1
|
Wang Y, Chen Z, Yang G, Yuan G. Unveiling the roles of LEMD proteins in cellular processes. Life Sci 2024; 357:123116. [PMID: 39374771 DOI: 10.1016/j.lfs.2024.123116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/09/2024]
Abstract
Proteins localized in the inner nuclear membrane (INM) engage in various fundamental cellular processes via their interactions with outer nuclear membrane (ONM) proteins and nuclear lamina. LAP2-emerin-MAN1 domain (LEMD) family proteins, predominantly positioned in the INM, participate in the maintenance of INM functions, including the reconstruction of the nuclear envelope during mitosis, mechanotransduction, and gene transcriptional modulation. Malfunction of LEMD proteins leads to severe tissue-restricted diseases, which may manifest as fatal deformities and defects. In this review, we summarize the significant roles of LEMD proteins in cellular processes, explains the mechanisms of LEMD protein-related diseases, and puts forward questions in less-explored areas like details in tissue-restricted phenotypes. It intends to sort out previous works about LEMD proteins and pave way for future researchers who might discover deeper mechanisms of and better treatment strategies for LEMD protein-related diseases.
Collapse
Affiliation(s)
- Yiyun Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Zhi Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Guobin Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Guohua Yuan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
2
|
Dayan J, Melkman-Zehavi T, Goldman N, Soglia F, Zampiga M, Petracci M, Sirri F, Braun U, Inhuber V, Halevy O, Uni Z. In-ovo feeding with creatine monohydrate: implications for chicken energy reserves and breast muscle development during the pre-post hatching period. Front Physiol 2023; 14:1296342. [PMID: 38156069 PMCID: PMC10752974 DOI: 10.3389/fphys.2023.1296342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/04/2023] [Indexed: 12/30/2023] Open
Abstract
The most dynamic period throughout the lifespan of broiler chickens is the pre-post-hatching period, entailing profound effects on their energy status, survival rate, body weight, and muscle growth. Given the significance of this pivotal period, we evaluated the effect of in-ovo feeding (IOF) with creatine monohydrate on late-term embryos' and hatchlings' energy reserves and post-hatch breast muscle development. The results demonstrate that IOF with creatine elevates the levels of high-energy-value molecules (creatine and glycogen) in the liver, breast muscle and yolk sac tissues 48 h post IOF, on embryonic day 19 (p < 0.03). Despite this evidence, using a novel automated image analysis tool on day 14 post-hatch, we found a significantly higher number of myofibers with lower diameter and area in the IOF creatine group compared to the control and IOF NaCl groups (p < 0.004). Gene expression analysis, at hatch, revealed that IOF creatine group had significantly higher expression levels of myogenin (MYOG) and insulin-like growth factor 1 (IGF1), related to differentiation of myogenic cells (p < 0.01), and lower expression of myogenic differentiation protein 1 (MyoD), related to their proliferation (p < 0.04). These results imply a possible effect of IOF with creatine on breast muscle development through differential expression of genes involved in myogenic proliferation and differentiation. The findings provide valuable insights into the potential of pre-hatch enrichment with creatine in modulating post-hatch muscle growth and development.
Collapse
Affiliation(s)
- Jonathan Dayan
- Department of Animal Science, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Tal Melkman-Zehavi
- Department of Animal Science, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Noam Goldman
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Francesca Soglia
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, Cesena, Italy
| | - Marco Zampiga
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, Cesena, Italy
| | - Massimiliano Petracci
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, Cesena, Italy
| | - Federico Sirri
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, Cesena, Italy
| | | | | | - Orna Halevy
- Department of Animal Science, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Zehava Uni
- Department of Animal Science, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
3
|
Mohamad Yusoff F, Nakashima A, Kajikawa M, Kishimoto S, Maruhashi T, Higashi Y. Therapeutic Myogenesis Induced by Ultrasound Exposure in a Volumetric Skeletal Muscle Loss Injury Model. Am J Sports Med 2023; 51:3554-3566. [PMID: 37743748 DOI: 10.1177/03635465231195850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
BACKGROUND Low-intensity pulsed ultrasound (LIPUS) irradiation has been shown to induce various responses in different cells. It has been shown that LIPUS activates extracellular signal-regulated kinase 1/2 (ERK1/2) through integrin. PURPOSE To study the effects of LIPUS on myogenic regulatory factors and other related myogenesis elements in a volumetric skeletal muscle loss injury model. STUDY DESIGN Controlled laboratory study. METHODS C57BL/6J mice were subjected to full-thickness muscle defect injury of the quadriceps and treated with direct application of LIPUS 20 min/d or non-LIPUS treatment (control) for 3, 7, and 14 days. LIPUS was also applied to C2C12 cells in culture in the presence of low and high doses of lipopolysaccharides. The expression levels of myogenic regulatory factors and the expression levels of myokine-related and angiogenic-related proteins of the control and LIPUS groups were analyzed. RESULTS Muscle volume in the injury site was restored at day 14 with LIPUS treatment. Paired-box protein 7, myogenic factor 5, myogenin, and desmin expressions were significantly different between control and LIPUS groups at days 7 and 14. Myokine and angiogenic cytokine-related factors were significantly increased in the LIPUS group at day 3 and decreased with no significant difference between the groups by day 14. LIPUS induced different responses of myogenic regulatory factors in C2C12 cells with low and high doses of lipopolysaccharides. LIPUS promoted myogenesis through short-lived increase in interleukin-6 and heme oxygenase 1, together with activation of ERK1/2. CONCLUSION LIPUS had a constant effect on the variables of tissue damage, from macrotrauma to microtrauma, leading to efficient muscle regeneration. CLINICAL RELEVANCE The focus of therapeutic strategies with LIPUS has been not only for microvascular regeneration but also for skeletal muscle and related local tissue recovery from acute or chronic damage.
Collapse
Affiliation(s)
- Farina Mohamad Yusoff
- Department of Regenerative Medicine, Division of Radiation Medical Science, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Ayumu Nakashima
- Department of Stem Cell Biology and Medicine, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Masato Kajikawa
- Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Shinji Kishimoto
- Department of Regenerative Medicine, Division of Radiation Medical Science, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Tatsuya Maruhashi
- Department of Regenerative Medicine, Division of Radiation Medical Science, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yukihito Higashi
- Department of Regenerative Medicine, Division of Radiation Medical Science, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
- Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| |
Collapse
|
4
|
Yu IS, Choi J, Kim MK, Kim MJ. The Comparison of Commercial Serum-Free Media for Hanwoo Satellite Cell Proliferation and the Role of Fibroblast Growth Factor 2. Food Sci Anim Resour 2023; 43:1017-1030. [PMID: 37969322 PMCID: PMC10636218 DOI: 10.5851/kosfa.2023.e68] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 11/17/2023] Open
Abstract
Fetal bovine serum (FBS), which contains various nutrients, comprises 20% of the growth medium for cell-cultivated meat. However, ethical, cost, and scientific issues, necesitates identification of alternatives. In this study, we investigated commercially manufactured serum-free media capable of culturing Hanwoo satellite cells (HWSCs) to identify constituent proliferation enhancing factors. Six different serum-free media were selected, and the HWSC proliferation rates in these serum-free media were compared with that of control medium supplemented with 20% FBS. Among the six media, cell proliferation rates were higher only in StemFlexTM Medium (SF) and Mesenchymal Stem Cell Growth Medium DXF (MS) than in the control medium. SF and MS contain high fibroblast growth factor 2 (FGF2) concentrations, and we found upregulated FGF2 protein expression in cells cultured in SF or MS. Activation of the fibroblast growth factor receptor 1 (FGFR1)-mediated signaling pathway and stimulation of muscle satellite cell proliferation-related factors were confirmed by the presence of related biomarkers (FGFR1, FRS2, Raf1, ERK, p38, Pax7, and MyoD) as indicated by quantitative polymerase chain reaction, western blotting, and immunocytochemistry. Moreover, PD173074, an FGFR1 inhibitor suppressed cell proliferation in SF and MS and downregulated related biomarkers (FGFR1, FRS2, Raf1, and ERK). The promotion of cell proliferation in SF and MS was therefore attributed to FGF2, which indicates that FGFR1 activation in muscle satellite cells may be a target for improving the efficiency of cell-cultivated meat production.
Collapse
Affiliation(s)
- In-sun Yu
- Division of Food Functionality Research,
Korea Food Research Institute, Wanju 55365, Korea
- Department of Food Science and Human
Nutrition and K-Food Research Center, Jeonbuk National
University, Jeonju 54896, Korea
| | - Jungseok Choi
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Mina K. Kim
- Department of Food Science and Human
Nutrition and K-Food Research Center, Jeonbuk National
University, Jeonju 54896, Korea
| | - Min Jung Kim
- Division of Food Functionality Research,
Korea Food Research Institute, Wanju 55365, Korea
| |
Collapse
|
5
|
Zheng X, Zhang W, Hu Y, Zhao Z, Wu J, Zhang X, Hao F, Han J, Xu J, Hao W, Wang R, Tian M, Radak Z, Nakabeppu Y, Boldogh I, Ba X. DNA repair byproduct 8-oxoguanine base promotes myoblast differentiation. Redox Biol 2023; 61:102634. [PMID: 36827746 PMCID: PMC9982643 DOI: 10.1016/j.redox.2023.102634] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/03/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Muscle contraction increases the level of reactive oxygen species (ROS), which has been acknowledged as key signaling entities in muscle remodeling and to underlie the healthy adaptation of skeletal muscle. ROS inevitably endows damage to various cellular molecules including DNA. DNA damage ought to be repaired to ensure genome integrity; yet, how DNA repair byproducts affect muscle adaptation remains elusive. Here, we showed that exercise elicited the generation of 8-oxo-7,8-dihydroguanine (8-oxoG), that was primarily found in mitochondrial genome of myofibers. Upon exercise, TA muscle's 8-oxoG excision capacity markedly enhanced, and in the interstitial fluid of TA muscle from the post-exercise mice, the level of free 8-oxoG base was significantly increased. Addition of 8-oxoG to myoblasts triggered myogenic differentiation via activating Ras-MEK-MyoD signal axis. 8-Oxoguanine DNA glycosylase1 (OGG1) silencing from cells or Ogg1 KO from mice decreased Ras activation, ERK phosphorylation, MyoD transcriptional activation, myogenic regulatory factors gene (MRFs) expression. In reconstruction experiments, exogenously added 8-oxoG base enhanced the expression of MRFs and accelerated the recovery of the injured skeletal muscle. Collectively, these data not only suggest that DNA repair metabolite 8-oxoG function as a signal entity for muscle remodeling and contribute to exercise-induced adaptation of skeletal muscle, but also raised the potential for utilizing 8-oxoG in clinical treatment to skeletal muscle damage-related disorders.
Collapse
Affiliation(s)
- Xu Zheng
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China; School of Life Sciences, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Wenhe Zhang
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Yinchao Hu
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China; School of Life Sciences, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Zhexuan Zhao
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China; School of Life Sciences, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Jiaxin Wu
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China; School of Life Sciences, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Xiaoqing Zhang
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China; School of Life Sciences, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Fengqi Hao
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China; School of Physical Education, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Jinling Han
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China; School of Life Sciences, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Jing Xu
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China; School of Life Sciences, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Wenjing Hao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ruoxi Wang
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Meihong Tian
- School of Physical Education, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Zsolt Radak
- Research Institute of Sport Science, University of Physical Education, H-1123, Budapest, Hungary
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX77555, USA
| | - Xueqing Ba
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China; School of Life Sciences, Northeast Normal University, Changchun, Jilin, 130024, China.
| |
Collapse
|
6
|
Li B, Wang J, Raza SHA, Wang S, Liang C, Zhang W, Yu S, Shah MA, Al Abdulmonem W, Alharbi YM, Aljohani ASM, Pant SD, Zan L. MAPK family genes' influences on myogenesis in cattle: Genome-wide analysis and identification. Res Vet Sci 2023; 159:198-212. [PMID: 37148739 DOI: 10.1016/j.rvsc.2023.04.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/11/2023] [Accepted: 04/28/2023] [Indexed: 05/08/2023]
Abstract
The mitogen-activated protein kinase (MAPK) family is highly conserved in mammals, and is involved in a variety of physiological phenomena like regeneration, development, cell proliferation, and differentiation. In this study, 13 MAPK genes were identified in cattle and their corresponding protein properties were characterized using genome-wide identification and analysis. Phylogenetic analysis showed that the 13 BtMAPKs were cluster grouped into eight major evolutionary branches, which were segmented into three large subfamilies: ERK, p38 and JNK MAPK. BtMAPKs from the same subfamily had similar protein motif compositions, but considerably different exon-intron patterns. The heatmap analysis of transcriptome sequencing data showed that the expression of BtMAPKs was tissue-specific, with BtMAPK6 and BtMAPK12 highly expressed in muscle tissues. Furthermore, knockdown of BtMAPK6 and BtMAPK12 revealed that BtMAPK6 had no effect on myogenic cell proliferation, but negatively affected the differentiation of myogenic cells. In contrast, BtMAPK12 improved both the cell proliferation and differentiation. Taken together, these results provide novel insights into the functions of MAPK families in cattle, which could serve as a basis for further studies on the specific mechanisms of the genes in myogenesis.
