1
|
Cao Y, Zhang XF, Im W. Dynamics of a von Willebrand Factor A1 Autoinhibitory Module with O-Linked Glycans and Its Roles in Regulation of GPIbα Binding. J Phys Chem B 2025; 129:3796-3806. [PMID: 40183925 PMCID: PMC12010329 DOI: 10.1021/acs.jpcb.5c00925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/23/2025] [Accepted: 03/27/2025] [Indexed: 04/05/2025]
Abstract
The von Willebrand factor (VWF), a multimeric plasma glycoprotein, binds to the platelet glycoprotein (GPIbα) to initiate the process of primary hemostasis as a response to blood flow alteration in the site of vascular injury. The GPIbα binding site located on the A1 domain of VWF is exposed during the activation of the VWF multimer when it changes from a coiled form to a thread-like, extended form. Though experimental studies have demonstrated that the autoinhibitory module (AIM) connected to the N-/C-termini of the A1 domain is a regulator of VWF activity, the molecular mechanism underlying the regulation of A1-GPIbα binding remains unclear. We modeled the structures of the A1 domain having full-length N-terminal AIM (NAIM) and C-terminal AIM (CAIM) with different types of O-linked glycans. The conventional and steered molecular dynamics simulations were conducted to investigate the dynamics of the AIM and O-glycans under different conditions and elucidate how they affect the binding of GPIbα. Our results indicate that the NAIM alone with no glycan is sufficient to shield the GPIbα binding site under static conditions. However, when the AIM is unfolded with external forces applied, the O-glycans on both NAIM and CAIM increase the shielding of the binding site. These findings suggest a potential mechanism by which the AIM and O-glycans regulate the interaction of the VWF A1 domain and GPIbα.
Collapse
Affiliation(s)
- Yiwei Cao
- Department
of Biological Sciences, Lehigh University, 111 Research Dr., Bethlehem, Pennsylvania 18015, United States
| | - X. Frank Zhang
- Department
of Biomedical Engineering, University of
Massachusetts Amherst, 240 Thatcher Rd., Amherst, Massachusetts 01003, United States
| | - Wonpil Im
- Department
of Biological Sciences, Lehigh University, 111 Research Dr., Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
2
|
Tischer A, Moon-Tasson L, Auton M. Structure-resolved dynamics of type 2M von Willebrand disease. J Thromb Haemost 2025; 23:1215-1228. [PMID: 39756657 PMCID: PMC11972889 DOI: 10.1016/j.jtha.2024.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/22/2024] [Accepted: 12/20/2024] [Indexed: 01/07/2025]
Abstract
BACKGROUND Genetically determined amino acid substitutions in the platelet adhesive A1 domain alter von Willebrand factor's (VWF) platelet agglutination competence, resulting in both gain- (type 2B) and loss-of-function (type 2M) phenotypes of von Willebrand disease. Prior studies of variants in both phenotypes revealed defects in secondary structure that altered stability and folding of the domain. An intriguing observation was that loss of function arose from both misfolding of A1 and, in a few cases, hyperstabilization of the native structure. OBJECTIVES To fully understand the 2M phenotype, we thoroughly investigated the structure/function relationships of 15 additional type 2M variants and 2 polymorphisms in the A1 domain. METHODS These variants were characterized using circular dichroism, fluorescence, calorimetry, hydrogen-deuterium exchange mass spectrometry, surface plasmon resonance, and platelet adhesion under shear flow. RESULTS Six variants were natively folded, with 4 being hyperstabilized. Nine variants disordered A1, causing a loss in α-helical structure and unfolding enthalpy. GPIbα binding affinity and platelet adhesion dynamics were highly correlated to helical structure. Hydrogen-deuterium exchange resolved specific C-terminal secondary structure elements that differentially diminish the GPIbα binding affinity of A1. These localized structural perturbations were highly correlated to GPIbα binding affinity and shear-dependent platelet adhesion. CONCLUSION While hyperstabilized dynamics in A1 do impair stable platelet attachment to VWF under flow, variant-induced localized disorder in specific regions of the domain misfolds A1 and abrogates platelet adhesion. These 2 opposing conformational properties represent 2 structural classes of VWF that drive the loss-of-function phenotype that is type 2M von Willebrand disease.
Collapse
Affiliation(s)
- Alexander Tischer
- Division of Hematology, Departments of Internal Medicine and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Laurie Moon-Tasson
- Division of Hematology, Departments of Internal Medicine and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Matthew Auton
- Division of Hematology, Departments of Internal Medicine and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA.
| |
Collapse
|
3
|
Lenting PJ, Denis CV, Christophe OD. How unique structural adaptations support and coordinate the complex function of von Willebrand factor. Blood 2024; 144:2174-2184. [PMID: 38968155 DOI: 10.1182/blood.2023023277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 07/07/2024] Open
Abstract
ABSTRACT von Willebrand factor (VWF) is a multimeric protein consisting of covalently linked monomers, which share an identical domain architecture. Although involved in processes such as inflammation, angiogenesis, and cancer metastasis, VWF is mostly known for its role in hemostasis, by acting as a chaperone protein for coagulation factor VIII (FVIII) and by contributing to the recruitment of platelets during thrombus formation. To serve its role in hemostasis, VWF needs to bind a variety of ligands, including FVIII, platelet-receptor glycoprotein Ib-α, VWF-cleaving protease ADAMTS13, subendothelial collagen, and integrin α-IIb/β-3. Importantly, interactions are differently regulated for each of these ligands. How are these binding events accomplished and coordinated? The basic structures of the domains that constitute the VWF protein are found in hundreds of other proteins of prokaryotic and eukaryotic organisms. However, the determination of the 3-dimensional structures of these domains within the VWF context and especially in complex with its ligands reveals that exclusive, VWF-specific structural adaptations have been incorporated in its domains. They provide an explanation of how VWF binds its ligands in a synchronized and timely fashion. In this review, we have focused on the domains that interact with the main ligands of VWF and discuss how elucidating the 3-dimensional structures of these domains has contributed to our understanding of how VWF function is controlled. We further detail how mutations in these domains that are associated with von Willebrand disease modulate the interaction between VWF and its ligands.
Collapse
Affiliation(s)
- Peter J Lenting
- Université Paris-Saclay, INSERM, Hémostase Inflammation Thrombose HITh U1176, Le Kremlin-Bicêtre, France
| | - Cécile V Denis
- Université Paris-Saclay, INSERM, Hémostase Inflammation Thrombose HITh U1176, Le Kremlin-Bicêtre, France
| | - Olivier D Christophe
- Université Paris-Saclay, INSERM, Hémostase Inflammation Thrombose HITh U1176, Le Kremlin-Bicêtre, France
| |
Collapse
|
4
|
Lin SY, Lin YL, Usharani R, Radjacommare R, Fu H. The Structural Role of RPN10 in the 26S Proteasome and an RPN2-Binding Residue on RPN13 Are Functionally Important in Arabidopsis. Int J Mol Sci 2024; 25:11650. [PMID: 39519207 PMCID: PMC11546751 DOI: 10.3390/ijms252111650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/17/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
The ubiquitin receptors RPN10 and RPN13 harbor multiple activities including ubiquitin binding; however, solid evidence connecting a particular activity to specific in vivo functions is scarce. Through complementation, the ubiquitin-binding site-truncated Arabidopsis RPN10 (N215) rescued the growth defects of rpn10-2, supporting the idea that the ubiquitin-binding ability of RPN10 is dispensable and N215, which harbors a vWA domain, is fully functional. Instead, a structural role played by RPN10 in the 26S proteasomes is likely vital in vivo. A site-specific variant, RPN10-11A, that likely has a destabilized vWA domain could partially rescue the rpn10-2 growth defects and is not integrated into 26S proteasomes. Native polyacrylamide gel electrophoresis and mass spectrometry with rpn10-2 26S proteasomes showed that the loss of RPN10 reduced the abundance of double-capped proteasomes, induced the integration of specific subunit paralogues, and increased the association of ECM29, a well-known factor critical for quality checkpoints by binding and inhibiting aberrant proteasomes. Extensive Y2H and GST-pulldown analyses identified RPN2-binding residues on RPN13 that overlapped with ubiquitin-binding and UCH2-binding sites in the RPN13 C-terminus (246-254). Interestingly, an analysis of homozygous rpn10-2 segregation in a rpn13-1 background harboring RPN13 variants defective for ubiquitin binding and/or RPN2 binding supports the criticality of the RPN13-RPN2 association in vivo.
Collapse
Affiliation(s)
- Shih-Yun Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan; (S.-Y.L.); (R.U.); (R.R.)
| | - Ya-Ling Lin
- Program in Biological and Sustainable Technology, Academy of Circular Economy, National Chung Hsing University, Nantou 540, Taiwan;
| | - Raju Usharani
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan; (S.-Y.L.); (R.U.); (R.R.)
| | - Ramalingam Radjacommare
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan; (S.-Y.L.); (R.U.); (R.R.)
| | - Hongyong Fu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan; (S.-Y.L.); (R.U.); (R.R.)
| |
Collapse
|
5
|
Csányi MC, Sziklai D, Feller T, Hársfalvi J, Kellermayer M. Cryptic Extensibility in von Willebrand Factor Revealed by Molecular Nanodissection. Int J Mol Sci 2024; 25:7296. [PMID: 39000402 PMCID: PMC11242059 DOI: 10.3390/ijms25137296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/19/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024] Open
Abstract
Von Willebrand factor (VWF) is a multimer with a variable number of protomers, each of which is a head-to-head dimer of two multi-domain monomers. VWF responds to shear through the unfolding and extension of distinct domains, thereby mediating platelet adhesion and aggregation to the injured blood vessel wall. VWF's C1-6 segment uncoils and then the A2 domain unfolds and extends in a hierarchical and sequential manner. However, it is unclear whether there is any reservoir of further extensibility. Here, we explored the presence of cryptic extensibility in VWF by nanodissecting individual, pre-stretched multimers with atomic force microscopy (AFM). The AFM cantilever tip was pressed into the surface and moved in a direction perpendicular to the VWF axis. It was possible to pull out protein loops from VWF, which resulted in a mean contour length gain of 217 nm. In some cases, the loop became cleaved, and a gap was present along the contour. Frequently, small nodules appeared in the loops, indicating that parts of the nanodissected VWF segment remained folded. After analyzing the nodal structure, we conclude that the cryptic extensibility lies within the C1-6 and A1-3 regions. Cryptic extensibility may play a role in maintaining VWF's functionality in extreme shear conditions.
Collapse
Affiliation(s)
- Mária Csilla Csányi
- Institute of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47, H1094 Budapest, Hungary; (M.C.C.)
| | - Dominik Sziklai
- Institute of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47, H1094 Budapest, Hungary; (M.C.C.)
| | - Tímea Feller
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS29JT, UK
| | - Jolán Hársfalvi
- Institute of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47, H1094 Budapest, Hungary; (M.C.C.)
| | - Miklós Kellermayer
- Institute of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47, H1094 Budapest, Hungary; (M.C.C.)
- HUNREN-SE Biophysical Virology Group, Tűzoltó Str. 37-47, H1094 Budapest, Hungary
| |
Collapse
|
6
|
Arce NA, Markham-Lee Z, Liang Q, Najmudin S, Legan ER, Dean G, Su AJ, Wilson MS, Sidonio RF, Lollar P, Emsley J, Li R. Conformational activation and inhibition of von Willebrand factor by targeting its autoinhibitory module. Blood 2024; 143:1992-2004. [PMID: 38290109 PMCID: PMC11103182 DOI: 10.1182/blood.2023022038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/02/2024] [Accepted: 01/19/2024] [Indexed: 02/01/2024] Open
Abstract
ABSTRACT Activation of von Willebrand factor (VWF) is a tightly controlled process governed primarily by local elements around its A1 domain. Recent studies suggest that the O-glycosylated sequences flanking the A1 domain constitute a discontinuous and force-sensitive autoinhibitory module (AIM), although its extent and conformation remains controversial. Here, we used a targeted screening strategy to identify 2 groups of nanobodies. One group, represented by clone 6D12, is conformation insensitive and binds the N-terminal AIM (NAIM) sequence that is distal from A1; 6D12 activates human VWF and induces aggregation of platelet-rich plasma at submicromolar concentrations. The other group, represented by clones Nd4 and Nd6, is conformation sensitive and targets the C-terminal AIM (CAIM). Nd4 and Nd6 inhibit ristocetin-induced platelet aggregation and reduce VWF-mediated platelet adhesion under flow. A crystal structure of Nd6 in complex with AIM-A1 shows a novel conformation of both CAIM and NAIM that are primed to interact, providing a model of steric hindrance stabilized by the AIM as the mechanism for regulating GPIbα binding to VWF. Hydrogen-deuterium exchange mass spectrometry analysis shows that binding of 6D12 induces the exposure of the GPIbα-binding site in the A1 domain, but binding of inhibitory nanobodies reduces it. Overall, these results suggest that the distal portion of NAIM is involved in specific interactions with CAIM, and binding of nanobodies to the AIM could either disrupt its conformation to activate VWF or stabilize its conformation to upkeep VWF autoinhibition. These reported nanobodies could facilitate future studies of VWF functions and related pathologies.
