1
|
Chong ZZ, Souayah N. Radixin: Roles in the Nervous System and Beyond. Biomedicines 2024; 12:2341. [PMID: 39457653 PMCID: PMC11504607 DOI: 10.3390/biomedicines12102341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Radixin is an ERM family protein that includes radixin, moesin, and ezrin. The importance of ERM family proteins has been attracting more attention, and studies on the roles of ERM in biological function and the pathogenesis of some diseases are accumulating. In particular, we have found that radixin is the most dramatically changed ERM protein in elevated glucose-treated Schwann cells. METHOD We systemically review the literature on ERM, radixin in focus, and update the roles of radixin in regulating cell morphology, interaction, and cell signaling pathways. The potential of radixin as a therapeutic target in neurodegenerative diseases and cancer was also discussed. RESULTS Radixin research has focused on its cell functions, activation, and pathogenic roles in some diseases. Radixin and other ERM proteins maintain cell shape, growth, and motility. In the nervous system, radixin has been shown to prevent neurodegeneration and axonal growth. The activation of radixin is through phosphorylation of its conserved threonine residues. Radixin functions in cell signaling pathways by binding to membrane proteins and relaying the cell signals into the cells. Deficiency of radixin has been involved in the pathogenic process of diseases in the central nervous system and diabetic peripheral nerve injury. Moreover, radixin also plays a role in cell growth and drug resistance in multiple cancers. The trials of therapeutic potential through radixin modulation have been accumulating. However, the exact mechanisms underlying the roles of radixin are far from clarification. CONCLUSIONS Radixin plays various roles in cells and is involved in developing neurodegenerative diseases and many types of cancers. Therefore, radixin may be considered a potential target for developing therapeutic strategies for its related diseases. Further elucidation of the function and the cell signaling pathways that are linked to radixin may open the avenue to finding novel therapeutic strategies for diseases in the nervous system and other body systems.
Collapse
Affiliation(s)
- Zhao Zhong Chong
- Department of Neurology, New Jersey Medical School, Rutgers University, 185 S. Orange Ave, Newark, NJ 07103, USA
| | - Nizar Souayah
- Department of Neurology, New Jersey Medical School, Rutgers University, 185 S. Orange Ave, Newark, NJ 07103, USA
- Department of Neurology, New Jersey Medical School, Rutgers University, 90 Bergen Street DOC 8100, Newark, NJ 07101, USA
| |
Collapse
|
2
|
Nhieu J, Wei CW, Ludwig M, Drake JM, Wei LN. CRABP1-complexes in exosome secretion. Cell Commun Signal 2024; 22:381. [PMID: 39075476 PMCID: PMC11285139 DOI: 10.1186/s12964-024-01749-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/13/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Cellular retinoic acid binding protein 1 (CRABP1) mediates rapid, non-canonical activity of retinoic acid (RA) by forming signalosomes via protein-protein interactions. Two signalosomes have been identified previously: CRABP1-MAPK and CRABP1-CaMKII. Crabp1 knockout (CKO) mice exhibited altered exosome profiles, but the mechanism of CRABP1 action was unclear. This study aimed to screen for and identify novel CRABP1 signalosomes that could modulate exosome secretion by using a combinatorial approach involving biochemical, bioinformatic and molecular studies. METHODS Immunoprecipitation coupled with mass spectrometry (IP-MS) identified candidate CRABP1-interacting proteins which were subsequently analyzed using GO Term Enrichment, Functional Annotation Clustering; and Pathway Analysis. Gene expression analysis of CKO samples revealed altered expression of genes related to exosome biogenesis and secretion. The effect of CRABP1 on exosome secretion was then experimentally validated using CKO mice and a Crabp1 knockdown P19 cell line. RESULTS IP-MS identified CRABP1-interacting targets. Bioinformatic analyses revealed significant association with actin cytoskeletal dynamics, kinases, and exosome secretion. The effect of CRABP1 on exosome secretion was experimentally validated by comparing circulating exosome numbers of CKO and wild type (WT) mice, and secreted exosomes from WT and siCRABP1-P19 cells. Pathway analysis identified kinase signaling and Arp2/3 complex as the major pathways where CRABP1-signalosomes modulate exosome secretion, which was validated in the P19 system. CONCLUSION The combinatorial approach allowed efficient screening for and identification of novel CRABP1-signalosomes. The results uncovered a novel function of CRABP1 in modulating exosome secretion, and suggested that CRABP1 could play roles in modulating intercellular communication and signal propagation.
Collapse
Affiliation(s)
- Jennifer Nhieu
- Department of Pharmacology, University of Minnesota, 6-120 Jackson Hall, 321 Church St. SE, Minneapolis, MN, 55455, USA
| | - Chin-Wen Wei
- Department of Pharmacology, University of Minnesota, 6-120 Jackson Hall, 321 Church St. SE, Minneapolis, MN, 55455, USA
| | - Megan Ludwig
- Department of Pharmacology, University of Minnesota, 6-120 Jackson Hall, 321 Church St. SE, Minneapolis, MN, 55455, USA
| | - Justin M Drake
- Department of Pharmacology, University of Minnesota, 6-120 Jackson Hall, 321 Church St. SE, Minneapolis, MN, 55455, USA
| | - Li-Na Wei
- Department of Pharmacology, University of Minnesota, 6-120 Jackson Hall, 321 Church St. SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
3
|
García-Weber D, Dangeard AS, Teixeira V, Hauke M, Carreaux A, Josenhans C, Arrieumerlou C. In vitro kinase assay reveals ADP-heptose-dependent ALPK1 autophosphorylation and altered kinase activity of disease-associated ALPK1 mutants. Sci Rep 2023; 13:6278. [PMID: 37072480 PMCID: PMC10113258 DOI: 10.1038/s41598-023-33459-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023] Open
Abstract
Alpha-protein kinase 1 (ALPK1) is a pathogen recognition receptor that detects ADP-heptose (ADPH), a lipopolysaccharide biosynthesis intermediate, recently described as a pathogen-associated molecular pattern in Gram-negative bacteria. ADPH binding to ALPK1 activates its kinase domain and triggers TIFA phosphorylation on threonine 9. This leads to the assembly of large TIFA oligomers called TIFAsomes, activation of NF-κB and pro-inflammatory gene expression. Furthermore, mutations in ALPK1 are associated with inflammatory syndromes and cancers. While this kinase is of increasing medical interest, its activity in infectious or non-infectious diseases remains poorly characterized. Here, we use a non-radioactive ALPK1 in vitro kinase assay based on the use of ATPγS and protein thiophosphorylation. We confirm that ALPK1 phosphorylates TIFA T9 and show that T2, T12 and T19 are also weakly phosphorylated by ALPK1. Interestingly, we find that ALPK1 itself is phosphorylated in response to ADPH recognition during Shigella flexneri and Helicobacter pylori infection and that disease-associated ALPK1 mutants exhibit altered kinase activity. In particular, T237M and V1092A mutations associated with ROSAH syndrome and spiradenoma/spiradenocarcinoma respectively, exhibit enhanced ADPH-induced kinase activity and constitutive assembly of TIFAsomes. Altogether, this study provides new insights into the ADPH sensing pathway and disease-associated ALPK1 mutants.
Collapse
Affiliation(s)
- Diego García-Weber
- Université Paris Cité, CNRS, INSERM, Institut Cochin, 75014, Paris, France
| | | | - Veronica Teixeira
- Université Paris Cité, CNRS, INSERM, Institut Cochin, 75014, Paris, France
| | - Martina Hauke
- Max von Pettenkofer Institute, Ludwig Maximilians Universität München, Pettenkoferstrasse 9a, 80336, Munich, Germany
| | - Alexis Carreaux
- Université Paris Cité, CNRS, INSERM, Institut Cochin, 75014, Paris, France
| | - Christine Josenhans
- Max von Pettenkofer Institute, Ludwig Maximilians Universität München, Pettenkoferstrasse 9a, 80336, Munich, Germany
| | | |
Collapse
|
4
|
Fortingo N, Melnyk S, Sutton SH, Watsky MA, Bollag WB. Innate Immune System Activation, Inflammation and Corneal Wound Healing. Int J Mol Sci 2022; 23:ijms232314933. [PMID: 36499260 PMCID: PMC9740891 DOI: 10.3390/ijms232314933] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 12/05/2022] Open
Abstract
Corneal wounds resulting from injury, surgeries, or other intrusions not only cause pain, but also can predispose an individual to infection. While some inflammation may be beneficial to protect against microbial infection of wounds, the inflammatory process, if excessive, may delay corneal wound healing. An examination of the literature on the effect of inflammation on corneal wound healing suggests that manipulations that result in reductions in severe or chronic inflammation lead to better outcomes in terms of corneal clarity, thickness, and healing. However, some acute inflammation is necessary to allow efficient bacterial and fungal clearance and prevent corneal infection. This inflammation can be triggered by microbial components that activate the innate immune system through toll-like receptor (TLR) pathways. In particular, TLR2 and TLR4 activation leads to pro-inflammatory nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) activation. Similarly, endogenous molecules released from disrupted cells, known as damage-associated molecular patterns (DAMPs), can also activate TLR2, TLR4 and NFκB, with the resultant inflammation worsening the outcome of corneal wound healing. In sterile keratitis without infection, inflammation can occur though TLRs to impact corneal wound healing and reduce corneal transparency. This review demonstrates the need for acute inflammation to prevent pathogenic infiltration, while supporting the idea that a reduction in chronic and/or excessive inflammation will allow for improved wound healing.
Collapse
Affiliation(s)
- Nyemkuna Fortingo
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30907, USA
| | - Samuel Melnyk
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30907, USA
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30907, USA
| | - Sarah H. Sutton
- Department of Medical Illustration, Augusta University, Augusta, GA 30907, USA
| | - Mitchell A. Watsky
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30907, USA
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30907, USA
| | - Wendy B. Bollag
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30907, USA
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30907, USA
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30907, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
- Correspondence: ; Tel.: +61-(706)-721-0698
| |
Collapse
|
5
|
Zaman R, Lombardo A, Sauvanet C, Viswanatha R, Awad V, Bonomo LER, McDermitt D, Bretscher A. Effector-mediated ERM activation locally inhibits RhoA activity to shape the apical cell domain. J Cell Biol 2021; 220:211973. [PMID: 33836044 PMCID: PMC8185690 DOI: 10.1083/jcb.202007146] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 02/07/2021] [Accepted: 03/09/2021] [Indexed: 12/21/2022] Open
Abstract
Activated ezrin-radixin-moesin (ERM) proteins link the plasma membrane to the actin cytoskeleton to generate apical structures, including microvilli. Among many kinases implicated in ERM activation are the homologues LOK and SLK. CRISPR/Cas9 was used to knock out all ERM proteins or LOK/SLK in human cells. LOK/SLK knockout eliminates all ERM-activating phosphorylation. The apical domains of cells lacking LOK/SLK or ERMs are strikingly similar and selectively altered, with loss of microvilli and with junctional actin replaced by ectopic myosin-II–containing apical contractile structures. Constitutively active ezrin can reverse the phenotypes of either ERM or LOK/SLK knockouts, indicating that a central function of LOK/SLK is to activate ERMs. Both knockout lines have elevated active RhoA with concomitant enhanced myosin light chain phosphorylation, revealing that active ERMs are negative regulators of RhoA. As RhoA-GTP activates LOK/SLK to activate ERM proteins, the ability of active ERMs to negatively regulate RhoA-GTP represents a novel local feedback loop necessary for the proper apical morphology of epithelial cells.