Collapse
Affiliation(s)
- Bingzhi Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Jianfang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi, China; Guangdong Provincial Key Laboratory of Food Quality and Safety/Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou, 510642 China
| | - Sihu Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Chengcheng Liang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Wenzheng Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Shengchen Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Mujahid Ali Shah
- Faculty of Fisheries and Protection of Water, University of South Bohemia in Ceske Budejovice, Czech Republic
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, P.O. Box 6655, Buraidah 51452, Kingdom of Saudi Arabia
| | - Yousef Mesfer Alharbi
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Sameer D Pant
- Gulbali Institute, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW 2678, Australia
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi, China; National Beef Cattle Improvement Center, Northwest A&F University, Yangling, 712100 Shaanxi, China.
| |
Collapse
|
7
|
Fricke AL, Mühlhäuser WWD, Reimann L, Zimmermann JP, Reichenbach C, Knapp B, Peikert CD, Heberle AM, Faessler E, Schäuble S, Hahn U, Thedieck K, Radziwill G, Warscheid B. Phosphoproteomics Profiling Defines a Target Landscape of the Basophilic Protein Kinases AKT, S6K, and RSK in Skeletal Myotubes. J Proteome Res 2023; 22:768-789. [PMID: 36763541 DOI: 10.1021/acs.jproteome.2c00505] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Phosphorylation-dependent signal transduction plays an important role in regulating the functions and fate of skeletal muscle cells. Central players in the phospho-signaling network are the protein kinases AKT, S6K, and RSK as part of the PI3K-AKT-mTOR-S6K and RAF-MEK-ERK-RSK pathways. However, despite their functional importance, knowledge about their specific targets is incomplete because these kinases share the same basophilic substrate motif RxRxxp[ST]. To address this, we performed a multifaceted quantitative phosphoproteomics study of skeletal myotubes following kinase inhibition. Our data corroborate a cross talk between AKT and RAF, a negative feedback loop of RSK on ERK, and a putative connection between RSK and PI3K signaling. Altogether, we report a kinase target landscape containing 49 so far unknown target sites. AKT, S6K, and RSK phosphorylate numerous proteins involved in muscle development, integrity, and functions, and signaling converges on factors that are central for the skeletal muscle cytoskeleton. Whereas AKT controls insulin signaling and impinges on GTPase signaling, nuclear signaling is characteristic for RSK. Our data further support a role of RSK in glucose metabolism. Shared targets have functions in RNA maturation, stability, and translation, which suggests that these basophilic kinases establish an intricate signaling network to orchestrate and regulate processes involved in translation.
Collapse
Affiliation(s)
- Anna L Fricke
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,Biochemistry II, Theodor Boveri-Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Wignand W D Mühlhäuser
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Lena Reimann
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Johannes P Zimmermann
- Biochemistry II, Theodor Boveri-Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Christa Reichenbach
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Bettina Knapp
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Christian D Peikert
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Alexander M Heberle
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, 6020 Innsbruck, Austria
| | - Erik Faessler
- Jena University Language & Information Engineering (JULIE) Lab, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Sascha Schäuble
- Jena University Language & Information Engineering (JULIE) Lab, Friedrich Schiller University Jena, 07743 Jena, Germany.,Systems Biology and Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology─Leibniz-HKI, 07745 Jena, Germany
| | - Udo Hahn
- Jena University Language & Information Engineering (JULIE) Lab, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Kathrin Thedieck
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, 6020 Innsbruck, Austria.,Department of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, Groningen 9700 RB, The Netherlands.,Department for Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg 26129, Germany
| | - Gerald Radziwill
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Bettina Warscheid
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,Biochemistry II, Theodor Boveri-Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
8
|
Gondret F, Louveau I, Langendjik P, Farmer C. Exogenous porcine somatotropin administered to late pregnant gilts alters liver and muscle functionalities in pig foetuses. Animal 2023; 17:100691. [PMID: 36584622 DOI: 10.1016/j.animal.2022.100691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Neonatal maturity depends on the maternal capacity to provide nutrients for foetal growth. This study aimed to investigate the effects of systemic administration of recombinant porcine somatotropin (pST), one of the main regulators of growth and metabolism, to pregnant gilts during late gestation on circulating nutrients and expression levels of genes in liver and skeletal muscle of their 110-day-old foetuses. Gilts received either daily injections of sterile water (control [CTL] group, n = 15) or of 5 mg of pST (pST group, n = 17) from days 90 to 109 of gestation. At day 110 postconceptus, pairs of foetuses (one of small and one of average size within a litter) were selected. Circulating fructose concentrations were greater, but circulating concentrations of urea were lower in pST than in CTL foetuses. Expression levels of genes involved in carbohydrate and lipid metabolism were more affected by pST treatment in liver than in muscle. Hepatic molecular changes suggest an inhibition of energy-consuming processes (glycogen and lipid biosynthesis) and the activation of energy-producing pathway (mitochondrial oxidation) in pST compared to CTL foetuses. Expression levels of some genes involved in intracellular degradation of proteins were greater in the liver of pST foetuses, and combined with lower uremia, this suggests a higher utilisation of protein sources in pST foetuses than in CTL foetuses. In muscle, molecular changes were mainly observed in the IGF-insulin axis. Altogether, pST-treated gilts seem to have a greater ability to support foetal liver development by the reorientation of energy and protein metabolism.
Collapse
Affiliation(s)
- F Gondret
- PEGASE, INRAE, Institut Agro, 35590 Saint-Gilles, France.
| | - I Louveau
- PEGASE, INRAE, Institut Agro, 35590 Saint-Gilles, France
| | - P Langendjik
- Trouw Nutrition Research & Development, Stationsstraat 77, Amersfoort, The Netherlands
| | - C Farmer
- Agriculture and Agri-Food Canada, Sherbrooke R & D Centre, 2000 College, Sherbrooke (QC) J1M 0C8, Canada
| |
Collapse
|
9
|
Son Y, Paton CM. A Review of free fatty acid-induced cell signaling, angiopoietin-like protein 4, and skeletal muscle differentiation. Front Physiol 2022; 13:987977. [PMID: 36148297 PMCID: PMC9485487 DOI: 10.3389/fphys.2022.987977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Postnatal skeletal muscle differentiation from quiescent satellite cells is a highly regulated process, although our understanding of the contribution of nutritional factors in myogenesis is limited. Free fatty acids (FFAs) are known to cause detrimental effects to differentiated skeletal muscle cells by increasing oxidative stress which leads to muscle wasting and insulin resistance in skeletal muscle. In addition, FFAs are thought to act as inhibitors of skeletal muscle differentiation. However, the precise molecular mechanisms underlying the effects of FFAs on skeletal muscle differentiation remains to be elucidated. There is a clear relationship between dietary FFAs and their ability to suppress myogenesis and we propose the hypothesis that the FFA-mediated increase in angiopoietin-like protein 4 (ANGPTL4) may play a role in the inhibition of differentiation. This review discusses the role of FFAs in skeletal muscle differentiation to-date and proposes potential mechanisms of FFA-induced ANGPTL4 mediated inhibition of skeletal muscle differentiation.
Collapse
Affiliation(s)
- Yura Son
- Department Nutritional Sciences, Athens, GA, United States
| | - Chad M. Paton
- Department Nutritional Sciences, Athens, GA, United States
- Department of Food Science and Technology, University of Georgia, Athens, GA, United States
- *Correspondence: Chad M. Paton,
| |
Collapse
|
10
|
Sato Y, Kawashima K, Fukui E, Matsumoto H, Yoshizawa F, Sato Y. Functional analysis reveals that Tinagl1 is required for normal muscle development in mice through the activation of ERK signaling. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119294. [PMID: 35597451 DOI: 10.1016/j.bbamcr.2022.119294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/21/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Tinagl1 (tubulointerstitial nephritis antigen-like 1) is a matricellular protein involved in female infertility and breast cancer tumorigenesis. In this study, we analyzed the function of Tinagl1 in skeletal muscle using knockout mice and cell experiments. Although primary myoblasts isolated from Tinagl1-decifient (Tinagl1-/-) mice differentiated into normal myotubes, and treatment with recombinant Tinagl1 did not affect the proliferation or differentiation of C2C12 myoblasts, Tinagl1-/- mice exhibited reduced body mass and calf muscle weights compared to the control group (Tinagl1flox/flox). Furthermore, Tinagl1-/- mice showed myofibers with centrally located nuclei, which is a morphological marker of regenerating muscle or myopathy. In addition, the capillary density in the soleus muscle of Tinagl1-/- mice showed a decreasing trend compared to that of the control group. Importantly, si-RNA-mediated knockdown of TINAGL1 resulted in reduced tube formation in human umbilical vein endothelial cells (HUVECs), whereas treatment with Tinagl1 promoted tube formation. Immunoblot analysis revealed that Tinagl1 activates ERK signaling in both HUVECs and C2C12 myoblasts and myotubes, which are involved in the regulation of myogenic differentiation, proliferation, metabolism, and angiogenesis. Our results demonstrate that Tinagl1 may be required for normal muscle and capillary development through the activation of ERK signaling.
Collapse
Affiliation(s)
- Yoriko Sato
- Department of Animal Science, School of Agriculture, Tokai University, Kumamoto 8628652, Japan
| | - Keisuke Kawashima
- Department of Agrobiology and Bioresources, School of Agriculture, Utsunomiya University, Tochigi, 3218505, Japan
| | - Emiko Fukui
- Department of Agrobiology and Bioresources, School of Agriculture, Utsunomiya University, Tochigi, 3218505, Japan
| | - Hiromichi Matsumoto
- Department of Agrobiology and Bioresources, School of Agriculture, Utsunomiya University, Tochigi, 3218505, Japan
| | - Fumiaki Yoshizawa
- Department of Agrobiology and Bioresources, School of Agriculture, Utsunomiya University, Tochigi, 3218505, Japan
| | - Yusuke Sato
- Department of Animal Science, School of Agriculture, Tokai University, Kumamoto 8628652, Japan.
| |
Collapse
|
11
|
Huang Y, Chen H, Gao X, Ren H, Gao S. Identification and functional analysis of miRNAs in skeletal muscle of juvenile and adult largemouth bass, Micropterus salmoides. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 42:100985. [PMID: 35381488 DOI: 10.1016/j.cbd.2022.100985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/20/2022] [Accepted: 03/25/2022] [Indexed: 11/28/2022]
Abstract
MicroRNAs (miRNAs) are considered key regulators to post-transcriptionally regulate gene expression affecting multiple biological activities. However, the developmental process of fish skeletal muscles is regulated by complicated molecular mechanism that has not been completely well-described. In this study, two small RNAs libraries from skeletal muscle of juvenile as well as adult largemouth bass (LMB) were obtained and sequenced using deep sequencing to investigate the development-related miRNAs. We identified an overall number of 486 already recognized miRNAs in addition to 43 novel miRNAs. Comparison of two different skeletal muscle development stages led to the identification of 220 differently expressed miRNAs between juvenile and adult LMB containing 116 up-regulated as well as 104 down-regulated miRNAs. Of them, confirmation of some differently expressed miRNAs was performed via a stem-loop qRT-PCR, which exhibited differently expressed level in juvenile and adult LMB. Furthermore, GO and KEGG enrichment analyses of targets of differently-expressed miRNAs were carried out. Additionally, the analysis of miRNAs-targets interaction network showed that miR-181b-5p_R-1, miR-725 and miR-103 as the nodal miRNAs has over 20 target genes. Moreover, miR-103 could bind the 3'-UTR of actr8, which was validated via dual-luciferase reporter assay. It has been reasonably hypothesized that miR-103 may play a crucial role, which regulate skeletal muscle development of LMB. The present study provides the first identification of miRNA expression profiles at two different skeletal muscle development stages in LMB. Results may be valuable in interpreting the regulatory role miRNAs plays in the growth and developmental process of skeletal muscle and its possible use in LMB breeding.
Collapse
Affiliation(s)
- Yong Huang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China.
| | - Haigang Chen
- Guangdong Province Key Laboratory of Fish Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Xiaochan Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Hongtao Ren
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Shiyang Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| |
Collapse
|
12
|
Zhou G, Ma S, Yang M, Yang Y. Global Quantitative Proteomics Analysis Reveals the Downstream Signaling Networks of Msx1 and Msx2 in Myoblast Differentiation. PHENOMICS (CHAM, SWITZERLAND) 2022; 2:201-210. [PMID: 36939786 PMCID: PMC9590559 DOI: 10.1007/s43657-022-00049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 11/25/2022]
Abstract
The msh homeobox 1 (Msx1) and msh homeobox 2 (Msx2) coordinate in myoblast differentiation and also contribute to muscle defects if altered during development. Deciphering the downstream signaling networks of Msx1 and Msx2 in myoblast differentiation will help us to understand the molecular events that contribute to muscle defects. Here, the proteomics characteristics in Msx1- and Msx2-mediated myoblast differentiation was evaluated using isobaric tags for the relative and absolute quantification labeling technique (iTRAQ). The downstream regulatory proteins of Msx1- and Msx2-mediated differentiation were identified. Bioinformatics analysis revealed that these proteins were primarily associated with xenobiotic metabolism by cytochrome P450, fatty acid degradation, glycolysis/gluconeogenesis, arginine and proline metabolism, and apoptosis. In addition, our data show Acta1 was probably a core of the downstream regulatory networks of Msx1 and Msx2 in myoblast differentiation. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-022-00049-y.