Collapse
Affiliation(s)
- Nicholas A. Arce
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Zoe Markham-Lee
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Qian Liang
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shabir Najmudin
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Emily R. Legan
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Gabrielle Dean
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Ally J. Su
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Moriah S. Wilson
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Robert F. Sidonio
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Pete Lollar
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Jonas Emsley
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Renhao Li
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
7
|
Iruegas R, Pfefferle K, Göttig S, Averhoff B, Ebersberger I. Feature architecture aware phylogenetic profiling indicates a functional diversification of type IVa pili in the nosocomial pathogen Acinetobacter baumannii. PLoS Genet 2023; 19:e1010646. [PMID: 37498819 PMCID: PMC10374093 DOI: 10.1371/journal.pgen.1010646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/06/2023] [Indexed: 07/29/2023] Open
Abstract
The Gram-negative bacterial pathogen Acinetobacter baumannii is a major cause of hospital-acquired opportunistic infections. The increasing spread of pan-drug resistant strains makes A. baumannii top-ranking among the ESKAPE pathogens for which novel routes of treatment are urgently needed. Comparative genomics approaches have successfully identified genetic changes coinciding with the emergence of pathogenicity in Acinetobacter. Genes that are prevalent both in pathogenic and a-pathogenic Acinetobacter species were not considered ignoring that virulence factors may emerge by the modification of evolutionarily old and widespread proteins. Here, we increased the resolution of comparative genomics analyses to also include lineage-specific changes in protein feature architectures. Using type IVa pili (T4aP) as an example, we show that three pilus components, among them the pilus tip adhesin ComC, vary in their Pfam domain annotation within the genus Acinetobacter. In most pathogenic Acinetobacter isolates, ComC displays a von Willebrand Factor type A domain harboring a finger-like protrusion, and we provide experimental evidence that this finger conveys virulence-related functions in A. baumannii. All three genes are part of an evolutionary cassette, which has been replaced at least twice during A. baumannii diversification. The resulting strain-specific differences in T4aP layout suggests differences in the way how individual strains interact with their host. Our study underpins the hypothesis that A. baumannii uses T4aP for host infection as it was shown previously for other pathogens. It also indicates that many more functional complexes may exist whose precise functions have been adjusted by modifying individual components on the domain level.
Collapse
Affiliation(s)
- Ruben Iruegas
- Applied Bioinformatics Group, Inst of Cell Biology and Neuroscience, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Katharina Pfefferle
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Stephan Göttig
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt, Germany
| | - Beate Averhoff
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ingo Ebersberger
- Applied Bioinformatics Group, Inst of Cell Biology and Neuroscience, Goethe University Frankfurt, Frankfurt am Main, Germany
- Senckenberg Biodiversity and Climate Research Centre (S-BIK-F), Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (TBG), Frankfurt am Main, Germany
| |
Collapse
|
8
|
Nakayama M, Goto S, Goto S. Physical Characteristics of von Willebrand Factor Binding with Platelet Glycoprotein Ibɑ Mutants at Residue 233 Causing Various Biological Functions. TH OPEN : COMPANION JOURNAL TO THROMBOSIS AND HAEMOSTASIS 2022; 6:e421-e428. [PMID: 36632284 PMCID: PMC9729063 DOI: 10.1055/a-1937-9940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/05/2022] [Indexed: 01/14/2023]
Abstract
Glycoprotein (GP: HIS 1 -PRO 265 ) Ibɑ is a receptor protein expressed on the surface of the platelet. Its N-terminus domain binds with the A1 domain (ASP 1269 -PRO 1472 ) of its ligand protein von Willebrand factor (VWF) and plays a unique role in platelet adhesion under blood flow conditions. Single amino acid substitutions at residue 233 from glycine (G) to alanine (A), aspartic acid (D), or valine (V) are known to cause biochemically distinct functional alterations known as equal, loss, and gain of function, respectively. However, the underlying physical characteristics of VWF binding with GPIbɑ in wild-type and the three mutants exerting different biological functions are unclear. Here, we aimed to test the hypothesis: biological characteristics of macromolecules are influenced by small changes in physical parameters. The position coordinates and velocity vectors of all atoms and water molecules constructing the wild-type and the three mutants of GPIbɑ (G233A, G233D, and G233V) bound with VWF were calculated every 2 × 10 -15 seconds using the CHARMM (Chemistry at Harvard Macromolecular Mechanics) force field for 9 × 10 -10 seconds. Six salt bridges were detected for longer than 50% of the calculation period for the wild-type model generating noncovalent binding energy of -1096 ± 137.6 kcal/mol. In contrast, only four pairs of salt bridges were observed in G233D mutant with noncovalent binding energy of -865 ± 139 kcal/mol. For G233A and G233V, there were six and five pairs of salt bridges generating -929.8 ± 88.5 and -989.9 ± 94.0 kcal/mol of noncovalent binding energy, respectively. Our molecular dynamic simulation showing a lower probability of salt bridge formation with less noncovalent binding energy in VWF binding with the biologically loss of function G233D mutant of GPIbɑ as compared with wild-type, equal function, and gain of function mutant suggests that biological functions of macromolecules such as GPIbɑ are influenced by their small changes in physical characteristics.
Collapse
Affiliation(s)
- Masamitsu Nakayama
- Department of Medicine (Cardiology), Tokai University School of Medicine, Isehara, Japan
| | - Shinichi Goto
- Department of Medicine (Cardiology), Tokai University School of Medicine, Isehara, Japan
| | - Shinya Goto
- Department of Medicine (Cardiology), Tokai University School of Medicine, Isehara, Japan,Address for correspondence Shinya Goto, MD, PhD Department of Medicine (Cardiology), Tokai University School of Medicine143 Shimokasuya, IseharaJapan
| |
Collapse
|
9
|
Shuai B, Deng T, Xie L, Zhang R. A novel matrix protein PNU5 facilitates the transformation from amorphous calcium carbonate to calcite and aragonite. Int J Biol Macromol 2022; 224:754-765. [DOI: 10.1016/j.ijbiomac.2022.10.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022]
|
10
|
Anderson JR, Li J, Springer TA, Brown A. Structures of VWF tubules before and after concatemerization reveal a mechanism of disulfide bond exchange. Blood 2022; 140:1419-1430. [PMID: 35776905 PMCID: PMC9507011 DOI: 10.1182/blood.2022016467] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/23/2022] [Indexed: 11/20/2022] Open
Abstract
von Willebrand factor (VWF) is an adhesive glycoprotein that circulates in the blood as disulfide-linked concatemers and functions in primary hemostasis. The loss of long VWF concatemers is associated with the excessive bleeding of type 2A von Willebrand disease (VWD). Formation of the disulfide bonds that concatemerize VWF requires VWF to self-associate into helical tubules, yet how the helical tubules template intermolecular disulfide bonds is not known. Here, we report electron cryomicroscopy (cryo-EM) structures of VWF tubules before and after intermolecular disulfide bond formation. The structures provide evidence that VWF tubulates through a charge-neutralization mechanism and that the A1 domain enhances tubule length by crosslinking successive helical turns. In addition, the structures reveal disulfide states before and after disulfide bond-mediated concatemerization. The structures and proposed assembly mechanism provide a foundation to rationalize VWD-causing mutations.
Collapse
Affiliation(s)
- Jacob R Anderson
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
| | - Jing Li
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA; and
| | - Timothy A Springer
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Alan Brown
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
| |
Collapse
|
11
|
Parker E, Haberichter SL, Lollar P. Subunit Flexibility of Multimeric von Willebrand Factor/Factor VIII Complexes. ACS OMEGA 2022; 7:31183-31196. [PMID: 36092565 PMCID: PMC9453814 DOI: 10.1021/acsomega.2c03389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Von Willebrand factor (VWF) is a plasma glycoprotein that participates in platelet adhesion and aggregation and serves as a carrier for blood coagulation factor VIII (fVIII). Plasma VWF consists of a population of multimers that range in molecular weight from ∼ 0.55 MDa to greater than 10 MDa. The VWF multimer consists of a variable number of concatenated disulfide-linked ∼275 kDa subunits. We fractionated plasma-derived human VWF/fVIII complexes by size-exclusion chromatography at a pH of 7.4 and subjected them to analysis by sodium dodecyl sulfate agarose gel electrophoresis, sedimentation velocity analytical ultracentrifugation (SV AUC), dynamic light scattering (DLS), and multi-angle light scattering (MALS). Weight-average molecular weights, M w, were independently measured by MALS and by application of the Svedberg equation to SV AUC and DLS measurements. Estimates of the Mark-Houwink-Kuhn-Sakurada exponents , αs, and αD describing the functional relationship between the z-average radius of gyration, , weight-average sedimentation coefficient, s w, z-average diffusion coefficient, D z , and M w were consistent with a random coil conformation of the VWF multimer. Ratios of to the z-average hydrodynamic radius, , estimated by DLS, were calculated across an M w range from 2 to 5 MDa. When compared to values calculated for a semi-flexible, wormlike chain, these ratios were consistent with a contour length over 1000-fold greater than the persistence length. These results indicate a high degree of flexibility between domains of the VWF subunit.
Collapse
Affiliation(s)
- Ernest
T. Parker
- Aflac
Cancer and Blood Disorders Center, Children’s Healthcare of
Atlanta; Department of Pediatrics, Emory
University, Atlanta Georgia 30322, United States
| | - Sandra L. Haberichter
- Diagnostic
Laboratories and Blood Research Institute, Versiti, Milwaukee, Wisconsin 53201-2178, United States
- Pediatric
Hematology/Oncology, Medical College of
Wisconsin, Milwaukee, Wisconsin 53226, United States
- Children’s
Research Institute, Children’s Hospital
of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Pete Lollar
- Aflac
Cancer and Blood Disorders Center, Children’s Healthcare of
Atlanta; Department of Pediatrics, Emory
University, Atlanta Georgia 30322, United States
| |
Collapse
|
12
|
Pickrum AM, Riegert MO, Wells C, Brockman K, Frank DW. The In Vitro Replication Cycle of Achromobacter xylosoxidans and Identification of Virulence Genes Associated with Cytotoxicity in Macrophages. Microbiol Spectr 2022; 10:e0208322. [PMID: 35856670 PMCID: PMC9430717 DOI: 10.1128/spectrum.02083-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/08/2022] [Indexed: 11/28/2022] Open
Abstract
Achromobacter xylosoxidans is an opportunistic pathogen implicated in a wide variety of human infections including the ability to colonize the lungs of cystic fibrosis (CF) patients. The role of A. xylosoxidans in human pathology remains controversial due to the lack of optimized in vitro and in vivo model systems to identify and test bacterial gene products that promote a pathological response. We have previously identified macrophages as a target host cell for A. xylosoxidans-induced cytotoxicity. By optimizing our macrophage infection model, we determined that A. xylosoxidans enters macrophages and can reside within a membrane bound vacuole for extended periods of time. Intracellular replication appears limited with cellular lysis preceding an enhanced, mainly extracellular replication cycle. Using our optimized in vitro model system along with transposon mutagenesis, we identified 163 genes that contribute to macrophage cytotoxicity. From this list, we characterized a giant RTX adhesin encoded downstream of a type one secretion system (T1SS) that mediates bacterial binding and entry into host macrophages, an important first step toward cellular toxicity and inflammation. The RTX adhesin is encoded by other human isolates and is recognized by antibodies present in serum isolated from CF patients colonized by A. xylosoxidans, indicating this virulence factor is produced and deployed in vivo. This study represents the first characterization of A. xylosoxidans replication during infection and identifies a variety of genes that may be linked to virulence and human pathology. IMPORTANCE Patients affected by CF develop chronic bacterial infections characterized by inflammatory exacerbations and tissue damage. Advancements in sequencing technologies have broadened the list of opportunistic pathogens colonizing the CF lung. A. xylosoxidans is increasingly recognized as an opportunistic pathogen in CF, yet our understanding of the bacterium as a contributor to human disease is limited. Genomic studies have identified potential virulence determinants in A. xylosoxidans isolates, but few have been mechanistically studied. Using our optimized in vitro cell model, we identified and characterized a bacterial adhesin that mediates binding and uptake by host macrophages leading to cytotoxicity. A subset of serum samples from CF patients contains antibodies that recognize the RTX adhesion, suggesting, for the first time, that this virulence determinant is produced in vivo. This work furthers our understanding of A. xylosoxidans virulence factors at a mechanistic level.