Collapse
Affiliation(s)
- Riasat Zaman
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | - Andrew Lombardo
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | - Cécile Sauvanet
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | - Raghuvir Viswanatha
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | - Valerie Awad
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | - Locke Ezra-Ros Bonomo
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | - David McDermitt
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | - Anthony Bretscher
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| |
Collapse
|
6
|
ERM Proteins at the Crossroad of Leukocyte Polarization, Migration and Intercellular Adhesion. Int J Mol Sci 2020; 21:ijms21041502. [PMID: 32098334 PMCID: PMC7073024 DOI: 10.3390/ijms21041502] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/12/2022] Open
Abstract
Ezrin, radixin and moesin proteins (ERMs) are plasma membrane (PM) organizers that link the actin cytoskeleton to the cytoplasmic tail of transmembrane proteins, many of which are adhesion receptors, in order to regulate the formation of F-actin-based structures (e.g., microspikes and microvilli). ERMs also effect transmission of signals from the PM into the cell, an action mainly exerted through the compartmentalized activation of the small Rho GTPases Rho, Rac and Cdc42. Ezrin and moesin are the ERMs more highly expressed in leukocytes, and although they do not always share functions, both are mainly regulated through phosphatidylinositol 4,5-bisphosphate (PIP2) binding to the N-terminal band 4.1 protein-ERM (FERM) domain and phosphorylation of a conserved Thr in the C-terminal ERM association domain (C-ERMAD), exerting their functions through a wide assortment of mechanisms. In this review we will discuss some of these mechanisms, focusing on how they regulate polarization and migration in leukocytes, and formation of actin-based cellular structures like the phagocytic cup-endosome and the immune synapse in macrophages/neutrophils and lymphocytes, respectively, which represent essential aspects of the effector immune response.
Collapse
|
7
|
Tachibana K, Ohnishi H, Ali Haghparast SM, Kihara T, Miyake J. Activation of PKC induces leukocyte adhesion by the dephosphorylation of ERM. Biochem Biophys Res Commun 2019; 523:177-182. [PMID: 31843195 DOI: 10.1016/j.bbrc.2019.12.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 12/07/2019] [Indexed: 11/19/2022]
Abstract
Although circulating leukocytes are non-adherent cells, they also undergo adhesion in response to external stimuli. To elucidate this switch mechanism, we investigated PMA-induced cell adhesion in myelomonocytic KG-1 cells. PMA induced microvillius collapse, decrease of cell surface rigidity and exclusion of sialomucin from adhesion sites. All these adhesion-contributing events are linked to dephosphorylation of Ezrin/Radixin/Moesin (ERM) proteins. Indeed, PMA-treatment induced quick decrease of phosphorylated ERM proteins, while expression of Moesin-T558D, a phospho-mimetic mutant, inhibited PMA-induced cell adhesion. PMA-induced cell adhesion and ERM-dephophorylation were inhibited by PKC inhibitors or by a phosphatase inhibitor, indicating the involvement of PKC and protein phophatase in these processes. In peripheral T lymphocytes, ERM-dephosphorylation by adhesion-inducing stimuli was inhibited by a PKC inhibitor. Combined, these findings strongly suggest that external stimuli induce ERM-dephosphorylation via the activation of PKC in leukocytes and that ERM-dephosphorylation leads to leukocytes' adhesion.
Collapse
Affiliation(s)
- Kouichi Tachibana
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8562, Japan.
| | - Hiroe Ohnishi
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Seyed Mohammad Ali Haghparast
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Takanori Kihara
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Jun Miyake
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| |
Collapse
|
8
|
Changes in Radixin Expression and Interaction with Efflux Transporters in the Liver of Adjuvant-Induced Arthritic Rats. Inflammation 2019; 43:85-94. [PMID: 31654296 DOI: 10.1007/s10753-019-01097-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Scaffold proteins such as radixin help to modulate the plasma membrane localization and transport activity of the multidrug resistance-associated protein 2 (MRP2/ABCC2) and P-glycoprotein (P-gp/ABCB1) efflux transporters in the liver. We examined changes in radixin expression and interaction with efflux transporters in adjuvant-induced arthritic (AA) rats, an animal model of rheumatoid arthritis, as well as in human liver cancer (HepG2) cells because inflammation affects drug pharmacokinetics via the efflux transporters. The expression levels of radixin and phosphorylated radixin (p-radixin) were measured 24 h after treatment with inflammatory cytokines comprising tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6 or sodium nitroprusside (SNP; a nitric oxide donor). The protein levels of radixin, MRP2, and P-gp in the rat liver were next examined. We also investigated whether inflammation affected the formation of complexes between radixin and MRP2 or P-gp. The mRNA and protein levels of radixin in HepG2 cells were significantly decreased by TNF-α treatment, while minimal changes were observed after treatment with IL-1β, IL-6 or SNP. TNF-α also significantly decreased the protein levels of p-radixin, suggesting that TNF-α inhibited the activation of radixin and thereby reduced the activity of the efflux transporters. Complex formation of radixin with MRP2 and P-gp was significantly decreased in AA rats but this was reversed by prednisolone and dexamethasone treatment, indicating that decreased interactions of radixin with MRP2 and P-gp likely occur during liver inflammation. These data suggest that liver inflammation reduces radixin function by decreasing its interactions with MRP2 and P-gp.
Collapse
|
9
|
Derouiche A, Geiger KD. Perspectives for Ezrin and Radixin in Astrocytes: Kinases, Functions and Pathology. Int J Mol Sci 2019; 20:ijms20153776. [PMID: 31382374 PMCID: PMC6695708 DOI: 10.3390/ijms20153776] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 02/06/2023] Open
Abstract
Astrocytes are increasingly perceived as active partners in physiological brain function and behaviour. The structural correlations of the glia–synaptic interaction are the peripheral astrocyte processes (PAPs), where ezrin and radixin, the two astrocytic members of the ezrin-radixin-moesin (ERM) family of proteins are preferentially localised. While the molecular mechanisms of ERM (in)activation appear universal, at least in mammalian cells, and have been studied in great detail, the actual ezrin and radixin kinases, phosphatases and binding partners appear cell type specific and may be multiplexed within a cell. In astrocytes, ezrin is involved in process motility, which can be stimulated by the neurotransmitter glutamate, through activation of the glial metabotropic glutamate receptors (mGluRs) 3 or 5. However, it has remained open how this mGluR stimulus is transduced to ezrin activation. Knowing upstream signals of ezrin activation, ezrin kinase(s), and membrane-bound binding partners of ezrin in astrocytes might open new approaches to the glial role in brain function. Ezrin has also been implicated in invasive behaviour of astrocytomas, and glial activation. Here, we review data pertaining to potential molecular interaction partners of ezrin in astrocytes, with a focus on PKC and GRK2, and in gliomas and other diseases, to stimulate further research on their potential roles in glia-synaptic physiology and pathology.
Collapse
Affiliation(s)
- Amin Derouiche
- Institute of Anatomy II, Goethe-University Frankfurt, D-60590 Frankfurt am Main, Germany.
| | - Kathrin D Geiger
- Neuropathology, Institute for Pathology, Carl Gustav Carus University Hospital, TU Dresden, D-01307 Dresden, Germany
| |
Collapse
|
10
|
Ivetic A, Hoskins Green HL, Hart SJ. L-selectin: A Major Regulator of Leukocyte Adhesion, Migration and Signaling. Front Immunol 2019; 10:1068. [PMID: 31139190 PMCID: PMC6527602 DOI: 10.3389/fimmu.2019.01068] [Citation(s) in RCA: 270] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/26/2019] [Indexed: 12/12/2022] Open
Abstract
L-selectin (CD62L) is a type-I transmembrane glycoprotein and cell adhesion molecule that is expressed on most circulating leukocytes. Since its identification in 1983, L-selectin has been extensively characterized as a tethering/rolling receptor. There is now mounting evidence in the literature to suggest that L-selectin plays a role in regulating monocyte protrusion during transendothelial migration (TEM). The N-terminal calcium-dependent (C-type) lectin domain of L-selectin interacts with numerous glycans, including sialyl Lewis X (sLex) for tethering/rolling and proteoglycans for TEM. Although the signals downstream of L-selectin-dependent adhesion are poorly understood, they will invariably involve the short 17 amino acid cytoplasmic tail. In this review we will detail the expression of L-selectin in different immune cell subsets, and its influence on cell behavior. We will list some of the diverse glycans known to support L-selectin-dependent adhesion, within luminal and abluminal regions of the vessel wall. We will describe how each domain within L-selectin contributes to adhesion, migration and signal transduction. A significant focus on the L-selectin cytoplasmic tail and its proposed contribution to signaling via the ezrin-radixin-moesin (ERM) family of proteins will be outlined. Finally, we will discuss how ectodomain shedding of L-selectin during monocyte TEM is essential for the establishment of front-back cell polarity, bestowing emigrated cells the capacity to chemotax toward sites of damage.
Collapse
Affiliation(s)
- Aleksandar Ivetic
- King's College London, School of Cardiovascular Medicine and Sciences, BHF Center of Research Excellence, London, United Kingdom
| | - Hannah Louise Hoskins Green
- King's College London, School of Cardiovascular Medicine and Sciences, BHF Center of Research Excellence, London, United Kingdom
| | - Samuel James Hart
- King's College London, School of Cardiovascular Medicine and Sciences, BHF Center of Research Excellence, London, United Kingdom
| |
Collapse
|
11
|
PTENα promotes neutrophil chemotaxis through regulation of cell deformability. Blood 2019; 133:2079-2089. [PMID: 30926592 DOI: 10.1182/blood-2019-01-899864] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/14/2019] [Indexed: 12/20/2022] Open
Abstract
Neutrophils are a major component of immune defense and are recruited through neutrophil chemotaxis in response to invading pathogens. However, the molecular mechanism that controls neutrophil chemotaxis remains unclear. Here, we report that PTENα, the first isoform identified in the PTEN family, regulates neutrophil deformability and promotes chemotaxis of neutrophils. A high level of PTENα is detected in neutrophils and lymphoreticular tissues. Homozygous deletion of PTENα impairs chemoattractant-induced migration of neutrophils. We show that PTENα physically interacts with cell membrane cross-linker moesin through its FERM domain and dephosphorylates moesin at Thr558, which disrupts the association of filamentous actin with the plasma membrane and subsequently induces morphologic changes in neutrophil pseudopodia. These results demonstrate that PTENα acts as a phosphatase of moesin and modulates neutrophil-mediated host immune defense. We propose that PTENα signaling is a potential target for the treatment of infections and immune diseases.
Collapse
|
12
|
Li J, Yin W, Jing Y, Kang D, Yang L, Cheng J, Yu Z, Peng Z, Li X, Wen Y, Sun X, Ren B, Liu C. The Coordination Between B Cell Receptor Signaling and the Actin Cytoskeleton During B Cell Activation. Front Immunol 2019; 9:3096. [PMID: 30687315 PMCID: PMC6333714 DOI: 10.3389/fimmu.2018.03096] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 12/13/2018] [Indexed: 01/27/2023] Open
Abstract
B-cell activation plays a crucial part in the immune system and is initiated via interaction between the B cell receptor (BCR) and specific antigens. In recent years with the help of modern imaging techniques, it was found that the cortical actin cytoskeleton changes dramatically during B-cell activation. In this review, we discuss how actin-cytoskeleton reorganization regulates BCR signaling in different stages of B-cell activation, specifically when stimulated by antigens, and also how this reorganization is mediated by BCR signaling molecules. Abnormal BCR signaling is associated with the progression of lymphoma and immunological diseases including autoimmune disorders, and recent studies have proved that impaired actin cytoskeleton can devastate the normal activation of B cells. Therefore, to figure out the coordination between the actin cytoskeleton and BCR signaling may reveal an underlying mechanism of B-cell activation, which has potential for new treatments for B-cell associated diseases.
