1
|
Wang W, Fan X, Liu W, Huang Y, Zhao S, Yang Y, Tang Z. The Spatial-Temporal Alternative Splicing Profile Reveals the Functional Diversity of FXR1 Isoforms in Myogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405157. [PMID: 39499773 PMCID: PMC11653684 DOI: 10.1002/advs.202405157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/08/2024] [Indexed: 11/07/2024]
Abstract
Alternative splicing (AS) is a fundamental mechanism contributing to proteome diversity, yet its comprehensive landscape and regulatory dynamics during skeletal muscle development remain largely unexplored. Here, the temporal AS profiles are investigated during myogenesis in five vertebrates, conducting comprehensive profiling across 27 developmental stages in skeletal muscle and encompassing ten tissues in adult pigs. The analysis reveals a pervasive and evolutionarily conserved pattern of alternative exon usage throughout myogenic differentiation, with hundreds of skipped exons (SEs) showing developmental regulation, particularly within skeletal muscle. Notably, this study identifies a muscle-specific SE (exon 15) within the Fxr1 gene, whose AS generates two dynamically expressed isoforms with distinct functions: the isoform without exon 15 (Fxr1E15 -) regulates myoblasts proliferation, while the isoform incorporating exon 15 (Fxr1E15+) promotes myogenic differentiation and fusion. Transcriptome analysis suggests that specifically knocking-down Fxr1E15+ isoform in myoblasts modulates differentiation by influencing gene expression and splicing of specific targets. The increased inclusion of exon 15 during differentiation is mediated by the binding of Rbm24 to the intron. Furthermore, in vivo experiments indicate that the Fxr1E15+ isoform facilitates muscle regeneration. Collectively, these findings provide a comprehensive resource for AS studies in skeletal muscle development, underscoring the diverse functions and regulatory mechanisms governing distinct Fxr1 isoforms in myogenesis.
Collapse
Affiliation(s)
- Wei Wang
- Kunpeng Institute of Modern Agriculture at FoshanAgricultural Genomics InstituteChinese Academy of Agricultural SciencesFoshan528226China
- Key Laboratory of Agricultural Animal GeneticsBreeding and Reproduction of Ministry of Education and Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureKey Laboratory of Livestock and Poultry Multi‐Omics of MARAAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518124China
| | - Xinhao Fan
- Kunpeng Institute of Modern Agriculture at FoshanAgricultural Genomics InstituteChinese Academy of Agricultural SciencesFoshan528226China
- Key Laboratory of Agricultural Animal GeneticsBreeding and Reproduction of Ministry of Education and Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureKey Laboratory of Livestock and Poultry Multi‐Omics of MARAAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518124China
| | - Weiwei Liu
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureKey Laboratory of Livestock and Poultry Multi‐Omics of MARAAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518124China
- Guangxi Key Laboratory of Animal BreedingDisease Control and PreventionCollege of Animal Science & TechnologyGuangxi UniversityNanning530004China
| | - Yuxin Huang
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureKey Laboratory of Livestock and Poultry Multi‐Omics of MARAAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518124China
- Guangxi Key Laboratory of Animal BreedingDisease Control and PreventionCollege of Animal Science & TechnologyGuangxi UniversityNanning530004China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal GeneticsBreeding and Reproduction of Ministry of Education and Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
| | - Yalan Yang
- Kunpeng Institute of Modern Agriculture at FoshanAgricultural Genomics InstituteChinese Academy of Agricultural SciencesFoshan528226China
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureKey Laboratory of Livestock and Poultry Multi‐Omics of MARAAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518124China
| | - Zhonglin Tang
- Kunpeng Institute of Modern Agriculture at FoshanAgricultural Genomics InstituteChinese Academy of Agricultural SciencesFoshan528226China
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureKey Laboratory of Livestock and Poultry Multi‐Omics of MARAAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518124China
| |
Collapse
|
2
|
Wishard R, Jayaram M, Ramesh SR, Nongthomba U. Spatial and temporal requirement of Mlp60A isoforms during muscle development and function in Drosophila melanogaster. Exp Cell Res 2023; 422:113430. [PMID: 36423661 DOI: 10.1016/j.yexcr.2022.113430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022]
Abstract
Many myofibrillar proteins undergo isoform switching in a spatio-temporal manner during muscle development. The biological significance of the variants of several of these myofibrillar proteins remains elusive. One such myofibrillar protein, the Muscle LIM Protein (MLP), is a vital component of the Z-discs. In this paper, we show that one of the Drosophila MLP encoding genes, Mlp60A, gives rise to two isoforms: a short (279 bp, 10 kDa) and a long (1461 bp, 54 kDa) one. The short isoform is expressed throughout development, but the long isoform is adult-specific, being the dominant of the two isoforms in the indirect flight muscles (IFMs). A concomitant, muscle-specific knockdown of both isoforms leads to partial developmental lethality, with most of the surviving flies being flight defective. A global loss of both isoforms in a Mlp60A-null background also leads to developmental lethality, with muscle defects in the individuals that survive to the third instar larval stage. This lethality could be rescued partially by a muscle-specific overexpression of the short isoform. Genetic perturbation of only the long isoform, through a P-element insertion in the long isoform-specific coding sequence, leads to defective flight, in around 90% of the flies. This phenotype was completely rescued when the P-element insertion was precisely excised from the locus. Hence, our data show that the two Mlp60A isoforms are functionally specialized: the short isoform being essential for normal embryonic muscle development and the long isoform being necessary for normal adult flight muscle function.
Collapse
Affiliation(s)
- Rohan Wishard
- Department of Molecular Reproduction, Development and Genetics; Indian Institute of Science, Bengaluru, 560012, India.
| | - Mohan Jayaram
- Department of Molecular Reproduction, Development and Genetics; Indian Institute of Science, Bengaluru, 560012, India; Department of Studies in Zoology, University of Mysore, Manasgangotri, Mysuru, 570006, India
| | - Saraf R Ramesh
- Department of Studies in Zoology, University of Mysore, Manasgangotri, Mysuru, 570006, India; Department of Life Sciences, Pooja Bhagvat Memorial Mahajana Education Center, K. R. S. Road, Mysuru, 570016, India
| | - Upendra Nongthomba
- Department of Molecular Reproduction, Development and Genetics; Indian Institute of Science, Bengaluru, 560012, India.
| |
Collapse
|
3
|
Pang TL, Ding Z, Liang SB, Li L, Zhang B, Zhang Y, Fan YJ, Xu YZ. Comprehensive Identification and Alternative Splicing of Microexons in Drosophila. Front Genet 2021; 12:642602. [PMID: 33859668 PMCID: PMC8042270 DOI: 10.3389/fgene.2021.642602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/05/2021] [Indexed: 11/29/2022] Open
Abstract
Interrupted exons in the pre-mRNA transcripts are ligated together through RNA splicing, which plays a critical role in the regulation of gene expression. Exons with a length ≤ 30 nt are defined as microexons that are unique in identification. However, microexons, especially those shorter than 8 nt, have not been well studied in many organisms due to difficulties in mapping short segments from sequencing reads. Here, we analyzed mRNA-seq data from a variety of Drosophila samples with a newly developed bioinformatic tool, ce-TopHat. In addition to the Flybase annotated, 465 new microexons were identified. Differentially alternatively spliced (AS) microexons were investigated between the Drosophila tissues (head, body, and gonad) and genders. Most of the AS microexons were found in the head and two AS microexons were identified in the sex-determination pathway gene fruitless.
Collapse
Affiliation(s)
- Ting-Lin Pang
- University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.,RNA Institute, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Wuhan, China
| | - Zhan Ding
- University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.,RNA Institute, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Wuhan, China
| | - Shao-Bo Liang
- RNA Institute, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Wuhan, China
| | - Liang Li
- University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.,RNA Institute, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Wuhan, China
| | - Bei Zhang
- University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu Zhang
- University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Jie Fan
- RNA Institute, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Wuhan, China
| | - Yong-Zhen Xu
- RNA Institute, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Chang LW, Tseng IC, Wang LH, Sun YH. Isoform-specific functions of an evolutionarily conserved 3 bp micro-exon alternatively spliced from another exon in Drosophila homothorax gene. Sci Rep 2020; 10:12783. [PMID: 32732884 PMCID: PMC7392893 DOI: 10.1038/s41598-020-69644-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/14/2020] [Indexed: 12/03/2022] Open
Abstract
Micro-exons are exons of very small size (usually 3–30 nts). Some micro-exons are alternatively spliced. Their functions, regulation and evolution are largely unknown. Here, we present an example of an alternatively spliced 3 bp micro-exon (micro-Ex8) in the homothorax (hth) gene in Drosophila. Hth is involved in many developmental processes. It contains a MH domain and a TALE-class homeodomain (HD). It binds to another homeodomain Exd via its MH domain to promote the nuclear import of the Hth-Exd complex and serve as a cofactor for Hox proteins. The MH and HD domains in Hth as well as the HTh-Exd interaction are highly conserved in evolution. The alternatively spliced micro-exon lies between the exons encoding the MH and HD domains. We provide clear proof that the micro-Ex8 is produced by alternative splicing from a 48 bp full-length exon 8 (FL-Ex8) and the micro-Ex8 is the first three nt is FL-Ex8. We found that the micro-Ex8 is the ancient form and the 3 + 48 organization of alternatively spliced overlapping exons only emerged in the Schizophora group of Diptera and is absolutely conserved in this group. We then used several strategies to test the in vivo function of the two types of isoforms and found that the micro-Ex8 and FL-Ex8 isoforms have largely overlapping functions but also have non-redundant functions that are tissue-specific, which supports their strong evolutionary conservation. Since the different combinations of protein interaction of Hth with Exd and/or Hox can have different DNA target specificity, our finding of alternatively spliced isoforms adds to the spectrum of structural and functional diversity under developmental regulation.