Collapse
Affiliation(s)
- Adam M. Pickrum
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Molly O. Riegert
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Clive Wells
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Kenneth Brockman
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Dara W. Frank
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
13
|
Sandoval‐Pérez A, Mejía‐Restrepo V, Aponte‐Santamaría C. Thermodynamic stabilization of von Willebrand factor
A1
domain induces protein loss of function. Proteins 2022; 90:2058-2066. [DOI: 10.1002/prot.26397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 06/24/2022] [Accepted: 06/30/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Angélica Sandoval‐Pérez
- Max Planck Tandem Group in Computational Biophysics Universidad de Los Andes Bogotá Colombia
| | | | | |
Collapse
|
14
|
Zhao YC, Li Z, Ju LA. The soluble N-terminal autoinhibitory module of the A1 domain in von Willebrand factor partially suppresses its catch bond with glycoprotein Ibα in a sandwich complex. Phys Chem Chem Phys 2022; 24:14857-14865. [PMID: 35698887 DOI: 10.1039/d2cp01581a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
von Willebrand factor (VWF) senses and responds to the hemodynamic forces to interact with the circulatory system and platelets in hemostasis and thrombosis. The dark side of this mechanobiology is implicated in atherothrombosis, stroke, and, more recently, the COVID-19 thrombotic symptoms. The force-responsive element controlling VWF activation predominantly resides in the N terminal auto-inhibitory module (N-AIM) flanking its A1 domain. Nevertheless, the detailed mechano-chemistry of soluble VWF N-AIM is poorly understood at the sub-molecular level as it is assumed to be unstructured loops. Using the free molecular dynamics (MD) simulations, we first predicted a hairpin-like structure of the soluble A1 N-AIM derived polypeptide (Lp; sequences Q1238-E1260). Then we combined molecular docking and steered molecular dynamics (SMD) simulations to examine how Lp regulates the A1-GPIbα interaction under tensile forces. Our simulation results indicate that Lp suppresses the catch bond in a sandwich complex of A1-Lp-GPIbα yet contributes an additional catch-bond residue D1249. To experimentally benchmark the binding kinetics for A1-GPIbα in the absence or presence of Lp, we conducted the force spectroscopy-biomembrane force probe (BFP) assays. We found similar suppression on the A1-GPIbα catch bond with soluble Lp in presence. Clinically, as more and more therapeutic candidates targeting the A1-GPIbα axis have entered clinical trials to treat patients with TTP and acute coronary syndrome, our work represents an endeavor further towards an effective anti-thrombotic approach without severe bleeding side effects as most existing drugs suffer.
Collapse
Affiliation(s)
- Yunduo Charles Zhao
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Darlington, NSW 2008, Australia. .,Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Zhenhai Li
- School of Mechanics and Engineering Science, Shanghai University, Shanghai 200444, China
| | - Lining Arnold Ju
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Darlington, NSW 2008, Australia. .,Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia.,Heart Research Institute, Newtown, NSW 2042, Australia.,The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Camperdown, NSW 2006, Australia.,Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
15
|
Helical self-assembly of a mucin segment suggests an evolutionary origin for von Willebrand factor tubules. Proc Natl Acad Sci U S A 2022; 119:e2116790119. [PMID: 35377815 PMCID: PMC9169620 DOI: 10.1073/pnas.2116790119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Extracellular proteins with mechanical functions often require specialized assembly processes to form covalent oligomers. Progress in tissue bioengineering and repair will benefit from an understanding of how to harness and manipulate these processes. Here, we show that a particular supramolecular assembly mode was pre-encoded in the ancient domain organization common to gel-forming mucins and von Willebrand factor, glycoproteins that are deceptively different due to their divergence for distinct mechanical tasks. This finding highlights symmetry principles and building blocks retooled in nature to construct polymers with wide-ranging properties. These building blocks and knowledge of their self-assembly can be used to design new polymeric structures. The glycoprotein von Willebrand factor (VWF) contributes to hemostasis by stanching injuries in blood vessel walls. A distinctive feature of VWF is its assembly into long, helical tubules in endothelial cells prior to secretion. When VWF is released into the bloodstream, these tubules unfurl to release linear polymers that bind subendothelial collagen at wound sites, recruit platelets, and initiate the clotting cascade. VWF evolved from gel-forming mucins, the polymeric glycoproteins that coat and protect exposed epithelia. Despite the divergent function of VWF in blood vessel repair, sequence conservation and shared domain organization imply that VWF retained key aspects of the mucin bioassembly mechanism. Here, we show using cryo-electron microscopy that the ability to form tubules, a property hitherto thought to have arisen as a VWF adaptation to the vasculature, is a feature of the amino-terminal region of mucin. This segment of the human intestinal gel-forming mucin (MUC2) was found to self-assemble into tubules with a striking resemblance to those of VWF itself. To facilitate a comparison, we determined the residue-resolution structure of tubules formed by the homologous segment of VWF. The structures of the MUC2 and VWF tubules revealed the flexible joints and the intermolecular interactions required for tubule formation. Steric constraints in full-length MUC2 suggest that linear filaments, a previously observed supramolecular assembly form, are more likely than tubules to be the physiological mucin storage intermediate. Nevertheless, MUC2 tubules indicate a possible evolutionary origin for VWF tubules and elucidate design principles present in mucins and VWF.
Collapse
|
16
|
Zhao YC, Wang H, Wang Y, Lou J, Ju LA. The N-terminal autoinhibitory module of the A1 domain in von Willebrand factor stabilizes the mechanosensor catch bond. RSC Chem Biol 2022; 3:707-720. [PMID: 35755187 PMCID: PMC9175105 DOI: 10.1039/d2cb00010e] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/07/2022] [Indexed: 12/29/2022] Open
Abstract
The N-AIM of VWF-A1 forms a Rotini-like structure, therefore partially autoinhibit VWF-A1–GPIbα interaction. The N-AIM acts as a defending sword to protect and stabilize the VWF-A1 structure under harsh environments.
Collapse
Affiliation(s)
- Yunduo Charles Zhao
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Darlington, NSW 2008, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Haoqing Wang
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Darlington, NSW 2008, Australia
- Heart Research Institute, Newtown, NSW 2042, Australia
| | - Yao Wang
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Darlington, NSW 2008, Australia
- Cellular and Genetic Medicine Unit, School of Medical Sciences, University of New South Wales, NSW 2052, Australia
| | - Jizhong Lou
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lining Arnold Ju
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Darlington, NSW 2008, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
- Heart Research Institute, Newtown, NSW 2042, Australia
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Camperdown, NSW 2006, Australia
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
17
|
Alfeo MJ, Pagotto A, Barbieri G, Foster TJ, Vanhoorelbeke K, De Filippis V, Speziale P, Pietrocola G. Staphylococcus aureus iron-regulated surface determinant B (IsdB) protein interacts with von Willebrand factor and promotes adherence to endothelial cells. Sci Rep 2021; 11:22799. [PMID: 34815454 PMCID: PMC8611056 DOI: 10.1038/s41598-021-02065-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/01/2021] [Indexed: 12/27/2022] Open
Abstract
Staphylococcus aureus is the cause of a spectrum of diseases in humans and animals. The molecular basis of this pathogenicity lies in the expression of a variety of virulence factors, including proteins that mediate adherence to the host plasma and extracellular matrix proteins. In this study, we discovered that the iron-regulated surface determinant B (IsdB) protein, besides being involved in iron transport and vitronectin binding, interacts with von Willebrand Factor (vWF). IsdB-expressing bacteria bound to both soluble and immobilized vWF. The binding of recombinant IsdB to vWF was blocked by heparin and reduced at high ionic strength. Furthermore, treatment with ristocetin, an allosteric agent that promotes the exposure of the A1 domain of vWF, potentiates the binding of IsdB to vWF. Both near-iron transporter motifs NEAT1 and NEAT2 of IsdB individually bound recombinant A1 domain with KD values in the micromolar range. The binding of IsdB and adhesion of S. aureus expressing IsdB to monolayers of activated endothelial cells was significantly inhibited by a monoclonal antibody against the A1 domain and by IsdB reactive IgG from patients with staphylococcal endocarditis. This suggests the importance of IsdB in adherence of S. aureus to the endothelium colonization and as potential therapeutic target.
Collapse
Affiliation(s)
- Mariangela J Alfeo
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Viale Taramelli 3/b, 27100, Pavia, Italy
| | - Anna Pagotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via Marzolo 5, 35131, Padua, Italy
| | - Giulia Barbieri
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - Timothy J Foster
- Microbiology Department, Trinity College Dublin, Dublin, Ireland
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Vincenzo De Filippis
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via Marzolo 5, 35131, Padua, Italy
| | - Pietro Speziale
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Viale Taramelli 3/b, 27100, Pavia, Italy
| | - Giampiero Pietrocola
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Viale Taramelli 3/b, 27100, Pavia, Italy.
| |
Collapse
|
18
|
Languin-Cattoën O, Laborie E, Yurkova DO, Melchionna S, Derreumaux P, Belyaev AV, Sterpone F. Exposure of Von Willebrand Factor Cleavage Site in A1A2A3-Fragment under Extreme Hydrodynamic Shear. Polymers (Basel) 2021; 13:polym13223912. [PMID: 34833213 PMCID: PMC8625202 DOI: 10.3390/polym13223912] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 12/22/2022] Open
Abstract
Von Willebrand Factor (vWf) is a giant multimeric extracellular blood plasma involved in hemostasis. In this work we present multi-scale simulations of its three-domains fragment A1A2A3. These three domains are essential for the functional regulation of vWf. Namely the A2 domain hosts the site where the protease ADAMTS13 cleavages the multimeric vWf allowing for its length control that prevents thrombotic conditions. The exposure of the cleavage site follows the elongation/unfolding of the domain that is caused by an increased shear stress in blood. By deploying Lattice Boltzmann molecular dynamics simulations based on the OPEP coarse-grained model for proteins, we investigated at molecular level the unfolding of the A2 domain under the action of a perturbing shear flow. We described the structural steps of this unfolding that mainly concerns the β-strand structures of the domain, and we compared the process occurring under shear with that produced by the action of a directional pulling force, a typical condition of single molecule experiments. We observe, that under the action of shear flow, the competition among the elongational and rotational components of the fluid field leads to a complex behaviour of the domain, where elongated structures can be followed by partially collapsed melted globule structures with a very different degree of exposure of the cleavage site. Our simulations pose the base for the development of a multi-scale in-silico description of vWf dynamics and functionality in physiological conditions, including high resolution details for molecular relevant events, e.g., the binding to platelets and collagen during coagulation or thrombosis.
Collapse
Affiliation(s)
- Olivier Languin-Cattoën
- Laboratoire de Biochimie Théorique, CNRS, Université de Paris, UPR 9080, 13 rue Pierre et Marie Curie, F-75005 Paris, France; (O.L.-C.); (E.L.); (P.D.)
| | - Emeline Laborie
- Laboratoire de Biochimie Théorique, CNRS, Université de Paris, UPR 9080, 13 rue Pierre et Marie Curie, F-75005 Paris, France; (O.L.-C.); (E.L.); (P.D.)
| | - Daria O. Yurkova
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Simone Melchionna
- Dipartimento di Fisica, Università Sapienza, P.le A. Moro 5, 00185 Rome, Italy;
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, CNRS, Université de Paris, UPR 9080, 13 rue Pierre et Marie Curie, F-75005 Paris, France; (O.L.-C.); (E.L.); (P.D.)
| | - Aleksey V. Belyaev
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia;
- Correspondence: (A.V.B.); (F.S.)
| | - Fabio Sterpone
- Laboratoire de Biochimie Théorique, CNRS, Université de Paris, UPR 9080, 13 rue Pierre et Marie Curie, F-75005 Paris, France; (O.L.-C.); (E.L.); (P.D.)
- Correspondence: (A.V.B.); (F.S.)
| |
Collapse
|
19
|
Choudhary S, Sharma K, Singh PK. Von Willebrand factor: A key glycoprotein involved in thrombo-inflammatory complications of COVID-19. Chem Biol Interact 2021; 348:109657. [PMID: 34516971 PMCID: PMC8432980 DOI: 10.1016/j.cbi.2021.109657] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/25/2021] [Accepted: 09/09/2021] [Indexed: 02/08/2023]
Abstract
COVID-19 is an ongoing public health emergency that has affected millions of people worldwide and is still a threat to many more. One of the pathophysiological features of COVID-19 is associated with the activation of vascular endothelial cells (ECs) leading to the disruption of vascular integrity, coagulation and inflammation. An interlink mechanism between coagulation and inflammatory pathways has been reported in COVID-19. Multiple components are involved in these pathological pathways. Out of all, Von Willebrand Factor (VWF) is one of the primary components of coagulation pathway and also a mediator of vascular inflammation that plays an important role in thrombo-inflammation that further leads to acute respiratory distress syndrome (ARDS). The thrombo-inflammatory co-morbidities such as hyper-coagulation, thrombosis, ARDS etc. have become the major cause of mortality in the patients of COVID-19 admitted to the ICU. Thus, VWF can be explored as a potential target to manage COVID-19 associated co-morbidities. Supporting this hypothesis, there are literature reports which disclose previous attempts to target VWF for the management of thrombo-inflammation in other pathological conditions. The current report summarizes emerging insights into the pathophysiology, mechanism(s), diagnosis, management and foundations for research on this less explored clinically relevant glycoprotein as coagulation biomarker in COVID-19.