Collapse
Affiliation(s)
- Guoqiang Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Shuangping Ma
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Ming Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Yenan Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438 China
| |
Collapse
|
13
|
Dalle S, Dupont J, Dedeyne L, Verschueren S, Tournoy J, Gielen E, Koppo K. Preliminary evidence of differential expression of myogenic and stress factors in skeletal muscle of older adults with low muscle strength. J Gerontol A Biol Sci Med Sci 2022; 77:1121-1129. [PMID: 34984449 DOI: 10.1093/gerona/glac002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Indexed: 11/12/2022] Open
Abstract
The age-related loss of muscle strength and mass, or sarcopenia, is a growing concern in the ageing population. Yet, it is not fully understood which molecular mechanisms underlie sarcopenia. Therefore, the present study compared the protein expression profile, such as catabolic, oxidative, stress-related and myogenic pathways, between older adults with preserved (8 ♀ and 5 ♂; 71.5 ±2.6 years) and low muscle strength (6 ♀ and 5 ♂; 78.0±5.0 years). Low muscle strength was defined as chair stand test time >15 seconds and/or handgrip strength <16kg (women) or <27kg (men) according the EWGSOP2 criteria. Catabolic signaling (i.e. FOXO1/3a, MuRF1, MAFbx, LC3b, Atg5, p62) was not differentially expressed between both groups, whereas the mitochondrial marker COX-IV, but not PGC1α and citrate synthase, was lower in the low muscle strength group. Stress factors CHOP and p-ERK1/2 were higher (~1.5-fold) in older adults with low muscle strength. Surprisingly, the inflammatory marker p-p65NF-κB was ~7-fold higher in older adults with preserved muscle strength. Finally, expression of myogenic factors (i.e. Pax7, MyoD, desmin; ~2-fold) was higher in adults with low muscle strength. To conclude, whereas the increased stress factors might reflect the age-related deterioration of tissue homeostasis, e.g. due to misfolded proteins (CHOP), upregulation of myogenic markers in the low strength group might be an attempt to compensate for the gradual loss in muscle quantity and quality. These data might provide valuable insights in the processes that underlie sarcopenia.
Collapse
Affiliation(s)
- Sebastiaan Dalle
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Belgium
| | - Jolan Dupont
- Geriatrics & Gerontology, Department of Public Health and Primary Care, KU Leuven, Belgium.,Department of Geriatric Medicine, UZ Leuven, Belgium
| | - Lenore Dedeyne
- Geriatrics & Gerontology, Department of Public Health and Primary Care, KU Leuven, Belgium
| | - Sabine Verschueren
- Research Group for Musculoskeletal Rehabilitation, Department of Movement Sciences, KU Leuven, Belgium
| | - Jos Tournoy
- Geriatrics & Gerontology, Department of Public Health and Primary Care, KU Leuven, Belgium.,Department of Geriatric Medicine, UZ Leuven, Belgium
| | - Evelien Gielen
- Geriatrics & Gerontology, Department of Public Health and Primary Care, KU Leuven, Belgium.,Department of Geriatric Medicine, UZ Leuven, Belgium
| | - Katrien Koppo
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Belgium
| |
Collapse
|
14
|
Nakanishi R, Tanaka M, Maeshige N, Kondo H, Roy RR, Fujino H. Nucleoprotein-enriched diet enhances protein synthesis pathway and satellite cell activation via ERK1/2 phosphorylation in unloaded rat muscles. Exp Physiol 2021; 106:1587-1596. [PMID: 33878233 DOI: 10.1113/ep089337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/15/2021] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? The purpose of this study was to determine whether the nucleotides in a nucleoprotein-enriched diet could ameliorate the unloading-associated decrease in soleus muscle mass and fibre size. What is the main finding and its importance? The results indicate that the nucleotides in the nucleoprotein-enriched diet could ameliorate the unloading-associated decrease in type I fibre size and muscle mass, most probably owing to the activation of protein synthesis pathways and satellite cell proliferation and differentiation via ERK1/2 phosphorylation. Thus, nucleotide supplementation appears to be an effective countermeasure for muscle atrophy. ABSTRACT Hindlimb unloading decreases both the protein synthesis pathway and satellite cell activation and results in muscle atrophy. Nucleotides are included in nucleoprotein and provide the benefits of increasing extracellular signal-regulated kinase (ERK) 1/2 phosphorylation. ERK1/2 phosphorylation is also important in the activation of satellite cells, especially for myoblast proliferation and stimulating protein synthesis pathways. Therefore, we hypothesized that nucleotides in the nucleoproteins would ameliorate muscle atrophy by increasing the protein synthesis pathways and satellite cell activation during hindlimb unloading in rat soleus muscle. Twenty-four female Wistar rats were divided into four groups: control rats fed a basal diet without nucleoprotein (CON), control rats fed a nucleoprotein-enriched diet (CON+NP), hindlimb-unloaded rats fed a basal diet (HU) or hindlimb-unloaded rats fed a nucleoprotein-enriched diet (HU+NP). HU for 2 weeks resulted in reductions in phosphorylation of p70S6K and rpS6, the numbers of myoblast determination protein (MyoD)- and myogenin- positive nuclei, type I muscle fibre size and muscle mass. Both CON+NP and HU+NP rats showed an increase in ERK1/2, phosphorylation of p70S6K and rpS6, and the numbers of MyoD- and myogenin-positive nuclei compared with their basal diet groups. The NP diet also ameliorated the unloading-associated decrease in type I muscle fibre size and muscle mass. The results indicate that the nucleotides in the nucleoprotein-enriched diet could ameliorate the unloading-associated decrease in type I fibre size and muscle mass, most probably owing to the activation of protein synthesis pathways and satellite cell proliferation and differentiation via ERK1/2 phosphorylation. Thus, nucleotide supplementation appears to be an effective countermeasure for muscle atrophy.
Collapse
Affiliation(s)
- Ryosuke Nakanishi
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Hyogo, Japan.,Department of Physical Therapy, Faculty of Rehabilitation, Kobe International University, Kobe, Hyogo, Japan
| | - Minoru Tanaka
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Hyogo, Japan.,Department of Physical Therapy, Faculty of Human Science, Osaka University of Human Science, Settsu, Osaka, Japan
| | - Noriaki Maeshige
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Hyogo, Japan
| | - Hiroyo Kondo
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Hyogo, Japan
| | - Roland R Roy
- Brain Research Institute and Department of Integrative Biology and Physiology, University of California, Los Angeles, California, USA
| | - Hidemi Fujino
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Hyogo, Japan
| |
Collapse
|
15
|
Contreras O, Córdova-Casanova A, Brandan E. PDGF-PDGFR network differentially regulates the fate, migration, proliferation, and cell cycle progression of myogenic cells. Cell Signal 2021; 84:110036. [PMID: 33971280 DOI: 10.1016/j.cellsig.2021.110036] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/22/2022]
Abstract
Platelet-derived growth factors (PDGFs) regulate embryonic development, tissue regeneration, and wound healing through their binding to PDGF receptors, PDGFRα and PDGFRβ. However, the role of PDGF signaling in regulating muscle development and regeneration remains elusive, and the cellular and molecular responses of myogenic cells are understudied. Here, we explore the PDGF-PDGFR gene expression changes and their involvement in skeletal muscle myogenesis and myogenic fate. By surveying bulk RNA sequencing and single-cell profiling data of skeletal muscle stem cells, we show that myogenic progenitors and muscle stem cells differentially express PDGF ligands and PDGF receptors during myogenesis. Quiescent adult muscle stem cells and myoblasts preferentially express PDGFRβ over PDGFRα. Remarkably, cell culture- and injury-induced muscle stem cell activation altered PDGF family gene expression. In myoblasts, PDGF-AB and PDGF-BB treatments activate two pro-chemotactic and pro-mitogenic downstream transducers, RAS-ERK1/2 and PI3K-AKT. PDGFRs inhibitor AG1296 inhibited ERK1/2 and AKT activation, myoblast migration, proliferation, and cell cycle progression induced by PDGF-AB and PDGF-BB. We also found that AG1296 causes myoblast G0/G1 cell cycle arrest. Remarkably, PDGF-AA did not promote a noticeable ERK1/2 or AKT activation, myoblast migration, or expansion. Also, myogenic differentiation reduced the expression of both PDGFRα and PDGFRβ, whereas forced PDGFRα expression impaired myogenesis. Thus, our data highlight PDGF signaling pathway to stimulate satellite cell proliferation aiming to enhance skeletal muscle regeneration and provide a deeper understanding of the role of PDGF signaling in non-fibroblastic cells.
Collapse
Affiliation(s)
- Osvaldo Contreras
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Kensington 2052, Australia; Departamento de Biología Celular y Molecular and Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile.
| | - Adriana Córdova-Casanova
- Departamento de Biología Celular y Molecular and Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile
| | - Enrique Brandan
- Departamento de Biología Celular y Molecular and Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile; Fundación Ciencia & Vida, 7780272 Santiago, Chile
| |
Collapse
|
16
|
O'Neill EN, Cosenza ZA, Baar K, Block DE. Considerations for the development of cost-effective cell culture media for cultivated meat production. Compr Rev Food Sci Food Saf 2020; 20:686-709. [PMID: 33325139 DOI: 10.1111/1541-4337.12678] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 12/28/2022]
Abstract
Innovation in cultivated meat development has been rapidly accelerating in recent years because it holds the potential to help attenuate issues facing production of dietary protein for a growing world population. There are technical obstacles still hindering large-scale commercialization of cultivated meat, of which many are related to the media that are used to culture the muscle, fat, and connective tissue cells. While animal cell culture media has been used and refined for roughly a century, it has not been specifically designed with the requirements of cultivated meat in mind. Perhaps the most common industrial use of animal cell culture is currently the production of therapeutic monoclonal antibodies, which sell for orders of magnitude more than meat. Successful production of cultivated meat requires media that is food grade with minimal cost, can regulate large-scale cell proliferation and differentiation, has acceptable sensory qualities, and is animal ingredient-free. Much insight into strategies for achieving media formulations with these qualities can be obtained from knowledge of conventional culture media applications and from the metabolic pathways involved in myogenesis and protein synthesis. In addition, application of principles used to optimize media for large-scale microbial fermentation processes producing lower value commodity chemicals and food ingredients can also be instructive. As such, the present review shall provide an overview of the current understanding of cell culture media as it relates to cultivated meat.
Collapse
Affiliation(s)
- Edward N O'Neill
- Department of Food Science and Technology, University of California, Davis, California.,Department of Viticulture and Enology, University of California, Davis, California
| | - Zachary A Cosenza
- Department of Viticulture and Enology, University of California, Davis, California.,Department of Chemical Engineering, University of California, Davis, California
| | - Keith Baar
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California.,Department of Physiology and Membrane Biology, University of California, Davis, California
| | - David E Block
- Department of Viticulture and Enology, University of California, Davis, California.,Department of Chemical Engineering, University of California, Davis, California
| |
Collapse
|
17
|
Ramey-Ward AN, Su H, Salaita K. Mechanical Stimulation of Adhesion Receptors Using Light-Responsive Nanoparticle Actuators Enhances Myogenesis. ACS APPLIED MATERIALS & INTERFACES 2020; 12:35903-35917. [PMID: 32644776 PMCID: PMC8818098 DOI: 10.1021/acsami.0c08871] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The application of cyclic strain is known to enhance myoblast differentiation and muscle growth in vitro and in vivo. However, current techniques apply strain to full tissues or cell monolayers, making it difficult to evaluate whether mechanical stimulation at the subcellular or single-cell scales would drive myoblast differentiation. Here, we report the use of optomechanical actuator (OMA) particles, comprised of a ∼0.6 μm responsive hydrogel coating a gold nanorod (100 × 20 nm) core, to mechanically stimulate the integrin receptors in myoblasts. When illuminated with near-infrared (NIR) light, OMA nanoparticles rapidly collapse, exerting mechanical forces to cell receptors bound to immobilized particles. Using a pulsed illumination pattern, we applied cyclic integrin forces to C2C12 myoblasts cultured on a monolayer of OMA particles and then measured the cellular response. We found that 20 min of OMA actuation resulted in cellular elongation in the direction of the stimulus and enhancement of nuclear YAP1 accumulation, an effector of ERK phosphorylation. Cellular response was dependent on direct conjugation of RGD peptides to the OMA particles. Repeated OMA mechanical stimulation for 5 days led to enhanced myogenesis as quantified using cell alignment, fusion, and sarcomeric myosin expression in myotubes. OMA-mediated myogenesis was sensitive to the geometry of stimulation but not to MEK1/2 inhibition. Finally, we found that OMA stimulation in regions proximal to the nucleus resulted in localization of the transcription activator YAP-1 to the nucleus, further suggesting the role of YAP1 in mechanotransduction in C2C12 cells. These findings demonstrate OMAs as a novel tool for studying the role of spatially localized forces in influencing myogenesis.
Collapse
Affiliation(s)
- Allison N. Ramey-Ward
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA, United States, 30332
| | - Hanquan Su
- Department of Chemistry, Emory University, Atlanta, GA, United States, 30322
| | - Khalid Salaita
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA, United States, 30332
- Department of Chemistry, Emory University, Atlanta, GA, United States, 30322
- Corresponding Author: Khalid Salaita, PhD:
| |
Collapse
|
18
|
Regulation of the Mammalian SWI/SNF Family of Chromatin Remodeling Enzymes by Phosphorylation during Myogenesis. BIOLOGY 2020; 9:biology9070152. [PMID: 32635263 PMCID: PMC7407365 DOI: 10.3390/biology9070152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/24/2020] [Accepted: 07/01/2020] [Indexed: 11/16/2022]
Abstract
Myogenesis is the biological process by which skeletal muscle tissue forms. Regulation of myogenesis involves a variety of conventional, epigenetic, and epigenomic mechanisms that control chromatin remodeling, DNA methylation, histone modification, and activation of transcription factors. Chromatin remodeling enzymes utilize ATP hydrolysis to alter nucleosome structure and/or positioning. The mammalian SWItch/Sucrose Non-Fermentable (mSWI/SNF) family of chromatin remodeling enzymes is essential for myogenesis. Here we review diverse and novel mechanisms of regulation of mSWI/SNF enzymes by kinases and phosphatases. The integration of classic signaling pathways with chromatin remodeling enzyme function impacts myoblast viability and proliferation as well as differentiation. Regulated processes include the assembly of the mSWI/SNF enzyme complex, choice of subunits to be incorporated into the complex, and sub-nuclear localization of enzyme subunits. Together these processes influence the chromatin remodeling and gene expression events that control myoblast function and the induction of tissue-specific genes during differentiation.