Collapse
Affiliation(s)
- Jingwen Li
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yin
- Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yukai Jing
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danqing Kang
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Yang
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiali Cheng
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ze Yu
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zican Peng
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingbo Li
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Wen
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xizi Sun
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Boxu Ren
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
- Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Chaohong Liu
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Rey-Gallardo A, Tomlins H, Joachim J, Rahman I, Kitscha P, Frudd K, Parsons M, Ivetic A. Sequential binding of ezrin and moesin to L-selectin regulates monocyte protrusive behaviour during transendothelial migration. J Cell Sci 2018; 131:jcs.215541. [PMID: 29777033 PMCID: PMC6051341 DOI: 10.1242/jcs.215541] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/02/2018] [Indexed: 01/21/2023] Open
Abstract
Leukocyte transendothelial migration (TEM) is absolutely fundamental to the inflammatory response, and involves initial pseudopod protrusion and subsequent polarised migration across inflamed endothelium. Ezrin/radixin/moesin (ERM) proteins are expressed in leukocytes and mediate cell shape changes and polarity. The spatio-temporal organisation of ERM proteins with their targets, and their individual contribution to protrusion during TEM, has never been explored. Here, we show that blocking binding of moesin to phosphatidylinositol 4,5-bisphosphate (PIP2) reduces its C-terminal phosphorylation during monocyte TEM, and that on–off cycling of ERM activity is essential for pseudopod protrusion into the subendothelial space. Reactivation of ERM proteins within transmigrated pseudopods re-establishes their binding to targets, such as L-selectin. Knockdown of ezrin, but not moesin, severely impaired the recruitment of monocytes to activated endothelial monolayers under flow, suggesting that this protein plays a unique role in the early recruitment process. Ezrin binds preferentially to L-selectin in resting cells and during early TEM. The moesin–L-selectin interaction increases within transmigrated pseudopods as TEM proceeds, facilitating localised L-selectin ectodomain shedding. In contrast, a non-cleavable L-selectin mutant binds selectively to ezrin, driving multi-pseudopodial extensions. Taken together, these results show that ezrin and moesin play mutually exclusive roles in modulating L-selectin signalling and shedding to control protrusion dynamics and polarity during monocyte TEM. Summary: Ezrin and moesin co-ordinate binding to L-selectin in monocytes to, respectively, regulate pseudopod protrusion and ectodomain shedding during transendothelial migration.
Collapse
Affiliation(s)
- Angela Rey-Gallardo
- School of Cardiovascular Medicine and Sciences, James Black Centre, BHF Centre of Research Excellence, 125 Coldharbour Lane, King's College London, London SE5 9NU, UK
| | - Hannah Tomlins
- School of Cardiovascular Medicine and Sciences, James Black Centre, BHF Centre of Research Excellence, 125 Coldharbour Lane, King's College London, London SE5 9NU, UK
| | - Justin Joachim
- School of Cardiovascular Medicine and Sciences, James Black Centre, BHF Centre of Research Excellence, 125 Coldharbour Lane, King's College London, London SE5 9NU, UK
| | - Izajur Rahman
- School of Cardiovascular Medicine and Sciences, James Black Centre, BHF Centre of Research Excellence, 125 Coldharbour Lane, King's College London, London SE5 9NU, UK
| | - Phoebe Kitscha
- School of Cardiovascular Medicine and Sciences, James Black Centre, BHF Centre of Research Excellence, 125 Coldharbour Lane, King's College London, London SE5 9NU, UK
| | - Karen Frudd
- School of Cardiovascular Medicine and Sciences, James Black Centre, BHF Centre of Research Excellence, 125 Coldharbour Lane, King's College London, London SE5 9NU, UK
| | - Maddy Parsons
- School of Basic & Medical Biosciences, Randall Division of Cell & Molecular Biophysics, New Hunt's House, London, SE1 1UL, UK
| | - Aleksandar Ivetic
- School of Cardiovascular Medicine and Sciences, James Black Centre, BHF Centre of Research Excellence, 125 Coldharbour Lane, King's College London, London SE5 9NU, UK
| |
Collapse
|
14
|
Park J, Jang JH, Oh S, Kim M, Shin C, Jeong M, Heo K, Park JB, Kim SR, Oh YS. LPA-induced migration of ovarian cancer cells requires activation of ERM proteins via LPA 1 and LPA 2. Cell Signal 2018; 44:138-147. [PMID: 29329782 DOI: 10.1016/j.cellsig.2018.01.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 01/02/2018] [Accepted: 01/07/2018] [Indexed: 12/22/2022]
Abstract
Lysophosphatidic acid (LPA) has been implicated in the pathology of human ovarian cancer. This phospholipid elicits a wide range of cancer cell responses, such as proliferation, trans-differentiation, migration, and invasion, via various G-protein-coupled LPA receptors (LPARs). Here, we explored the cellular signaling pathway via which LPA induces migration of ovarian cancer cells. LPA induced robust phosphorylation of ezrin/radixin/moesin (ERM) proteins, which are membrane-cytoskeleton linkers, in the ovarian cancer cell line OVCAR-3. Among the LPAR subtypes expressed in these cells, LPA1 and LPA2, but not LPA3, induced phosphorylation of ERM proteins at their C-termini. This phosphorylation was dependent on the Gα12/13/RhoA pathway, but not on the Gαq/Ca2+/PKC or Gαs/adenylate cyclase/PKA pathway. The activated ERM proteins mediated cytoskeletal reorganization and formation of membrane protrusions in OVCAR-3 cells. Importantly, LPA-induced migration of OVCAR-3 cells was completely abolished not only by gene silencing of LPA1 or LPA2, but also by overexpression of a dominant negative ezrin mutant (ezrin-T567A). Taken together, this study demonstrates that the LPA1/LPA2/ERM pathway mediates LPA-induced migration of ovarian cancer cells. These findings may provide a potential therapeutic target to prevent metastatic progression of ovarian cancer.
Collapse
Affiliation(s)
- Jeongrak Park
- Department of Brain-Cognitive Sciences, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Hyeonpung-myeon, Dalseong-gun, Daegu, Republic of Korea
| | - Jin-Hyeok Jang
- Department of Brain-Cognitive Sciences, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Hyeonpung-myeon, Dalseong-gun, Daegu, Republic of Korea
| | - Seojin Oh
- Department of Brain-Cognitive Sciences, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Hyeonpung-myeon, Dalseong-gun, Daegu, Republic of Korea
| | - Minhye Kim
- Department of Brain-Cognitive Sciences, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Hyeonpung-myeon, Dalseong-gun, Daegu, Republic of Korea
| | - Changhoon Shin
- Department of Brain-Cognitive Sciences, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Hyeonpung-myeon, Dalseong-gun, Daegu, Republic of Korea
| | - Minseok Jeong
- Department of Brain-Cognitive Sciences, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Hyeonpung-myeon, Dalseong-gun, Daegu, Republic of Korea
| | - Kyun Heo
- Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Jong Bae Park
- Research Institute, National Cancer Center, Goyang, Republic of Korea; Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Republic of Korea
| | - Sang Ryong Kim
- School of Life Sciences, BK21 plus KNU Creative BioResearch Group, Institute of Life Science & Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yong-Seok Oh
- Department of Brain-Cognitive Sciences, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Hyeonpung-myeon, Dalseong-gun, Daegu, Republic of Korea.
| |
Collapse
|
15
|
Oh YS, Heo K, Kim EK, Jang JH, Bae SS, Park JB, Kim YH, Song M, Kim SR, Ryu SH, Kim IH, Suh PG. Dynamic relocalization of NHERF1 mediates chemotactic migration of ovarian cancer cells toward lysophosphatidic acid stimulation. Exp Mol Med 2017; 49:e351. [PMID: 28684865 PMCID: PMC5565956 DOI: 10.1038/emm.2017.88] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 12/28/2016] [Accepted: 01/09/2017] [Indexed: 01/05/2023] Open
Abstract
NHERF1/EBP50 (Na+/H+ exchanger regulating
factor 1; Ezrin-binding phosphoprotein of 50 kDa) organizes stable
protein complexes beneath the apical membrane of polar epithelial cells. By
contrast, in cancer cells without any fixed polarity, NHERF1 often localizes in
the cytoplasm. The regulation of cytoplasmic NHERF1 and its role in cancer
progression remain unclear. In this study, we found that, upon lysophosphatidic
acid (LPA) stimulation, cytoplasmic NHERF1 rapidly translocated to the plasma
membrane, and subsequently to cortical protrusion structures, of ovarian cancer
cells. This movement depended on direct binding of NHERF1 to C-terminally
phosphorylated ERM proteins (cpERMs). Moreover, NHERF1 depletion downregulated
cpERMs and further impaired cpERM-dependent remodeling of the cell cortex,
suggesting reciprocal regulation between these proteins. The LPA-induced protein
complex was highly enriched in migratory pseudopodia, whose formation was
impaired by overexpression of NHERF1 truncation mutants. Consistent with this,
NHERF1 depletion in various types of cancer cells abolished chemotactic cell
migration toward a LPA gradient. Taken together, our findings suggest that the
high dynamics of cytosolic NHERF1 provide cancer cells with a means of
controlling chemotactic migration. This capacity is likely to be essential for
ovarian cancer progression in tumor microenvironments containing LPA.
Collapse
Affiliation(s)
- Yong-Seok Oh
- Department of Brain-Cognitive Science, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Kyun Heo
- Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Eung-Kyun Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Jin-Hyeok Jang
- Department of Brain-Cognitive Science, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Sun Sik Bae
- MRC for Ischemic Tissue Regeneration, Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Jong Bae Park
- Research Institute, National Cancer Center, Goyang, Republic of Korea.,Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Republic of Korea
| | - Yun Hee Kim
- Research Institute, National Cancer Center, Goyang, Republic of Korea.,Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Republic of Korea
| | - Minseok Song
- Synaptic Circuit Plasticity Laboratory, Department of Structure and Function of Neural Network, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Sang Ryong Kim
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Institute of Life Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| | - Sung Ho Ryu
- Division of Molecular and Life Science, Department of Life Science, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - In-Hoo Kim
- Research Institute, National Cancer Center, Goyang, Republic of Korea.,Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Republic of Korea
| | - Pann-Ghill Suh
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| |
Collapse
|
16
|
Kim TH, Park J, Lee JS, Lee HH. Effects of 1alpha, 25-dihydroxyvitamin D 3 on programmed cell death of Ishikawa endometrial cancer cells through ezrin phosphorylation. J OBSTET GYNAECOL 2017; 37:503-509. [PMID: 28421904 DOI: 10.1080/01443615.2016.1271777] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This study investigated the effects of 1α, 25-dihydroxyvitamin D3-induced cell death and its underlying molecular mechanisms in Ishikawa endometrial carcinoma cells. The effects of 1α, 25-dihydroxyvitamin D3 on Ishikawa cells were examined by 3-[4,5-dimethylthiazol-2-yl]-2.5-diphenyl-tetrazolium bromide, thiazolyl blue (MTT) assay. 1α, 25-dihydroxyvitamin D3 was shown to induce programmed cell death in Ishikawa endometrial carcinoma cells by activation of caspase-3 and caspase-9, along with elevation of Bcl-2 and Bcl-xL. Cell viability was reduced by 1α, 25-dihydroxyvitamin D3 in a concentration-dependent manner up to 2.5 μM. In addition, ezrin phosphorylation increased with the 1α, 25-dihydroxyvitamin D3 concentration (0-0.5 μM). The protein level of caspase-9 was increased by 1α, 25-dihydroxyvitamin D3 up to 0.5 μM. This is the first report regarding the efficacy and molecular mechanisms underlying the effects of 1α, 25-dihydroxyvitamin D3 in endometrial cancer cells. Our findings indicate that 1α, 25-dihydroxyvitamin D3 induces endometrial cancer cell death in a concentration-dependent manner. Impact statement Up to date, there is no report about the efficacy and molecular underlying mechanisms on the effect of vitamin D3 in endometrial cancer cells. Our findings indicate that 1α, 25-dihydroxyvitamin D3. which is an active metabolite of vitamin D3, induces Ishikawa endometrial cancer cell death in a concentration-dependent manner by activation of caspase-3 and -9, along with elevation of Bcl-2 and Bcl-xL. In addition, the same concentration of 1α, 25-dihydroxyvitamin D3 that provoked apoptotic signals caused phosphorylation of ezrin at threonine 567 in a VDR-dependent manner. This study suggests that 1α, 25-dihydroxyvitamin D3 within the optimal range (0.5 uM) would induce apoptosis through Fas-ezrin-caspase-3, -8, -9 signalling axis which may be a critical cell death regulator in Ishikawa endometrial cancer cell. Further study will be more interesting to address molecular connections or prove this critical optimal concentration range of vitamin D.