Collapse
Affiliation(s)
- Shalki Choudhary
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Kajal Sharma
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Pankaj Kumar Singh
- Integrative Physiology and Pharmacology, Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland.
| |
Collapse
|
20
|
Lee HT, Park UB, Jeong TJ, Gu N, Lee SH, Kim Y, Heo YS. High-resolution structure of the vWF A1 domain in complex with caplacizumab, the first nanobody-based medicine for treating acquired TTP. Biochem Biophys Res Commun 2021; 567:49-55. [PMID: 34144500 DOI: 10.1016/j.bbrc.2021.06.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 11/19/2022]
Abstract
von Willebrand factor (vWF) is a huge oligomeric glycoprotein involved in blood homeostasis. However, this protein is also implicated in acquired thrombotic thrombocytopenic purpura (TTP). The blocking of its binding with platelets has been recognized as an attractive therapeutic strategy for treating acquired TTP. Caplacizumab, a bivalent single-domain antibody (VHH), is the first FDA-approved nanobody drug against vWF for the treatment of acquired TTP. Here, we describe the crystal structure of the A1 domain of vWF in complex with the caplacizumab nanobody at the resolution of 1.60 Å. This structure elucidates the precise epitope and binding mode of caplacizumab. Unexpectedly, caplacizumab binds to the bottom face of the vWF A1 domain and does not create any steric clash with platelet-receptor glycoprotein Ib (GPIb) bound to vWF. However, its binding can stabilize the different conformation within the N-terminus and α1β2 loop from the GPIb bound structure, suggesting that the mechanisms of caplacizumab would not be the direct competition of GPIb binding to vWF A1 domain but the conformational arrestment of vWF in an inappropriate state to platelet adhesion. This high-resolution structure would provide helpful information for the design of improved anti-vWF therapeutics for the treatment of acquired TTP.
Collapse
Affiliation(s)
- Hyun Tae Lee
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029. Republic of Korea
| | - Ui Beom Park
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029. Republic of Korea
| | - Tae Jun Jeong
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029. Republic of Korea
| | - Nahyeon Gu
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029. Republic of Korea
| | - Sang Hyung Lee
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029. Republic of Korea
| | - Yujin Kim
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029. Republic of Korea
| | - Yong-Seok Heo
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029. Republic of Korea.
| |
Collapse
|
21
|
Arce NA, Cao W, Brown AK, Legan ER, Wilson MS, Xu ER, Berndt MC, Emsley J, Zhang XF, Li R. Activation of von Willebrand factor via mechanical unfolding of its discontinuous autoinhibitory module. Nat Commun 2021; 12:2360. [PMID: 33883551 PMCID: PMC8060278 DOI: 10.1038/s41467-021-22634-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/16/2021] [Indexed: 01/05/2023] Open
Abstract
Von Willebrand factor (VWF) activates in response to shear flow to initiate hemostasis, while aberrant activation could lead to thrombosis. Above a critical shear force, the A1 domain of VWF becomes activated and captures platelets via the GPIb-IX complex. Here we show that the shear-responsive element controlling VWF activation resides in the discontinuous autoinhibitory module (AIM) flanking A1. Application of tensile force in a single-molecule setting induces cooperative unfolding of the AIM to expose A1. The AIM-unfolding force is lowered by truncating either N- or C-terminal AIM region, type 2B VWD mutations, or binding of a ristocetin-mimicking monoclonal antibody, all of which could activate A1. Furthermore, the AIM is mechanically stabilized by the nanobody that comprises caplacizumab, the only FDA-approved anti-thrombotic drug to-date that targets VWF. Thus, the AIM is a mechano-regulator of VWF activity. Its conformational dynamics may define the extent of VWF autoinhibition and subsequent activation under force.
Collapse
Affiliation(s)
- Nicholas A Arce
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Wenpeng Cao
- Department of Bioengineering, Department of Mechanical Engineering & Mechanics, Lehigh University, Bethlehem, PA, USA
| | - Alexander K Brown
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Emily R Legan
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Moriah S Wilson
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Emma-Ruoqi Xu
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Michael C Berndt
- Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Jonas Emsley
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - X Frank Zhang
- Department of Bioengineering, Department of Mechanical Engineering & Mechanics, Lehigh University, Bethlehem, PA, USA.
| | - Renhao Li
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
22
|
Staphylococcus aureus vWF-binding protein triggers a strong interaction between clumping factor A and host vWF. Commun Biol 2021; 4:453. [PMID: 33846500 PMCID: PMC8041789 DOI: 10.1038/s42003-021-01986-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/15/2021] [Indexed: 12/13/2022] Open
Abstract
The Staphylococcus aureus cell wall-anchored adhesin ClfA binds to the very large blood circulating protein, von Willebrand factor (vWF) via vWF-binding protein (vWbp), a secreted protein that does not bind the cell wall covalently. Here we perform force spectroscopy studies on living bacteria to unravel the molecular mechanism of this interaction. We discover that the presence of all three binding partners leads to very high binding forces (2000 pN), largely outperforming other known ternary complexes involving adhesins. Strikingly, our experiments indicate that a direct interaction involving features of the dock, lock and latch mechanism must occur between ClfA and vWF to sustain the extreme tensile strength of the ternary complex. Our results support a previously undescribed mechanism whereby vWbp activates a direct, ultra-strong interaction between ClfA and vWF. This intriguing interaction represents a potential target for therapeutic interventions, including synthetic peptides inhibiting the ultra-strong interactions between ClfA and its ligands. Through force spectroscopy studies on living bacteria, Viljoen et al. characterise the binding of S. aureus to host von Willebrand factor (vWF). They propose that S. aureus vWF-binding protein triggers an ultra-strong interaction between the adhesin clumping factor A and vWF.
Collapse
|
23
|
Conformation of the von Willebrand factor/factor VIII complex in quasi-static flow. J Biol Chem 2021; 296:100420. [PMID: 33600794 PMCID: PMC8005835 DOI: 10.1016/j.jbc.2021.100420] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/01/2021] [Accepted: 02/11/2021] [Indexed: 12/18/2022] Open
Abstract
Von Willebrand factor (VWF) is a plasma glycoprotein that circulates noncovalently bound to blood coagulation factor VIII (fVIII). VWF is a population of multimers composed of a variable number of ∼280 kDa monomers that is activated in shear flow to bind collagen and platelet glycoprotein Ibα. Electron microscopy, atomic force microscopy, small-angle neutron scattering, and theoretical studies have produced a model in which the conformation of VWF under static conditions is a compact, globular “ball-of-yarn,” implying strong, attractive forces between monomers. We performed sedimentation velocity (SV) analytical ultracentrifugation measurements on unfractionated VWF/fVIII complexes. There was a 20% per mg/ml decrease in the weight-average sedimentation coefficient, sw, in contrast to the ∼1% per mg/ml decrease observed for compact globular proteins. SV and dynamic light scattering measurements were performed on VWF/fVIII complexes fractionated by size-exclusion chromatography to obtain sw values and z-average diffusion coefficients, Dz. Molecular weights estimated using these values in the Svedberg equation ranged from 1.7 to 4.1 MDa. Frictional ratios calculated from Dz and molecular weights ranged from 2.9 to 3.4, in contrast to values of 1.1–1.3 observed for globular proteins. The Mark–Houwink–Kuhn–Sakurada scaling relationships between sw, Dz and molecular weight, s=k′Mas and D=k″MaD, yielded estimates of 0.51 and –0.49 for as and aD, respectively, consistent with a random coil, in contrast to the as value of 0.65 observed for globular proteins. These results indicate that interactions between monomers are weak or nonexistent and that activation of VWF is intramonomeric.
Collapse
|
24
|
Tsai R, Interlandi G. Oxidation shuts down an auto-inhibitory mechanism of von Willebrand factor. Proteins 2021; 89:731-741. [PMID: 33550613 DOI: 10.1002/prot.26055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/24/2020] [Accepted: 01/31/2021] [Indexed: 01/13/2023]
Abstract
The blood protein von Willebrand factor (VWF) is a key link between inflammation and pathological thrombus formation. In particular, oxidation of methionine residues in specific domains of VWF due to the release of oxidants in inflammatory conditions has been linked to an increased platelet-binding activity. However, the atomistic details of how methionine oxidation activates VWF have not been elucidated to date. Yet understanding the activation mechanism of VWF under oxidizing conditions can lead to the development of novel therapeutics that target VWF selectively under inflammatory conditions in order to reduce its thrombotic activity while maintaining its haemostatic function. In this manuscript, we used a combination of a dynamic flow assay and molecular dynamics (MD) simulations to investigate how methionine oxidation removes an auto-inhibitory mechanism of VWF. Results from the dynamic flow assay revealed that oxidation does not directly activate the A1 domain, which is the domain in VWF that contains the binding site to the platelet surface receptor glycoprotein Ibα (GpIbα), but rather removes the inhibitory function of the neighboring A2 and A3 domains. Furthermore, the MD simulations combined with free energy perturbation calculations suggested that methionine oxidation may destabilize the binding interface between the A1 and A2 domains leading to unmasking of the GpIbα-binding site in the A1 domain.
Collapse
Affiliation(s)
- Rachel Tsai
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Gianluca Interlandi
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| |
Collapse
|
25
|
Arora S, Gordon J, Hook M. Collagen Binding Proteins of Gram-Positive Pathogens. Front Microbiol 2021; 12:628798. [PMID: 33613497 PMCID: PMC7893114 DOI: 10.3389/fmicb.2021.628798] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
Collagens are the primary structural components of mammalian extracellular matrices. In addition, collagens regulate tissue development, regeneration and host defense through interaction with specific cellular receptors. Their unique triple helix structure, which requires a glycine residue every third amino acid, is the defining structural feature of collagens. There are 28 genetically distinct collagens in humans. In addition, several other unrelated human proteins contain a collagen domain. Gram-positive bacteria of the genera Staphylococcus, Streptococcus, Enterococcus, and Bacillus express cell surface proteins that bind to collagen. These proteins of Gram-positive pathogens are modular proteins that can be classified into different structural families. This review will focus on the different structural families of collagen binding proteins of Gram-positive pathogen. We will describe how these proteins interact with the triple helix in collagens and other host proteins containing a collagenous domain and discuss how these interactions can contribute to the pathogenic processes.
Collapse
Affiliation(s)
- Srishtee Arora
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, United States
| | - Jay Gordon
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, United States
| | - Magnus Hook
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, United States
| |
Collapse
|
26
|
Fazavana J, Brophy TM, Chion A, Cooke N, Terraube V, Cohen J, Parng C, Pittman D, Cunningham O, Lambert M, O'Donnell JS, O'Sullivan JM. Investigating the clearance of VWF A-domains using site-directed PEGylation and novel N-linked glycosylation. J Thromb Haemost 2020; 18:1278-1290. [PMID: 32108991 PMCID: PMC7645976 DOI: 10.1111/jth.14785] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Previous studies have demonstrated that the A1A2A3 domains of von Willebrand factor (VWF) play a key role in regulating macrophage-mediated clearance in vivo. In particular, the A1-domain has been shown to modulate interaction with macrophage low-density lipoprotein receptor-related protein-1 (LRP1) clearance receptor. Furthermore, N-linked glycans within the A2-domain have been shown to protect VWF against premature LRP1-mediated clearance. Importantly, however, the specific regions within A1A2A3 that enable macrophage binding have not been defined. OBJECTIVE AND METHODS To address this, we utilized site-directed PEGylation and introduced novel targeted N-linked glycosylation within A1A2A3-VWF and subsequently examined VWF clearance. RESULTS Conjugation with a 40-kDa polyethylene glycol (PEG) moiety significantly extended the half-life of A1A2A3-VWF in VWF-/- mice in a site-specific manner. For example, PEGylation at specific sites within the A1-domain (S1286) and A3-domain (V1803, S1807) attenuated VWF clearance in vivo, compared to wild-type A1A2A3-VWF. Furthermore, PEGylation at these specific sites ablated binding to differentiated THP-1 macrophages and LRP1 cluster II and cluster IV in-vitro. Conversely, PEGylation at other positions (Q1353-A1-domain and M1545-A2-domain) had limited effects on VWF clearance or binding to LRP1.Novel N-linked glycan chains were introduced at N1803 and N1807 in the A3-domain. In contrast to PEGylation at these sites, no significant extension in half-life was observed with these N-glycan variants. CONCLUSIONS These novel data demonstrate that site specific PEGylation but not site specific N-glycosylation modifies LRP1-dependent uptake of the A1A2A3-VWF by macrophages. This suggests that PEGylation, within the A1- and A3-domains in particular, may be used to attenuate LRP1-mediated clearance of VWF.