Collapse
|
19
|
Sun C, Choi IY, Gonzalez YIR, Andersen P, Talbot CC, Iyer SR, Lovering RM, Wagner KR, Lee G. Duchenne muscular dystrophy hiPSC-derived myoblast drug screen identifies compounds that ameliorate disease in mdx mice. JCI Insight 2020; 5:134287. [PMID: 32343677 PMCID: PMC7308059 DOI: 10.1172/jci.insight.134287] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 04/23/2020] [Indexed: 12/18/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is the most common muscular dystrophy. In the present study, when human induced pluripotent stem cells (hiPSCs) were differentiated into myoblasts, the myoblasts derived from DMD patient hiPSCs (DMD hiPSC-derived myoblasts) exhibited an identifiable DMD-relevant phenotype: myogenic fusion deficiency. Based on this model, we developed a DMD hiPSC-derived myoblast screening platform employing a high-content imaging (BD Pathway 855) approach to generate parameters describing morphological as well as myogenic marker protein expression. Following treatment of the cells with 1524 compounds from the Johns Hopkins Clinical Compound Library, compounds that enhanced myogenic fusion of DMD hiPSC-derived myoblasts were identified. The final hits were ginsenoside Rd and fenofibrate. Transcriptional profiling revealed that ginsenoside Rd is functionally related to FLT3 signaling, while fenofibrate is linked to TGF-β signaling. Preclinical tests in mdx mice showed that treatment with these 2 hit compounds can significantly ameliorate some of the skeletal muscle phenotypes caused by dystrophin deficiency, supporting their therapeutic potential. Further study revealed that fenofibrate could inhibit mitochondrion-induced apoptosis in DMD hiPSC-derived cardiomyocytes. We have developed a platform based on DMD hiPSC-derived myoblasts for drug screening and identified 2 promising small molecules with in vivo efficacy.
Collapse
Affiliation(s)
- Congshan Sun
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Center for Genetic Muscle Disorders, Hugo W. Moser Research Institute at Kennedy Krieger Institute, Baltimore, Maryland, USA
| | | | - Yazmin I. Rovira Gonzalez
- Center for Genetic Muscle Disorders, Hugo W. Moser Research Institute at Kennedy Krieger Institute, Baltimore, Maryland, USA
- Cellular and Molecular Medicine Graduate Program, and
| | - Peter Andersen
- Institute for Cell Engineering
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - C. Conover Talbot
- The Johns Hopkins School of Medicine Institute for Basic Biomedical Sciences, Baltimore, Maryland, USA
| | | | - Richard M. Lovering
- Department of Orthopaedics and
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kathryn R. Wagner
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Center for Genetic Muscle Disorders, Hugo W. Moser Research Institute at Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Gabsang Lee
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Institute for Cell Engineering
| |
Collapse
|
20
|
Chromatin accessibility is associated with the changed expression of miRNAs that target members of the Hippo pathway during myoblast differentiation. Cell Death Dis 2020; 11:148. [PMID: 32094347 PMCID: PMC7039994 DOI: 10.1038/s41419-020-2341-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 12/11/2022]
Abstract
miRNAs reportedly participate in various biological processes, such as skeletal muscle proliferation and differentiation. However, the regulation of differentially expressed (DE) miRNAs and their function in myogenesis remain unclear. Herein, miRNA expression profiles and regulation during C2C12 differentiation were analyzed in relation to chromatin states by RNA-seq, ATAC-seq, and ChIP-seq. We identified 19 known and nine novel differentially expressed miRNAs at days 0, 1, 2, and 4. The expression of the differentially expressed miRNAs was related to the chromatin states of the 113 surrounding open chromatin regions defined by ATAC-seq peaks. Of these open chromatin regions, 44.25% were colocalized with MyoD/MyoG binding sites. The remainder of the above open chromatin regions were enriched with motifs of the myoblast-expressed AP-1 family, Ctcf, and Bach2 transcription factors (TFs). Additionally, the target genes of the above differentially expressed miRNAs were enriched primarily in muscle growth and development pathways, especially the Hippo signaling pathway. Moreover, via combining a loss-of-function assay with Q-PCR, western blotting, and immunofluorescence, we confirmed that the Hippo signaling pathway was responsible for C2C12 myoblast differentiation. Thus, our results showed that these differentially expressed miRNAs were regulated by chromatin states and affected muscle differentiation through the Hippo signaling pathway. Our findings provide new insights into the function of these differentially expressed miRNAs and the regulation of their expression during myoblast differentiation.
Collapse
|
21
|
Soundharrajan I, Kim DH, Kuppusamy P, Choi KC. Modulation of osteogenic and myogenic differentiation by a phytoestrogen formononetin via p38MAPK-dependent JAK-STAT and Smad-1/5/8 signaling pathways in mouse myogenic progenitor cells. Sci Rep 2019; 9:9307. [PMID: 31243298 PMCID: PMC6594940 DOI: 10.1038/s41598-019-45793-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 06/12/2019] [Indexed: 11/09/2022] Open
Abstract
Formononetin (FN), a typical phytoestrogen has attracted substantial attention as a novel agent because of its diverse biological activities including, osteogenic differentiation. However, the molecular mechanisms underlying osteogenic and myogenic differentiation by FN in C2C12 progenitor cells remain unknown. Therefore the objective of the current study was to investigate the action of FN on myogenic and osteogenic differentiation and its impact on signaling pathways in C2C12 cells. FN significantly increased myogenic markers such as Myogenin, myosin heavy chains, and myogenic differentiation 1 (MyoD). In addition, the expression of osteogenic specific genes alkaline phosphatase (ALP), Run-related transcription factor 2(RUNX2), and osteocalcin (OCN) were up-regulated by FN treatment. Moreover, FN enhanced the ALP level, calcium deposition and the expression of bone morphogenetic protein isoform (BMPs). Signal transduction pathways mediated by p38 mitogen-activated protein kinase (p38MAPK), extracellular signal-related kinases (ERKs), protein kinase B (Akt), Janus kinases (JAKs), and signal transducer activator of transcription proteins (STATs) in myogenic and osteogenic differentiation after FN treatment were also examined. FN treatment activates myogenic differentiation by increasing p38MAPK and decreasing JAK1-STAT1 phosphorylation levels, while osteogenic induction was enhanced by p38MAPK dependent Smad, 1/5/8 signaling pathways in C2C12 progenitor cells.
Collapse
Affiliation(s)
- Ilavenil Soundharrajan
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan, 31000, Republic of Korea
| | - Da Hye Kim
- Center for Research on Environmental Disease, College of Medicine, University of Kentucky, 1095 VA Drive, Lexington, KY, 40536, USA
| | - Palaniselvam Kuppusamy
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan, 31000, Republic of Korea
| | - Ki Choon Choi
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan, 31000, Republic of Korea.
| |
Collapse
|
22
|
Ikeda Y, Satoh A, Horinouchi Y, Hamano H, Watanabe H, Imao M, Imanishi M, Zamami Y, Takechi K, Izawa‐Ishizawa Y, Miyamoto L, Hirayama T, Nagasawa H, Ishizawa K, Aihara K, Tsuchiya K, Tamaki T. Iron accumulation causes impaired myogenesis correlated with MAPK signaling pathway inhibition by oxidative stress. FASEB J 2019; 33:9551-9564. [DOI: 10.1096/fj.201802724rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yasumasa Ikeda
- Department of Pharmacology Institute of Biomedical Sciences Graduate School Tokushima University Tokushima Japan
| | - Akiho Satoh
- Department of Medical Pharmacology Institute of Biomedical Sciences Graduate School Tokushima University Tokushima Japan
| | - Yuya Horinouchi
- Department of Pharmacology Institute of Biomedical Sciences Graduate School Tokushima University Tokushima Japan
| | - Hirofumi Hamano
- Department of Pharmacy Tokushima University Hospital Tokushima Japan
| | - Hiroaki Watanabe
- Department of Clinical Pharmacology Institute of Biomedical Sciences Graduate School Tokushima University Tokushima Japan
| | - Mizuki Imao
- Department of Medical Pharmacology Institute of Biomedical Sciences Graduate School Tokushima University Tokushima Japan
| | - Masaki Imanishi
- Department of Pharmacy Tokushima University Hospital Tokushima Japan
| | - Yoshito Zamami
- Department of Clinical Pharmacology Institute of Biomedical Sciences Graduate School Tokushima University Tokushima Japan
- Department of Pharmacy Tokushima University Hospital Tokushima Japan
| | - Kenshi Takechi
- Clinical Trial Center for Developmental Therapeutics Tokushima University Hospital Tokushima Japan
| | - Yuki Izawa‐Ishizawa
- Department of Pharmacology Institute of Biomedical Sciences Graduate School Tokushima University Tokushima Japan
| | - Licht Miyamoto
- Department of Medical Pharmacology Institute of Biomedical Sciences Graduate School Tokushima University Tokushima Japan
| | - Tasuku Hirayama
- Laboratory of Pharmaceutical and Medicinal Chemistry Gifu Pharmaceutical University Gifu Japan
| | - Hideko Nagasawa
- Laboratory of Pharmaceutical and Medicinal Chemistry Gifu Pharmaceutical University Gifu Japan
| | - Keisuke Ishizawa
- Department of Clinical Pharmacology Institute of Biomedical Sciences Graduate School Tokushima University Tokushima Japan
- Department of Pharmacy Tokushima University Hospital Tokushima Japan
| | - Ken‐Ichi Aihara
- Department of Community Medicine for Diabetes and Metabolic Disorders Institute of Biomedical Sciences Graduate School Tokushima University Tokushima Japan
| | - Koichiro Tsuchiya
- Department of Medical Pharmacology Institute of Biomedical Sciences Graduate School Tokushima University Tokushima Japan
| | - Toshiaki Tamaki
- Department of Pharmacology Institute of Biomedical Sciences Graduate School Tokushima University Tokushima Japan
| |
Collapse
|
23
|
Kim SH, Yi SJ, Lee H, Kim JH, Oh MJ, Song EJ, Kim K, Jhun BH. β 2-Adrenergic receptor (β 2-AR) agonist formoterol suppresses differentiation of L6 myogenic cells by blocking PI3K-AKT pathway. Anim Cells Syst (Seoul) 2019; 23:18-25. [PMID: 30834155 PMCID: PMC6394304 DOI: 10.1080/19768354.2018.1561516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/20/2018] [Accepted: 12/05/2018] [Indexed: 01/01/2023] Open
Abstract
β2-Adrenergic receptor (β2-AR) is implicated in muscle metabolic activities such as glycogen metabolism, glucose uptake, lipolysis and muscle growth. However, the functional role of β2-AR in the differentiation of skeletal muscle is largely unknown. Here, we examined the functional role of β2-AR in L6 myoblast differentiation using the long-term-acting β2-AR-specific agonist formoterol. We observed that formoterol treatment strongly suppressed L6 myoblast differentiation and the expression of myosin heavy chain (MHC) in a dose- and time-dependent manner. Showing that both long-acting agonist (formoterol) and short-acting agonist (terbutaline) inhibited the induction of MHC protein, whereas β2-AR antagonist (ICI-118,551) upregulated MHC expression, we clearly demonstrated that β2-AR is involved in L6 myoblast differentiation. Furthermore, our pharmacological inhibition study revealed that the PI3K–AKT pathway is the main signaling pathway for myotube formation. Formoterol inhibited the activation of PI3K–AKT signaling, but not that of ERK signaling. Moreover, formoterol selectively inhibited AKT activation by IGF-I, but not by insulin. Collectively, our findings reveal a previously undocumented role of β2-AR activation in modulating the differentiation of L6 myoblasts.