Collapse
Affiliation(s)
- Tae-Hee Kim
- a Department of Obstetrics and Gynecology , Soonchunhyang University College of Medicine , Bucheon , Republic of Korea
| | - Junsik Park
- b Laboratory of Immunology and Infectious Diseases , Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology , Daejeon , Republic of Korea
| | - Jeong-Sang Lee
- c Department of Functional Food and Biotechnology , Jeonju University College of Medical Science , Jeonju , Republic of Korea
| | - Hae-Hyeog Lee
- a Department of Obstetrics and Gynecology , Soonchunhyang University College of Medicine , Bucheon , Republic of Korea
| |
Collapse
|
17
|
The protective role of MLCP-mediated ERM dephosphorylation in endotoxin-induced lung injury in vitro and in vivo. Sci Rep 2016; 6:39018. [PMID: 27976727 PMCID: PMC5157034 DOI: 10.1038/srep39018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 11/17/2016] [Indexed: 12/13/2022] Open
Abstract
The goal of this study was to investigate the role of MLC phosphatase (MLCP) in a LPS model of acute lung injury (ALI). We demonstrate that ectopic expression of a constitutively-active (C/A) MLCP regulatory subunit (MYPT1) attenuates the ability of LPS to increase endothelial (EC) permeability. Down-regulation of MYPT1 exacerbates LPS-induced expression of ICAM1 suggesting an anti-inflammatory role of MLCP. To determine whether MLCP contributes to LPS-induced ALI in vivo, we utilized a nanoparticle DNA delivery method to specifically target lung EC. Expression of a C/A MYPT1 reduced LPS-induced lung inflammation and vascular permeability. Further, increased expression of the CS1β (MLCP catalytic subunit) also reduced LPS-induced lung inflammation, whereas the inactive CS1β mutant increased vascular leak. We next examined the role of the cytoskeletal targets of MLCP, the ERM proteins (Ezrin/Radixin/Moesin), in mediating barrier dysfunction. LPS-induced increase in EC permeability was accompanied by PKC-mediated increase in ERM phosphorylation, which was more prominent in CS1β-depleted cells. Depletion of Moesin and Ezrin, but not Radixin attenuated LPS-induced increases in permeability. Further, delivery of a Moesin phospho-null mutant into murine lung endothelium attenuated LPS-induced lung inflammation and vascular leak suggesting that MLCP opposes LPS-induced ALI by mediating the dephosphorylation of Moesin and Ezrin.
Collapse
|
18
|
Ji X, Liu Y, Hurd R, Wang J, Fitzmaurice B, Nishina PM, Chang B. Retinal Pigment Epithelium Atrophy 1 (rpea1): A New Mouse Model With Retinal Detachment Caused by a Disruption of Protein Kinase C, θ. Invest Ophthalmol Vis Sci 2016; 57:877-88. [PMID: 26978024 PMCID: PMC4794085 DOI: 10.1167/iovs.15-17495] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Retinal detachments (RDs), a separation of the light-sensitive tissue of the retina from its supporting layers in the posterior eye, isolate retinal cells from their normal supply of nourishment and can lead to their deterioration and death. We identified a new, spontaneous murine model of exudative retinal detachment, nm3342 (new mutant 3342, also referred to as rpea1: retinal pigment epithelium atrophy 1), which we characterize herein. Methods The chromosomal position for the recessive nm3342 mutation was determined by DNA pooling, and the causative mutation was discovered by comparison of whole exome sequences of mutant and wild-type controls. The effects of the mutation were examined in longitudinal studies by clinical evaluation, electroretinography (ERG), light microscopy, and marker and Western blot analyses. Results New mutant 3342, nm3342, also referred to as rpea1, causes an early-onset, complete RD on the ABJ/LeJ strain background, and central exudative RD and late-onset RPE atrophy on the C57BL/6J background. The ERG responses were normal at 2 months of age but deteriorate as mice age, concomitant with progressive pan-retinal photoreceptor loss. Genetic analysis localized rpea1 to mouse chromosome 2. By high-throughput sequencing of a whole exome capture library of an rpea1/rpea1 mutant and subsequent sequence analysis, a splice donor site mutation in the Prkcq (protein kinase C, θ) gene, was identified, leading to a skipping of exon 6, frame shift and premature termination. Homozygotes with a Prkcq-targeted null allele (Prkcqtm1Litt) have similar retinal phenotypes as homozygous rpea1 mice. We determined that the PKCθ protein is abundant in the lateral surfaces of RPE cells and colocalizes with both tight and adherens junction proteins. Phalloidin-stained RPE whole mounts showed abnormal RPE cell morphology with aberrant actin ring formation. Conclusions The homozygous Prkcqrpea1 and the null Prkcqtm1Litt mutants are reliable novel mouse models of RD and can also be used to study the effects of the disruption of PRKCQ (PKCθ) signaling in RPE cells.
Collapse
|
19
|
X-linked primary immunodeficiency associated with hemizygous mutations in the moesin (MSN) gene. J Allergy Clin Immunol 2016; 138:1681-1689.e8. [PMID: 27405666 DOI: 10.1016/j.jaci.2016.04.032] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/26/2016] [Accepted: 04/06/2016] [Indexed: 11/22/2022]
Abstract
BACKGROUND We investigated 7 male patients (from 5 different families) presenting with profound lymphopenia, hypogammaglobulinemia, fluctuating monocytopenia and neutropenia, a poor immune response to vaccine antigens, and increased susceptibility to bacterial and varicella zoster virus infections. OBJECTIVE We sought to characterize the genetic defect involved in a new form of X-linked immunodeficiency. METHODS We performed genetic analyses and an exhaustive phenotypic and functional characterization of the lymphocyte compartment. RESULTS We observed hemizygous mutations in the moesin (MSN) gene (located on the X chromosome and coding for MSN) in all 7 patients. Six of the latter had the same missense mutation, which led to an amino acid substitution (R171W) in the MSN four-point-one, ezrin, radixin, moesin domain. The seventh patient had a nonsense mutation leading to a premature stop codon mutation (R533X). The naive T-cell counts were particularly low for age, and most CD8+ T cells expressed the senescence marker CD57. This phenotype was associated with impaired T-cell proliferation, which was rescued by expression of wild-type MSN. MSN-deficient T cells also displayed poor chemokine receptor expression, increased adhesion molecule expression, and altered migration and adhesion capacities. CONCLUSION Our observations establish a causal link between an ezrin-radixin-moesin protein mutation and a primary immunodeficiency that could be referred to as X-linked moesin-associated immunodeficiency.
Collapse
|
20
|
Abstract
In all eukaryotes, the plasma membrane is critically important as it maintains the architectural integrity of the cell. Proper anchorage and interaction between the plasma membrane and the cytoskeleton is critical for normal cellular processes. The ERM (ezrin-radixin-moesin) proteins are a class of highly homologous proteins involved in linking the plasma membrane to the cortical actin cytoskeleton. This review takes a succinct look at the biology of the ERM proteins including their structure and function. Current reports on their regulation that leads to activation and deactivation was examined before taking a look at the different interacting partners. Finally, emerging roles of each of the ERM family members in cancer was highlighted.
Collapse
Affiliation(s)
- Godwin A Ponuwei
- Cell migration laboratory, Molecular and Cellular Medicine Unit, Department of Biomedical Sciences, School of Biological Sciences, Hopkins Building, University of Reading, Whiteknights, Berkshire, UK. .,Molecular and Cellular Medicine unit, Department of Biomedical sciences, School of Life Sciences, Hopkins Building, Whiteknights Campus, University of Reading, Reading, Berkshire, UK.
| |
Collapse
|
21
|
Pore D, Gupta N. The ezrin-radixin-moesin family of proteins in the regulation of B-cell immune response. Crit Rev Immunol 2016; 35:15-31. [PMID: 25746045 DOI: 10.1615/critrevimmunol.2015012327] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Dynamic reorganization of the cortical cytoskeleton is essential for numerous cellular processes, including B- and T-cell activation and migration. The ezrin-radixin-moesin (ERM) family of proteins plays structural and regulatory roles in the rearrangement of plasma membrane flexibility and protrusions through its members' reversible interaction with cortical actin filaments and the plasma membrane. Recent studies demonstrated that ERM proteins not only are involved in cytoskeletal organization but also offer a platform for the transmission of signals in response to a variety of extracellular stimuli through their ability to cross-link transmembrane receptors with downstream signaling components. In this review, we summarize present knowledge relating to ERMs and recent progress made toward elucidating a novel role for them in the regulation of B-cell function in health and disease.
Collapse
Affiliation(s)
- Debasis Pore
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Neetu Gupta
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
22
|
Resistin, a fat-derived secretory factor, promotes metastasis of MDA-MB-231 human breast cancer cells through ERM activation. Sci Rep 2016; 6:18923. [PMID: 26729407 PMCID: PMC4700449 DOI: 10.1038/srep18923] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/30/2015] [Indexed: 01/08/2023] Open
Abstract
Resistin, an adipocyte-secreted factor, is known to be elevated in breast cancer patients. However, the molecular mechanism by which resistin acts is not fully understood. The aim of this study was to investigate whether resistin could stimulate invasion and migration of breast cancer cells. Here, we report that resistin stimulated invasion and migration of breast cancer cells as well as phosphorylation of c-Src. Inhibition of c-Src blocked resistin-induced breast cancer cell invasion. Resistin increased intracellular calcium concentration, and chelation of intracellular calcium blocked resistin-mediated activation of Src. Resistin also induced phosphorylation of protein phosphatase 2A (PP2A). Inhibition of c-Src blocked resistin-mediated PP2A phosphorylation. In addition, resistin increased phosphorylation of PKCα. Inhibition of PP2A enhanced resistin-induced PKCα phosphorylation, demonstrating that PP2A activity is critical for PKCα phosphorylation. Resistin also increased phosphorylation of ezrin, radixin, and moesin (ERM). Additionally, ezrin interacted with PKCα, and resistin promoted co-localization of ezrin and PKCα. Either inhibition of c-Src and PKCα or knock-down of ezrin blocked resistin-induced breast cancer cells invasion. Moreover, resistin increased expression of vimentin, a key molecule for cancer cell invasion. Knock-down of ezrin abrogated resistin-induced vimentin expression. These results suggest that resistin play as a critical regulator of breast cancer metastasis.