Collapse
Affiliation(s)
- Judicael Fazavana
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Teresa M Brophy
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Alain Chion
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Niamh Cooke
- BioMedicine Design, Pfizer, Grange Castle, Dublin, Ireland
| | | | | | | | - Debra Pittman
- Rare Disease Research Unit, Pfizer, Cambridge, MA, USA
| | | | | | - James S O'Donnell
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
- National Coagulation Centre, St James Hospital, Dublin, Ireland
| | - Jamie M O'Sullivan
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
27
|
Ca 2+-based allosteric switches and shape shifting in RGLG1 VWA domain. Comput Struct Biotechnol J 2020; 18:821-833. [PMID: 32308929 PMCID: PMC7155146 DOI: 10.1016/j.csbj.2020.03.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/12/2022] Open
Abstract
RGLG1 is an E3 ubiquitin ligase in Arabidopsis thaliana that participates in ABA signaling and regulates apical dominance. Here, we present crystal structures of RGLG1 VWA domain, revealing two novel calcium ions binding sites (NCBS1 and NCBS2). Furthermore, the structures with guided mutagenesis in NCBS1 prove that Ca2+ ions play important roles in controlling conformational change of VWA, which is stabilized in open state with Ca2+ bound and converted to closed state after Ca2+ removal. This allosteric regulation mechanism is distinct from the ever reported one involving the C-terminal helix in integrin α and β I domains. The mutation of a key residue in NCBS2 do not abolish its Ca2+-binding potential, with no conformational change. MD simulations reveals that open state of RGLG1 VWA has higher ligand affinity than its closed state, consisting with integrin. Structural comparison of ion-free-MIDAS with Mg2+-MIDAS reveals that Mg2+ binding to MIDAS does not induce conformational change. With acquisition of first structure of plant VWA domain in both open state and closed state, we carefully analyze the conformational change and propose a totally new paradigm for its transition of open-closed states, which will be of great value for guiding future researches on VWA proteins and their important biological significance.
Collapse
|
28
|
Tischer A, Machha VR, Moon-Tasson L, Benson LM, Auton M. Glycosylation sterically inhibits platelet adhesion to von Willebrand factor without altering intrinsic conformational dynamics. J Thromb Haemost 2020; 18:79-90. [PMID: 31479573 PMCID: PMC6940534 DOI: 10.1111/jth.14628] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/26/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND A molecular basis for von Willebrand factor (VWF) self-inhibition has been proposed by which the N-terminal and C-terminal flanking sequences of the globular A1 domain disulfide loop bind to and suppress the conformational dynamics of A1. These flanking sequences are rich in O-linked glycosylation (OLG), which is known to suppress platelet adhesion to VWF, presumably by steric hindrance. The inhibitory mechanism remains unresolved as to whether inhibition is due to steric exclusion by OLGs or a direct self-association interaction that stabilizes the domain. OBJECTIVES The platelet adhesive function, thermodynamic stability, and conformational dynamics of the wild-type and type 2M G1324S A1 domain lacking glycosylation (Escherichia coli) are compared with the wild-type glycosylated A1 domain (HEK293 cell culture) to decipher the self-inhibitory mechanism. METHODS Surface plasmon resonance and analytical rheology are utilized to assess Glycoprotein Ibα (GPIbα) binding at equilibrium and platelet adhesion under shear flow. The conformational stability is assessed through a combination of protein unfolding thermodynamics and hydrogen-deuterium exchange mass spectrometry (HXMS). RESULTS A1 glycosylation inhibits both GPIbα binding and platelet adhesion. Glycosylation increases the hydrodynamic size of A1 and stabilizes the thermal unfolding of A1 without changing its equilibrium stability. Glycosylation does not alter the intrinsic conformational dynamics of the A1 domain. CONCLUSIONS These studies invalidate the proposed inhibition through conformational suppression since glycosylation within these flanking sequences does not alter the native state stability or the conformational dynamics of A1. Rather, they confirm a mechanism by which glycosylation sterically hinders platelet adhesion to the A1 domain at equilibrium and under rheological shear stress.
Collapse
Affiliation(s)
- Alexander Tischer
- Division of Hematology, Departments of Internal Medicine and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, 55905, USA
| | - Venkata R. Machha
- Division of Hematology, Departments of Internal Medicine and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, 55905, USA
| | - Laurie Moon-Tasson
- Division of Hematology, Departments of Internal Medicine and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, 55905, USA
| | - Linda M. Benson
- Proteomics Core, Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, Rochester, Minnesota, 55905, USA
| | - Matthew Auton
- Division of Hematology, Departments of Internal Medicine and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, 55905, USA
| |
Collapse
|
29
|
Tischer A, Machha VR, Moon-Tasson L, Auton M. Platelet-type von Willebrand disease: Local disorder of the platelet GPIbα β-switch drives high-affinity binding to von Willebrand factor. J Thromb Haemost 2019; 17:2022-2034. [PMID: 31448872 PMCID: PMC11683816 DOI: 10.1111/jth.14597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/26/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND Mutations in the β-switch of GPIbα cause gain-of-function in the platelet-type von Willebrand disease. Structures of free and A1-bound GPIbα suggest that the β-switch undergoes a conformational change from a coil to a β-hairpin. OBJECTIVES Platelet-type von Willebrand disease (VWD) mutations have been proposed to stabilize the β-switch by shifting the equilibrium in favor of the β-hairpin, a hypothesis predicated on the assumption that the complex crystal structure between A1 and GPIbα is the high-affinity state. METHODS Hydrogen-deuterium exchange mass spectrometry is employed to test this hypothesis using G233V, M239V, G233V/M239V, W230L, and D235Y disease variants of GPIbα. If true, the expectation is a decrease in hydrogen-deuterium exchange within the β-switch as a result of newly formed hydrogen bonds between the β-strands of the β-hairpin. RESULTS Hydrogen-exchange is enhanced, indicating that the β-switch favors the disordered loop conformation. Hydrogen-exchange is corroborated by differential scanning calorimetry, which confirms that these mutations destabilize GPIbα by allowing the β-switch to dissociate from the leucine-rich-repeat (LRR) domain. The stability of GPIbα and its A1 binding affinity, determined by surface plasmon resonance, are correlated to the extent of hydrogen exchange in the β-switch. CONCLUSION These studies demonstrate that GPIbα with a disordered loop is binding-competent and support a mechanism in which local disorder in the β-switch exposes the LRR-domain of GPIbα enabling high-affinity interactions with the A1 domain.
Collapse
Affiliation(s)
- Alexander Tischer
- Division of Hematology, Departments of Internal Medicine and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Venkata R Machha
- Division of Hematology, Departments of Internal Medicine and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Laurie Moon-Tasson
- Division of Hematology, Departments of Internal Medicine and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Matthew Auton
- Division of Hematology, Departments of Internal Medicine and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
30
|
Kim D, Bresette C, Liu Z, Ku DN. Occlusive thrombosis in arteries. APL Bioeng 2019; 3:041502. [PMID: 31768485 PMCID: PMC6863762 DOI: 10.1063/1.5115554] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/16/2019] [Indexed: 12/18/2022] Open
Abstract
Thrombus formation in major arteries is life threatening. In this review article, we discuss how an arterial thrombus can form under pathologically high shear stresses, with bonding rates estimated to be the fastest Kon values in biochemistry. During occlusive thrombosis in arteries, the growth rate of the thrombus explodes to capture a billion platelets in about 10 min. Close to 100% of all platelets passing the thrombus are captured by long von Willebrand factor (vWF) strands that quickly form tethered nets. The nets grow in patches where shear stress is high, and the local concentration of vWF is elevated due to α-granule release by previously captured platelets. This rapidly formed thrombus has few red blood cells and so has a white appearance and is much stronger and more porous than clots formed through coagulation. Understanding and modeling the biophysics of this event can predict totally new approaches to prevent and treat heart attacks and strokes.
Collapse
Affiliation(s)
- Dongjune Kim
- GWW School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0363, USA
| | - Christopher Bresette
- GWW School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0363, USA
| | - Zixiang Liu
- GWW School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0363, USA
| | - David N Ku
- GWW School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0363, USA
| |
Collapse
|
31
|
Ngo T, Kim K, Bian Y, Nam G, Park HJ, Lee K, Cho GS, Ryu JM, Lim KM, Chung JH. Antithrombotic effect of SP-8008, a benzoic acid derivative, through the selective inhibition of shear stress-induced platelet aggregation. Br J Pharmacol 2019; 177:929-944. [PMID: 31648364 PMCID: PMC7024737 DOI: 10.1111/bph.14894] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/30/2019] [Accepted: 09/05/2019] [Indexed: 01/23/2023] Open
Abstract
Background and Purpose Bleeding is one of the most critical adverse effects of antithrombotic drugs, and many efforts have been made to discover novel antiplatelet agents without bleeding complications. Shear stress‐induced platelet aggregation (SIPA), where the interaction of von Willebrand factor (vWF) and platelet glycoprotein (GP) Ib constitutes the initial step, is a promising target to overcome bleeding problems, as SIPA occurs only in pathological conditions. Here, we describe SP‐8008, a novel modulator of vWF–GP Ib interactions and evaluated its antiplatelet/antithrombotic effects. Experimental Approach Newly synthesized compounds were screened for antiplatelet effects in vitro, using human platelets exposed to high shear stress. Aggregation, intracellular calcium level, granule secretion, and integrin activation were assessed. Molecular modelling using virtual docking and flow cytometry were used to evaluate effects on vWF–GP Ib interactions. Antithrombotic effects in vivo were determined in rats, using arterial thrombosis and shear stress‐specific thrombosis. Transection tail bleeding time was used to evaluate adverse effects. Key Results SP‐8008 was a potent inhibitor of SIPA, with IC50 of 1.44 ± 0.09 μM. SP‐8008 effectively and broadly blocked shear stress‐induced platelet activation events, without any significant toxicity. Importantly, SP‐8008 was highly selective against SIPA, effectively interfering with vWF–GP Ib engagement. Most importantly, SP‐8008 exerted significant antithrombotic effects in vivo in both shear stress‐specific and arterial thrombosis, without prolonging bleeding time. Conclusions and Implications Our results demonstrated that SP‐8008 can be a novel selective antiplatelet agent with improved safety profile.
Collapse
Affiliation(s)
- Thien Ngo
- College of Pharmacy, Seoul National University, Seoul, Korea
| | - Keunyoung Kim
- College of Pharmacy, Seoul National University, Seoul, Korea
| | - Yiying Bian
- College of Pharmacy, Seoul National University, Seoul, Korea
| | - Gibeom Nam
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Hyun-Ju Park
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Kiho Lee
- College of Pharmacy, Korea University, Sejong, Korea
| | - Geum-Sil Cho
- Research Headquarters, Shin Poong Pharm. Co. Ltd., Ansan, Korea
| | - Jei-Man Ryu
- Research Headquarters, Shin Poong Pharm. Co. Ltd., Ansan, Korea
| | - Kyung-Min Lim
- College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Jin-Ho Chung
- College of Pharmacy, Seoul National University, Seoul, Korea
| |
Collapse
|
32
|
Evidence for the Misfolding of the A1 Domain within Multimeric von Willebrand Factor in Type 2 von Willebrand Disease. J Mol Biol 2019; 432:305-323. [PMID: 31628947 PMCID: PMC7028320 DOI: 10.1016/j.jmb.2019.09.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/13/2019] [Accepted: 09/24/2019] [Indexed: 12/25/2022]
Abstract
Von Willebrand factor (VWF), an exceptionally large multimeric plasma glycoprotein, functions to initiate coagulation by agglutinating platelets in the blood stream to sites of vascular injury. This primary hemostatic function is perturbed in type 2 dysfunctional subtypes of von Willebrand disease (VWD) by mutations that alter the structure and function of the platelet GPIbα adhesive VWF A1 domains. The resulting amino acid substitutions cause local disorder and misfold the native structure of the isolated platelet GPIbα-adhesive A1 domain of VWF in both gain-of-function (type 2B) and loss-of-function (type 2M) phenotypes. These structural effects have not been explicitly observed in A1 domains of VWF multimers native to blood plasma. New mass spectrometry strategies are applied to resolve the structural effects of 2B and 2M mutations in VWF to verify the presence of A1 domain structural disorder in multimeric VWF harboring type 2 VWD mutations. Limited trypsinolysis mass spectrometry (LTMS) and hydrogen-deuterium exchange mass spectrometry (HXMS) are applied to wild-type and VWD variants of the single A1, A2, and A3 domains, an A1A2A3 tridomain fragment of VWF, plasmin-cleaved dimers of VWF, multimeric recombinant VWF, and normal VWF plasma concentrates. Comparatively, these methods show that mutations known to misfold the isolated A1 domain increase the rate of trypsinolysis and the extent of hydrogen-deuterium exchange in local secondary structures of A1 within multimeric VWF. VWD mutation effects are localized to the A1 domain without appreciably affecting the structure and dynamics of other VWF domains. The intrinsic dynamics of A1 observed in recombinant fragments of VWF are conserved in plasma-derived VWF. These studies reveal that structural disorder does occur in VWD variants of the A1 domain within multimeric VWF and provides strong support for VWF misfolding as a result of some, but not all, type 2 VWD variants.