Collapse
Affiliation(s)
- Ling-Wen Chang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, ROC
| | - I-Chieh Tseng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, ROC.,Institute of Genomic Sciences, National Yang-Ming University, Taipei, Taiwan, ROC.,Department of Life Science, Chinese Culture University, Taipei, Taiwan, ROC
| | - Lan-Hsin Wang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.
| | - Y Henry Sun
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, ROC. .,Institute of Genomic Sciences, National Yang-Ming University, Taipei, Taiwan, ROC.
| |
Collapse
|
5
|
Nikonova E, Kao SY, Ravichandran K, Wittner A, Spletter ML. Conserved functions of RNA-binding proteins in muscle. Int J Biochem Cell Biol 2019; 110:29-49. [PMID: 30818081 DOI: 10.1016/j.biocel.2019.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 02/21/2019] [Accepted: 02/23/2019] [Indexed: 12/13/2022]
Abstract
Animals require different types of muscle for survival, for example for circulation, motility, reproduction and digestion. Much emphasis in the muscle field has been placed on understanding how transcriptional regulation generates diverse types of muscle during development. Recent work indicates that alternative splicing and RNA regulation are as critical to muscle development, and altered function of RNA-binding proteins causes muscle disease. Although hundreds of genes predicted to bind RNA are expressed in muscles, many fewer have been functionally characterized. We present a cross-species view summarizing what is known about RNA-binding protein function in muscle, from worms and flies to zebrafish, mice and humans. In particular, we focus on alternative splicing regulated by the CELF, MBNL and RBFOX families of proteins. We discuss the systemic nature of diseases associated with loss of RNA-binding proteins in muscle, focusing on mis-regulation of CELF and MBNL in myotonic dystrophy. These examples illustrate the conservation of RNA-binding protein function and the marked utility of genetic model systems in understanding mechanisms of RNA regulation.
Collapse
Affiliation(s)
- Elena Nikonova
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany
| | - Shao-Yen Kao
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany
| | - Keshika Ravichandran
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany
| | - Anja Wittner
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany
| | - Maria L Spletter
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany; Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
6
|
Schilder RJ, Raynor M. Molecular plasticity and functional enhancements of leg muscles in response to hypergravity in the fruit fly Drosophila melanogaster. ACTA ACUST UNITED AC 2017; 220:3508-3518. [PMID: 28978639 DOI: 10.1242/jeb.160523] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 07/24/2017] [Indexed: 12/24/2022]
Abstract
Studies of organismal and tissue biomechanics have clearly demonstrated that musculoskeletal design is strongly dependent on experienced loads, which can vary in the short term, as a result of growth during life history and during the evolution of animal body size. However, how animals actually perceive and make adjustments to their load-bearing musculoskeletal elements that accommodate variation in their body weight is poorly understood. We developed an experimental model system that can be used to start addressing these open questions, and uses hypergravity centrifugation to experimentally manipulate the loads experienced by Drosophila melanogaster We examined effects of this manipulation on leg muscle alternative splicing of the sarcomere gene troponin T (Dmel\up; Fbgn0004169, herein referred to by its synonym TnT), a process that was previously demonstrated to precisely correlate with quantitative variation in body weight in Lepidoptera and rat. In a similar fashion, hypergravity centrifugation caused fast (i.e. within 24 h) changes to fly leg muscle TnT alternative splicing that correlated with body weight variation across eight D. melanogaster lines. Hypergravity treatment also appeared to enhance leg muscle function, as centrifuged flies showed an increased negative geotaxis response and jump ability. Although the identity and location of the sensors and effectors involved remains unknown, our results provide further support for the existence of an evolutionarily conserved mechanism that translates signals that encode body weight into appropriate skeletal muscle molecular and functional responses.
Collapse
Affiliation(s)
- Rudolf J Schilder
- Department of Entomology, Pennsylvania State University, 501 Ag Sciences & Industries Building, University Park, PA 16802, USA .,Department of Biology, Pennsylvania State University, 208 Mueller Laboratory, University Park, PA 16802, USA.,Department of Cellular & Molecular Physiology, Pennsylvania State University, 500 University Drive, Hershey, PA 17033, USA
| | - Megan Raynor
- Department of Biology, Pennsylvania State University, 208 Mueller Laboratory, University Park, PA 16802, USA
| |
Collapse
|
7
|
Chechenova MB, Maes S, Oas ST, Nelson C, Kiani KG, Bryantsev AL, Cripps RM. Functional redundancy and nonredundancy between two Troponin C isoforms in Drosophila adult muscles. Mol Biol Cell 2017; 28:760-770. [PMID: 28077621 PMCID: PMC5349783 DOI: 10.1091/mbc.e16-07-0498] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 11/18/2022] Open
Abstract
Knockout of either of two Drosophila Troponin C genes that are expressed in either the flight muscle or the jump muscle resulted in expansion of transcription of its paralogue into the affected muscle. Although either isoform can support normal jumping, only the flight isoform can support flight. We investigated the functional overlap of two muscle Troponin C (TpnC) genes that are expressed in the adult fruit fly, Drosophila melanogaster: TpnC4 is predominantly expressed in the indirect flight muscles (IFMs), whereas TpnC41C is the main isoform in the tergal depressor of the trochanter muscle (TDT; jump muscle). Using CRISPR/Cas9, we created a transgenic line with a homozygous deletion of TpnC41C and compared its phenotype to a line lacking functional TpnC4. We found that the removal of either of these genes leads to expression of the other isoform in both muscle types. The switching between isoforms occurs at the transcriptional level and involves minimal enhancers located upstream of the transcription start points of each gene. Functionally, the two TpnC isoforms were not equal. Although ectopic TpnC4 in TDT muscles was able to maintain jumping ability, TpnC41C in IFMs could not effectively support flying. Simultaneous functional disruption of both TpnC genes resulted in jump-defective and flightless phenotypes of the survivors, as well as abnormal sarcomere organization. These results indicated that TpnC is required for myofibril assembly, and that there is functional specialization among TpnC isoforms in Drosophila.
Collapse
Affiliation(s)
- Maria B Chechenova
- Department of Biology, University of New Mexico, Albuquerque, NM 87131.,Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144
| | - Sara Maes
- Department of Biology, University of New Mexico, Albuquerque, NM 87131
| | - Sandy T Oas
- Department of Biology, University of New Mexico, Albuquerque, NM 87131
| | - Cloyce Nelson
- Department of Biology, University of New Mexico, Albuquerque, NM 87131
| | - Kaveh G Kiani
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144
| | - Anton L Bryantsev
- Department of Biology, University of New Mexico, Albuquerque, NM 87131.,Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144
| | - Richard M Cripps
- Department of Biology, University of New Mexico, Albuquerque, NM 87131
| |
Collapse
|
8
|
Abstract
Troponin proteins in cooperative interaction with tropomyosin are responsible for controlling the contraction of the striated muscles in response to changes in the intracellular calcium concentration. Contractility of the muscle is determined by the constituent protein isoforms, and the isoforms can switch over from one form to another depending on physiological demands and pathological conditions. In Drosophila, amajority of themyofibrillar proteins in the indirect flight muscles (IFMs) undergo post-transcriptional and post-translational isoform changes during pupal to adult metamorphosis to meet the high energy and mechanical demands of flight. Using a newly generated Gal4 strain (UH3-Gal4) which is expressed exclusively in the IFMs, during later stages of development, we have looked at the developmental and functional importance of each of the troponin subunits (troponin-I, troponin-T and troponin-C) and their isoforms. We show that all the troponin subunits are required for normal myofibril assembly and flight, except for the troponin-C isoform 1 (TnC1). Moreover, rescue experiments conducted with troponin-I embryonic isoform in the IFMs, where flies were rendered flightless, show developmental and functional differences of TnI isoforms and importance of maintaining the right isoform.