Collapse
|
23
|
Enzymatic measurement of phosphatidylglycerol and cardiolipin in cultured cells and mitochondria. Sci Rep 2015; 5:11737. [PMID: 26122953 PMCID: PMC4485230 DOI: 10.1038/srep11737] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 06/02/2015] [Indexed: 11/08/2022] Open
Abstract
Phosphatidylglycerol (PG) and cardiolipin (CL) are synthesized in mitochondria and regulate numerous biological functions. In this study, a novel fluorometric method was developed for measuring PG and CL using combinations of specific enzymes and Amplex Red. This assay quantified the sum of PG and CL (PG + CL) regardless of the species of fatty acyl chain. The calibration curve for PG + CL measurement was linear, and the detection limit was 1 μM (10 pmol in the reaction mixture). This new method was applied to the determinations of PG + CL content in HEK293 cells and CL content in purified mitochondria, because the mitochondrial content of PG is negligible compared with that of CL. We demonstrated that the PG+CL content was greater at low cell density than at high cell density. The overexpression of phosphatidylglycerophosphate synthase 1 (PGS1) increased the cellular contents of PG + CL and phosphatidylcholine (PC), and reduced that of phosphatidic acid. PGS1 overexpression also elevated the mitochondrial contents of CL and PC, but had no effect on the number of mitochondria per cell. In addition to the enzymatic measurements of other phospholipids, this simple, sensitive and high-throughput assay for measuring PG + CL can be used to understand cellular, physiological and pathological processes.
Collapse
|
24
|
Babich V, Di Sole F. The Na+/H+ Exchanger-3 (NHE3) Activity Requires Ezrin Binding to Phosphoinositide and Its Phosphorylation. PLoS One 2015; 10:e0129306. [PMID: 26042733 PMCID: PMC4455992 DOI: 10.1371/journal.pone.0129306] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 05/08/2015] [Indexed: 11/19/2022] Open
Abstract
Na+/H+ exchanger-3 (NHE3) plays an essential role in maintaining sodium and fluid homeostasis in the intestine and kidney epithelium. Thus, NHE3 is highly regulated and its function depends on binding to multiple regulatory proteins. Ezrin complexed with NHE3 affects its activity via not well-defined mechanisms. This study investigates mechanisms by which ezrin regulates NHE3 activity in epithelial Opossum Kidney cells. Ezrin is activated sequentially by phosphatidylinositol-4,5-bisphosphate (PIP2) binding and phosphorylation of threonine 567. Expression of ezrin lacking PIP2 binding sites inhibited NHE3 activity (-40%) indicating that ezrin binding to PIP2 is required for preserving NHE3 activity. Expression of a phosphomimetic ezrin mutated at the PIP2 binding region was sufficient not only to reverse NHE3 activity to control levels but also to increase its activity (+80%) similar to that of the expression of ezrin carrying the phosphomimetic mutation alone. Calcineurin Homologous Protein-1 (CHP1) is part, with ezrin, of the NHE3 regulatory complex. CHP1-mediated activation of NHE3 activity was blocked by expression of an ezrin variant that could not be phosphorylated but not by an ezrin variant unable to bind PIP2. Thus, for NHE3 activity under baseline conditions not only ezrin phosphorylation, but also ezrin spatial-temporal targeting on the plasma membrane via PIP2 binding is required; however, phosphorylation of ezrin appears to overcome the control of NHE3 transport. CHP1 action on NHE3 activity is not contingent on ezrin binding to PIP2 but rather on ezrin phosphorylation. These findings are important in understanding the interrelation and dynamics of a CHP1-ezrin-NHE3 regulatory complex.
Collapse
Affiliation(s)
- Victor Babich
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Francesca Di Sole
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Physiology and Pharmacology Department, Des Moines University, Iowa, United States of America
- * E-mail:
| |
Collapse
|
25
|
Panichakul T, Ponnikorn S, Roytrakul S, Paemanee A, Kittisenachai S, Hongeng S, Udomsangpetch R. Plasmodium vivax inhibits erythroid cell growth through altered phosphorylation of the cytoskeletal protein ezrin. Malar J 2015; 14:138. [PMID: 25889165 PMCID: PMC4392472 DOI: 10.1186/s12936-015-0648-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 03/15/2015] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The underlying causes of severe malarial anaemia are multifactorial. In previously reports, Plasmodium vivax was found to be able to directly inhibited erythroid cell proliferation and differentiation. The molecular mechanisms underlying the suppression of erythropoiesis by P. vivax are remarkably complex and remain unclear. In this study, a phosphoproteomic approach was performed to dissect the molecular mechanism of phosphoprotein regulation, which is involved in the inhibitory effect of parasites on erythroid cell development. METHODS This study describes the first comparative phosphoproteome analysis of growing erythroid cells (gECs), derived from human haematopoietic stem cells, exposed to lysates of infected erythrocytes (IE)/uninfected erythrocytes (UE) for 24, 48 and 72 h. This study utilized IMAC phosphoprotein isolation directly coupled with LC MS/MS analysis. RESULTS Lysed IE significantly inhibited gEC growth at 48 and 72 h and cell division resulting in the accumulation of cells in G0 phase. The relative levels of forty four phosphoproteins were determined from gECs exposed to IE/UE for 24-72 h and compared with the media control using the label-free quantitation technique. Interestingly, the levels of three phosphoproteins: ezrin, alpha actinin-1, and Rho kinase were significantly (p < 0.05) altered. These proteins display interactions and are involved in the regulation of the cellular cytoskeleton. Particularly affected was ezrin (phosphorylated at Thr567), which is normally localized to gEC cell extension peripheral processes. Following exposure to IE, for 48-72 h, the ezrin signal intensity was weak or absent. This result suggests that phospho-ezrin is important for actin cytoskeleton regulation during erythroid cell growth and division. CONCLUSIONS These findings suggest that parasite proteins are able to inhibit erythroid cell growth by down-regulation of ezrin phosphorylation, leading to ineffective erythropoiesis ultimately resulting in severe malarial anaemia. A better understanding of the mechanisms of ineffective erythropoiesis may be beneficial in the development of therapeutic strategies to prevent severe malarial anaemia.
Collapse
Affiliation(s)
- Tasanee Panichakul
- Faculty of Science and Technology, Suan Dusit Rajabhat University, 204/3 Sirindhorn Rd. Bangplat, 10700, Bangkok, Thailand.
| | - Saranyoo Ponnikorn
- Chulabhorn International College of Medicine, Thammasat University, 2nd Floor, Piyachart Building, Thammasat University, Rungsit campus, 12120, Patumthani, Thailand.
| | - Sittiruk Roytrakul
- Proteomics Research Laboratory, National Center for Genetic and Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Klong1, 12120, Klong Luang, Pathumthani, Thailand.
| | - Atchara Paemanee
- Proteomics Research Laboratory, National Center for Genetic and Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Klong1, 12120, Klong Luang, Pathumthani, Thailand.
| | - Suthathip Kittisenachai
- Proteomics Research Laboratory, National Center for Genetic and Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Klong1, 12120, Klong Luang, Pathumthani, Thailand.
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 272 Rama VI Rd., Ratchathewi District, 10400, Bangkok, Thailand.
| | - Rachanee Udomsangpetch
- Department of Pathobiology, Faculty of Science, Mahidol University, 272 Rama VI Rd., Ratchathewi District, 10400, Bangkok, Thailand.
| |
Collapse
|
26
|
Kawase A, Sakata M, Yada N, Nakasaka M, Shimizu T, Kato Y, Iwaki M. Decreased radixin function for ATP-binding cassette transporters in liver in adjuvant-induced arthritis rats. J Pharm Sci 2014; 103:4058-4065. [PMID: 25331966 DOI: 10.1002/jps.24210] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/20/2014] [Accepted: 09/22/2014] [Indexed: 01/22/2023]
Abstract
Pathophysiological changes are associated with alterations in the expression and function of numerous ADME-related proteins. We have previously demonstrated that the membrane localization of ATP-binding cassette (ABC) transporters in liver was decreased without change of total expression levels in adjuvant-induced arthritis (AA) in rats. Ezrin/radixin/moesin (ERM) proteins are involved in localization of some ABC transporters in canalicular membrane. The mRNA levels of radixin decreased significantly in liver but not kidney, small intestine, and brain. The mRNA levels of ezrin and moesin did not change in AA. The membrane localization of radixin was reduced in liver of AA and the ratios of activated radixin (p-radixin) to total radixin were decreased in AA, although the protein levels of radixin did not change in homogenate and membrane protein. To clarify whether AA affects the linker functions of ERM proteins, we examined the interactions between ERM proteins and ABC transporters. The interactions between radixin and ABC transporters were decreased in AA. In vitro studies using human hepatoma HepG2 cells showed that interleukin-1β decreased the mRNA levels of radixin and colocalization of radixin and Mrp2. Our results show that the decreased radixin functions affect the interaction between radixin and ABC transporters in inflammation.
Collapse
Affiliation(s)
- Atsushi Kawase
- Department of Pharmacy, School of Pharmacy, Kinki University, Osaka 577-8502, Japan
| | - Misato Sakata
- Department of Pharmacy, School of Pharmacy, Kinki University, Osaka 577-8502, Japan
| | - Nagisa Yada
- Department of Pharmacy, School of Pharmacy, Kinki University, Osaka 577-8502, Japan
| | - Misaki Nakasaka
- Department of Pharmacy, School of Pharmacy, Kinki University, Osaka 577-8502, Japan
| | - Takuya Shimizu
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Yukio Kato
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Masahiro Iwaki
- Department of Pharmacy, School of Pharmacy, Kinki University, Osaka 577-8502, Japan.
| |
Collapse
|
27
|
Abstract
Members of the ezrin-radixin-moesin (ERM) family of proteins are involved in multiple aspects of cell migration by acting both as crosslinkers between the membrane, receptors and the actin cytoskeleton, and as regulators of signalling molecules that are implicated in cell adhesion, cell polarity and migration. Increasing evidence suggests that the regulation of cell signalling and the cytoskeleton by ERM proteins is crucial during cancer progression. Thus, both their expression levels and subcellular localisation would affect tumour progression. High expression of ERM proteins has been shown in a variety of cancers. Mislocalisation of ERM proteins reduces the ability of cells to form cell-cell contacts and, therefore, promotes an invasive phenotype. Similarly, mislocalisation of ERM proteins impairs the formation of receptor complexes and alters the transmission of signals in response to growth factors, thereby facilitating tumour progression. In this Commentary, we address the structure, function and regulation of ERM proteins under normal physiological conditions as well as in cancer progression, with particular emphasis on cancers of epithelial origin, such as those from breast, lung and prostate. We also discuss any recent developments that have added to the understanding of the underlying molecular mechanisms and signalling pathways these proteins are involved in during cancer progression.