Collapse
|
33
|
Naqvi AAT, Alajmi MF, Rehman T, Hussain A, Hassan I. Effects of Pro1266Leu mutation on structure and function of glycoprotein Ib binding domain of von Willebrand factor. J Cell Biochem 2019; 120:17847-17857. [PMID: 31135071 DOI: 10.1002/jcb.29052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 02/06/2023]
Abstract
Glycoprotein Ibα (GpIbα) binding ability of A1 domain of von Willebrand factor (vWF) facilitates platelet adhesion that plays a crucial role in maintaining hemostasis and thrombosis at the site of vascular damage. There are both "loss as well as gain of function" mutations observed in this domain. Naturally occurring "gain of function" mutations leave self-activating impacts on the A1 domain which turns the normal binding to characteristic constitutive binding with GPIbα. These "gain of function" mutations are associated with the von Willebrand disease type 2B. In recent years, studies focused on understanding the mechanism and conformational patterns attached to these phenomena have been conducted, but the conformational pathways leading to such binding patterns are poorly understood as of now. To obtain a microscopic picture of such events for the better understanding of pathways, we used molecular dynamics (MD) simulations along with principal component analysis and normal mode analysis to study the effects of Pro1266Leu (Pro503Leu in structural context) mutation on the structure and function of A1 domain of vWF. MD simulations have provided atomic-level details of intermolecular motions as a function of time to understand the dynamic behavior of A1 domain of vWF. Comparative analysis of the trajectories obtained from MD simulations of both the wild type and Pro503Leu mutant suggesting appreciable conformational changes in the structure of mutant which might provide a basis for assuming the "gain of function" effects of these mutations on the A1 domain of vWF, resulting in the constitutive binding with GpIbα.
Collapse
Affiliation(s)
- Ahmad Abu Turab Naqvi
- Center for Interdisciplinary Research in Basic Science, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| | - Mohamed F Alajmi
- Department of Pharmacognosy College of Pharmacy, King Saud University, Riyadh, KSA
| | - Tabish Rehman
- Department of Pharmacognosy College of Pharmacy, King Saud University, Riyadh, KSA
| | - Afzal Hussain
- Department of Pharmacognosy College of Pharmacy, King Saud University, Riyadh, KSA
| | - Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Science, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| |
Collapse
|
34
|
Guo S, Vance TD, Stevens CA, Voets I, Davies PL. RTX Adhesins are Key Bacterial Surface Megaproteins in the Formation of Biofilms. Trends Microbiol 2019; 27:453-467. [DOI: 10.1016/j.tim.2018.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/13/2018] [Accepted: 12/12/2018] [Indexed: 12/20/2022]
|
35
|
Xu ER, von Bülow S, Chen PC, Lenting PJ, Kolšek K, Aponte-Santamaría C, Simon B, Foot J, Obser T, Schneppenheim R, Gräter F, Denis CV, Wilmanns M, Hennig J. Structure and dynamics of the platelet integrin-binding C4 domain of von Willebrand factor. Blood 2019; 133:366-376. [PMID: 30305279 PMCID: PMC6450055 DOI: 10.1182/blood-2018-04-843615] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 09/24/2018] [Indexed: 12/22/2022] Open
Abstract
Von Willebrand factor (VWF) is a key player in the regulation of hemostasis by promoting recruitment of platelets to sites of vascular injury. An array of 6 C domains forms the dimeric C-terminal VWF stem. Upon shear force activation, the stem adopts an open conformation allowing the adhesion of VWF to platelets and the vessel wall. To understand the underlying molecular mechanism and associated functional perturbations in disease-related variants, knowledge of high-resolution structures and dynamics of C domains is of paramount interest. Here, we present the solution structure of the VWF C4 domain, which binds to the platelet integrin and is therefore crucial for the VWF function. In the structure, we observed 5 intra- and inter-subdomain disulfide bridges, of which 1 is unique in the C4 domain. The structure further revealed an unusually hinged 2-subdomain arrangement. The hinge is confined to a very short segment around V2547 connecting the 2 subdomains. Together with 2 nearby inter-subdomain disulfide bridges, this hinge induces slow conformational changes and positional alternations of both subdomains with respect to each other. Furthermore, the structure demonstrates that a clinical gain-of-function VWF variant (Y2561) is more likely to have an effect on the arrangement of the C4 domain with neighboring domains rather than impairing platelet integrin binding.
Collapse
Affiliation(s)
- Emma-Ruoqi Xu
- Hamburg Unit, European Molecular Biology Laboratory, Hamburg, Germany
| | - Sören von Bülow
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Po-Chia Chen
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Peter J Lenting
- INSERM, UMR_S 1176, Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Katra Kolšek
- Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Camilo Aponte-Santamaría
- Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing, Mathematikon, Heidelberg University, Heidelberg, Germany
- Max Planck Tandem Group in Computational Biophysics, University of Los Andes, Bogotá, Colombia
| | - Bernd Simon
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jaelle Foot
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Tobias Obser
- Department of Pediatric Hematology and Oncology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany; and
| | - Reinhard Schneppenheim
- Department of Pediatric Hematology and Oncology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany; and
| | - Frauke Gräter
- Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Cécile V Denis
- INSERM, UMR_S 1176, Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Matthias Wilmanns
- Hamburg Unit, European Molecular Biology Laboratory, Hamburg, Germany
- University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Janosch Hennig
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
36
|
Coller BS. Foreword: A Brief History of Ideas About Platelets in Health and Disease. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.09988-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
37
|
Structure of von Willebrand factor A1 on polystyrene determined from experimental and calculated sum frequency generation spectra. Biointerphases 2018; 13:06E411. [PMID: 30551688 DOI: 10.1116/1.5056219] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The blood-clotting protein von Willebrand factor (vWF) can be activated by small molecules, high shear stress, and interactions with interfaces. It subsequently binds platelet receptor glycoprotein Ibα (GPIbα) at the surface of platelets, thereby playing a crucial role in blood clotting due to platelet activation, which is an important process to consider in the design of cardiovascular implants and biomaterials used in blood-contacting applications. The influence of surfaces on the activation and the molecular-level structure of surface-bound vWF is largely unknown. Recent studies have indicated that when bound to hydrophobic polystyrene (PS), the A1 domain of vWF remains accessible for GPIbα binding. However, the detailed secondary structure and exact orientation of vWF A1 at the PS surface is still unresolved. Here, the authors resolve these features by studying the system with sum-frequency generation (SFG) spectroscopy. The data are consistent with a scenario where vWF A1 maintains a native secondary structure when bound to PS. Comparison of experimental and calculated SFG spectra combined with previously reported time-of-flight secondary ion mass spectrometry data suggests that A1 assumes an orientation with the GPIbα binding domain oriented away from the solid surface and exposed to the solution phase. This structural information will benefit future in vitro experiments with surface-adsorbed A1 domain and may have relevance for the design of novel blood-contacting biomaterials and wound-healing applications.
Collapse
|
38
|
vWA proteins of Leptospira interrogans induce hemorrhage in leptospirosis by competitive inhibition of vWF/GPIb-mediated platelet aggregation. EBioMedicine 2018; 37:428-441. [PMID: 30337247 PMCID: PMC6284457 DOI: 10.1016/j.ebiom.2018.10.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/10/2018] [Accepted: 10/10/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUD Leptospira interrogans is the major causative agent of leptospirosis, a worldwide zoonotic disease. Hemorrhage is a typical pathological feature of leptospirosis. Binding of von Willebrand factor (vWF) to platelet glycoprotein-Ibα (GPIbα) is a crucial step in initiation of platelet aggregation. The products of L. interrogans vwa-I and vwa-II genes contain vWF-A domains, but their ability to induce hemorrhage has not been determined. METHODS Human (Hu)-platelet- and Hu-GPIbα-binding abilities of the recombinant proteins expressed by L. interrogans strain Lai vwa-I and vwa-II genes (rLep-vWA-I and rLep-vWA-II) were detected by flowcytometry, surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC). Hu-platelet aggregation and its signaling kinases and active components were detected by lumiaggregometry, Western analysis, spectrophotometry and confocal microscopy. Hu-GPIbα-binding sites in rLep-vWA-I and rLep-vWA-II were identified by SPR/ITC measurements. FINDINGS Both rLep-vWA-I and rLep-vWA-II were able to bind to Hu-platelets and inhibit rHu-vWF/ristocetin-induced Hu-platelet aggregation, but Hu-GPIbα-IgG, rLep-vWA-I-IgG and rLep-vWA-II-IgG blocked this binding or inhibition. SPR and ITC revealed a tight interaction between Hu-GPIbα and rLep-vWA-I/rLep-vWA-II with KD values of 3.87 × 10-7-8.65 × 10-8 M. Hu-GPIbα-binding of rL-vWA-I/rL-vWA-II neither activated the PI3K/AKT-ERK and PLC/PKC kinases nor affected the NO, cGMP, ADP, Ca2+ and TXA2 levels in Hu-platelets. G13/R36/G47 in Lep-vWA-I and G76/Q126 in Lep-vWA-II were confirmed as the Hu-GPIbα-binding sites. Injection of rLep-vWA-I or rLep-vWA-II in mice resulted in diffuse pulmonary and focal renal hemorrhage but this hemorrhage was blocked by rLep-vWA-I-IgG or rLep-vWA-II-IgG. INTERPRETATION The products of L. interrogans vwa-I and vwa-II genes induce hemorrhage by competitive inhibition of vWF-mediated Hu-platelet aggregation.
Collapse
|
39
|
Sanda N, Suzuki N, Suzuki A, Kanematsu T, Kishimoto M, Hasuwa H, Takagi A, Kojima T, Matsushita T, Nakamura S. Vwf K1362A resulted in failure of protein synthesis in mice. Int J Hematol 2018; 107:428-435. [PMID: 29392565 DOI: 10.1007/s12185-017-2394-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 12/18/2017] [Accepted: 12/19/2017] [Indexed: 11/24/2022]
Abstract
Von Willebrand factor (VWF) is synthesized in megakaryocytes and endothelial cells (ECs) and has two main roles: to carry and protect coagulation factor VIII (FVIII) from degradation by forming VWF-FVIII complex; and to mediate platelet adhesion and aggregation at sites of vascular injury. Previous research using the HEK293 cell line revealed that the VWF K1362 mutation interacted directly with platelet glycoprotein Ib (GPIb). Vwf K1362A knock-in (KI) mice were therefore generated to verify the in vivo function of residue 1362 in binding to platelet GPIb. The Cre-loxP system was employed to introduce the Vwf K1362A mutation systemically in mice. In blood coagulation analysis, the VWF antigen (VWF:Ag) of Lys1362Ala KI homozygous (homo) mice was below the sensitivity of detection by enzyme-linked immunosorbent assay. FVIII activities (FVIII:C) were 47.9 ± 0.3 and 3.3 ± 0.3% (K1362A heterozygous (hetero) and K1362A KI homo mice, respectively) compared to wild-type mice. Immunohistochemical staining analysis revealed that VWF protein did not exist in ECs of K1362A KI homo mice. These results indicated that VWF protein synthesis of K1362A was impaired after transcription in mice. K1362 seems to represent a very important position not only for VWF function, but also for VWF synthesis in mice.