Collapse
Affiliation(s)
- So-Hyeon Kim
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, Republic of Korea
| | - Sun-Ju Yi
- School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Hyerim Lee
- School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Ji-Hyun Kim
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, Republic of Korea
| | - Myung-Ju Oh
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, Republic of Korea
| | - Eun-Ju Song
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, Republic of Korea
| | - Kyunghwan Kim
- School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Byung H Jhun
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
24
|
Wu Y, Liu L, Bian C, Diao Q, Nisar MF, Jiang X, Bartsch JW, Zhong M, Hu X, Zhong JL. MicroRNA let-7b inhibits keratinocyte differentiation by targeting IL-6 mediated ERK signaling in psoriasis. Cell Commun Signal 2018; 16:58. [PMID: 30219085 PMCID: PMC6138911 DOI: 10.1186/s12964-018-0271-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/31/2018] [Indexed: 12/16/2022] Open
Abstract
Background The extensive involvement of microRNA (miRNA) in the pathophysiology of psoriasis is well documented. However, in order for this information to be useful in therapeutic manipulation of miRNA levels, it is essential that detailed functional mechanisms are elucidated. This study aimed to explore the effects of IL-6 targeting by let-7b and ERK1/2 mediated signaling on keratinocyte differentiation in psoriasis. Methods Following imiquimod cream (IMQ) application to let-7bTG (keratinocyte-specific let-7b overexpression mouse) and control mice for 7 days, we analyzed erythema, scaling and thickening of skin. A dual luciferase reporter assay and bioinformatics was carried out to detect target gene of let-7b. Additionally, the differentiation markers were measured. Immunohistochemistry analyses demonstrate a relationship of let-7b with IL-6 and ERK signaling. Results we found let-7bTG inhibits acanthosis and reduces the disease severity by treatment with IMQ compared to wild-type mice. Further study illustrated that let-7b promotes differentiation of keratinocytes in vivo and in vitro. Using bioinformatics and reporter gene assays, we found that IL-6 is a target gene of let-7b. In psoriasis, high expression levels of IL-6 lead to increased acivation of p-ERK1/2. High levels of let-7bTG transgene expression suppresses IL-6 expression and leads to increased keratinocyte differentiation. Moreover, let-7b acts as an upstream negative regulator of the ERK signaling pathway in keratinocytes of psoriasis. Conclusions Our result reveals a previously unknown mechanism for regulation of IL-6 levels during psoriasis by let-7b and highlights a critical role for the ERK1/2 signaling pathway in epidermal differentiation during psoriasis. Trial registration The ethical approval for this study was from the Affiliated Hospital of Medical University of Anhui _ Fast_ PJ2017–11–14. Electronic supplementary material The online version of this article (10.1186/s12964-018-0271-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yan Wu
- The Base of "111 Project" for Biomechanics & Tissue Repair Engineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, college of Bioengineering, Chongqing University, Chongqing, 400044, China.,Department of Dermatology, Chongqing First People's Hospital and Chongqing Traditional Chinese Medicine Hospital, No. 40 Daomenkou St., District Yuzhong, Chongqing, 400011, China
| | - Liu Liu
- The Base of "111 Project" for Biomechanics & Tissue Repair Engineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, college of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Chunxiang Bian
- The Base of "111 Project" for Biomechanics & Tissue Repair Engineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, college of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Qingchun Diao
- Department of Dermatology, Chongqing First People's Hospital and Chongqing Traditional Chinese Medicine Hospital, No. 40 Daomenkou St., District Yuzhong, Chongqing, 400011, China
| | - Muhammad Farrukh Nisar
- The Base of "111 Project" for Biomechanics & Tissue Repair Engineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, college of Bioengineering, Chongqing University, Chongqing, 400044, China.,Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore, 54000, Pakistan
| | - Xuemei Jiang
- The Base of "111 Project" for Biomechanics & Tissue Repair Engineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, college of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Jörg W Bartsch
- Philipps University Marburg, Department of Neurosurgery, Baldingerstr, 35033, Marburg, Germany
| | - Maojiao Zhong
- The Base of "111 Project" for Biomechanics & Tissue Repair Engineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, college of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Xiangyu Hu
- Department of Dermatology, Chongqing First People's Hospital and Chongqing Traditional Chinese Medicine Hospital, No. 40 Daomenkou St., District Yuzhong, Chongqing, 400011, China
| | - Julia Li Zhong
- The Base of "111 Project" for Biomechanics & Tissue Repair Engineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, college of Bioengineering, Chongqing University, Chongqing, 400044, China. .,Department of Dermatology, Chongqing First People's Hospital and Chongqing Traditional Chinese Medicine Hospital, No. 40 Daomenkou St., District Yuzhong, Chongqing, 400011, China.
| |
Collapse
|
25
|
McClure MJ, Clark NM, Schwartz Z, Boyan BD. Platelet-rich plasma and alignment enhance myogenin via ERK mitogen activated protein kinase signaling. ACTA ACUST UNITED AC 2018; 13:055009. [PMID: 29967311 DOI: 10.1088/1748-605x/aad0a7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Volumetric muscle loss is debilitating and involves extensive rehabilitation. One approach to accelerate healing, rehabilitation, and muscle function is to repair damaged skeletal muscle using regenerative medicine strategies. In sports medicine and orthopedics, a common clinical approach is to treat minor to severe musculoskeletal injuries with platelet-rich plasma (PRP) injections. While these types of treatments have become commonplace, there are limited data demonstrating their effectiveness. The goal of this study was to determine the effect of PRP on myoblast gene expression and protein production when incorporated into a polymer fiber. To test this, we generated extracellular matrix mimicking scaffolds using aligned polydioxanone (PDO) fibers containing lyophilized PRP (SmartPReP® 2, Harvest Technologies Corporation, Plymouth, MA). Scaffolds with PRP caused a dose-dependent increase in myogenin and myosin heavy chain but did not affect myogenic differentiation factor-1 (MyoD). Integrin α7β1D decreased and α5β1A did not change in response to PRP scaffolds. ERK inhibition decreased myogenin and increased Myod on the PDO-PRP scaffolds. Taken together, these data suggest that alignment and PRP produce a substrate-dependent, ERK-dependent, and dose-dependent effect on myogenic differentiation.
Collapse
Affiliation(s)
- Michael J McClure
- Physical Medicine and Rehabilitation Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA, United States of America. Department of Biomedical Engineering, Virginia Commonwealth University, College of Engineering, Richmond, VA, United States of America
| | | | | | | |
Collapse
|
26
|
Contreras O, Villarreal M, Brandan E. Nilotinib impairs skeletal myogenesis by increasing myoblast proliferation. Skelet Muscle 2018; 8:5. [PMID: 29463296 PMCID: PMC5819301 DOI: 10.1186/s13395-018-0150-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/08/2018] [Indexed: 12/12/2022] Open
Abstract
Background Tyrosine kinase inhibitors (TKIs) are effective therapies with demonstrated antineoplastic activity. Nilotinib is a second-generation FDA-approved TKI designed to overcome Imatinib resistance and intolerance in patients with chronic myelogenous leukemia (CML). Interestingly, TKIs have also been shown to be an efficient treatment for several non-malignant disorders such fibrotic diseases, including those affecting skeletal muscles. Methods We investigated the role of Nilotinib on skeletal myogenesis using the well-established C2C12 myoblast cell line. We evaluated the impact of Nilotinib during the time course of skeletal myogenesis. We compared the effect of Nilotinib with the well-known p38 MAPK inhibitor SB203580. MEK1/2 UO126 and PI3K/AKT LY294002 inhibitors were used to identify the signaling pathways involved in Nilotinib-related effects on myoblast. Adult primary myoblasts were also used to corroborate the inhibition of myoblasts fusion and myotube-nuclei positioning by Nilotinib. Results We found that Nilotinib inhibited myogenic differentiation, reducing the number of myogenin-positive myoblasts and decreasing myogenin and MyoD expression. Furthermore, Nilotinib-mediated anti-myogenic effects impair myotube formation, myosin heavy chain expression, and compromise myotube-nuclei positioning. In addition, we found that p38 MAPK is a new off-target protein of Nilotinib, which causes inhibition of p38 phosphorylation in a similar manner as the well-characterized p38 inhibitor SB203580. Nilotinib induces the activation of ERK1/2 and AKT on myoblasts but not in myotubes. We also found that Nilotinib stimulates myoblast proliferation, a process dependent on ERK1/2 and AKT activation. Conclusions Our findings suggest that Nilotinib may have important negative effects on muscle homeostasis, inhibiting myogenic differentiation but stimulating myoblasts proliferation. Additionally, we found that Nilotinib stimulates the activation of ERK1/2 and AKT. On the other hand, we suggest that p38 MAPK is a new off-target of Nilotinib. Thus, there is a necessity for future studies to investigate the long-term effects of TKIs on skeletal muscle homeostasis, along with potential detrimental effects in cell differentiation and proliferation in patients receiving TKI therapies. Electronic supplementary material The online version of this article (10.1186/s13395-018-0150-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Osvaldo Contreras
- Departamento de Biología Celular y Molecular and Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Libertador Bernardo O'Higgins 340, 8331150, Santiago, Chile
| | - Maximiliano Villarreal
- Departamento de Biología Celular y Molecular and Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Libertador Bernardo O'Higgins 340, 8331150, Santiago, Chile
| | - Enrique Brandan
- Departamento de Biología Celular y Molecular and Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Libertador Bernardo O'Higgins 340, 8331150, Santiago, Chile.
| |
Collapse
|
27
|
Goshen-Lago T, Melamed D, Admon A, Engelberg D. Isolation and Characterization of Intrinsically Active (MEK-Independent) Mutants of Mpk1/Erk. Methods Mol Biol 2018; 1487:65-88. [PMID: 27924559 DOI: 10.1007/978-1-4939-6424-6_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The extracellular-regulated kinase (Erk) pathway is a major determinant in the control of diverse cellular processes, such as proliferation, differentiation, survival, and motility. The pathway executes its effects through kinases of the Erk family. Erks are not only critical for a variety of physiological processes, but are also associated with neurodegenerative diseases, cardiovascular diseases, diabetes and a large number of human cancers. However, the exact role of each Erk molecule in these biological and pathological processes is not fully determined. An efficient strategy for revealing these roles is to activate each Erk isoform individually, in a signal independent manner, and to monitor the molecular, physiological, and pathological effects. This could be achieved by developing intrinsically active variants for each Erk isoform and splicing variant and expressing these molecules individually in biological systems. A screening method that selects for relevant and useful active mutants of Erks is described in this chapter. The main principle of the method is to screen for mutants of Erk that function in the total absence of their relevant MEKs. Another principle is that the screen should be unbiased toward particular domains or mechanisms of action. We describe how these principles are combined into a screen that takes advantage of the yeast Mpk1/Erk pathway. Following the description of how intrinsically active Mpk1 molecules are isolated, we provide comprehensive and detailed descriptions of the methods used to characterize their catalytic activity, autophosphorylation capabilities, and phosphorylation status, as well as the methods used to determine the precise phosphorylated sites. The principles of the screen and the methods described here could be easily adapted for any Erk molecule in any organism.
Collapse
Affiliation(s)
- Tal Goshen-Lago
- Department of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Dganit Melamed
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | - Arie Admon
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | - David Engelberg
- Department of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel. .,CREATE-NUS-HUJ Cellular & Molecular Mechanisms of Inflammation Programme, National University of Singapore, 1 CREATE WAY, Innovation Wing, #03-09, Singapore, 138602, Singapore. .,Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore.
| |
Collapse
|
28
|
Mehdipour M, Liu Y, Liu C, Kumar B, Kim D, Gathwala R, Conboy IM. Key Age-Imposed Signaling Changes That Are Responsible for the Decline of Stem Cell Function. Subcell Biochem 2018; 90:119-143. [PMID: 30779008 DOI: 10.1007/978-981-13-2835-0_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This chapter analyzes recent developments in the field of signal transduction of ageing with the focus on the age-imposed changes in TGF-beta/pSmad, Notch, Wnt/beta-catenin, and Jak/Stat networks. Specifically, this chapter delineates how the above-mentioned evolutionary-conserved morphogenic signaling pathways operate in young versus aged mammalian tissues, with insights into how the age-specific broad decline of stem cell function is precipitated by the deregulation of these key cell signaling networks. This chapter also provides perspectives onto the development of defined therapeutic approaches that aim to calibrate intensity of the determinant signal transduction to health-youth, thereby rejuvenating multiple tissues in older people.
Collapse
Affiliation(s)
- Melod Mehdipour
- Bioengineering, Univercity of California Berkeley, Berkeley, CA, USA
| | - Yutong Liu
- Bioengineering, Univercity of California Berkeley, Berkeley, CA, USA
| | - Chao Liu
- Bioengineering, Univercity of California Berkeley, Berkeley, CA, USA
| | - Binod Kumar
- Bioengineering, Univercity of California Berkeley, Berkeley, CA, USA
| | - Daehwan Kim
- Bioengineering, Univercity of California Berkeley, Berkeley, CA, USA
| | - Ranveer Gathwala
- Bioengineering, Univercity of California Berkeley, Berkeley, CA, USA
| | - Irina M Conboy
- Bioengineering, Univercity of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|
29
|
Walters B, Uynuk-Ool T, Rothdiener M, Palm J, Hart ML, Stegemann JP, Rolauffs B. Engineering the geometrical shape of mesenchymal stromal cells through defined cyclic stretch regimens. Sci Rep 2017; 7:6640. [PMID: 28747783 PMCID: PMC5529555 DOI: 10.1038/s41598-017-06794-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/16/2017] [Indexed: 02/06/2023] Open
Abstract
Stem cells have been predicted to improve disease outcomes and patient lives. Steering stem cell fate - through controlling cell shape - may substantially accelerate progress towards this goal. As mesenchymal stromal cells (MSCs) are continuously exposed in vivo to a dynamically changing biomechanical environment, we hypothesized that exogenous forces can be applied for engineering a variety of significantly different MSC shapes. We applied specific cyclic stretch regimens to human MSCs and quantitatively measured the resulting cell shape, alignment, and expression of smooth muscle (SMC) differentiation markers, as those have been associated with elongated morphology. As proof of principle, a range of different shapes, alignments, and correlating SMC marker levels were generated by varying strain, length, and repetition of stretch. However, the major determinant of biomechanically engineering cellular shape was the repetition of a chosen stretch regimen, indicating that the engineered shape and associated differentiation were complex non-linear processes relying on sustained biomechanical stimulation. Thus, forces are key regulators of stem cell shape and the targeted engineering of specific MSC shapes through biomechanical forces represents a novel mechanobiology concept that could exploit naturally occurring in vivo forces for improving stem cell fate in clinical regenerative therapies.