Collapse
|
9
|
Al-Wathiqui N, Lewis SM, Dopman EB. Using RNA sequencing to characterize female reproductive genes between Z and E Strains of European Corn Borer moth (Ostrinia nubilalis). BMC Genomics 2014; 15:189. [PMID: 24621199 PMCID: PMC4007636 DOI: 10.1186/1471-2164-15-189] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 03/03/2014] [Indexed: 11/29/2022] Open
Abstract
Background Reproductive proteins often evolve rapidly and are thought to be subject to strong sexual selection, and thus may play a key role in reproductive isolation and species divergence. However, our knowledge of reproductive proteins has been largely limited to males and model organisms with sequenced genomes. With advances in sequencing technology, Lepidoptera are emerging models for studies of sexual selection and speciation. By profiling the transcriptomes of the bursa copulatrix and bursal gland from females of two incipient species of moth, we characterize reproductive genes expressed in the primary reproductive tissues of female Lepidoptera and identify candidate genes contributing to a one-way gametic incompatibility between Z and E strains of the European corn borer (Ostrinia nubilalis). Results Using RNA sequencing we identified transcripts from ~37,000 and ~36,000 loci that were expressed in the bursa copulatrix or the bursal gland respectively. Of bursa copulatrix genes, 8% were significantly differentially expressed compared to the female thorax, and those that were up-regulated or specific to the bursa copulatrix showed functional biases toward muscle activity and/or organization. In the bursal gland, 9% of genes were differentially expressed compared to the thorax, with many showing reproduction or gamete production functions. Of up-regulated bursal gland genes, 46% contained a transmembrane region and 16% possessed secretion signal peptides. Divergently expressed genes in the bursa copulatrix were exclusively biased toward protease-like functions and 51 proteases or protease inhibitors were divergently expressed overall. Conclusions This is the first comprehensive characterization of female reproductive genes in any lepidopteran system. The transcriptome of the bursa copulatrix supports its role as a muscular sac that is the primary site for disruption of the male ejaculate. We find that the bursal gland acts as a reproductive secretory body that might also interact with male ejaculate. In addition, differential expression of proteases between strains supports a potential role for these tissues in contributing to reproductive isolation. Our study provides new insight into how male ejaculate is processed by female Lepidoptera, and paves the way for future work on interactions between post-mating sexual selection and speciation. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-189) contains supplementary material, which is available to authorized users.
Collapse
|
10
|
Lind U, Alm Rosenblad M, Wrange AL, Sundell KS, Jonsson PR, André C, Havenhand J, Blomberg A. Molecular characterization of the α-subunit of Na⁺/K⁺ ATPase from the euryhaline barnacle Balanus improvisus reveals multiple genes and differential expression of alternative splice variants. PLoS One 2013; 8:e77069. [PMID: 24130836 PMCID: PMC3793950 DOI: 10.1371/journal.pone.0077069] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 09/06/2013] [Indexed: 01/28/2023] Open
Abstract
The euryhaline bay barnacle Balanus improvisus has one of the broadest salinity tolerances of any barnacle species. It is able to complete its life cycle in salinities close to freshwater (3 PSU) up to fully marine conditions (35 PSU) and is regarded as one of few truly brackish-water species. Na+/K+ ATPase (NAK) has been shown to be important for osmoregulation when marine organisms are challenged by changing salinities, and we therefore cloned and examined the expression of different NAKs from B. improvisus. We found two main gene variants, NAK1 and NAK2, which were approximately 70% identical at the protein level. The NAK1 mRNA existed in a long and short variant with the encoded proteins differing only by 27 N-terminal amino acids. This N-terminal stretch was coded for by a separate exon, and the two variants of NAK1 mRNAs appeared to be created by alternative splicing. We furthermore showed that the two NAK1 isoforms were differentially expressed in different life stages and in various tissues of adult barnacle, i.e the long isoform was predominant in cyprids and in adult cirri. In barnacle cyprid larvae that were exposed to a combination of different salinities and pCO2 levels, the expression of the long NAK1 mRNA increased relative to the short in low salinities. We suggest that the alternatively spliced long variant of the Nak1 protein might be of importance for osmoregulation in B. improvisus in low salinity conditions.
Collapse
Affiliation(s)
- Ulrika Lind
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Magnus Alm Rosenblad
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Anna-Lisa Wrange
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Kristina S. Sundell
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Per R. Jonsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Carl André
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Jonathan Havenhand
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Anders Blomberg
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| |
Collapse
|
11
|
Drosophila muscleblind codes for proteins with one and two tandem zinc finger motifs. PLoS One 2012; 7:e34248. [PMID: 22479576 PMCID: PMC3315501 DOI: 10.1371/journal.pone.0034248] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 02/24/2012] [Indexed: 12/17/2022] Open
Abstract
Muscleblind-like proteins, Muscleblind (Mbl) in Drosophila and MBNL1-3 in vertebrates, are regulators of alternative splicing. Human MBNL1 is a key factor in the etiology of myotonic dystrophy (DM), a muscle wasting disease caused by the occurrence of toxic RNA molecules containing CUG/CCUG repeats. MBNL1 binds to these RNAs and is sequestered in nuclear foci preventing it from exerting its normal function, which ultimately leads to mis-spliced mRNAs, a major cause of the disease. Muscleblind-proteins bind to RNAs via N-terminal zinc fingers of the Cys(3)-His type. These zinc fingers are arranged in one (invertebrates) or two (vertebrates) tandem zinc finger (TZF) motifs with both fingers targeting GC steps in the RNA molecule. Here I show that mbl genes in Drosophila and in other insects also encode proteins with two TZF motifs, highly similar to vertebrate MBNL proteins. In Drosophila the different protein isoforms have overlapping but possibly divergent functions in vivo, evident by their unequal capacities to rescue the splicing defects observed in mbl mutant embryos. In addition, using whole transcriptome analysis, I identified several new splicing targets for Mbl in Drosophila embryos. Two of these novel targets, kkv (krotzkopf-verkehrt, coding for Chitin Synthase 1) and cora (coracle, coding for the Drosophila homolog of Protein 4.1), are not muscle-specific but expressed mainly in epidermal cells, indicating a function for mbl not only in muscles and the nervous system.
Collapse
|
12
|
Regulating the contraction of insect flight muscle. J Muscle Res Cell Motil 2011; 32:303-13. [PMID: 22105701 DOI: 10.1007/s10974-011-9278-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Accepted: 11/11/2011] [Indexed: 10/15/2022]
Abstract
The rapid movement of the wings in small insects is powered by the indirect flight muscles. These muscles are capable of contracting at up to 1,000 Hz because they are activated mechanically by stretching. The mechanism is so efficient that it is also used in larger insects like the waterbug, Lethocerus. The oscillatory activity of the muscles occurs a low concentration of Ca(2+), which stays constant as the muscles contract and relax. Activation by stretch requires particular isoforms of tropomyosin and the troponin complex on the thin filament. We compare the tropomyosin and troponin of Lethocerus and Drosophila with that of vertebrates. The characteristics of the flight muscle regulatory proteins suggest ways in which stretch-activation works. There is evidence for bridges between troponin on thin filaments and myosin crossbridges on the thick filaments. Recent X-ray fibre diffraction results suggest that a pull on the bridges activates the thin filament by shifting tropomyosin from a blocking position on actin. The troponin bridges are likely to contain extended sequences of tropomyosin or troponin I (TnI). Flight muscle has two isoforms of TnC with different Ca(2+)-binding properties: F1 TnC is needed for stretch-activation and F2 TnC for isometric contractions. In this review, we describe the structural changes in both isoforms on binding Ca(2+) and TnI, and discuss how the steric model of muscle regulation can apply to insect flight muscle.
Collapse
|
13
|
Abstract
Alternative splicing expands the coding capacity of metazoan genes, and it was largely genetic studies in the fruit-fly Drosophila melanogaster that established the principle that regulated alternative splicing results in tissue- and stage-specific protein isoforms with different functions in development. Alternative splicing is particularly prominent in germ cells, muscle and the central nervous system where it modulates the expression of various proteins including cell-surface molecules and transcription factors. Studies in flies have given us numerous insights into alternative splicing in terms of upstream regulation, the exquisite diversity of their forms and the key differential cellular functions of alternatively spliced gene products. The current inundation of transcriptome sequencing data from Drosophila provides an unprecedented opportunity to gain a comprehensive view of alternative splicing.
