of a circulating hormone and may suggest a new mechanism for hypertension.
Collapse
Affiliation(s)
- T Osanai
- The Second Department of Internal Medicine, Hirosaki University School of Medicine, Hirosaki, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Nijtmans LG, Henderson NS, Attardi G, Holt IJ. Impaired ATP synthase assembly associated with a mutation in the human ATP synthase subunit 6 gene. J Biol Chem 2001; 276:6755-62. [PMID: 11076946 DOI: 10.1074/jbc.m008114200] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in human mitochondrial DNA are a well recognized cause of disease. A mutation at nucleotide position 8993 of human mitochondrial DNA, located within the gene for ATP synthase subunit 6, is associated with the neurological muscle weakness, ataxia, and retinitis pigmentosa (NARP) syndrome. To enable analysis of this mutation in control nuclear backgrounds, two different cell lines were transformed with mitochondria carrying NARP mutant mitochondrial DNA. Transformant cell lines had decreased ATP synthesis capacity, and many also had abnormally high levels of two ATP synthase sub-complexes, one of which was F(1)-ATPase. A combination of metabolic labeling and immunoblotting experiments indicated that assembly of ATP synthase was slowed and that the assembled holoenzyme was unstable in cells carrying NARP mutant mitochondrial DNA compared with control cells. These findings indicate that altered assembly and stability of ATP synthase are underlying molecular defects associated with the NARP mutation in subunit 6 of ATP synthase, yet intrinsic enzyme activity is also compromised.
Collapse
Affiliation(s)
- L G Nijtmans
- Department of Molecular Pathology, University of Dundee, Ninewells Medical School, Dundee DD1 9SY, United Kingdom
| | | | | | | |
Collapse
|
20
|
Himeda T, Morokami K, Arakaki N, Shibata H, Higuti T. Synchronized transcriptional gene expression of H+-ATP synthase subunits in different tissues of Fischer 344 rats of different ages. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:6938-42. [PMID: 11082207 DOI: 10.1046/j.1432-1033.2000.01805.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Little is known about the relationship between the stoichiometry of polypeptides of multisubunit enzyme complexes and the absolute amount of each transcript of the complexes in mammalian tissues. Here we showed that the absolute amounts of the transcripts of most subunits of rat H+-ATP synthase examined greatly differed in the different tissues, showing the following hierarchy of tissue-specificity: heart > kidney > brain approximately liver. However, surprisingly, there was no difference in the expression pattern of these in terms of the molar ratio of each transcript, indicating a nearly similar stoichiometric expression pattern irrespective of tissue or age of the rat. Therefore, the present finding clearly indicates that most of the transcripts of the 16 subunits of rat H+-ATP synthase were concertedly and synchronously expressed, having a constant expression pattern of the transcripts, irrespective of tissue or age of the rats. This is the first report of the absolute amounts of the transcripts of this multisubunit enzyme.
Collapse
Affiliation(s)
- T Himeda
- Faculty of Pharmaceutical Sciences, The University of Tokushima, Shomachi, Tokushima, Japan
| | | | | | | | | |
Collapse
|
21
|
Abstract
The isolation of ATP synthase (F0F1) (82) and F0 (83) 34 years ago finally revealed that F0F1 is a motor composed of F0 (ion-motor, abc subunits) and F1 (ATP-motor, alpha 3 beta 3 gamma delta epsilon subunits) (Fig. 1). The single molecule videotape (4, 5, 65, 66) revealed that gamma epsilon axis of F1 rotates counterclockwise, proceeds by each 2 pi/3 step, and is driven by torque of 42 pN.nm (12) with nearly 100% efficiency (5) (Fig. 4). The motor is composed of a rotor (gamma epsilon-F0-c) and a stator (alpha 3 beta 3 delta-F0-ab), and the rotor is connected to a shaft (gamma epsilon). Since F0F1 is driven by delta microH+ (9, 10, 84), biophysical studies on stable TF0F1 (1, 7) are essential to elucidate the mechanism. These include nanomechanics (4, 5) (Fig. 4), crystallography (2, 3) (Figs. 2 and 3), NMR (51, 52), ESR (56), synchrotron analysis (3, 28), and electrophysiology (10, 25). The KmATP value of rotation is 0.8 microM, with the Vmax of 3.9 rps (5). This corresponds to the bi-site catalysis in proton transport by F0F1 (10, 70, 84). X-ray crystallography of MF1 (2) and the alpha 3 beta 3 oligomer of TF1 (3) (Fig. 2) together with mutation analyses revealed the role of residues in the rotation. The idea of elastic energy store is proposed in alpha 3 beta 3 gamma during the stepping time (up to a few sec) after the ATP binding. Biological studies have partially clarified the genetic and kinetic regulation of the rotation in MF1. Both theories (6, 7, 62, 64, 85) and the biological significance (17) of the intramolecular rotation of F0F1 await further studies, especially those of F0 and minor subunits.
Collapse
Affiliation(s)
- Y Kagawa
- Graduate School, Women's University of Nutrition, Saitama, Japan
| |
Collapse
|
22
|
Zheng J, Ramirez VD. Purification and identification of an estrogen binding protein from rat brain: oligomycin sensitivity-conferring protein (OSCP), a subunit of mitochondrial F0F1-ATP synthase/ATPase. J Steroid Biochem Mol Biol 1999; 68:65-75. [PMID: 10215039 DOI: 10.1016/s0960-0760(98)00161-7] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Early studies have suggested the presence in the central nervous system of possible estrogen binding sites/proteins other than classical nuclear estrogen receptors (nER). We report here the isolation and identification of a 23 kDa membrane protein from digitonin-solubilized rat brain mitochondrial fractions that binds 17beta-estradiol conjugated to bovine serum albumin at C-6 position (17beta-E-6-BSA), a ligand that also specifically binds nER. This protein was partially purified using affinity columns coupled with 17beta-E-6-BSA and was recognized by the iodinated 17beta-E-6-BSA (17beta-E-6-[125I]BSA) in a ligand blotting assay. The binding of 17beta-E-6-BSA to this protein was specific for the 17beta-estradiol portion of the conjugate, not BSA. Using N-terminal sequencing and immunoblotting, this 23 kDa protein was identified as the oligomycin-sensitivity conferring protein (OSCP). This protein is a subunit of the FOF1 (F-type) mitochondrial ATP synthase/ATPase required for the coupling of a proton gradient across the F0 sector of the enzyme in the mitochondrial membrane to ATP synthesis in the F1 sector of the enzyme. Studies using recombinant bovine OSCP (rbOSCP) in ligand blotting revealed that rbOSCP bound 17beta-E-6-[125I]BSA with the same specificity as the purified 23 kDa protein. Further, in a ligand binding assay, 17beta-E-6-[125I]BSA also bound rbOSCP and it was displaced by both 17beta-E-6-BSA and 17alpha-E-6-BSA as well as partially by 17beta-estradiol and diethylstilbestrol (DES), but not by BSA. This finding opens up the possibility that estradiol, and probably other compounds with similar structures, in addition to their classical genomic mechanism, may interact with ATP synthase/ATPase by binding to OSCP, and thereby modulating cellular energy metabolism. Current experiments are addressing such an issue.
Collapse
Affiliation(s)
- J Zheng
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana 61801, USA
| | | |
Collapse
|