Collapse
Affiliation(s)
- Naomi Sanda
- Department of Medical Technique, Nagoya University Hospital, Nagoya, Japan.,Department of Pathology and Clinical Laboratories, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nobuaki Suzuki
- Department of Transfusion Medicine, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-0065, Japan.
| | - Atsuo Suzuki
- Department of Medical Technique, Nagoya University Hospital, Nagoya, Japan
| | - Takeshi Kanematsu
- Department of Clinical Laboratory, Nagoya University Hospital, Nagoya, Japan
| | - Mayuko Kishimoto
- Department of Clinical Laboratory, Nagoya University Hospital, Nagoya, Japan
| | - Hidetoshi Hasuwa
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka, Japan.,Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
| | - Akira Takagi
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsuhito Kojima
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tadashi Matsushita
- Department of Transfusion Medicine, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-0065, Japan.,Department of Clinical Laboratory, Nagoya University Hospital, Nagoya, Japan
| | - Shigeo Nakamura
- Department of Pathology and Clinical Laboratories, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
40
|
Interlandi G, Yakovenko O, Tu AY, Harris J, Le J, Chen J, López JA, Thomas WE. Specific electrostatic interactions between charged amino acid residues regulate binding of von Willebrand factor to blood platelets. J Biol Chem 2017; 292:18608-18617. [PMID: 28924049 DOI: 10.1074/jbc.m117.797456] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/25/2017] [Indexed: 01/20/2023] Open
Abstract
The plasma protein von Willebrand factor (VWF) is essential for hemostasis initiation at sites of vascular injury. The platelet-binding A1 domain of VWF is connected to the VWF N-terminally located D'D3 domain through a relatively unstructured amino acid sequence, called here the N-terminal linker. This region has previously been shown to inhibit the binding of VWF to the platelet surface receptor glycoprotein Ibα (GpIbα). However, the molecular mechanism underlying the inhibitory function of the N-terminal linker has not been elucidated. Here, we show that an aspartate at position 1261 is the most critical residue of the N-terminal linker for inhibiting binding of the VWF A1 domain to GpIbα on platelets in blood flow. Through a combination of molecular dynamics simulations, mutagenesis, and A1-GpIbα binding experiments, we identified a network of salt bridges between Asp1261 and the rest of A1 that lock the N-terminal linker in place such that it reduces binding to GpIbα. Mutations aimed at disrupting any of these salt bridges activated binding unless the mutated residue also formed a salt bridge with GpIbα, in which case the mutations inhibited the binding. These results show that interactions between charged amino acid residues are important both to directly stabilize the A1-GpIbα complex and to indirectly destabilize the complex through the N-terminal linker.
Collapse
Affiliation(s)
- Gianluca Interlandi
- From the Department of Bioengineering, University of Washington, Seattle, Washington 98195,
| | - Olga Yakovenko
- From the Department of Bioengineering, University of Washington, Seattle, Washington 98195
| | - An-Yue Tu
- From the Department of Bioengineering, University of Washington, Seattle, Washington 98195
| | - Jeff Harris
- the Bloodworks Research Institute, Seattle, Washington 98102, and
| | - Jennie Le
- the Bloodworks Research Institute, Seattle, Washington 98102, and
| | - Junmei Chen
- the Bloodworks Research Institute, Seattle, Washington 98102, and
| | - José A López
- the Bloodworks Research Institute, Seattle, Washington 98102, and.,the Departments of Medicine, Biochemistry, and Mechanical Engineering, University of Washington, Seattle, Washington 98195
| | - Wendy E Thomas
- From the Department of Bioengineering, University of Washington, Seattle, Washington 98195,
| |
Collapse
|
41
|
Identification of extant vertebrate Myxine glutinosa VWF: evolutionary conservation of primary hemostasis. Blood 2017; 130:2548-2558. [PMID: 28899852 DOI: 10.1182/blood-2017-02-770792] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 08/23/2017] [Indexed: 11/20/2022] Open
Abstract
Hemostasis in vertebrates involves both a cellular and a protein component. Previous studies in jawless vertebrates (cyclostomes) suggest that the protein response, which involves thrombin-catalyzed conversion of a soluble plasma protein, fibrinogen, into a polymeric fibrin clot, is conserved in all vertebrates. However, similar data are lacking for the cellular response, which in gnathostomes is regulated by von Willebrand factor (VWF), a glycoprotein that mediates the adhesion of platelets to the subendothelial matrix of injured blood vessels. To gain evolutionary insights into the cellular phase of coagulation, we asked whether a functional vwf gene is present in the Atlantic hagfish, Myxine glutinosa We found a single vwf transcript that encodes a simpler protein compared with higher vertebrates, the most striking difference being the absence of an A3 domain, which otherwise binds collagen under high-flow conditions. Immunohistochemical analyses of hagfish tissues and blood revealed Vwf expression in endothelial cells and thrombocytes. Electron microscopic studies of hagfish tissues demonstrated the presence of Weibel-Palade bodies in the endothelium. Hagfish Vwf formed high-molecular-weight multimers in hagfish plasma and in stably transfected CHO cells. In functional assays, botrocetin promoted VWF-dependent thrombocyte aggregation. A search for vwf sequences in the genome of sea squirts, the closest invertebrate relatives of hagfish, failed to reveal evidence of an intact vwf gene. Together, our findings suggest that VWF evolved in the ancestral vertebrate following the divergence of the urochordates some 500 million years ago and that it acquired increasing complexity though sequential insertion of functional modules.
Collapse
|
42
|
Deng W, Wang Y, Druzak SA, Healey JF, Syed AK, Lollar P, Li R. A discontinuous autoinhibitory module masks the A1 domain of von Willebrand factor. J Thromb Haemost 2017; 15:1867-1877. [PMID: 28692141 PMCID: PMC5585049 DOI: 10.1111/jth.13775] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Indexed: 12/18/2022]
Abstract
Essentials The mechanism for the auto-inhibition of von Willebrand factor (VWF) remains unclear. Hydrogen exchange of two VWF A1 fragments with disparate activities was measured and compared. Discontinuous residues flanking A1 form a structural module that blocks A1 binding to the platelet. Our results suggest a potentially unified model of VWF activation. Click to hear an ISTH Academy presentation on the domain architecture of VWF and activation by elongational flow by Dr Springer SUMMARY: Background How von Willebrand factor (VWF) senses and responds to shear flow remains unclear. In the absence of shear flow, VWF or its fragments can be induced to bind spontaneously to platelet GPIbα. Objectives To elucidate the auto-inhibition mechanism of VWF. Methods Hydrogen-deuterium exchange (HDX) of two recombinant VWF fragments expressed from baby hamster kidney cells were measured and compared. Results The shortA1 protein contains VWF residues 1261-1472 and binds GPIbα with a significantly higher affinity than the longA1 protein that contains VWF residues 1238-1472. Both proteins contain the VWF A1 domain (residues 1272-1458). Many residues in longA1, particularly those in the N- and C-terminal sequences flanking the A1 domain, and in helix α1, loops α1β2 and β3α2, demonstrated markedly reduced HDX compared with their counterparts in shortA1. The HDX-protected region in longA1 overlaps with the GPIbα-binding interface and is clustered with type 2B von Willebrand disease (VWD) mutations. Additional comparison with the HDX of denatured longA1 and ristocetin-bound longA1 indicates the N- and C-terminal sequences flanking the A1 domain form cooperatively an integrated autoinhibitory module (AIM) that interacts with the HDX-protected region. Binding of ristocetin to the C-terminal part of the AIM desorbs the AIM from A1 and enables longA1 binding to GPIbα. Conclusion The discontinuous AIM binds the A1 domain and prevents it from binding to GPIbα, which has significant implications for the pathogenesis of type 2B VWD and the shear-induced activation of VWF activity.
Collapse
Affiliation(s)
- W Deng
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Y Wang
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - S A Druzak
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - J F Healey
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - A K Syed
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - P Lollar
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - R Li
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
43
|
Doruelo AL, Haberichter SL, Christopherson PA, Boggio LN, Gupta S, Lentz SR, Shapiro AD, Montgomery RR, Flood VH. Clinical and laboratory phenotype variability in type 2M von Willebrand disease. J Thromb Haemost 2017; 15:1559-1566. [PMID: 28544236 PMCID: PMC5538962 DOI: 10.1111/jth.13742] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Indexed: 12/22/2022]
Abstract
Essentials The pathophysiology of type 2M von Willebrand disease (VWD) is poorly understood. Sequence variations in type 2M VWD subjects were characterized. A high degree of clinical and laboratory variability exists within type 2M VWD variants. Some type 2M variants may share features of type 2A VWD. SUMMARY Background von Willebrand factor (VWF) is a multimeric coagulation factor that tethers platelets to injured subendothelium. Type 2M von Willebrand disease (VWD) is characterized by a qualitative defect in VWF with preserved multimer distribution. Objectives Through the Zimmerman Program for the Molecular and Clinical Biology for VWD, five VWF sequence variations were studied in subjects diagnosed with type 2M VWD. Methods Bleeding phenotype was assessed using the ISTH bleeding assessment tool. Full-length VWF gene sequencing was performed for each subject. Each variant was placed into a recombinant VWF vector using site-directed mutagenesis and expressed in HEK293T cells as homozygous or heterozygous VWF. Variant expression, collagen binding and platelet GPIbα binding were studied through ELISA assays. Multimer analysis was performed by gel electrophoresis. Results Bleeding scores were elevated for all subjects except for the p.P1162L and p.R1374C variants. Although all had reduced VWF ristocetin cofactor activity/VWF antigen ratios on plasma testing, recombinant VWF did not show a classic type 2M phenotype for any of the five variants. Homozygous expression of variants p.D1283Y, p.R1349C, p.R1374C and p.I1453N was consistent with type 2A VWD, although all had normal expression as heterozygous recombinant VWF. Variant p.P1162L had normal VWF expression and function, consistent with the lack of bleeding symptoms. Conclusions Although originally classified as type 2M VWD, these homozygous recombinant VWF variants do not fulfill complete 2M VWD diagnostic criteria. A better classification schema and improved testing for putative type 2M variants is needed in order to effectively diagnose and treat affected patients.
Collapse
Affiliation(s)
- Ashley L. Doruelo
- Department of Pediatrics, Division of Hematology/Oncology, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226
- Children’s Research Institute, Children’s Hospital of Wisconsin, Milwaukee, WI 53226
| | - Sandra L. Haberichter
- Department of Pediatrics, Division of Hematology/Oncology, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226
- Children’s Research Institute, Children’s Hospital of Wisconsin, Milwaukee, WI 53226
- Blood Research Institute, BloodCenter of Wisconsin, 8727 Watertown Plank Rd, Milwaukee, WI 53226
| | - Pamela A. Christopherson
- Blood Research Institute, BloodCenter of Wisconsin, 8727 Watertown Plank Rd, Milwaukee, WI 53226
| | | | - Sweta Gupta
- Indiana Hemophilia & Thrombosis Center, Indianapolis, IN 46260
| | - Steven R. Lentz
- University of Iowa Carver College of Medicine, Iowa City, IA 52242
| | - Amy D. Shapiro
- Indiana Hemophilia & Thrombosis Center, Indianapolis, IN 46260
| | - Robert R. Montgomery
- Department of Pediatrics, Division of Hematology/Oncology, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226
- Children’s Research Institute, Children’s Hospital of Wisconsin, Milwaukee, WI 53226
- Blood Research Institute, BloodCenter of Wisconsin, 8727 Watertown Plank Rd, Milwaukee, WI 53226
| | - Veronica H. Flood
- Department of Pediatrics, Division of Hematology/Oncology, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226
- Children’s Research Institute, Children’s Hospital of Wisconsin, Milwaukee, WI 53226
- Blood Research Institute, BloodCenter of Wisconsin, 8727 Watertown Plank Rd, Milwaukee, WI 53226
| |
Collapse
|
44
|
Löf A, Müller JP, Brehm MA. A biophysical view on von Willebrand factor activation. J Cell Physiol 2017; 233:799-810. [PMID: 28256724 DOI: 10.1002/jcp.25887] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 01/01/2023]
Abstract
The process of hemostatic plug formation at sites of vascular injury crucially relies on the large multimeric plasma glycoprotein von Willebrand factor (VWF) and its ability to recruit platelets to the damaged vessel wall via interaction of its A1 domain with platelet GPIbα. Under normal blood flow conditions, VWF multimers exhibit a very low binding affinity for platelets. Only when subjected to increased hydrodynamic forces, which primarily occur in connection with vascular injury, VWF can efficiently bind to platelets. This force-regulation of VWF's hemostatic activity is not only highly intriguing from a biophysical perspective, but also of eminent physiological importance. On the one hand, it prevents undesired activity of VWF in intact vessels that could lead to thromboembolic complications and on the other hand, it enables efficient VWF-mediated platelet aggregation exactly where needed. Here, we review recent studies that mainly employed biophysical approaches in order to elucidate the molecular mechanisms underlying the complex mechano-regulation of the VWF-GPIbα interaction. Their results led to two main hypotheses: first, intramolecular shielding of the A1 domain is lifted upon force-induced elongation of VWF; second, force-induced conformational changes of A1 convert it from a low-affinity to a high-affinity state. We critically discuss these hypotheses and aim at bridging the gap between the large-scale behavior of VWF as a linear polymer in hydrodynamic flow and the detailed properties of the A1-GPIbα bond at the single-molecule level.