Collapse
Affiliation(s)
- Julian P Venables
- Université Montpellier 2, UMR 5535, Institut de Génétique Moléculaire de Montpellier, CNRS, 1919 Route de Mende, 34293 Montpellier cedex 05, France
| | | | | |
Collapse
|
14
|
Texada MJ, Simonette RA, Deery WJ, Beckingham KM. Tropomyosin is an interaction partner of the Drosophila coiled coil protein yuri gagarin. Exp Cell Res 2010; 317:474-87. [PMID: 21126519 DOI: 10.1016/j.yexcr.2010.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 11/19/2010] [Accepted: 11/22/2010] [Indexed: 01/28/2023]
Abstract
The Drosophila gene yuri gagarin is a complex locus encoding three protein isoform classes that are ubiquitously expressed in the organism. Mutations to the gene affect processes as diverse as gravitactic behavior and spermatogenesis. The larger Yuri isoforms contain extensive coiled-coil regions. Our previous studies indicate that one of the large isoform classes (Yuri-65) is required for formation of specialized F-actin-containing structures generated during spermatogenesis, including the so-called actin "cones" that mediate spermatid individualization. We used the tandem affinity purification of a tagged version of Yuri-65 (the TAP-tagging technique) to identify proteins associated with Yuri-65 in the intact organism. Tropomyosin, primarily as the 284-residue isoform derived from the ubiquitously expressed Tropomyosin 1 gene was thus identified as a major Yuri interaction partner. Co-immunoprecipitation experiments confirmed this interaction. We have established that the stable F-actin cones of spermatogenesis contain Tropomyosin 1 (Tm1) and that in mutant yuri(F64), failure of F-actin cone formation is associated with failure of Tm1 to accumulate at the cone initiation sites. In investigating possible interactions of Tm1 and Yuri in other tissues, we discovered that Tm1 and Yuri frequently colocalize with the endoplasmic reticulum. Tropomyosin has been implicated in actin-mediated membrane trafficking activity in other systems. Our findings suggest that Yuri-Tm1 complexes participate in related functions.
Collapse
Affiliation(s)
- Michael J Texada
- Department of Biochemistry and Cell Biology, Rice University, MS-140, 6100 Main Street, Houston TX 77005, USA
| | | | | | | |
Collapse
|
15
|
Troponin T isoforms and posttranscriptional modifications: Evolution, regulation and function. Arch Biochem Biophys 2010; 505:144-54. [PMID: 20965144 DOI: 10.1016/j.abb.2010.10.013] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 10/12/2010] [Accepted: 10/14/2010] [Indexed: 12/11/2022]
Abstract
Troponin-mediated Ca²(+)-regulation governs the actin-activated myosin motor function which powers striated (skeletal and cardiac) muscle contraction. This review focuses on the structure-function relationship of troponin T, one of the three protein subunits of the troponin complex. Molecular evolution, gene regulation, alternative RNA splicing, and posttranslational modifications of troponin T isoforms in skeletal and cardiac muscles are summarized with emphases on recent research progresses. The physiological and pathophysiological significances of the structural diversity and regulation of troponin T are discussed for impacts on striated muscle function and adaptation in health and diseases.
Collapse
|
16
|
Stefancsik R, Randall JD, Mao C, Sarkar S. Structure and sequence of the human fast skeletal troponin T (TNNT3) gene: insight into the evolution of the gene and the origin of the developmentally regulated isoforms. Comp Funct Genomics 2010; 4:609-25. [PMID: 18629027 PMCID: PMC2447309 DOI: 10.1002/cfg.343] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2003] [Revised: 09/24/2003] [Accepted: 10/06/2003] [Indexed: 11/21/2022] Open
Abstract
We describe the cloning, sequencing and structure of the human fast skeletal troponin T (TNNT3) gene located on chromosome 11p15.5. The single-copy gene encodes 19
exons and 18 introns. Eleven of these exons, 1–3, 9–15 and 18, are constitutively
spliced, whereas exons 4–8 are alternatively spliced. The gene contains an additional
subset of developmentally regulated and alternatively spliced exons, including a foetal
exon located between exon 8 and 9 and exon 16 or α (adult) and 17 or β (foetal and
neonatal). Exon phasing suggests that the majority of the alternatively spliced exons
located at the 5′ end of the gene may have evolved as a result of exon shuffling, because
they are of the same phase class. In contrast, the 3′ exons encoding an evolutionarily
conserved heptad repeat domain, shared by both TnT and troponin I (TnI), may be
remnants of an ancient ancestral gene. The sequence of the 5′ flanking region shows
that the putative promoter contains motifs including binding sites for MyoD, MEF-2
and several transcription factors which may play a role in transcriptional regulation
and tissue-specific expression of TnT. The coding region of TNNT3 exhibits strong
similarity to the corresponding rat sequence. However, unlike the rat TnT gene,
TNNT3 possesses two repeat regions of CCA and TC. The exclusive presence of
these repetitive elements in the human gene indicates divergence in the evolutionary
dynamics of mammalian TnT genes. Homologous muscle-specific splicing enhancer
motifs are present in the introns upstream and downstream of the foetal exon, and
may play a role in the developmental pattern of alternative splicing of the gene. The
genomic correlates of TNNT3 are relevant to our understanding of the evolution and
regulation of expression of the gene, as well as the structure and function of the protein
isoforms. The nucleotide sequence of TNNT3 has been submitted to EMBL/GenBank
under Accession No. AF026276.
Collapse
Affiliation(s)
- Raymund Stefancsik
- Department of Anatomy and Cellular Biology, Tufts University, Health Science Campus, 136 Harrison Avenue, Boston, MA 02111, USA
| | | | | | | |
Collapse
|
17
|
Electron microscopy and three-dimensional reconstruction of native thin filaments reveal species-specific differences in regulatory strand densities. Biochem Biophys Res Commun 2009; 391:193-7. [PMID: 19900412 DOI: 10.1016/j.bbrc.2009.11.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 11/05/2009] [Indexed: 11/24/2022]
Abstract
Throughout the animal kingdom striated muscle contraction is regulated by the thin filament troponin-tropomyosin complex. Homologous regulatory components are shared among vertebrate and arthropod muscles; however, unique protein extensions and/or components characterize the latter. The Troponin T (TnT) isoforms of Drosophila indirect flight and tarantula femur muscle for example contain distinct C-terminal extensions and are approximately 20% larger overall than their vertebrate counterpart. Using electron microscopy and three-dimensional helical reconstruction of native Drosophila, tarantula and frog muscle thin filaments we have identified species-specific differences in tropomyosin regulatory strand densities. The strands on the arthropod thin filaments were significantly larger in diameter than those from vertebrates, although not significantly different from each other. These findings reflect differences in the regulatory troponin-tropomyosin complex, which are likely due to the larger TnT molecules aligning and extending along much of the tropomyosin strands' length. Such an arrangement potentially alters the physical properties of the regulatory strands and may help establish contractile characteristics unique to certain arthropod muscles.
Collapse
|
18
|
Peron S, Zordan MA, Magnabosco A, Reggiani C, Megighian A. From action potential to contraction: neural control and excitation-contraction coupling in larval muscles of Drosophila. Comp Biochem Physiol A Mol Integr Physiol 2009; 154:173-83. [PMID: 19427393 DOI: 10.1016/j.cbpa.2009.04.626] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 04/16/2009] [Accepted: 04/22/2009] [Indexed: 11/17/2022]
Abstract
The neuromuscular system of Drosophila melanogaster has been studied for many years for its relative simplicity and because of the genetic and molecular versatilities. Three main types of striated muscles are present in this dipteran: fibrillar muscles, tubular muscles and supercontractile muscles. The visceral muscles in adult flies and the body wall segmental muscles in embryos and larvae belong to the group of supercontractile muscles. Larval body wall muscles have been the object of detailed studies as a model for neuromuscular junction function but have received much less attention with respect to their mechanical properties and to the control of contraction. In this review we wish to assess available information on the physiology of the Drosophila larval muscular system. Our aim is to establish whether this system has the requisites to be considered a good model in which to perform a functional characterization of Drosophila genes, with a known muscular expression, as well as Drosophila homologs of human genes, the dysfunction of which, is known to be associated with human hereditary muscle pathologies.