Collapse
Affiliation(s)
- Jarama Clucas
- Division of Biomedical Sciences, St George's University of London, Cranmer Terrace, London SW17 0RE, UK
| | | |
Collapse
|
28
|
Xie D, Seremwe M, Edwards JG, Podolsky R, Bollag WB. Distinct effects of different phosphatidylglycerol species on mouse keratinocyte proliferation. PLoS One 2014; 9:e107119. [PMID: 25233484 PMCID: PMC4169417 DOI: 10.1371/journal.pone.0107119] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 08/12/2014] [Indexed: 01/17/2023] Open
Abstract
We have previously shown that liposomes composed of egg-derived phosphatidylglycerol (PG), with a mixed fatty acid composition (comprising mainly palmitate and oleate), inhibit the proliferation and promote the differentiation of rapidly dividing keratinocytes, and stimulate the growth of slowly proliferating epidermal cells. To determine the species of PG most effective at modulating keratinocyte proliferation, primary mouse keratinocytes were treated with different PG species, and proliferation was measured. PG species containing polyunsaturated fatty acids were effective at inhibiting rapidly proliferating keratinocytes, whereas PG species with monounsaturated fatty acids were effective at promoting proliferation in slowly dividing cells. Thus, palmitoyl-arachidonyl-PG (16∶0/20∶4), palmitoyl-linoleoyl-PG (16∶0/18∶2), dilinoleoyl-PG (18∶2/18∶2) and soy PG (a PG mixture with a large percentage of polyunsaturated fatty acids) were particularly effective at inhibiting proliferation in rapidly dividing keratinocytes. Conversely, palmitoyl-oleoyl-PG (16∶0/18∶1) and dioleoyl-PG (18∶1/18∶1) were especially effective proproliferative PG species. This result represents the first demonstration of opposite effects of different species of a single class of phospholipid and suggests that these different PG species may signal to diverse effector enzymes to differentially affect keratinocyte proliferation and normalize keratinocyte proliferation. Thus, different PG species may be useful for treating skin diseases characterized by excessive or insufficient proliferation.
Collapse
Affiliation(s)
- Ding Xie
- Department of Physiology, Medical College of Georgia at Georgia Regents University, Augusta, Georgia, United States of America
| | - Mutsa Seremwe
- Department of Physiology, Medical College of Georgia at Georgia Regents University, Augusta, Georgia, United States of America
| | - John G. Edwards
- Apeliotus Technologies, Inc., Atlanta, Georgia, United States of America
| | - Robert Podolsky
- Center for Biotechnology and Genomic Medicine, Department of Medicine, Medical College of Georgia at Georgia Regents University, Augusta, Georgia, United States of America
| | - Wendy B. Bollag
- Charlie Norwood VA Medical Center, Augusta, Georgia, United States of America
- Department of Physiology, Medical College of Georgia at Georgia Regents University, Augusta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
29
|
Kawase A. Alterations in Expression and Function of ABC Transporters and ERM Proteins in Inflammation. YAKUGAKU ZASSHI 2014; 134:925-9. [DOI: 10.1248/yakushi.14-00160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Atsushi Kawase
- Department of Pharmacy, Faculty of Pharmacy, Kinki University
| |
Collapse
|
30
|
Soares H, Lasserre R, Alcover A. Orchestrating cytoskeleton and intracellular vesicle traffic to build functional immunological synapses. Immunol Rev 2014; 256:118-32. [PMID: 24117817 DOI: 10.1111/imr.12110] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Immunological synapses are specialized cell-cell contacts formed between T lymphocytes and antigen-presenting cells. They are induced upon antigen recognition and are crucial for T-cell activation and effector functions. The generation and function of immunological synapses depend on an active T-cell polarization process, which results from a finely orchestrated crosstalk between the antigen receptor signal transduction machinery, the actin and microtubule cytoskeletons, and controlled vesicle traffic. Although we understand how some of these particular events are regulated, we still lack knowledge on how these multiple cellular elements are harmonized to ensure appropriate T-cell responses. We discuss here our view on how T-cell receptor signal transduction initially commands cytoskeletal and vesicle traffic polarization, which in turn sets the immunological synapse molecular design that regulates T-cell activation. We also discuss how the human immunodeficiency virus (HIV-1) hijacks some of these processes impairing immunological synapse generation and function.
Collapse
Affiliation(s)
- Helena Soares
- Institut Pasteur, Department of Immunology, Lymphocyte Cell Biology Unit, Paris, France; CNRS, URA-1961, Paris, France
| | | | | |
Collapse
|
31
|
Chakraborty PK, Zhang Y, Coomes AS, Kim WJ, Stupay R, Lynch LD, Atkinson T, Kim JI, Nie Z, Daaka Y. G protein-coupled receptor kinase GRK5 phosphorylates moesin and regulates metastasis in prostate cancer. Cancer Res 2014; 74:3489-500. [PMID: 24755472 DOI: 10.1158/0008-5472.can-13-2708] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
G protein-coupled receptor kinases (GRK) regulate diverse cellular functions ranging from metabolism to growth and locomotion. Here, we report an important contributory role for GRK5 in human prostate cancer. Inhibition of GRK5 kinase activity attenuated the migration and invasion of prostate cancer cells and, concordantly, increased cell attachment and focal adhesion formation. Mass spectrometric analysis of the phosphoproteome revealed the cytoskeletal-membrane attachment protein moesin as a putative GRK5 substrate. GRK5 regulated the subcellular distribution of moesin and colocalized with moesin at the cell periphery. We identified amino acid T66 of moesin as a principal GRK5 phosphorylation site and showed that enforcing the expression of a T66-mutated moesin reduced cell spreading. In a xenograft model of human prostate cancer, GRK5 silencing reduced tumor growth, invasion, and metastasis. Taken together, our results established GRK5 as a key contributor to the growth and metastasis of prostate cancer.
Collapse
Affiliation(s)
- Prabir Kumar Chakraborty
- Authors' Affiliation: Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida
| | - Yushan Zhang
- Authors' Affiliation: Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida
| | - Alexandra S Coomes
- Authors' Affiliation: Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida
| | - Wan-Ju Kim
- Authors' Affiliation: Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida
| | - Rachel Stupay
- Authors' Affiliation: Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida
| | - Lauren D Lynch
- Authors' Affiliation: Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida
| | - Tamieka Atkinson
- Authors' Affiliation: Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida
| | - Jae I Kim
- Authors' Affiliation: Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida
| | - Zhongzhen Nie
- Authors' Affiliation: Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida
| | - Yehia Daaka
- Authors' Affiliation: Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida
| |
Collapse
|
32
|
Goodyear RJ, Ratnayaka HSK, Warchol ME, Richardson GP. Staurosporine-induced collapse of cochlear hair bundles. J Comp Neurol 2014; 522:3281-94. [PMID: 24700109 PMCID: PMC4321040 DOI: 10.1002/cne.23597] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 03/26/2014] [Accepted: 03/27/2014] [Indexed: 12/31/2022]
Abstract
Early postnatal mouse cochlear cultures were treated with a small panel of kinase inhibitors to elucidate the mechanisms underlying the maintenance of hair-bundle structure in the developing inner ear. At low concentrations (1–10 nM), staurosporine causes the collapse and loss of hair bundles without provoking hair-cell death, as judged by lack of terminal transferase dUTP nick end labeling (TUNEL) labeling or reactivity to anti-activated caspase-3. Staurosporine exposure results in the fusion of the hair bundle’s stereocilia, a resorption of the parallel actin bundles of the stereocilia into the cytoplasm of the hair cell, a detachment of the apical, non-stereociliary membrane of the hair cell from the underlying cuticular plate, and a severing of the hair-bundle’s rootlets from the actin cores of the stereocilia. It does not block membrane retrieval at the apical pole of the hair cells, nor does it elicit the externalization of phosphatidylserine. Staurosporine treatment causes a reduction in levels of the phosphorylated forms of ezrin, radixin, and moesin in cochlear cultures during the period of hair-bundle loss, indicating the integrity of the hair bundle may be actively maintained by the phosphorylation status of these proteins. J. Comp. Neurol. 522:3281–3294, 2014. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Richard J Goodyear
- Sussex Neuroscience and School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | | | | | | |
Collapse
|
33
|
Ren L, Khanna C. Role of ezrin in osteosarcoma metastasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 804:181-201. [PMID: 24924175 DOI: 10.1007/978-3-319-04843-7_10] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The cause of death for the vast majority of cancer patients is the development of metastases at sites distant from that of the primary tumor. For most pediatric sarcoma patients such as those with osteosarcoma (OS), despite successful management of the primary tumor through multimodality approaches, the development of metastases, commonly to the lungs, is the cause of death. Significant improvements in long-term outcome for these patients have not been seen in more than 30 years. Furthermore, the long-term outcome for patients who present with metastatic disease is grave [1-5]. New treatment options are needed.Opportunities to improve outcomes for patients who present with metastases and those at-risk for progression and metastasis require an improved understanding of cancer progression and metastasis. With this goal in mind we and others have identified ezrin as a metastasis-associated protein that associated with OS and other cancers. Ezrin is the prototypical ERM (Ezrin/Radixin/Moesin) protein family member. ERMs function as linker proteins connecting the actin cytoskeleton and the plasma membrane. Since our initial identification of ezrin in pediatric sarcoma, an increasing understanding the role of ezrin in metastasis has emerged. Briefly, ezrin appears to allow metastatic cells to overcome a number of stresses experienced during the metastatic cascade, most notably the stress experienced as cells interact with the microenvironment of the secondary site. Cells must rapidly adapt to this environment in order to survive. Evidence now suggests a connection between ezrin expression and a variety of mechanisms linked to this important cellular adaptation including the ability of metastatic cells to initiate the translation of new proteins and to allow the efficient generation of ATP through a variety of sources. This understanding of the role of ezrin in the biology of metastasis is now sufficient to consider ezrin as an important therapeutic target in osteosarcoma patients. This chapter reviews our understanding of ezrin and the related ERM proteins in normal tissues and physiology, summarizes the expression of ezrin in human cancers and associations with clinical parameters of disease progression, reviews reports that detail a biological understanding of ezrin's role in metastatic progression, and concludes with a rationale that may be considered to target ezrin and ezrin biology in osteosarcoma.
Collapse
Affiliation(s)
- Ling Ren
- Molecular Oncology Section - Metastasis Biology Group, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Dr., Rm 2144, Bethesda, MD, 20892, USA,
| | | |
Collapse
|
34
|
Cannon JL, Asperti-Boursin F, Letendre KA, Brown IK, Korzekwa KE, Blaine KM, Oruganti SR, Sperling AI, Moses ME. PKCθ regulates T cell motility via ezrin-radixin-moesin localization to the uropod. PLoS One 2013; 8:e78940. [PMID: 24250818 PMCID: PMC3826749 DOI: 10.1371/journal.pone.0078940] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 09/17/2013] [Indexed: 01/05/2023] Open
Abstract
Cell motility is a fundamental process crucial for function in many cell types, including T cells. T cell motility is critical for T cell-mediated immune responses, including initiation, activation, and effector function. While many extracellular receptors and cytoskeletal regulators have been shown to control T cell migration, relatively few signaling mediators have been identified that can modulate T cell motility. In this study, we find a previously unknown role for PKCθ in regulating T cell migration to lymph nodes. PKCθ localizes to the migrating T cell uropod and regulates localization of the MTOC, CD43 and ERM proteins to the uropod. Furthermore, PKCθ-deficient T cells are less responsive to chemokine induced migration and are defective in migration to lymph nodes. Our results reveal a novel role for PKCθ in regulating T cell migration and demonstrate that PKCθ signals downstream of CCR7 to regulate protein localization and uropod formation.