Collapse
Affiliation(s)
- Brandan Walters
- Department of Biomedical Engineering, University of Michigan, 1107 Carl A. Gerstacker Building, 2200 Bonisteel Blvd, Ann Arbor, MI, 48109, United States
| | - Tatiana Uynuk-Ool
- Siegfried Weller Institute for Trauma Research, BG Trauma Clinic Tuebingen, University of Tuebingen, Waldhoernlestr. 22, 72072, Tuebingen, Germany
| | - Miriam Rothdiener
- Siegfried Weller Institute for Trauma Research, BG Trauma Clinic Tuebingen, University of Tuebingen, Waldhoernlestr. 22, 72072, Tuebingen, Germany
| | - Julian Palm
- Siegfried Weller Institute for Trauma Research, BG Trauma Clinic Tuebingen, University of Tuebingen, Waldhoernlestr. 22, 72072, Tuebingen, Germany
| | - Melanie L Hart
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center - Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - Jan P Stegemann
- Department of Biomedical Engineering, University of Michigan, 1107 Carl A. Gerstacker Building, 2200 Bonisteel Blvd, Ann Arbor, MI, 48109, United States
| | - Bernd Rolauffs
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center - Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany. .,Massachusetts Institute of Technology, Center for Biomedical Engineering, Cambridge, MA, 02319, USA.
| |
Collapse
|
30
|
Akirin2 regulates proliferation and differentiation of porcine skeletal muscle satellite cells via ERK1/2 and NFATc1 signaling pathways. Sci Rep 2017; 7:45156. [PMID: 28327665 PMCID: PMC5361102 DOI: 10.1038/srep45156] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 02/21/2017] [Indexed: 12/16/2022] Open
Abstract
Akirin2, a novel nuclear factor, plays an important role in myogenesis. To investigate the role of Akirin2 in proliferation and differentiation of porcine skeletal muscle satellite cells, Akirin2 overexpression and Akirin2 silence technologies were employed. Our results showed that overexpression of Akirin2 markedly enhanced the proliferation and differentiation of porcine skeletal muscle satellite cells, whereas silencing of Akirin2 got the opposite results. Furthermore, our results showed that Akirin2 affected proliferation and differentiation of porcine skeletal muscle satellite cells through extracellular-signal regulated kinase-1/2 (ERK1/2) and NFATc1 signaling pathways. These results indicate that Akirin2 can effectively promote skeletal muscle satellite cells proliferation and differentiation, acting through ERK1/2- and NFATc1-dependent mechanisms.
Collapse
|
31
|
Nakanishi R, Hirayama Y, Tanaka M, Maeshige N, Kondo H, Ishihara A, Roy RR, Fujino H. Nucleoprotein supplementation enhances the recovery of rat soleus mass with reloading after hindlimb unloading-induced atrophy via myonuclei accretion and increased protein synthesis. Nutr Res 2016; 36:1335-1344. [PMID: 27866827 DOI: 10.1016/j.nutres.2016.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 10/06/2016] [Accepted: 10/20/2016] [Indexed: 01/08/2023]
Abstract
Hindlimb unloading results in muscle atrophy and a period of reloading has been shown to partially recover the lost muscle mass. Two of the mechanisms involved in this recovery of muscle mass are the activation of protein synthesis pathways and an increase in myonuclei number. The additional myonuclei are provided by satellite cells that are activated by the mechanical stress associated with the reloading of the muscles and eventually incorporated into the muscle fibers. Amino acid supplementation with exercise also can increase skeletal muscle mass through enhancement of protein synthesis and nucleotide supplements can promote cell cycle activity. Therefore, we hypothesized that nucleoprotein supplementation, a combination of amino acids and nucleotides, would enhance the recovery of muscle mass to a greater extent than reloading alone after a period of unloading. Adult rats were assigned to 4 groups: control, hindlimb unloaded (HU; 14 days), reloaded (5 days) after hindlimb unloading (HUR), and reloaded after hindlimb unloading with nucleoprotein supplementation (HUR + NP). Compared with the HUR group, the HUR + NP group had larger soleus muscles and fiber cross-sectional areas, higher levels of phosphorylated rpS6, and higher numbers of myonuclei and myogenin-positive cells. These results suggest that nucleoprotein supplementation has a synergistic effect with reloading in recovering skeletal muscle properties after a period of unloading via rpS6 activation and satellite cell differentiation and incorporation into the muscle fibers. Therefore, this supplement may be an effective therapeutic regimen to include in rehabilitative strategies for a variety of muscle wasting conditions such as aging, cancer cachexia, muscular dystrophy, bed rest, and cast immobilization.
Collapse
Affiliation(s)
- Ryosuke Nakanishi
- Rehabilitation Science, Graduate School of Health Sciences, Kobe University, 7-10-2 Tomogaoka, Kobe 654-0142, Japan
| | - Yusuke Hirayama
- Rehabilitation Science, Graduate School of Health Sciences, Kobe University, 7-10-2 Tomogaoka, Kobe 654-0142, Japan
| | - Minoru Tanaka
- Rehabilitation Science, Graduate School of Health Sciences, Kobe University, 7-10-2 Tomogaoka, Kobe 654-0142, Japan; Department of Physical Therapy, Osaka Yukioka College of Health Science, 1-1-41 Soujiji, Ibaraki 567-0801, Japan
| | - Noriaki Maeshige
- Rehabilitation Science, Graduate School of Health Sciences, Kobe University, 7-10-2 Tomogaoka, Kobe 654-0142, Japan
| | - Hiroyo Kondo
- Department of Food Science and Nutrition, Nagoya Women's University, 3-40 Shiojicho, Nagoya 467-8611, Japan
| | - Akihiko Ishihara
- Laboratory of Cell Biology and Life Science, Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsucho, Kyoto 606-8501, Japan
| | - Roland R Roy
- Brain Research Institute and Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095-7239, USA
| | - Hidemi Fujino
- Rehabilitation Science, Graduate School of Health Sciences, Kobe University, 7-10-2 Tomogaoka, Kobe 654-0142, Japan.
| |
Collapse
|
32
|
Zhong Y, Zou L, Wang Z, Pan Y, Dai Z, Liu X, Cui L, Zuo C. Lrrc75b is a novel negative regulator of C2C12 myogenic differentiation. Int J Mol Med 2016; 38:1411-1418. [PMID: 27633041 PMCID: PMC5065307 DOI: 10.3892/ijmm.2016.2738] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 09/08/2016] [Indexed: 12/20/2022] Open
Abstract
Many transcription factors and signaling molecules involved in the guidance of myogenic differentiation have been investigated in previous studies. However, the precise molecular mechanisms of myogenic differentiation remain largely unknown. In the present study, by performing a meta-analysis of C2C12 myogenic differentiation microarray data, we found that leucine-rich repeat-containing 75B (Lrrc75b), also known as AI646023, a molecule of unknown biological function, was downregulated during C2C12 myogenic differentiation. The knockdown of Lrrc75b using specific siRNA in C2C12 myoblasts markedly enhanced the expression of muscle-specific myogenin and increased myoblast fusion and the myotube diameter. By contrast, the adenovirus-mediated overexpression of Lrrc75b in C2C12 cells markedly inhibited myoblast differentiation accompanied by a decrease in myogenin expression. In addition, the phosphorylation of extracellular signal-regulated kinase 1/2 (Erk1/2) was suppressed in the cells in which Lrrc75b was silenced. Taken together, our results demonstrate that Lrrc75b is a novel suppressor of C2C12 myogenic differentiation by modulating myogenin and Erk1/2 signaling.
Collapse
Affiliation(s)
- Yuechun Zhong
- Department of Pharmacology, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Liyi Zou
- Department of Pharmacology, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Zonggui Wang
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Yaqiong Pan
- Department of Pharmacology, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Zhong Dai
- Department of Pharmacology, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Xinguang Liu
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Liao Cui
- Department of Pharmacology, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Changqing Zuo
- Department of Pharmacology, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| |
Collapse
|
33
|
Kim YJ, Tamadon A, Park HT, Kim H, Ku SY. The role of sex steroid hormones in the pathophysiology and treatment of sarcopenia. Osteoporos Sarcopenia 2016; 2:140-155. [PMID: 30775480 PMCID: PMC6372754 DOI: 10.1016/j.afos.2016.06.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/09/2016] [Accepted: 06/17/2016] [Indexed: 12/18/2022] Open
Abstract
Sex steroids influence the maintenance and growth of muscles. Decline in androgens, estrogens and progesterone by aging leads to the loss of muscular function and mass, sarcopenia. These steroid hormones can interact with different signaling pathways through their receptors. To date, sex steroid hormone receptors and their exact roles are not completely defined in skeletal and smooth muscles. Although numerous studies focused on the effects of sex steroid hormones on different types of cells, still many unexplained molecular mechanisms in both skeletal and smooth muscle cells remain to be investigated. In this paper, many different molecular mechanisms that are activated or inhibited by sex steroids and those that influence the growth, proliferation, and differentiation of skeletal and smooth muscle cells are reviewed. Also, the similarities of cellular and molecular pathways of androgens, estrogens and progesterone in both skeletal and smooth muscle cells are highlighted. The reviewed signaling pathways and participating molecules can be targeted in the future development of novel therapeutics.
Collapse
Affiliation(s)
- Yong Jin Kim
- Department of Obstetrics and Gynecology, Korea University Guro Hospital, South Korea
| | - Amin Tamadon
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul, South Korea
| | - Hyun Tae Park
- Department of Obstetrics and Gynecology, Korea University Anam Hospital, Korea University College of Medicine, South Korea
| | - Hoon Kim
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul, South Korea
| | - Seung-Yup Ku
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul, South Korea
| |
Collapse
|
34
|
Kirk SP, Oldham JM, Jeanplong F, Bass JJ. Insulin-like Growth Factor-II Delays Early but Enhances Late Regeneration of Skeletal Muscle. J Histochem Cytochem 2016; 51:1611-20. [PMID: 14623929 DOI: 10.1177/002215540305101205] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This study tested whether administration of insulin-like growth factor-II (IGF-II) enhances muscle regeneration. Rat biceps femoris muscle was damaged with notexin and then IGF-II was administered for up to 7 days. Results show that the proportion of nuclei containing or surrounded by immunoreactivity to MyoD, myogenin, and developmental myosin heavy chain (dMHC) is less in the IGF-II treatment group relative to the control group on days 1 (p=0.057), 2 (p=0.034), and 3 (p=0.047), respectively. This indicates a delay in muscle precursor cell (MPC) proliferation and differentiation with IGF-II administration. This effect was not associated with decreased binding capacity of the type 1 IGF receptor, as determined by receptor autoradiography in day 1 muscle sections (NS), but was associated with inhibition of phagocytic processes. The cross-sectional area of regenerating muscle fibers was significantly greater in the IGF-II treatment group than in the control group by day 7 (p=0.0092). The enhancing effect of IGF-II on late muscle regeneration, when the main process taking place is fiber enlargement, coincides with the period in which IGF-II is normally expressed by regenerating muscle, indicating that greater endogenous production of IGF-II would be associated with improved regeneration.
Collapse
Affiliation(s)
- Sonnie P Kirk
- Functional Muscle Genomics, AgResearch, Ruakura Agricultural Research Centre, Hamilton, New Zealand
| | | | | | | |
Collapse
|
35
|
Coulton G, Hou Y, Mirczuk SM, Allen SP. Raf kinase inhibitor protein1 is a myogenic inhibitor with conserved function in avians and mammals. Dev Dyn 2016; 245:902-12. [PMID: 27240024 DOI: 10.1002/dvdy.24421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 04/19/2016] [Accepted: 05/09/2016] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Raf Kinase Inhibitor Protein1 (RKIP) is a tumor suppressor that is present in several adult tissues. It functions as an inhibitor of both Raf/Mek/Erk and NFĸB signaling when unphosphorylated, but following phosphorylation the ability to inhibit Raf/Mek/Erk signaling is lost and RKIP becomes an activator of G-protein coupled receptor signaling. In neonates and adults, RKIP is known to be expressed in muscle; however, its physiological function is currently unknown. RESULTS In this study, we show by in situ hybridization and immunofluorescence that RKIP is also expressed in developing chick embryonic muscle, and mouse C2C12 myoblasts. Furthermore, we demonstrate that, in these systems, it functions as an inhibitor of myogenesis: increased levels of RKIP suppress myotube differentiation whereas decreasing RKIP promotes differentiation. Additionally, we show that the ability of RKIP to inhibit myogenesis is dependent upon its phosphorylation state as only the nonphosphorylated form of RKIP suppresses myogenesis. CONCLUSIONS This study, therefore, clearly demonstrates that RKIP has conserved functions as a myogenic inhibitor in both mammalian and avian muscle. Developmental Dynamics 245:902-912, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Gary Coulton
- Institute for Infection and Immunity, St Georges University of London, London, United Kingdom
| | - Yanwen Hou
- Institute for Infection and Immunity, St Georges University of London, London, United Kingdom
| | - Samantha M Mirczuk
- Comparative Biomedical Sciences, The Royal Veterinary College, Camden, London, United Kingdom
| | - Steven P Allen
- Comparative Biomedical Sciences, The Royal Veterinary College, Camden, London, United Kingdom
| |
Collapse
|
36
|
Li HP, Yuan CL, Zho YC. Human cytomegalovirus inhibits apoptosis involving upregulation of the antiapoptotic protein Bag-1. J Med Virol 2016; 87:1953-9. [PMID: 26087710 DOI: 10.1002/jmv.24259] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2015] [Indexed: 01/25/2023]
Abstract
Human cytomegalovirus (HCMV) is an important opportunistic pathogen in immunocompromised individuals and is recognized as a major viral cause of birth defects. HCMV has the ability to establish lifelong persistence and latent infection following primary exposure. Apoptosis is an innate cellular defense response to viral infection. HCMV can block apoptosis in various cell types. Here we show that HCMV promotes survival of human embryonic lung fibroblasts by activating of MAPK/ERK signaling pathway. Bag-1 is up-regulated in a MAPK/ERK-dependent fashion in infected cells. Depletion of Bag-1 suppresses the antiapoptotic effect of HCMV. Taken together, these data indicate that Bag-1 up-regulation is required to maintain apoptosis resistance in HCMV infected cells.