Collapse
Affiliation(s)
- Samantha Peron
- Department of Anatomy and Physiology, University of Padua, Italy
| | | | | | | | | |
Collapse
|
19
|
Vicente-Crespo M, Pascual M, Fernandez-Costa JM, Garcia-Lopez A, Monferrer L, Miranda ME, Zhou L, Artero RD. Drosophila muscleblind is involved in troponin T alternative splicing and apoptosis. PLoS One 2008; 3:e1613. [PMID: 18286170 PMCID: PMC2238819 DOI: 10.1371/journal.pone.0001613] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Accepted: 01/17/2008] [Indexed: 01/01/2023] Open
Abstract
Background Muscleblind-like proteins (MBNL) have been involved in a developmental switch in the use of defined cassette exons. Such transition fails in the CTG repeat expansion disease myotonic dystrophy due, in part, to sequestration of MBNL proteins by CUG repeat RNA. Four protein isoforms (MblA-D) are coded by the unique Drosophila muscleblind gene. Methodology/Principal Findings We used evolutionary, genetic and cell culture approaches to study muscleblind (mbl) function in flies. The evolutionary study showed that the MblC protein isoform was readily conserved from nematods to Drosophila, which suggests that it performs the most ancestral muscleblind functions. Overexpression of MblC in the fly eye precursors led to an externally rough eye morphology. This phenotype was used in a genetic screen to identify five dominant suppressors and 13 dominant enhancers including Drosophila CUG-BP1 homolog aret, exon junction complex components tsunagi and Aly, and pro-apoptotic genes Traf1 and reaper. We further investigated Muscleblind implication in apoptosis and splicing regulation. We found missplicing of troponin T in muscleblind mutant pupae and confirmed Muscleblind ability to regulate mouse fast skeletal muscle Troponin T (TnnT3) minigene splicing in human HEK cells. MblC overexpression in the wing imaginal disc activated apoptosis in a spatially restricted manner. Bioinformatics analysis identified a conserved FKRP motif, weakly resembling a sumoylation target site, in the MblC-specific sequence. Site-directed mutagenesis of the motif revealed no change in activity of mutant MblC on TnnT3 minigene splicing or aberrant binding to CUG repeat RNA, but altered the ability of the protein to form perinuclear aggregates and enhanced cell death-inducing activity of MblC overexpression. Conclusions/Significance Taken together our genetic approach identify cellular processes influenced by Muscleblind function, whereas in vivo and cell culture experiments define Drosophila troponin T as a new Muscleblind target, reveal a potential involvement of MblC in programmed cell death and recognize the FKRP motif as a putative regulator of MblC function and/or subcellular location in the cell.
Collapse
Affiliation(s)
| | - Maya Pascual
- Department of Genetics, University of Valencia, Valencia, Spain
| | | | | | - Lidón Monferrer
- Department of Genetics, University of Valencia, Valencia, Spain
| | | | - Lei Zhou
- Department of Molecular Genetics and Microbiology Member, University of Florida Shands Cancer Center College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Ruben D. Artero
- Department of Genetics, University of Valencia, Valencia, Spain
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
20
|
Vieira CU, Bonetti AM, Simões ZLP, Maranhão AQ, Costa CS, Costa MCR, Siquieroli ACS, Nunes FMF. Farnesoic acid O-methyl transferase (FAMeT) isoforms: conserved traits and gene expression patterns related to caste differentiation in the stingless bee, Melipona scutellaris. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2008; 67:97-106. [PMID: 18076110 DOI: 10.1002/arch.20224] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Farnesoic acid O-methyl transferase (FAMeT) is the enzyme that catalyzes the formation of methyl farnesoate (MF) from farnesoic acid (FA) in the biosynthetic pathway of juvenile hormone (JH). This work reports the cloning, sequencing, and expression of FAMeT gene from the stingless bee Melipona scutellaris (MsFAMeT). The MsFAMeT in silico analysis showed that greatest sequence similarity is found in Apis mellifera and other insects, while relatively less similarity is shown in crustaceans. Evidence of alternative splicing of a 27 nucleotide (nt) microexon explains the presence of the detected isoforms, 1 and 2. The expression analysis of the two isoforms showed a marked difference when castes were compared, suggesting that they could be involved differently in the JH metabolism in M. scutellaris, providing new insights for the comprehension of female plasticity.
Collapse
Affiliation(s)
- Carlos U Vieira
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia, Brasil.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Kummasook A, Pongpom P, Vanittanakom N. Cloning, characterization and differential expression of an hsp70 gene from the pathogenic dimorphic fungus, Penicillium marneffei. ACTA ACUST UNITED AC 2008; 18:385-94. [PMID: 17654015 DOI: 10.1080/10425170701309012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A gene encoding heat shock protein 70 (Hsp70) of Penicillium marneffei was isolated and characterized. The structure of P. marneffei hsp70 gene was similar to hsp70 genes of other organisms, with a unique sequence of 3-nt microexon flanked by two introns. Comparison of the deduced amino acid sequence revealed that the Hsp70 was grouped in the fungal cytosolic Hsp70s. Northern blot analysis demonstrated the upregulation of hsp70 expression during the mycelium to yeast phase transition. Upregulation was also observed during yeast or mycelial cells encountering heat shock condition at 39 degrees C. Experimental analysis showed that the expression of hsp70 is temperature dependent. Contradictory, a severe heat shock condition at 42 degrees C resulted in lowering the hsp70 transcript. Reverse transcription-polymerase chain reaction (RT-PCR) showed the accumulation of a large population of mature mRNA and small population of intron II-unspliced hsp70 mRNA in most cell types (conidia, mycelia and yeast). These results suggested that the Hsp70 may play an important role in environmental stress response and adaptation.
Collapse
Affiliation(s)
- Aksarakorn Kummasook
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| | | | | |
Collapse
|
22
|
Nongthomba U, Ansari M, Thimmaiya D, Stark M, Sparrow J. Aberrant splicing of an alternative exon in the Drosophila troponin-T gene affects flight muscle development. Genetics 2007; 177:295-306. [PMID: 17603127 PMCID: PMC2013690 DOI: 10.1534/genetics.106.056812] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During myofibrillogenesis, many muscle structural proteins assemble to form the highly ordered contractile sarcomere. Mutations in these proteins can lead to dysfunctional muscle and various myopathies. We have analyzed the Drosophila melanogaster troponin T (TnT) up1 mutant that specifically affects the indirect flight muscles (IFM) to explore troponin function during myofibrillogenesis. The up1 muscles lack normal sarcomeres and contain "zebra bodies," a phenotypic feature of human nemaline myopathies. We show that the up(1) mutation causes defective splicing of a newly identified alternative TnT exon (10a) that encodes part of the TnT C terminus. This exon is used to generate a TnT isoform specific to the IFM and jump muscles, which during IFM development replaces the exon 10b isoform. Functional differences between the 10a and 10b TnT isoforms may be due to different potential phosphorylation sites, none of which correspond to known phosphorylation sites in human cardiac TnT. The absence of TnT mRNA in up1 IFM reduces mRNA levels of an IFM-specific troponin I (TnI) isoform, but not actin, tropomyosin, or troponin C, suggesting a mechanism controlling expression of TnT and TnI genes may exist that must be examined in the context of human myopathies caused by mutations of these thin filament proteins.
Collapse
Affiliation(s)
- Upendra Nongthomba
- Department of Biology, University of York, York, YO10 5DD, United Kingdom
| | | | | | | | | |
Collapse
|
23
|
Kagawa H, Takaya T, Ruksana R, Anokye-Danso F, Amin MZ, Terami H. C. elegans model for studying tropomyosin and troponin regulations of muscle contraction and animal behavior. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 592:153-61. [PMID: 17278363 DOI: 10.1007/978-4-431-38453-3_14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Affiliation(s)
- Hiroaki Kagawa
- Division of Bioscience, Graduate School of Science and Technology, Okayama University, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Hase ME, Yalamanchili P, Visa N. The Drosophila Heterogeneous Nuclear Ribonucleoprotein M Protein, HRP59, Regulates Alternative Splicing and Controls the Production of Its Own mRNA. J Biol Chem 2006; 281:39135-41. [PMID: 17077090 DOI: 10.1074/jbc.m604235200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Drosophila heterogeneous nuclear ribonucleoprotein M, HRP59, is a nuclear protein that associates co-transcriptionally with pre-mRNA and is necessary for the correct expression of a subset of mRNAs. We show here that the hrp59 pre-mRNA is alternatively spliced to generate two different mRNAs that differ in the presence of exon 3. Exon 3-containing transcripts make up the majority of hrp59 transcripts and encode for the functional protein, HRP59-1. Transcripts that lack exon 3 contain a premature translation termination codon and are targeted to the nonsense mediated decay pathway. We show that exon 3 inclusion is itself inhibited by HRP59 and that changes in the HRP59 protein levels affect the splicing activity of the cell. We propose that the ability of HRP59 to regulate the alternative splicing of its own pre-mRNA serves in a negative feedback loop that controls the levels of the HRP59 protein and maintains the homeostasis of the splicing environment.