Collapse
Affiliation(s)
- Judy L. Cannon
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
- * E-mail:
| | - Francois Asperti-Boursin
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
- Department of Computer Science, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Kenneth A. Letendre
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
- Department of Computer Science, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Ivy K. Brown
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
| | - Katy E. Korzekwa
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
| | - Kelly M. Blaine
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Sreenivasa R. Oruganti
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
| | - Anne I. Sperling
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Melanie E. Moses
- Department of Computer Science, University of New Mexico, Albuquerque, New Mexico, United States of America
| |
Collapse
|
35
|
Parameswaran N, Gupta N. Re-defining ERM function in lymphocyte activation and migration. Immunol Rev 2013; 256:63-79. [DOI: 10.1111/imr.12104] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Neetha Parameswaran
- Department of Immunology; Lerner Research Institute; Cleveland Clinic; Cleveland OH USA
| | - Neetu Gupta
- Department of Immunology; Lerner Research Institute; Cleveland Clinic; Cleveland OH USA
| |
Collapse
|
36
|
Zhang H, Wan J, Huang L. WITHDRAWN: TRIP-1 interacts with ezrin to regulate ezrin phosphorylation, cell protrusion formation and cell migration. Cell Signal 2013:S0898-6568(13)00262-3. [PMID: 24012495 DOI: 10.1016/j.cellsig.2013.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/08/2013] [Accepted: 08/27/2013] [Indexed: 10/26/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Hongling Zhang
- School of Life Sciences, Tsinghua University, Beijing 100084, China; The Shenzhen Key Laboratory of Gene & Antibody Therapy, State Key Laboratory of Health Science & Technology (prep), Center for Biotechnology & BioMedicine and Division of Life & Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong 518055, China
| | - Jun Wan
- School of Life Sciences, Tsinghua University, Beijing 100084, China; The Shenzhen Key Laboratory of Gene & Antibody Therapy, State Key Laboratory of Health Science & Technology (prep), Center for Biotechnology & BioMedicine and Division of Life & Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong 518055, China
| | - Laiqiang Huang
- School of Life Sciences, Tsinghua University, Beijing 100084, China; The Shenzhen Key Laboratory of Gene & Antibody Therapy, State Key Laboratory of Health Science & Technology (prep), Center for Biotechnology & BioMedicine and Division of Life & Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
37
|
Abstract
Our understanding of the FERM (4.1/ezrin/radixin/moesin) protein family has been rapidly expanding in the last few years, with the result that many new physiological functions have been ascribed to these biochemically unique proteins. In the present review, we will discuss a number of new FRMD (FERM domain)-containing proteins that were initially discovered from genome sequencing but are now being established through biochemical and genetic studies to be involved both in normal cellular processes, but are also associated with a variety of human diseases.
Collapse
|
38
|
Deng W, Cho S, Li R. FERM domain of moesin desorbs the basic-rich cytoplasmic domain of l-selectin from the anionic membrane surface. J Mol Biol 2013; 425:3549-62. [PMID: 23796515 DOI: 10.1016/j.jmb.2013.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/13/2013] [Accepted: 06/14/2013] [Indexed: 01/08/2023]
Abstract
Moesin and calmodulin (CaM) jointly associate with the cytoplasmic domain of l-selectin in the cell to modulate the function and ectodomain shedding of l-selectin. Using fluorescence spectroscopy, we have examined the association of moesin FERM domain with the recombinant transmembrane and cytoplasmic domains of l-selectin (CLS) reconstituted in model phospholipid liposomes. The dissociation constant of moesin FERM domain to CLS in the phosphatidylcholine liposome is about 300nM. In contrast to disrupting the CaM association with CLS, inclusion of anionic phosphatidylserine lipids in the phosphatidylcholine liposome increased the apparent binding affinity of moesin FERM domain for CLS. Using the environmentally sensitive fluorescent probe attached to the cytoplasmic domain of CLS and the nitroxide quencher attached to the lipid bilayer, we showed that the association of moesin FERM domain induced the desorption of the basic-rich cytoplasmic domain of CLS from the anionic membrane surface, which enabled subsequent association of CaM to the cytoplasmic domain of CLS. These results have elucidated the molecular basis for the moesin/l-selectin/CaM ternary complex and suggested an important role of phospholipids in modulating l-selectin function and shedding.
Collapse
Affiliation(s)
- Wei Deng
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, 2015 Uppergate Drive NE, Room 440, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
39
|
Jiang L, Phang JM, Yu J, Harrop SJ, Sokolova AV, Duff AP, Wilk KE, Alkhamici H, Breit SN, Valenzuela SM, Brown LJ, Curmi PMG. CLIC proteins, ezrin, radixin, moesin and the coupling of membranes to the actin cytoskeleton: a smoking gun? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:643-57. [PMID: 23732235 DOI: 10.1016/j.bbamem.2013.05.025] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/20/2013] [Accepted: 05/21/2013] [Indexed: 12/20/2022]
Abstract
The CLIC proteins are a highly conserved family of metazoan proteins with the unusual ability to adopt both soluble and integral membrane forms. The physiological functions of CLIC proteins may include enzymatic activity in the soluble form and anion channel activity in the integral membrane form. CLIC proteins are associated with the ERM proteins: ezrin, radixin and moesin. ERM proteins act as cross-linkers between membranes and the cortical actin cytoskeleton. Both CLIC and ERM proteins are controlled by Rho family small GTPases. CLIC proteins, ERM and Rho GTPases act in a concerted manner to control active membrane processes including the maintenance of microvillar structures, phagocytosis and vesicle trafficking. All of these processes involve the interaction of membranes with the underlying cortical actin cytoskeleton. The relationships between Rho GTPases, CLIC proteins, ERM proteins and the membrane:actin cytoskeleton interface are reviewed. Speculative models are proposed involving the formation of localised multi-protein complexes on the membrane surface that assemble via multiple weak interactions. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.
Collapse
Affiliation(s)
- Lele Jiang
- St Vincent's Centre for Applied Medical Research, St Vincent's Hospital, Sydney, NSW 2010, Australia
| | - Juanita M Phang
- School of Physics, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Jiang Yu
- School of Physics, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Stephen J Harrop
- School of Physics, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Anna V Sokolova
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
| | - Anthony P Duff
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
| | - Krystyna E Wilk
- School of Physics, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Heba Alkhamici
- School of Medical and Molecular Biosciences, The University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Samuel N Breit
- St Vincent's Centre for Applied Medical Research, St Vincent's Hospital, Sydney, NSW 2010, Australia
| | - Stella M Valenzuela
- School of Medical and Molecular Biosciences, The University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Louise J Brown
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Paul M G Curmi
- St Vincent's Centre for Applied Medical Research, St Vincent's Hospital, Sydney, NSW 2010, Australia; School of Physics, The University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
40
|
Adyshev DM, Dudek SM, Moldobaeva N, Kim KM, Ma SF, Kasa A, Garcia JGN, Verin AD. Ezrin/radixin/moesin proteins differentially regulate endothelial hyperpermeability after thrombin. Am J Physiol Lung Cell Mol Physiol 2013; 305:L240-55. [PMID: 23729486 DOI: 10.1152/ajplung.00355.2012] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Endothelial cell (EC) barrier disruption induced by inflammatory agonists such as thrombin leads to potentially lethal physiological dysfunction such as alveolar flooding, hypoxemia, and pulmonary edema. Thrombin stimulates paracellular gap and F-actin stress fiber formation, triggers actomyosin contraction, and alters EC permeability through multiple mechanisms that include protein kinase C (PKC) activation. We previously have shown that the ezrin, radixin, and moesin (ERM) actin-binding proteins differentially participate in sphingosine-1 phosphate-induced EC barrier enhancement. Phosphorylation of a conserved threonine residue in the COOH-terminus of ERM proteins causes conformational changes in ERM to unmask binding sites and is considered a hallmark of ERM activation. In the present study we test the hypothesis that ERM proteins are phosphorylated on this critical threonine residue by thrombin-induced signaling events and explore the role of the ERM family in modulating thrombin-induced cytoskeletal rearrangement and EC barrier function. Thrombin promotes ERM phosphorylation at this threonine residue (ezrin Thr567, radixin Thr564, moesin Thr558) in a PKC-dependent fashion and induces translocation of phosphorylated ERM to the EC periphery. Thrombin-induced ERM threonine phosphorylation is likely synergistically mediated by protease-activated receptors PAR1 and PAR2. Using the siRNA approach, depletion of either moesin alone or of all three ERM proteins significantly attenuates thrombin-induced increase in EC barrier permeability (transendothelial electrical resistance), cytoskeletal rearrangements, paracellular gap formation, and accumulation of phospho-myosin light chain. In contrast, radixin depletion exerts opposing effects on these indexes. These data suggest that ERM proteins play important differential roles in the thrombin-induced modulation of EC permeability, with moesin promoting barrier dysfunction and radixin opposing it.
Collapse
Affiliation(s)
- Djanybek M Adyshev
- Institute for Personalized Respiratory Medicine, Department of Medicine, Section of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois at Chicago, COMRB 3154, MC 719, 909 S. Wolcott Ave., Chicago, IL 60612, USA.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Schofield AV, Bernard O. Rho-associated coiled-coil kinase (ROCK) signaling and disease. Crit Rev Biochem Mol Biol 2013; 48:301-16. [PMID: 23601011 DOI: 10.3109/10409238.2013.786671] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The small Rho GTPase family of proteins, encompassing the three major G-protein classes Rho, Rac and cell division control protein 42, are key mitogenic signaling molecules that regulate multiple cancer-associated cellular phenotypes including cell proliferation and motility. These proteins are known for their role in the regulation of actin cytoskeletal dynamics, which is achieved through modulating the activity of their downstream effector molecules. The Rho-associated coiled-coil kinase 1 and 2 (ROCK1 and ROCK2) proteins were the first discovered Rho effectors that were primarily established as players in RhoA-mediated stress fiber formation and focal adhesion assembly. It has since been discovered that the ROCK kinases actively phosphorylate a large cohort of actin-binding proteins and intermediate filament proteins to modulate their functions. It is well established that global cellular morphology, as modulated by the three cytoskeletal networks: actin filaments, intermediate filaments and microtubules, is regulated by a variety of accessory proteins whose activities are dependent on their phosphorylation by the Rho-kinases. As a consequence, they regulate many key cellular functions associated with malignancy, including cell proliferation, motility and viability. In this current review, we focus on the role of the ROCK-signaling pathways in disease including cancer.
Collapse
Affiliation(s)
- Alice V Schofield
- St Vincent's Institute of Medical Research, Cytoskeleton and Cancer Unit and Department of Medicine, St Vincent's Hospital, University of Melbourne, Victoria 3065, Australia
| | | |
Collapse
|
42
|
Müller N, Fischer HJ, Tischner D, van den Brandt J, Reichardt HM. Glucocorticoids Induce Effector T Cell Depolarization via ERM Proteins, Thereby Impeding Migration and APC Conjugation. THE JOURNAL OF IMMUNOLOGY 2013; 190:4360-70. [DOI: 10.4049/jimmunol.1201520] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
43
|
Liu H, Wu Z, Shi X, Li W, Liu C, Wang D, Ye X, Liu L, Na J, Cheng H, Chen L. Atypical PKC, regulated by Rho GTPases and Mek/Erk, phosphorylates Ezrin during eight-cell embryocompaction. Dev Biol 2013; 375:13-22. [DOI: 10.1016/j.ydbio.2013.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 12/15/2012] [Accepted: 01/02/2013] [Indexed: 10/27/2022]
|
44
|
Chen EJH, Shaffer MH, Williamson EK, Huang Y, Burkhardt JK. Ezrin and moesin are required for efficient T cell adhesion and homing to lymphoid organs. PLoS One 2013; 8:e52368. [PMID: 23468835 PMCID: PMC3585410 DOI: 10.1371/journal.pone.0052368] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 11/12/2012] [Indexed: 01/13/2023] Open
Abstract
T cell trafficking between the blood and lymphoid organs is a complex, multistep process that requires several highly dynamic and coordinated changes in cyto-architecture. Members of the ezrin, radixin and moesin (ERM) family of actin-binding proteins have been implicated in several aspects of this process, but studies have yielded conflicting results. Using mice with a conditional deletion of ezrin in CD4+ cells and moesin-specific siRNA, we generated T cells lacking ERM proteins, and investigated the effect on specific events required for T cell trafficking. ERM-deficient T cells migrated normally in multiple in vitro and in vivo assays, and could undergo efficient diapedesis in vitro. However, these cells were impaired in their ability to adhere to the β1 integrin ligand fibronectin, and to polarize appropriately in response to fibronectin and VCAM-1 binding. This defect was specific for β1 integrins, as adhesion and polarization in response to ICAM-1 were normal. In vivo, ERM-deficient T cells showed defects in homing to lymphoid organs. Taken together, these results show that ERM proteins are largely dispensable for T cell chemotaxis, but are important for β1 integrin function and homing to lymphoid organs.