Collapse
Affiliation(s)
- Hai Ping Li
- Department of Nuclear Medicine, The First People's Hospital of Jingzhou, Jingzhou, HuBei, 434000, China
| | - Cong Ling Yuan
- Department of Nuclear Medicine, The First People's Hospital of Jingzhou, Jingzhou, HuBei, 434000, China
| | - Ying Chun Zho
- Department of Nuclear Medicine, The First People's Hospital of Jingzhou, Jingzhou, HuBei, 434000, China
| |
Collapse
|
37
|
Luo X, Jin R, Wang F, Jia B, Luan K, Cheng FW, Li L, Sun LD, Yang S, Zhang SQ, Zhang XJ. Interleukin-15 inhibits the expression of differentiation markers induced by Ca2+in keratinocytes. Exp Dermatol 2016; 25:544-7. [PMID: 26914593 DOI: 10.1111/exd.12992] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Xin Luo
- Department of Biochemistry and Molecular Biology; Anhui Medical University; Hefei Anhui China
| | - Rui Jin
- Department of Biochemistry and Molecular Biology; Anhui Medical University; Hefei Anhui China
| | - Fang Wang
- Department of Biochemistry and Molecular Biology; Anhui Medical University; Hefei Anhui China
| | - Bo Jia
- Department of Biochemistry and Molecular Biology; Anhui Medical University; Hefei Anhui China
| | - Kang Luan
- Department of Biochemistry and Molecular Biology; Anhui Medical University; Hefei Anhui China
| | - Feng-Wei Cheng
- Department of Biochemistry and Molecular Biology; Anhui Medical University; Hefei Anhui China
| | - Lei Li
- Department of Biochemistry and Molecular Biology; Anhui Medical University; Hefei Anhui China
| | - Liang-Dan Sun
- Institute of Dermatology at the 1st Hospital; Anhui Medical University; Hefei Anhui China
| | - Sen Yang
- Institute of Dermatology at the 1st Hospital; Anhui Medical University; Hefei Anhui China
| | - Sheng-Quan Zhang
- Department of Biochemistry and Molecular Biology; Anhui Medical University; Hefei Anhui China
- Institute of Dermatology at the 1st Hospital; Anhui Medical University; Hefei Anhui China
| | - Xue-Jun Zhang
- Institute of Dermatology at the 1st Hospital; Anhui Medical University; Hefei Anhui China
| |
Collapse
|
38
|
Broome DT, Datta NS. Mitogen-activated protein kinase phosphatase-1: function and regulation in bone and related tissues. Connect Tissue Res 2016; 57:175-89. [PMID: 27031422 DOI: 10.3109/03008207.2015.1125480] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In this review, we have highlighted work that has clearly demonstrated that mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1), a negative regulator of MAPKs, is an important signaling mediator in bone, muscle, and fat tissue homeostasis and differentiation. Further, we examined recent studies with particular focus on MKP-1 overexpression or deletion and its impact on tissues connected to bone. We also summarized regulation of MKP-1 by known skeletal regulators like parathyroid hormone (PTH)/PTH-related peptide (PTHrP) and bone morphogenic proteins. MKP-1's integration into the pathophysiological state of osteoporosis, osteoarthritis, rheumatoid arthritis, obesity, and muscular dystrophy are examined to emphasize possible involvement of MKP-1 both at the molecular level and in disease complications such as sarcopenia- or diabetes-related osteoporosis. We predict that understanding the mechanism of MKP-1-mediated signaling in bone-muscle-fat crosstalk will be a key in coordinating their activities and developing therapeutics to improve clinical outcomes for diseases associated with advanced age.
Collapse
Affiliation(s)
- David T Broome
- a Division of Endocrinology, Department of Internal Medicine , Wayne State University School of Medicine , Detroit , MI , USA
| | - Nabanita S Datta
- a Division of Endocrinology, Department of Internal Medicine , Wayne State University School of Medicine , Detroit , MI , USA
| |
Collapse
|
39
|
Luo W, Lin S, Li G, Nie Q, Zhang X. Integrative Analyses of miRNA-mRNA Interactions Reveal let-7b, miR-128 and MAPK Pathway Involvement in Muscle Mass Loss in Sex-Linked Dwarf Chickens. Int J Mol Sci 2016; 17:276. [PMID: 26927061 PMCID: PMC4813140 DOI: 10.3390/ijms17030276] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/17/2016] [Accepted: 02/17/2016] [Indexed: 01/21/2023] Open
Abstract
The sex-linked dwarf (SLD) chicken is an ideal model system for understanding growth hormone (GH)-action and growth hormone receptor (GHR) function because of its recessive mutation in the GHR gene. Skeletal muscle mass is reduced in the SLD chicken with a smaller muscle fiber diameter. Our previous study has presented the mRNA and miRNA expression profiles of the SLD chicken and normal chicken between embryo day 14 and seven weeks of age. However, the molecular mechanism of GHR-deficient induced muscle mass loss is still unclear, and the key molecules and pathways underlying the GHR-deficient induced muscle mass loss also remain to be illustrated. Here, by functional network analysis of the differentially expressed miRNAs and mRNAs between the SLD and normal chickens, we revealed that let-7b, miR-128 and the MAPK pathway might play key roles in the GHR-deficient induced muscle mass loss, and that the reduced cell division and growth are potential cellular processes during the SLD chicken skeletal muscle development. Additionally, we also found some genes and miRNAs involved in chicken skeletal muscle development, through the MAPK, PI3K-Akt, Wnt and Insulin signaling pathways. This study provides new insights into the molecular mechanism underlying muscle mass loss in the SLD chickens, and some regulatory networks that are crucial for chicken skeletal muscle development.
Collapse
Affiliation(s)
- Wen Luo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, Guangdong, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China.
| | - Shumao Lin
- College of Life Science, Foshan University, Foshan 528231, Guangdong, China.
| | - Guihuan Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, Guangdong, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China.
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, Guangdong, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China.
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, Guangdong, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China.
| |
Collapse
|
40
|
Santos-Zas I, Gurriarán-Rodríguez U, Cid-Díaz T, Figueroa G, González-Sánchez J, Bouzo-Lorenzo M, Mosteiro CS, Señarís J, Casanueva FF, Casabiell X, Gallego R, Pazos Y, Mouly V, Camiña JP. β-Arrestin scaffolds and signaling elements essential for the obestatin/GPR39 system that determine the myogenic program in human myoblast cells. Cell Mol Life Sci 2016; 73:617-35. [PMID: 26211463 PMCID: PMC11108386 DOI: 10.1007/s00018-015-1994-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/08/2015] [Accepted: 07/16/2015] [Indexed: 12/27/2022]
Abstract
Obestatin/GPR39 signaling stimulates skeletal muscle repair by inducing the expansion of satellite stem cells as well as myofiber hypertrophy. Here, we describe that the obestatin/GPR39 system acts as autocrine/paracrine factor on human myogenesis. Obestatin regulated multiple steps of myogenesis: myoblast proliferation, cell cycle exit, differentiation and recruitment to fuse and form multinucleated hypertrophic myotubes. Obestatin-induced mitogenic action was mediated by ERK1/2 and JunD activity, being orchestrated by a G-dependent mechanism. At a later stage of myogenesis, scaffolding proteins β-arrestin 1 and 2 were essential for the activation of cell cycle exit and differentiation through the transactivation of the epidermal growth factor receptor (EGFR). Upon obestatin stimulus, β-arrestins are recruited to the membrane, where they functionally interact with GPR39 leading to Src activation and signalplex formation to EGFR transactivation by matrix metalloproteinases. This signalplex regulated the mitotic arrest by p21 and p57 expression and the mid- to late stages of differentiation through JNK/c-Jun, CAMKII, Akt and p38 pathways. This finding not only provides the first functional activity for β-arrestins in myogenesis but also identify potential targets for therapeutic approaches by triggering specific signaling arms of the GPR39 signaling involved in myogenesis.
Collapse
Affiliation(s)
- Icía Santos-Zas
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - Uxía Gurriarán-Rodríguez
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
- Sprott Centre for Stem Cell Research, Ottawa Health Research Institute, Ottawa, Canada
| | - Tania Cid-Díaz
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - Gabriela Figueroa
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
| | - Jessica González-Sánchez
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - Mónica Bouzo-Lorenzo
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - Carlos S Mosteiro
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - José Señarís
- Servicio de Cirugía Ortopédica y Traumatología, CHUS, SERGAS, Santiago de Compostela, Spain
| | - Felipe F Casanueva
- CIBER Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
- Departamento de Medicina, USC, Santiago de Compostela, Spain
| | - Xesús Casabiell
- Departamento de Fisiología, USC, Santiago de Compostela, Spain
| | - Rosalía Gallego
- Departamento de Ciencias Morfológicas, USC, Santiago de Compostela, Spain
| | - Yolanda Pazos
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - Vincent Mouly
- Institut de Myologie, INSERM, and Sorbonne Universités, Université Pierre et Marie Curie, Paris, France
| | - Jesús P Camiña
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain.
| |
Collapse
|
41
|
Abstract
The developmental mechanisms that control head muscle formation are distinct from those that operate in the trunk. Head and neck muscles derive from various mesoderm populations in the embryo and are regulated by distinct transcription factors and signaling molecules. Throughout the last decade, developmental, and lineage studies in vertebrates and invertebrates have revealed the peculiar nature of the pharyngeal mesoderm that forms certain head muscles and parts of the heart. Studies in chordates, the ancestors of vertebrates, revealed an evolutionarily conserved cardiopharyngeal field that progressively facilitates the development of both heart and craniofacial structures during vertebrate evolution. This ancient regulatory circuitry preceded and facilitated the emergence of myogenic cell types and hierarchies that exist in vertebrates. This chapter summarizes studies related to the origins, signaling circuits, genetics, and evolution of the head musculature, highlighting its heterogeneous characteristics in all these aspects, with a special focus on the FGF-ERK pathway. Additionally, we address the processes of head muscle regeneration, and the development of stem cell-based therapies for treatment of muscle disorders.
Collapse
Affiliation(s)
- Inbal Michailovici
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Tamar Eigler
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Eldad Tzahor
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
42
|
Nie F, Cao J, Tong J, Zhu M, Gao Y, Ran Z. Role of Raf-kinase inhibitor protein in colorectal cancer and its regulation by hydroxycamptothecine. J Biomed Sci 2015; 22:56. [PMID: 26177829 PMCID: PMC4502602 DOI: 10.1186/s12929-015-0162-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 07/02/2015] [Indexed: 12/15/2022] Open
Abstract
Background Recently accumulated evidence suggests that Raf kinase inhibitor protein (RKIP) participates in regulation of many signaling pathways and plays an important role in tumorigenesis and tumor metastasis. However, studies investigating the role of RKIP in colorectal cancer have not been reported. The aim of this study was to investigate the role of RKIP on colorectal cancer cell differentiation, progression and its correlation with chemosensitivity. Results Immunohistochemical analysis revealed that RKIP expression was higher in non-neoplastic colorectal tissue (NCRCT) and colorectal cancer tissue (CRCT) than that in metastatic lymph node tissue (MLNT) (P <0.05). P-ERK protein expression was higher in MLNT and CRCT than that in NCRCT (P = 0.02). Immunocytochemical analysis further revealed that RKIP expression was higher in the well differentiated cell line SW1116 as compared to that in the poorly differentiated cell line LoVo. Matrigel invasive assay demonstrated that the inhibition of RKIP by short hairpin RNA (shRNA) 271 transfection significantly increased the number of migrated cells (90.67 ± 4.04 vs. 37.33 ± 2.51, P <0.05), whereas over-expression of RKIP by PEBP-1 plasmid transfection significantly suppressed the number of migrated cells (79.24 ± 5.18 vs. 154.33 ± 7.25, P <0.05). Meanwhile, down-regulation of RKIP induced an increase in the cell survival rate by inhibiting apoptosis induced by hydroxycamptothecine. Conclusions RKIP was also found to be associated with cell differentiation, with a higher activity in well differentiated colorectal cancer cells than in poorly differentiated ones. The upregulated expression of RKIP in colorectal cancer cells inhibited cell invasion and metastasis, while downregulation of RKIP reduced chemosensitivity by inhibiting apoptosis induced by HCPT.
Collapse
Affiliation(s)
- Fang Nie
- Department of Intensive Care Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Jianguo Cao
- Department of Intensive Care Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Jinlu Tong
- Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China.
| | - Mingming Zhu
- Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China.
| | - Yuan Gao
- Department of Intensive Care Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Zhihua Ran
- Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China.
| |
Collapse
|
43
|
Oliveira TN, Possidonio AC, Soares CP, Ayres R, Costa ML, Quintas LEM, Mermelstein C. The role of Na+/K+-ATPase during chick skeletal myogenesis. PLoS One 2015; 10:e0120940. [PMID: 25775465 PMCID: PMC4361648 DOI: 10.1371/journal.pone.0120940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 02/09/2015] [Indexed: 12/14/2022] Open
Abstract
The formation of a vertebrate skeletal muscle fiber involves a series of sequential and interdependent events that occurs during embryogenesis. One of these events is myoblast fusion which has been widely studied, yet not completely understood. It was previously shown that during myoblast fusion there is an increase in the expression of Na+/K+-ATPase. This fact prompted us to search for a role of the enzyme during chick in vitro skeletal myogenesis. Chick myogenic cells were treated with the Na+/K+-ATPase inhibitor ouabain in four different concentrations (0.01-10 μM) and analyzed. Our results show that 0.01, 0.1 and 1 μM ouabain did not induce changes in cell viability, whereas 10 μM induced a 45% decrease. We also observed a reduction in the number and thickness of multinucleated myotubes and a decrease in the number of myoblasts after 10 μM ouabain treatment. We tested the involvement of MEK-ERK and p38 signaling pathways in the ouabain-induced effects during myogenesis, since both pathways have been associated with Na+/K+-ATPase. The MEK-ERK inhibitor U0126 alone did not alter cell viability and did not change ouabain effect. The p38 inhibitor SB202190 alone or together with 10 μM ouabain did not alter cell viability. Our results show that the 10 μM ouabain effects in myofiber formation do not involve the MEK-ERK or the p38 signaling pathways, and therefore are probably related to the pump activity function of the Na+/K+-ATPase.