Collapse
Affiliation(s)
- Manuela E Hase
- Department of Molecular Biology and Functional Genomics, Stockholm University SE-10691, Stockholm, Sweden.
| | | | | |
Collapse
|
25
|
Mack PD, Kapelnikov A, Heifetz Y, Bender M. Mating-responsive genes in reproductive tissues of female Drosophila melanogaster. Proc Natl Acad Sci U S A 2006; 103:10358-10363. [PMID: 16798875 PMCID: PMC1502462 DOI: 10.1073/pnas.0604046103] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Male-derived accessory gland proteins that are transferred to females during mating have profound effects on female reproductive physiology including increased ovulation, mating inhibition, and effects on sperm utilization and storage. The extreme rates of evolution seen in accessory gland proteins may be driven by sperm competition and sexual conflict, processes that may ultimately drive complex interactions between female- and male-derived molecules and sperm. However, little is known of how gene expression in female reproductive tissues changes in response to the presence of male molecules and sperm. To characterize this response, we conducted parallel genomic and proteomic analyses of gene expression in the reproductive tract of 3-day-old unmated and mated female Drosophila melanogaster. Using DNA microarrays, we identified 539 transcripts that are differentially expressed in unmated vs. mated females and revealed a striking peak in differential expression at 6 h postmating and a marked shift from primarily down-regulated to primarily up-regulated transcripts within 3 h after mating. Combining two-dimensional gel electrophoresis and liquid chromatography mass spectrometry analyses, we identified 84 differentially expressed proteins at 3 h postmating, including proteins that appeared to undergo posttranslational modification. Together, our observations define transcriptional and translational response to mating within the female reproductive tract and suggest a bimodal model of postmating gene expression initially correlated with mating and the final stages of female reproductive tract maturation and later with the declining presence of male reproductive molecules and with sperm maintenance and utilization.
Collapse
Affiliation(s)
- Paul D Mack
- *Department of Genetics, University of Georgia, Athens, GA 30602; and
| | - Anat Kapelnikov
- Department of Entomology, Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Yael Heifetz
- Department of Entomology, Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Michael Bender
- *Department of Genetics, University of Georgia, Athens, GA 30602; and
| |
Collapse
|
26
|
Marco-Ferreres R, Arredondo J, Fraile B, Cervera M. Overexpression of troponin T in Drosophila muscles causes a decrease in the levels of thin-filament proteins. Biochem J 2005; 386:145-52. [PMID: 15469415 PMCID: PMC1134776 DOI: 10.1042/bj20041240] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Formation of the contractile apparatus in muscle cells requires co-ordinated activation of several genes and the proper assembly of their products. To investigate the role of TnT (troponin T) in the mechanisms that control and co-ordinate thin-filament formation, we generated transgenic Drosophila lines that overexpress TnT in their indirect flight muscles. All flies that overexpress TnT were unable to fly, and the loss of thin filaments themselves was coupled with ultrastructural perturbations of the sarcomere. In contrast, thick filaments remained largely unaffected. Biochemical analysis of these lines revealed that the increase in TnT levels could be detected only during the early stages of adult muscle formation and was followed by a profound decrease in the amount of this protein as well as that of other thin-filament proteins such as tropomyosin, troponin I and actin. The decrease in thin-filament proteins is not only due to degradation but also due to a decrease in their synthesis, since accumulation of their mRNA transcripts was also severely diminished. This decrease in expression levels of the distinct thin-filament components led us to postulate that any change in the amount of TnT transcripts might trigger the down-regulation of other co-regulated thin-filament components. Taken together, these results suggest the existence of a mechanism that tightly co-ordinates the expression of thin-filament genes and controls the correct stoichiometry of these proteins. We propose that the high levels of unassembled protein might act as a sensor in this process.
Collapse
Affiliation(s)
- Raquel Marco-Ferreres
- *Departamento de Bioquímica and Instituto Investigaciones Biomédicas, UAM-CSIC, Facultad de Medicina, Universidad Autónoma de Madrid, Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Juan J. Arredondo
- *Departamento de Bioquímica and Instituto Investigaciones Biomédicas, UAM-CSIC, Facultad de Medicina, Universidad Autónoma de Madrid, Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Benito Fraile
- †Departamento de Biología Celular y Genética, Universidad de Alcalá de Henares, Carretera Madrid-Barcelona, Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain
| | - Margarita Cervera
- *Departamento de Bioquímica and Instituto Investigaciones Biomédicas, UAM-CSIC, Facultad de Medicina, Universidad Autónoma de Madrid, Arzobispo Morcillo 4, 28029 Madrid, Spain
- To whom correspondence should be addressed (email )
| |
Collapse
|
27
|
Herranz R, Mateos J, Mas JA, García-Zaragoza E, Cervera M, Marco R. The Coevolution of Insect Muscle TpnT and TpnI Gene Isoforms. Mol Biol Evol 2005; 22:2231-42. [PMID: 16049195 DOI: 10.1093/molbev/msi223] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In bilaterians, the main regulator of muscle contraction is the troponin (Tpn) complex, comprising three closely interacting subunits (C, T, and I). To understand how evolutionary forces drive molecular change in protein complexes, we have compared the gene structures and expression patterns of Tpn genes in insects. In this class, while TpnC is encoded by multiple genes, TpnT and TpnI are encoded by single genes. Their isoform expression pattern is highly conserved within the Drosophilidae, and single orthologous genes were identified in the sequenced genomes of Drosophila pseudoobscura, Anopheles gambiae, and Apis mellifera. Apis expression patterns also support the equivalence of their exon organization throughout holometabolous insects. All TpnT genes include a previously unidentified indirect flight muscle (IFM)-specific exon (10A) that has evolved an expression pattern similar to that of exon 9 in TpnI. Thus, expression patterns, sequence evolution trends, and structural data indicate that Tpn genes and their isoforms have coevolved, building species- and muscle-specific troponin complexes. Furthermore, a clear case can be made for independent evolution of the IFM-specific isoforms containing alanine/proline-rich sequences. Dipteran genomes contain one tropomyosin gene that encodes one or two high-molecular weight isoforms (TmH) incorporating APPAEGA-rich sequences, specifically expressed in IFM. Corresponding exons do not exist in the Apis tropomyosin gene, but equivalent sequences occur in a high-molecular weight Apis IFM-specific TpnI isoform (TnH). Overall, our approach to comparatively analyze supramolecular complexes reveals coevolutionary trends not only in gene families but in isoforms generated by alternative splicing.
Collapse
Affiliation(s)
- Raúl Herranz
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 4, 28029 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
This is the first of a projected series of canonic reviews covering all invertebrate muscle literature prior to 2005 and covers muscle genes and proteins except those involved in excitation-contraction coupling (e.g., the ryanodine receptor) and those forming ligand- and voltage-dependent channels. Two themes are of primary importance. The first is the evolutionary antiquity of muscle proteins. Actin, myosin, and tropomyosin (at least, the presence of other muscle proteins in these organisms has not been examined) exist in muscle-like cells in Radiata, and almost all muscle proteins are present across Bilateria, implying that the first Bilaterian had a complete, or near-complete, complement of present-day muscle proteins. The second is the extraordinary diversity of protein isoforms and genetic mechanisms for producing them. This rich diversity suggests that studying invertebrate muscle proteins and genes can be usefully applied to resolve phylogenetic relationships and to understand protein assembly coevolution. Fully achieving these goals, however, will require examination of a much broader range of species than has been heretofore performed.
Collapse
Affiliation(s)
- Scott L Hooper
- Neuroscience Program, Department of Biological Sciences, Irvine Hall, Ohio University, Athens, Ohio 45701, USA.
| | | |
Collapse
|
29
|
Ruksana R, Kuroda K, Terami H, Bando T, Kitaoka S, Takaya T, Sakube Y, Kagawa H. Tissue expression of four troponin I genes and their molecular interactions with two troponin C isoforms in Caenorhabditis elegans. Genes Cells 2005; 10:261-76. [PMID: 15743415 DOI: 10.1111/j.1365-2443.2005.00829.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Gene duplication is a major genetic event that can produce multiple protein isoforms. Comparative sequence and functional analysis of related gene products can provide insights into protein family evolution. To characterize the Caenorhabditis elegans troponin I family, we analyzed gene structures, tissue expression patterns and RNAi phenotypes of four troponin I isoforms. Tissue expression patterns were determined using lacZ/gfp/rfp reporter gene assays. The tni-1, tni-2/unc-27 and tni-3 genes, each encoding a troponin I isoform, are uniquely expressed in body wall, vulval and anal muscles but at different levels; tni-4 was expressed solely in the pharynx. Expressing tni-1 and -2 gene RNAi caused motility defects similar to unc-27 (e155) mutant, a tni-2 null allele. The tni-3 RNAi expression produced egg laying defects while the tni-4 RNAi caused arrest at gastrulation. Overlay analyses were used to assay interactions between the troponin I and two troponin C isoforms. The three body wall troponin I isoforms interacted with body wall and pharyngeal troponin C isoforms; TNI-4 interacted only with pharyngeal troponin C. Our results suggest the body wall genes have evolved following duplication of the pharynx gene and provide important data about gene duplication and functional differentiation of nematode troponin I isoforms.