Collapse
Affiliation(s)
- Achim Löf
- Department of Physics and Center for NanoScience, LMU Munich, Munich, Germany
| | - Jochen P Müller
- Department of Physics and Center for NanoScience, LMU Munich, Munich, Germany
| | - Maria A Brehm
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
45
|
Abstract
Integrins comprise a large family of αβ heterodimeric cell adhesion receptors that are expressed on all cells except red blood cells and that play essential roles in the regulation of cell growth and function. The leukocyte integrins, which include members of the β
1, β
2, β
3, and β
7 integrin family, are critical for innate and adaptive immune responses but also can contribute to many inflammatory and autoimmune diseases when dysregulated. This review focuses on the β
2 integrins, the principal integrins expressed on leukocytes. We review their discovery and role in host defense, the structural basis for their ligand recognition and activation, and their potential as therapeutic targets.
Collapse
Affiliation(s)
- M Amin Arnaout
- Leukocyte Biology & Inflammation Program, Structural Biology Program, Nephrology, Center for Regenerative Medicine, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
46
|
Tronic EH, Yakovenko O, Weidner T, Baio JE, Penkala R, Castner DG, Thomas WE. Differential surface activation of the A1 domain of von Willebrand factor. Biointerphases 2016; 11:029803. [PMID: 26968213 PMCID: PMC4788635 DOI: 10.1116/1.4943618] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 02/25/2016] [Accepted: 02/29/2016] [Indexed: 12/19/2022] Open
Abstract
The clotting protein von Willebrand factor (VWF) binds to platelet receptor glycoprotein Ibα (GPIbα) when VWF is activated by chemicals, high shear stress, or immobilization onto surfaces. Activation of VWF by surface immobilization is an important problem in the failure of cardiovascular implants, but is poorly understood. Here, the authors investigate whether some or all surfaces can activate VWF at least in part by affecting the orientation or conformation of the immobilized GPIbα-binding A1 domain of VWF. Platelets binding to A1 adsorbed onto polystyrene surfaces translocated rapidly at moderate and high flow, but detached at low flow, while platelets binding to A1 adsorbed onto glass or tissue-culture treated polystyrene surfaces translocated slowly, and detached only at high flow. Both x-ray photoelectron spectroscopy and conformation independent antibodies reported comparable A1 amounts on all surfaces. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) and near-edge x-ray absorption fine structure spectra suggested differences in orientation on the three surfaces, but none that could explain the biological data. Instead, ToF-SIMS data and binding of conformation-dependent antibodies were consistent with the stabilization of an alternative more activated conformation of A1 by tissue culture polystyrene and especially glass. These studies demonstrate that different material surfaces differentially affect the conformation of adsorbed A1 domain and its biological activity. This is important when interpreting or designing in vitro experiments with surface-adsorbed A1 domain, and is also of likely relevance for blood-contacting biomaterials.
Collapse
Affiliation(s)
- Elaine H Tronic
- Department of Bioengineering, University of Washington, Seattle, Washington 98195
| | - Olga Yakovenko
- Department of Bioengineering, University of Washington, Seattle, Washington 98195
| | - Tobias Weidner
- Department of Bioengineering, University of Washington, Seattle, Washington 98195
| | - Joe E Baio
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195
| | - Rebecca Penkala
- Department of Bioengineering, University of Washington, Seattle, Washington 98195
| | - David G Castner
- Departments of Bioengineering and Chemical Engineering, University of Washington, Seattle, Washington 98195
| | - Wendy E Thomas
- Department of Bioengineering, University of Washington, Seattle, Washington 98195
| |
Collapse
|
47
|
Kawarai T, Tajima A, Kuroda Y, Saji N, Orlacchio A, Terasawa H, Shimizu H, Kita Y, Izumi Y, Mitsui T, Imoto I, Kaji R. A homozygous mutation of VWA3B causes cerebellar ataxia with intellectual disability. J Neurol Neurosurg Psychiatry 2016; 87:656-62. [PMID: 26157035 DOI: 10.1136/jnnp-2014-309828] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 06/15/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND Hereditary cerebellar ataxia constitutes a heterogeneous group of neurodegenerative disorders, occasionally accompanied by other neurological features. Genetic defects remain to be elucidated in approximately 40% of hereditary cerebellar ataxia cases in Japan. We attempted to identify the gene responsible for autosomal recessive cerebellar ataxia with intellectual disability. METHODS The present study involved three patients in a consanguineous Japanese family. Neurological examination and gene analyses were performed in all family members. We performed genome-wide linkage analysis including single nucleotide polymorphism arrays, copy-number variation analysis and whole exome sequencing. To clarify the functional alteration resulting from the identified mutation, we performed cell viability assay of cultured cells expressing mutant protein. RESULTS One homozygous region shared among the three patients on chromosomes 2p16.1-2q12.3 was identified. Using whole exome sequencing, six homozygous variants in genes in the region were detected. Only one variant, VWA3B c.A1865C, results in a change of a highly conserved amino acid (p.K622T) and was not present in control samples. VWA3B encodes a von Willebrand Factor A Domain-Containing Protein 3B with ubiquitous expression, including the cerebellum. The viability of cultured cells expressing the specific K622T mutation was proved to decrease through the activation of apoptotic pathway. CONCLUSIONS Mutated VWA3B was found to be likely associated with cerebellar degeneration with intellectual disability. Although a rare cause of cerebellar degeneration, these findings indicate a critical role for VWA3B in the apoptosis pathway in neuronal tissues.
Collapse
Affiliation(s)
- Toshitaka Kawarai
- Department of Clinical Neuroscience, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Atsushi Tajima
- Department of Human Genetics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan Department of Bioinformatics and Genomics, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Yukiko Kuroda
- Department of Clinical Research, Tokushima National Hospital, National Hospital Organization, Tokushima, Japan
| | - Naoki Saji
- Department of Stroke Medicine, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Antonio Orlacchio
- Laboratorio di Neurogenetica, CERC-IRCCS Santa Lucia, Rome, Italy Dipartimento di Medicina dei Sistemi, Università di Roma "Tor Vergata", Rome, Italy
| | - Hideo Terasawa
- Department of Neurology, Hyogo Brain and Heart Centre, Himeji City, Hyogo, Japan
| | - Hirotaka Shimizu
- Department of Neurology, Hyogo Brain and Heart Centre, Himeji City, Hyogo, Japan
| | - Yasushi Kita
- Department of Neurology, Hyogo Brain and Heart Centre, Himeji City, Hyogo, Japan
| | - Yuishin Izumi
- Department of Clinical Neuroscience, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Takao Mitsui
- Department of Clinical Research, Tokushima National Hospital, National Hospital Organization, Tokushima, Japan
| | - Issei Imoto
- Department of Human Genetics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Ryuji Kaji
- Department of Clinical Neuroscience, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
48
|
Campbell JC, Tischer A, Machha V, Moon-Tasson L, Sankaran B, Kim C, Auton M. Data on the purification and crystallization of the loss-of-function von Willebrand disease variant (p.Gly1324Ser) of the von Willebrand factor A1 domain. Data Brief 2016; 7:1700-1706. [PMID: 27761512 PMCID: PMC5063811 DOI: 10.1016/j.dib.2016.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/02/2016] [Accepted: 05/03/2016] [Indexed: 12/12/2022] Open
Abstract
von Willebrand factor׳s (VWF) primary hemostatic responsibility is to deposit platelets at sites of vascular injury to prevent bleeding. This function is mediated by the interaction between the VWF A1 domain and the constitutively active platelet receptor, GPIbα. The crystal structure of the A1 domain harboring the von Willebrand disease (vWD) type 2M mutation p.Gly1324Ser has been recently published in the Journal of Biological Chemistry describing its effect on the function and structural stability of the A1 domain of VWF, “Mutational constraints on local unfolding inhibit the rheological adaptation of von Willebrand factor” [1]. The mutation introduces a side chain that thermodynamically stabilizes the domain by reducing the overall flexibility of the A1–GPIbα binding interface resulting in loss-of-function and bleeding due to the inability of A1 to adapt to a binding competent conformation under the rheological shear stress blood flow. In this data article we describe the production, quality control and crystallization of the p.Gly1324Ser vWD variant of the A1 domain of VWF. p.Gly1324Ser A1 was expressed in Escherichia coli as insoluble inclusion bodies. After the preparation of the inclusion bodies, the protein was solubilized, refolded, purified by affinity chromatography and crystallized. The crystal structure of the p.Gly1324Ser mutant of the A1 domain is deposited at the Protein Data Bank PDB: 5BV8
Collapse
Affiliation(s)
- James C. Campbell
- Structural and Computational Biology and Molecular Biophysics Program, Baylor College of Medicine, Houston, TX, USA
| | - Alexander Tischer
- Division of Hematology, Departments of Internal Medicine and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Venkata Machha
- Division of Hematology, Departments of Internal Medicine and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Laurie Moon-Tasson
- Division of Hematology, Departments of Internal Medicine and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Banumathi Sankaran
- Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, BLDG 6R2100, Berkeley, CA, USA
| | - Choel Kim
- Structural and Computational Biology and Molecular Biophysics Program, Baylor College of Medicine, Houston, TX, USA
- Department of Pharmacology, Baylor College of Medicine, Houston, TX, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Matthew Auton
- Division of Hematology, Departments of Internal Medicine and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
- Corresponding author.
| |
Collapse
|
49
|
Zimmermann MT, Tischer A, Whitten ST, Auton M. Structural origins of misfolding propensity in the platelet adhesive von Willebrand factor A1 domain. Biophys J 2016. [PMID: 26200876 DOI: 10.1016/j.bpj.2015.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The von Willebrand factor (VWF) A1 and A3 domains are structurally isomorphic yet exhibit distinct mechanisms of unfolding. The A1 domain, responsible for platelet adhesion to VWF in hemostasis, unfolds through a molten globule intermediate in an apparent three-state mechanism, while A3 unfolds by a classical two-state mechanism. Inspection of the sequences or structures alone does not elucidate the source of this thermodynamic conundrum; however, the three-state character of the A1 domain suggests that it has more than one cooperative substructure yielding two separate unfolding transitions not present in A3. We investigate the extent to which structural elements contributing to intermediate conformations can be identified using a residue-specific implementation of the structure-energy-equivalence-of-domains algorithm (SEED), which parses proteins of known structure into their constituent thermodynamically cooperative components using protein-group-specific, transfer free energies. The structural elements computed to contribute to the non-two-state character coincide with regions where Von Willebrand disease mutations induce misfolded molten globule conformations of the A1 domain. This suggests a mechanism for the regulation of rheological platelet adhesion to A1 based on cooperative flexibility of the α2 and α3 helices flanking the platelet GPIbα receptor binding interface.
Collapse
Affiliation(s)
- Michael T Zimmermann
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Alexander Tischer
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Steven T Whitten
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas
| | - Matthew Auton
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
50
|
Parker DN, Tasneem S, Farndale RW, Bihan D, Sadler JE, Sebastian S, de Groot PG, Hayward CPM. The functions of the A1A2A3 domains in von Willebrand factor include multimerin 1 binding. Thromb Haemost 2016; 116:87-95. [PMID: 27052467 PMCID: PMC5175582 DOI: 10.1160/th15-09-0700] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 03/18/2016] [Indexed: 12/24/2022]
Abstract
Multimerin 1 (MMRN1) is a massive, homopolymeric protein that is stored in platelets and endothelial cells for activation-induced release. In vitro, MMRN1 binds to the outer surfaces of activated platelets and endothelial cells, the extracellular matrix (including collagen) and von Willebrand factor (VWF) to support platelet adhesive functions. VWF associates with MMRN1 at high shear, not static conditions, suggesting that shear exposes cryptic sites within VWF that support MMRN1 binding. Modified ELISA and surface plasmon resonance were used to study the structural features of VWF that support MMRN1 binding, and determine the affinities for VWF-MMRN1 binding. High shear microfluidic platelet adhesion assays determined the functional consequences for VWF-MMRN1 binding. VWF binding to MMRN1 was enhanced by shear exposure and ristocetin, and required VWF A1A2A3 region, specifically the A1 and A3 domains. VWF A1A2A3 bound to MMRN1 with a physiologically relevant binding affinity (KD: 2.0 ± 0.4 nM), whereas the individual VWF A1 (KD: 39.3 ± 7.7 nM) and A3 domains (KD: 229 ± 114 nM) bound to MMRN1 with lower affinities. VWF A1A2A3 was also sufficient to support the adhesion of resting platelets to MMRN1 at high shear, by a mechanism dependent on VWF-GPIbα binding. Our study provides new information on the molecular basis of MMRN1 binding to VWF, and its role in supporting platelet adhesion at high shear. We propose that at sites of vessel injury, MMRN1 that is released following activation of platelets and endothelial cells, binds to VWF A1A2A3 region to support platelet adhesion at arterial shear rates.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Catherine P M Hayward
- Catherine P. M. Hayward, McMaster University Medical Centre, HSC 2N29A, 1200 Main St. West, Hamilton, Ontario, Canada L8N 3Z5, Tel.: +1 905 521 2100 Ext. 76274, Fax: +1 905 521 2338, E-mail:
| |
Collapse
|