Collapse
Affiliation(s)
- Emily J. H. Chen
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Meredith H. Shaffer
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Edward K. Williamson
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Yanping Huang
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Janis K. Burkhardt
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
45
|
Maniti O, Carvalho K, Picart C. Model membranes to shed light on the biochemical and physical properties of ezrin/radixin/moesin. Biochimie 2013; 95:3-11. [PMID: 23041444 PMCID: PMC4112940 DOI: 10.1016/j.biochi.2012.09.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 09/28/2012] [Indexed: 10/27/2022]
Abstract
Ezrin, radixin and moesin (ERM) proteins are now more and more recognized to play a key role in a large number of important physiological processes such as morphogenesis, cancer metastasis and virus infection. Several recent reviews extensively discuss their biological functions [1 -4 ]. In this review, we will first remind the main features of this family of proteins, which are now known as linkers and regulators of the plasma membrane/cytoskeleton linkage. We will then briefly review their implication in pathological processes such as cancer and viral infection. In a second part, we will focus on biochemical and biophysical approaches to study ERM interaction with lipid membranes and conformational change in well-defined environments. In vitro studies using biomimetic lipid membranes, especially large unilamellar vesicles (LUVs), giant unilamellar vesicles (GUVs) and supported lipid bilayers (SLBs) and recombinant proteins help to understand the molecular mechanism of conformational activation of ERM proteins. These tools are aimed to decorticate the different steps of the interaction, to simplify the experiments performed in vivo in much more complex biological environments.
Collapse
Affiliation(s)
- Ofélia Maniti
- CNRS UMR 5628 (LMGP), Grenoble Institute of Technology and CNRS, 3 parvis Louis Néel, F-38016 Grenoble Cedex, France
- Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, UMR 5246, CNRS, Université de Lyon, Université Lyon 1, INSA-Lyon, CPE-Lyon, 43 Bd du 11 Novembre 1918, F-69622 Villeurbanne, France
| | - Kevin Carvalho
- Institut Curie, centre de recherche and CNRS UMR 168, 11 rue Pierre et Marie Curie, Paris, F-75248 cedex 5
| | - Catherine Picart
- CNRS UMR 5628 (LMGP), Grenoble Institute of Technology and CNRS, 3 parvis Louis Néel, F-38016 Grenoble Cedex, France
| |
Collapse
|
46
|
Viswanatha R, Ohouo PY, Smolka MB, Bretscher A. Local phosphocycling mediated by LOK/SLK restricts ezrin function to the apical aspect of epithelial cells. ACTA ACUST UNITED AC 2012; 199:969-84. [PMID: 23209304 PMCID: PMC3518218 DOI: 10.1083/jcb.201207047] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Local cycling of LOK/SLK-dependent phosphorylation of ezrin is required for its apical localization and for microvillus formation. In this paper, we describe how a dynamic regulatory process is necessary to restrict microvilli to the apical aspect of polarized epithelial cells. We found that local phosphocycling regulation of ezrin, a critical plasma membrane–cytoskeletal linker of microvilli, was required to restrict its function to the apical membrane. Proteomic approaches and ribonucleic acid interference knockdown identified lymphocyte-oriented kinase (LOK) and SLK as the relevant kinases. Using drug-resistant LOK and SLK variants showed that these kinases were sufficient to restrict ezrin function to the apical domain. Both kinases were enriched in microvilli and locally activated there. Unregulated kinase activity caused ezrin mislocalization toward the basolateral domain, whereas expression of the kinase regulatory regions of LOK or SLK resulted in local inhibition of ezrin phosphorylation by the endogenous kinases. Thus, the domain-specific presence of microvilli is a dynamic process requiring a localized kinase driving the phosphocycling of ezrin to continually bias its function to the apical membrane.
Collapse
Affiliation(s)
- Raghuvir Viswanatha
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
47
|
Michalczyk I, Sikorski AF, Kotula L, Junghans RP, Dubielecka PM. The emerging role of protein kinase Cθ in cytoskeletal signaling. J Leukoc Biol 2012. [PMID: 23192428 DOI: 10.1189/jlb.0812371] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cytoskeletal rearrangements often occur as the result of transduction of signals from the extracellular environment. Efficient awakening of this powerful machinery requires multiple activation and deactivation steps, which usually involve phosphorylation or dephosphorylation of different signaling units by kinases and phosphatases, respectively. In this review, we discuss the signaling characteristics of one of the nPKC isoforms, PKCθ, focusing on PKCθ-mediated signal transduction to cytoskeletal elements, which results in cellular rearrangements critical for cell type-specific responses to stimuli. PKCθ is the major PKC isoform present in hematopoietic and skeletal muscle cells. PKCθ plays roles in T cell signaling through the IS, survival responses in adult T cells, and T cell FasL-mediated apoptosis, all of which involve cytoskeletal rearrangements and relocation of this enzyme. PKCθ has been linked to the regulation of cell migration, lymphoid cell motility, and insulin signaling and resistance in skeletal muscle cells. Additional roles were suggested for PKCθ in mitosis and cell-cycle regulation. Comprehensive understanding of cytoskeletal regulation and the cellular "modus operandi" of PKCθ holds promise for improving current therapeutic applications aimed at autoimmune diseases.
Collapse
Affiliation(s)
- Izabela Michalczyk
- Laboratory of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | | | | | | | | |
Collapse
|
48
|
Isakov N, Altman A. PKC-theta-mediated signal delivery from the TCR/CD28 surface receptors. Front Immunol 2012; 3:273. [PMID: 22936936 PMCID: PMC3425079 DOI: 10.3389/fimmu.2012.00273] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 08/09/2012] [Indexed: 12/23/2022] Open
Abstract
Protein kinase C-theta (PKCθ) is a key enzyme in T lymphocytes, where it plays an important role in signal transduction downstream of the activated T cell antigen receptor (TCR) and the CD28 costimulatory receptor. Interest in PKCθ as a potential drug target has increased following recent findings that PKCθ is essential for harmful inflammatory responses mediated by Th2 (allergies) and Th17 (autoimmunity) cells as well as for graft-versus-host disease (GvHD) and allograft rejection, but is dispensable for beneficial responses such as antiviral immunity and graft-versus-leukemia (GvL) response. TCR/CD28 engagement triggers the translocation of the cytosolic PKCθ to the plasma membrane (PM), where it localizes at the center of the immunological synapse (IS), which forms at the contact site between an antigen-specific T cell and antigen-presenting cells (APC). However, the molecular basis for this unique localization, and whether it is required for its proper function have remained unresolved issues until recently. Our recent study resolved these questions by demonstrating that the unique V3 (hinge) domain of PKCθ and, more specifically, a proline-rich motif within this domain, is essential and sufficient for its localization at the IS, where it is anchored to the cytoplasmic tail of CD28 via an indirect mechanism involving Lck protein tyrosine kinase (PTK) as an intermediate. Importantly, the association of PKCθ with CD28 is essential not only for IS localization, but also for PKCθ-mediated activation of downstream signaling pathways, including the transcription factors NF-κB and NF-AT, which are essential for productive T cell activation. Hence, interference with formation of the PKCθ-Lck-CD28 complex provides a promising basis for the design of novel, clinically useful allosteric PKCθ inhibitors. An additional recent study demonstrated that TCR triggering activates the germinal center kinase (GSK)-like kinase (GLK) and induces its association with the SLP-76 adaptor at the IS, where GLK phosphorylates the activation loop of PKCθ, converting it into an active enzyme. This recent progress, coupled with the need to study the biology of PKCθ in human T cells, is likely to facilitate the development of PKCθ-based therapeutic modalities for T cell-mediated diseases.
Collapse
Affiliation(s)
- Noah Isakov
- The Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences and the Cancer Research Center, Ben-Gurion University of the Negev Beer Sheva, Israel
| | | |
Collapse
|
49
|
Qadota H, Moerman DG, Benian GM. A molecular mechanism for the requirement of PAT-4 (integrin-linked kinase (ILK)) for the localization of UNC-112 (Kindlin) to integrin adhesion sites. J Biol Chem 2012; 287:28537-51. [PMID: 22761445 PMCID: PMC3436513 DOI: 10.1074/jbc.m112.354852] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 06/11/2012] [Indexed: 11/06/2022] Open
Abstract
Caenorhabditis elegans muscle cells attach to basement membrane through adhesion plaques. PAT-3 (β-integrin), UNC-112 (kindlin), and PAT-4 (integrin-linked kinase) are associated with these structures. Genetic analysis indicated that PAT-4 is required for UNC-112 to be properly localized. We investigated the molecular basis of this requirement. We show that the cytoplasmic tail of PAT-3 binds to full-length UNC-112 and that the N- and C-terminal halves of UNC-112 bind to each other. We demonstrate competition between the UNC-112 C-terminal half and PAT-4 for binding to the UNC-112 N-terminal half. The D382V mutation results in lack of binding to PAT-4 and lack of localization to adhesion structures. T346A or E349K mutations, which abolish interaction of the N- and C-terminal halves, permit D382V UNC-112 to localize to adhesion structures. The following model is proposed. UNC-112 exists in closed inactive and open active conformations, and upon binding of PAT-4 to the UNC-112 N-terminal half, UNC-112 is converted into the open state, able to bind to PAT-3.
Collapse
Affiliation(s)
- Hiroshi Qadota
- From the Department of Pathology, Emory University, Atlanta, Georgia 30322 and
- the Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Donald G. Moerman
- the Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Guy M. Benian
- From the Department of Pathology, Emory University, Atlanta, Georgia 30322 and
| |
Collapse
|
50
|
Darmellah A, Rayah A, Auger R, Cuif MH, Prigent M, Arpin M, Alcover A, Delarasse C, Kanellopoulos JM. Ezrin/radixin/moesin are required for the purinergic P2X7 receptor (P2X7R)-dependent processing of the amyloid precursor protein. J Biol Chem 2012; 287:34583-95. [PMID: 22891241 DOI: 10.1074/jbc.m112.400010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The amyloid precursor protein (APP) can be cleaved by α-secretases in neural cells to produce the soluble APP ectodomain (sAPPα), which is neuroprotective. We have shown previously that activation of the purinergic P2X7 receptor (P2X7R) triggers sAPPα shedding from neural cells. Here, we demonstrate that the activation of ezrin, radixin, and moesin (ERM) proteins is required for the P2X7R-dependent proteolytic processing of APP leading to sAPPα release. Indeed, the down-regulation of ERM by siRNA blocked the P2X7R-dependent shedding of sAPPα. We also show that P2X7R stimulation triggered the phosphorylation of ERM. Thus, ezrin translocates to the plasma membrane to interact with P2X7R. Using specific pharmacological inhibitors, we established the order in which several enzymes trigger the P2X7R-dependent release of sAPPα. Thus, a Rho kinase and the MAPK modules ERK1/2 and JNK act upstream of ERM, whereas a PI3K activity is triggered downstream. For the first time, this work identifies ERM as major partners in the regulated non-amyloidogenic processing of APP.
Collapse
Affiliation(s)
- Amaria Darmellah
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire, CNRS UMR 8619, France
| | | | | | | | | | | | | | | | | |
Collapse
|