Collapse
Affiliation(s)
- Razia Ruksana
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Herranz R, Mateos J, Marco R. Diversification and Independent Evolution of Troponin C Genes in Insects. J Mol Evol 2005; 60:31-44. [PMID: 15696366 DOI: 10.1007/s00239-004-0031-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2004] [Accepted: 07/21/2004] [Indexed: 10/25/2022]
Abstract
Troponin C (TpnC), the calcium-binding subunit of the troponin regulatory complex in the muscle thin filament, is encoded by multiple genes in insects. To understand how TpnC genes have evolved, we characterized the gene number and structure in a number of insect species. The TpnC gene complement is five genes in Drosophilidae as previously reported for D. melanogaster. Gene structures are almost identical in D. pseudoobscura, D. suboboscura, and D. virilis. Developmental patterns of expression are also conserved in Drosophila subobscura and D. virilis. Similar, but not completely equivalent, TpnC gene repertoires have been identified in the Anopheles gambiae and Apis mellifera genomes. Insect TpnC sequences can be divided into three groups, allowing a systematic classification of newly identified genes. The pattern of expression of the Apis mellifera genes essentially agrees with the pattern in Drosophilidae, providing further functional support to the classification. A model for the evolution of the TpnC genes is proposed including the most likely pathway of insect TpnC diversification. Our results suggest that the rapid increase in number and sequence specialization of the adult Type III isoforms can be correlated with the evolution of the holometabolous mode of development and the acquisition of asynchronous indirect flight muscle function in insects. This evolutionarily specialization has probably been achieved independently in different insect orders.
Collapse
Affiliation(s)
- Raul Herranz
- Departamento de Bioquímica UAM e Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC, Facultad de Medicina de la Universidad Autónoma, c/ Arzobispo Morcillo 4, 28029 Madrid, Spain
| | | | | |
Collapse
|
31
|
Mas JA, García-Zaragoza E, Cervera M. Two functionally identical modular enhancers in Drosophila troponin T gene establish the correct protein levels in different muscle types. Mol Biol Cell 2004; 15:1931-45. [PMID: 14718560 PMCID: PMC379288 DOI: 10.1091/mbc.e03-10-0729] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The control of muscle-specific expression is one of the principal mechanisms by which diversity is generated among muscle types. In an attempt to elucidate the regulatory mechanisms that control fiber diversity in any given muscle, we have focused our attention on the transcriptional regulation of the Drosophila Troponin T gene. Two, nonredundant, functionally identical, enhancer-like elements activate Troponin T transcription independently in all major muscles of the embryo and larvae as well as in adult somatic and visceral muscles. Here, we propose that the differential but concerted interaction of these two elements underlies the mechanism by which a particular muscle-type establish the correct levels of Troponin T expression, adapting these levels to their specific needs. This mechanism is not exclusive to the Troponin T gene, but is also relevant to the muscle-specific Troponin I gene. In conjunction with in vivo transgenic studies, an in silico analysis of the Troponin T enhancer-like sequences revealed that both these elements are organized in a modular manner. Extending this analysis to the Troponin I and Tropomyosin regulatory elements, the two other components of the muscle-regulatory complex, we have discovered a similar modular organization of phylogenetically conserved domains.
Collapse
MESH Headings
- Animals
- Base Sequence
- Blotting, Northern
- Blotting, Western
- Cell Line, Transformed
- Cloning, Molecular
- Drosophila
- Drosophila melanogaster
- Electrophoresis, Polyacrylamide Gel
- Enhancer Elements, Genetic
- Gene Expression Regulation
- Genes, Reporter
- Immunoblotting
- Models, Genetic
- Molecular Sequence Data
- Muscles/metabolism
- Phylogeny
- Plasmids/metabolism
- Protein Structure, Tertiary
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Nucleic Acid
- Thorax/metabolism
- Time Factors
- Transcription, Genetic
- Transgenes
- Tropomyosin/genetics
- Troponin T/genetics
- beta-Galactosidase/metabolism
Collapse
Affiliation(s)
- José-Antonio Mas
- Departamento de Bioquímica and Instituto de Investigaciones Biomédicas, Facultad de Medicina, Universidad Autonoma de Madrid, UAM-CSIC, 28029 Madrid, Spain
| | | | | |
Collapse
|
32
|
Hsiao CD, Tsai WY, Horng LS, Tsai HJ. Molecular structure and developmental expression of three muscle-type troponin T genes in zebrafish. Dev Dyn 2003; 227:266-79. [PMID: 12761854 DOI: 10.1002/dvdy.10305] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Troponin T (Tnnt), a troponin component, interacts with tropomyosin and is crucial to the regulation of striated muscle contraction. To gain insight into the molecular evolution and developmental regulation of Tnnt gene (Tnnt) in lower vertebrates, zebrafish Tnnt1 (slow Tnnt), Tnnt2 (cardiac Tnnt), and Tnnt3b (fast Tnnt isoform b) were characterized. The polypeptides of zebrafish Tnnt1, Tnnt2, and Tnnt3b were conserved in the central tropomyosin- and C-terminal troponin I-binding domains. However, the N-terminal hypervariable regions were highly extended and rich in glutamic acid in polypeptides of Tnnt1 and Tnnt2, but not Tnnt3b. The Tnnt2 and Tnnt3b contain introns, whereas Tnnt1 is intron-free. During development, large to small, alternatively spliced variants were detected in Tnnt2, but not in Tnnt1 or Tnnt3. Whole-mount in situ hybridization showed zebrafish Tnnt1 and Tnnt2 are activated during early somitogenesis (10 hr postfertilization, hpf) and cardiogenesis (14 hpf), respectively, but Tnnt3b is not activated until middle somitogenesis (18 hpf). Tnnt2 and Tnnt3b expression was cardiac- and fast-muscle specific, but Tnnt1 was expressed in both slow and fast muscles. We propose that three, distinct, muscle-type Tnnt evolved after the divergence of fish and deuterostome invertebrates. In zebrafish, the developmental regulation of Tnnt during somitogenesis and cardiogenesis is more restricted and simpler than in tetrapods. These new findings may provide insight into the developmental regulation and molecular evolution of vertebrate Tnnt.
Collapse
Affiliation(s)
- Chung-Der Hsiao
- Institute of Fisheries Science, National Taiwan University, Taipei, Taiwan
| | | | | | | |
Collapse
|
33
|
Veistinen E, Liippo J, Lassila O. Quantification of human Aiolos splice variants by real-time PCR. J Immunol Methods 2002; 271:113-23. [PMID: 12445735 DOI: 10.1016/s0022-1759(02)00370-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Aiolos is a transcriptional regulator of B cell development and belongs to the Ikaros family of chromatin remodelling transcription factors. All the members of Ikaros family produce multiple isoforms via alternative mRNA splicing. Altered expression of Ikaros isoforms has been found in patients with acute lymphoblastic leukemia but it is not studied whether the altered expression of Aiolos isoforms also has a role in the development of leukemias or lymphomas. We developed a quantitative real-time PCR application to detect the relative expression of Aiolos splice variants. The method is based on fluorescence resonance energy transfer (FRET)-labelled isoform specific hybridisation probes used with the LightCycler instrument. The isoform specificity is obtained by targeting the probes at the edges of chosen exons. The probes are here shown to represent a rapid, high throughput, specific and reproducible quantification method. We designed and optimised the analysis for a dominant negative Aiolos isoform, but the described method is applicable to any isoform-forming gene. This study shows that the real-time PCR with exon edge spanning probe pairs can be applied generally to reveal the importance of alternative splicing and the role of isoforms in normal development and diseases.
Collapse
Affiliation(s)
- Elli Veistinen
- Department of Medical Microbiology, Turku Graduate School of Biomedical Sciences, University of Turku, Kiinamyllynkatu 13, Finland.
| | | | | |
Collapse
|
34
|
Arredondo JJ, Ferreres RM, Maroto M, Cripps RM, Marco R, Bernstein SI, Cervera M. Control of Drosophila paramyosin/miniparamyosin gene expression. Differential regulatory mechanisms for muscle-specific transcription. J Biol Chem 2001; 276:8278-87. [PMID: 11110792 DOI: 10.1074/jbc.m009302200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To define the transcriptional mechanisms contributing to stage- and tissue-specific expression of muscle genes, we performed transgenic analysis of Drosophila paramyosin gene regulation. This gene has two promoters, one for paramyosin and one for miniparamyosin, which are active in partially overlapping domains. Regions between -0.9 and -1.7 kilobases upstream of each initiation site contribute to the temporal and spatial expression patterns. By comparing the Drosophila melanogaster and Drosophila virilis promoters, conserved binding sites were found for known myogenic factors, including one MEF2 site and three E boxes. In contrast with previous data, our experiments with the paramyosin promoter indicate that the MEF2 site is essential but not sufficient for proper paramyosin gene transcription. Mutations in the three E boxes, on the other hand, do not produce any effect in embryonic/larval muscles. Thus MEF2 site- and E box-binding proteins can play different roles in the regulation of different muscle-specific genes. For the miniparamyosin promoters, several conserved sequences were shown to correspond to functionally important regions. Our data further show that the two promoters work independently. Even when both promoters are active in the same muscle fiber, the transcription driven by one of the promoters is not affected by transcription driven by the other.
Collapse
Affiliation(s)
- J J Arredondo
- Departamento de Bioquímica & Instituto Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas, Facultad de Medicina, Universidad Autónoma de Madrid, Arzobispo Morcillo 4, 28029 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
35
|
Marden JH, Fitzhugh GH, Wolf MR, Arnold KD, Rowan B. Alternative splicing, muscle calcium sensitivity, and the modulation of dragonfly flight performance. Proc Natl Acad Sci U S A 1999; 96:15304-9. [PMID: 10611380 PMCID: PMC24815 DOI: 10.1073/pnas.96.26.15304] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Calcium sensitivity of myosin cross-bridge activation in striated muscles commonly varies during ontogeny and in response to alterations in muscle usage, but the consequences for whole-organism physiology are not well known. Here we show that the relative abundances of alternatively spliced transcripts of the calcium regulatory protein troponin T (TnT) vary widely in flight muscle of Libellula pulchella dragonflies, and that the mixture of TnT splice variants explains significant portions of the variation in muscle calcium sensitivity, wing-beat frequency, and an index of aerodynamic power output during free flight. Two size-distinguishable morphs differ in their maturational pattern of TnT splicing, yet they show the same relationship between TnT transcript mixture and calcium sensitivity and between calcium sensitivity and aerodynamic power output. This consistency of effect in different developmental and physiological contexts strengthens the hypothesis that TnT isoform variation modulates muscle calcium sensitivity and whole-organism locomotor performance. Modulating muscle power output appears to provide the ecologically important ability to operate at different points along a tradeoff between performance and energetic cost.
Collapse
Affiliation(s)
- J H Marden
- 208 Mueller Laboratory, Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | |
Collapse
|
36
|
Palm K, Metsis M, Timmusk T. Neuron-specific splicing of zinc finger transcription factor REST/NRSF/XBR is frequent in neuroblastomas and conserved in human, mouse and rat. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 72:30-9. [PMID: 10521596 DOI: 10.1016/s0169-328x(99)00196-5] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neuron-restrictive silencer factor (NRSF), also known as repressor element RE1 binding transcription factor (REST) or repressor binding to the X2 box (XBR) (REST/NRSF/XBR), is a zinc finger transcription factor that during early embryogenesis is required to repress a subset of neuron-specific genes in non-neural tissues and undifferentiated neural precursors. We have previously shown that splicing within the coding region of rat REST/NRSF/XBR (rREST) generates several different transcripts all of which are expressed in the adult nervous system. rREST transcripts with short neuron-specific exons (exon N) have in-frame stop codons and encode truncated proteins which have an N-terminal repressor domain and weakened DNA binding activity. The aim of this study was to analyze the regulatory mechanisms underlying REST/NRSF/XBR activity in human and mouse as compared to rat. We show that the structure of REST/NRSF/XBR gene and its regulation by neuron-specific splicing is conserved in human, mouse and rat. Expression levels of REST/NRSF/XBR transcripts with the insertion of exon N are increased during the neuronal differentiation of mouse teratocarcinoma PCC7 and rat pheocromocytoma PC12 cells and are high in several human and mouse neuroblastoma cells as compared to the relatively low levels in the developing and adult nervous system. The exclusive expression of the neuronal forms of REST/NRSF/XBR mRNAs in mouse neuroblastoma Neuro-2A cells is not caused by rearrangement of the REST/NRSF/XBR gene nor by mutations in the sequence of the splice sites flanking exon N. These data suggest that changes in REST/NRSF/XBR splicing pattern may result from altered levels of splicing factors reflecting the formation and/or progression of neuroblastoma tumors.
Collapse
Affiliation(s)
- K Palm
- Department of Neuroscience, Developmental Neuroscience, Biomedical Center, Uppsala University, Box 587, S-751 23, Uppsala, Sweden
| | | | | |
Collapse
|
37
|
Abstract
Alternative splicing of pre-mRNAs is a powerful and versatile regulatory mechanism that can effect quantitative control of gene expression and functional diversification of proteins. It contributes to major developmental decisions and also to fine tuning of gene function. Genetic and biochemical approaches have identified cis-acting regulatory elements and trans-acting factors that control alternative splicing of specific pre-mRNAs. Both approaches are contributing to an understanding of their mode of action. Some alternative splicing decisions are controlled by specific factors whose expression is highly restricted during development, but others may be controlled by more modest variations in the levels of general factors acting cooperatively or antagonistically. Certain factors play active roles in both constitutive splicing and regulation of alternative splicing. Cooperative and antagonistic effects integrated at regulatory elements are likely to be important for specificity and for finely tuned differences in cell-type-specific alternative splicing patterns.
Collapse
Affiliation(s)
- A J Lopez
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA.
| |
Collapse
|
38
|
Breckenridge DG, Watanabe Y, Greenwood SJ, Gray MW, Schnare MN. U1 small nuclear RNA and spliceosomal introns in Euglena gracilis. Proc Natl Acad Sci U S A 1999; 96:852-6. [PMID: 9927657 PMCID: PMC15314 DOI: 10.1073/pnas.96.3.852] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In the flagellated protozoon Euglena gracilis, characterized nuclear genes harbor atypical introns that usually are flanked by short repeats, adopt complex secondary structures in pre-mRNA, and do not obey the GT-AG rule of conventional cis-spliced introns. In the nuclear fibrillarin gene of E. gracilis, we have identified three spliceosomal-type introns that have GT-AG consensus borders. Furthermore, we have isolated a small RNA from E. gracilis and propose, on the basis of primary and secondary structure comparisons, that it is a homolog of U1 small nuclear RNA, an essential component of the cis-spliceosome in higher eukaryotes. Conserved sequences at the 5' splice sites of the fibrillarin introns can potentially base pair with Euglena U1 small nuclear RNA. Our observations demonstrate that spliceosomal GT-AG cis-splicing occurs in Euglena, in addition to the nonconventional cis-splicing and spliced leader trans-splicing previously recognized in this early diverging unicellular eukaryote.
Collapse
Affiliation(s)
- D G Breckenridge
- Program in Evolutionary Biology, Canadian Institute for Advanced Research, Department of Biochemistry, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada
| | | | | | | | | |
Collapse
|
39
|
Domingo A, González-Jurado J, Maroto M, Díaz C, Vinós J, Carrasco C, Cervera M, Marco R. Troponin-T is a calcium-binding protein in insect muscle: in vivo phosphorylation, muscle-specific isoforms and developmental profile in Drosophila melanogaster. J Muscle Res Cell Motil 1998; 19:393-403. [PMID: 9635282 DOI: 10.1023/a:1005349704790] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Two sets of muscle polypeptides showing calcium-binding capacity and intense labelling in vivo with 32P were purified and characterized from Drosophila melanogaster adult extracts. The polypeptides exhibit crossed immunoreactivity and share similar biochemical properties such as those involved in purification. They have been identified as isoforms of troponin-T (TnT) by sequence analysis of a cDNA clone isolated from an embryonic library. The two sets of TnT polypeptides correspond to the fibrillar and non-fibrillar muscle isoforms, respectively. The non-fibrillar muscle isoforms separate into two bands which are differentially expressed during development. Analysis of TnT isoforms in bee thoraces indicates that the expression of the fibrillar muscle isoform correlates with the acquisition of functional flight capability. In vivo labelling experiments reveal that the two TnT sets are readily phosphorylated. The Drosophila TnTs show calcium-binding properties by three different types of assays. Our results suggest that this property could be specific to insect TnTs and may be related to the long, extremely acidic polyglutamic carboxy-terminus present in these polypeptides, which does not occur in non-arthropod TnTs.
Collapse
Affiliation(s)
- A Domingo
- Departamento de Bioquímica de la UAM, Spain
| | | | | | | | | | | | | | | |
Collapse
|