Collapse
Affiliation(s)
- Taissa Neustadt Oliveira
- Laboratório de Diferenciação Muscular e Citoesqueleto, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Claudia Possidonio
- Laboratório de Diferenciação Muscular e Citoesqueleto, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carolina Pontes Soares
- Laboratório de Diferenciação Muscular e Citoesqueleto, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo Ayres
- Laboratório de Farmacologia Bioquímica e Molecular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Manoel Luis Costa
- Laboratório de Diferenciação Muscular e Citoesqueleto, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luis Eduardo Menezes Quintas
- Laboratório de Farmacologia Bioquímica e Molecular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cláudia Mermelstein
- Laboratório de Diferenciação Muscular e Citoesqueleto, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
44
|
Gurriarán-Rodríguez U, Santos-Zas I, González-Sánchez J, Beiroa D, Moresi V, Mosteiro CS, Lin W, Viñuela JE, Señarís J, García-Caballero T, Casanueva FF, Nogueiras R, Gallego R, Renaud JM, Adamo S, Pazos Y, Camiña JP. Action of obestatin in skeletal muscle repair: stem cell expansion, muscle growth, and microenvironment remodeling. Mol Ther 2015; 23:1003-1021. [PMID: 25762009 DOI: 10.1038/mt.2015.40] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 01/29/2015] [Indexed: 12/14/2022] Open
Abstract
The development of therapeutic strategies for skeletal muscle diseases, such as physical injuries and myopathies, depends on the knowledge of regulatory signals that control the myogenic process. The obestatin/GPR39 system operates as an autocrine signal in the regulation of skeletal myogenesis. Using a mouse model of skeletal muscle regeneration after injury and several cellular strategies, we explored the potential use of obestatin as a therapeutic agent for the treatment of trauma-induced muscle injuries. Our results evidenced that the overexpression of the preproghrelin, and thus obestatin, and GPR39 in skeletal muscle increased regeneration after muscle injury. More importantly, the intramuscular injection of obestatin significantly enhanced muscle regeneration by simulating satellite stem cell expansion as well as myofiber hypertrophy through a kinase hierarchy. Added to the myogenic action, the obestatin administration resulted in an increased expression of vascular endothelial growth factor (VEGF)/vascular endothelial growth factor receptor 2 (VEGFR2) and the consequent microvascularization, with no effect on collagen deposition in skeletal muscle. Furthermore, the potential inhibition of myostatin during obestatin treatment might contribute to its myogenic action improving muscle growth and regeneration. Overall, our data demonstrate successful improvement of muscle regeneration, indicating obestatin is a potential therapeutic agent for skeletal muscle injury and would benefit other myopathies related to muscle regeneration.
Collapse
Affiliation(s)
- Uxía Gurriarán-Rodríguez
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Spain; Current address: Sprott Centre for Stem Cell Research, Ottawa Health Research Institute, Ottawa, Canada
| | - Icía Santos-Zas
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Spain
| | - Jessica González-Sánchez
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Spain
| | - Daniel Beiroa
- CIBER Fisiopatología de la Obesidad y Nutrición, Spain; Departamento de Fisiología, Universidad de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Viviana Moresi
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy; Interuniversity Institute of Myology, Rome, Italy
| | - Carlos S Mosteiro
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Spain
| | - Wei Lin
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Juan E Viñuela
- Unidad de Inmunología, CHUS, Santiago de Compostela, Spain
| | - José Señarís
- Servicio de Cirugía Ortopédica y Traumatología, CHUS, SERGAS, Santiago de Compostela, Spain
| | | | - Felipe F Casanueva
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Spain; Departamento de Medicina, USC, Santiago de Compostela, Spain
| | - Rubén Nogueiras
- CIBER Fisiopatología de la Obesidad y Nutrición, Spain; Departamento de Fisiología, Universidad de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Rosalía Gallego
- Departamento de Ciencias Morfológicas, USC, Santiago de Compostela, Spain
| | - Jean-Marc Renaud
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Sergio Adamo
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy; Interuniversity Institute of Myology, Rome, Italy
| | - Yolanda Pazos
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Spain
| | - Jesús P Camiña
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Spain.
| |
Collapse
|
45
|
Shi H, Gatzke F, Molle JM, Lee HB, Helm ET, Oldham JJ, Zhang L, Gerrard DE, Bennett AM. Mice lacking MKP-1 and MKP-5 Reveal Hierarchical Regulation of Regenerative Myogenesis. ACTA ACUST UNITED AC 2015; 1:1-7. [PMID: 27064463 DOI: 10.15436/2741-0598.15.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The relative contribution of the MAP kinase phosphatases (MKPs) in the integration of MAP kinase-dependent signaling during regenerative myogenesis has yet to be fully investigated. MKP-1 and MKP-5 maintain skeletal muscle homeostasis by providing positive and negative effects on regenerative myogenesis, respectively. In order to define the hierarchical contributions of MKP-1 and MKP-5 in the regulation of regenerative myogenesis we genetically ablated both MKPs in mice. MKP-1/MKP 5-deficient double-knockout (MKP1/5- DKO) mice were viable, and upon skeletal muscle injury, were severely impaired in their capacity to regenerate skeletal muscle. Satellite cells were fewer in number in MKP1/5-DKO mice and displayed a reduced proliferative capacity as compared with those derived from wild-type mice. MKP1/5-DKO mice exhibited increased inflammation and the macrophage M1 to M2 transition during the resolution of inflammation was impaired following injury. These results demonstrate that the actions of MKP-1 to positively regulate myogenesis predominate over those of MKP-5, which negatively regulates myogenesis. Hence, MKP-1 and MKP-5 function to maintain skeletal muscle homeostasis through non-overlapping and opposing signaling pathways.
Collapse
Affiliation(s)
- Hao Shi
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | | | - Julia M Molle
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Han Bin Lee
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Emma T Helm
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Jessie J Oldham
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | | | - David E Gerrard
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Anton M Bennett
- Department of Pharmacology; Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
46
|
Yoshida T, Huq TS, Delafontaine P. Angiotensin type 2 receptor signaling in satellite cells potentiates skeletal muscle regeneration. J Biol Chem 2014; 289:26239-26248. [PMID: 25112871 DOI: 10.1074/jbc.m114.585521] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Patients with advanced congestive heart failure (CHF) or chronic kidney disease (CKD) often have increased angiotensin II (Ang II) levels and cachexia. Ang II infusion in rodents causes sustained skeletal muscle wasting and decreases muscle regenerative potential through Ang II type 1 receptor (AT1R)-mediated signaling, likely contributing to the development of cachexia in CHF and CKD. However, the potential role of Ang II type 2 receptor (AT2R) signaling in skeletal muscle physiology is unknown. We found that AT2R expression was increased robustly in regenerating skeletal muscle after cardiotoxin (CTX)-induced muscle injury in vivo and differentiating myoblasts in vitro, suggesting that the increase in AT2R played an important role in regulating myoblast differentiation and muscle regeneration. To determine the potential role of AT2R in muscle regeneration, we infused C57BL/6 mice with the AT2R antagonist PD123319 during CTX-induced muscle regeneration. PD123319 reduced the size of regenerating myofibers and expression of the myoblast differentiation markers myogenin and embryonic myosin heavy chain. On the other hand, AT2R agonist CGP42112 infusion potentiated CTX injury-induced myogenin and embryonic myosin heavy chain expression and increased the size of regenerating myofibers. In cultured myoblasts, AT2R knockdown by siRNA suppressed myoblast differentiation marker expression and myoblast differentiation via up-regulation of phospho-ERK1/2, and ERK inhibitor treatment completely blocked the effect of AT2R knockdown. These data indicate that AT2R signaling positively regulates myoblast differentiation and potentiates skeletal muscle regenerative potential, providing a new therapeutic target in wasting disorders such as CHF and CKD.
Collapse
Affiliation(s)
- Tadashi Yoshida
- Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, Louisiana 70112
| | - Tashfin S Huq
- Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, Louisiana 70112
| | - Patrice Delafontaine
- Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, Louisiana 70112.
| |
Collapse
|
47
|
Wu G, Song C, Lu H, Jia L, Yang G, Shi X, Sun S. Sirt2 induces C2C12 myoblasts proliferation by activation of the ERK1/2 pathway. Acta Biochim Biophys Sin (Shanghai) 2014; 46:342-5. [PMID: 24457518 DOI: 10.1093/abbs/gmt151] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Guofang Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | | | | | | | | | | | | |
Collapse
|
48
|
Kun D, Xiang-Lin C, Ming Z, Qi L. Chlamydia inhibit host cell apoptosis by inducing Bag-1 via the MAPK/ERK survival pathway. Apoptosis 2014; 18:1083-92. [PMID: 23708800 DOI: 10.1007/s10495-013-0865-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Chlamydia are obligate intracellular bacteria that frequently cause human disease. Host cells infected with Chlamydia are profoundly resistant to diverse apoptotic stimuli. The inhibition of apoptosis is thought to be an important immune escape mechanism allowing Chlamydia to productively complete their obligate intracellular growth cycle. Chlamydial antiapoptotic activity involves activation of the MAPK/ERK survival pathway. However, the molecular mechanisms are not well understood. Here we show that Bag-1 is up-regulated in Chlamydia-infected cells. U0126 and GW5074 suppress the induction of Bag-1 by Chlamydia, implying that Chlamydia may up-regulate Bag-1 via the MAPK/ERK survival pathway. Overexpression of Bag-1 is sufficient to protect against apoptosis, while depletion of Bag-1 suppresses the antiapoptotic effect of Chlamydia. The data indicate Chlamydia may up-regulate Bag-1 through the MAPK/ERK survival pathway to suppress apoptosis.
Collapse
Affiliation(s)
- Du Kun
- Department of Clinical Laboratory, The First Affiliated Hospital of Yangtze University, 434000, Jingzhou, Hubei, China.
| | | | | | | |
Collapse
|
49
|
Holle AW, Tang X, Vijayraghavan D, Vincent LG, Fuhrmann A, Choi YS, del Álamo JC, Engler AJ. In situ mechanotransduction via vinculin regulates stem cell differentiation. Stem Cells 2013; 31:2467-77. [PMID: 23897765 PMCID: PMC3833960 DOI: 10.1002/stem.1490] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 07/24/2013] [Accepted: 07/10/2013] [Indexed: 12/15/2022]
Abstract
Human mesenchymal stem cell (hMSC) proliferation, migration, and differentiation have all been linked to extracellular matrix stiffness, yet the signaling pathway(s) that are necessary for mechanotransduction remain unproven. Vinculin has been implicated as a mechanosensor in vitro, but here we demonstrate its ability to also regulate stem cell behavior, including hMSC differentiation. RNA interference-mediated vinculin knockdown significantly decreased stiffness-induced MyoD, a muscle transcription factor, but not Runx2, an osteoblast transcription factor, and impaired stiffness-mediated migration. A kinase binding accessibility screen predicted a cryptic MAPK1 signaling site in vinculin which could regulate these behaviors. Indeed, reintroduction of vinculin domains into knocked down cells indicated that MAPK1 binding site-containing vinculin constructs were necessary for hMSC expression of MyoD. Vinculin knockdown does not appear to interfere with focal adhesion assembly, significantly alter adhesive properties, or diminish cell traction force generation, indicating that its knockdown only adversely affected MAPK1 signaling. These data provide some of the first evidence that a force-sensitive adhesion protein can regulate stem cell fate.
Collapse
Affiliation(s)
- Andrew W. Holle
- Department of Bioengineering, University of California, San Diego; La Jolla, CA 92093, USA
| | - Xinyi Tang
- Department of Bioengineering, University of California, San Diego; La Jolla, CA 92093, USA
| | - Deepthi Vijayraghavan
- Department of Bioengineering, University of California, San Diego; La Jolla, CA 92093, USA
| | - Ludovic G. Vincent
- Department of Bioengineering, University of California, San Diego; La Jolla, CA 92093, USA
| | - Alexander Fuhrmann
- Department of Bioengineering, University of California, San Diego; La Jolla, CA 92093, USA
| | - Yu Suk Choi
- Department of Bioengineering, University of California, San Diego; La Jolla, CA 92093, USA
| | - Juan C. del Álamo
- Department of Mechanical and Aerospace Engineering, University of California, San Diego; La Jolla, CA 92093, USA
| | - Adam J. Engler
- Department of Bioengineering, University of California, San Diego; La Jolla, CA 92093, USA
- Department of Biomedical Sciences Program, University of California, San Diego; La Jolla, CA 92093, USA
- Sanford Consortium for Regenerative Medicine; La Jolla, CA 92037, USA
| |
Collapse
|
50
|
Marino JS, Hinds TD, Potter RA, Ondrus E, Onion JL, Dowling A, McLoughlin TJ, Sanchez ER, Hill JW. Suppression of protein kinase C theta contributes to enhanced myogenesis in vitro via IRS1 and ERK1/2 phosphorylation. BMC Cell Biol 2013; 14:39. [PMID: 24053798 PMCID: PMC3848841 DOI: 10.1186/1471-2121-14-39] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 09/17/2013] [Indexed: 12/03/2022] Open
Abstract
Background Differentiation and fusion of skeletal muscle myoblasts into multi-nucleated myotubes is required for neonatal development and regeneration in adult skeletal muscle. Herein, we report novel findings that protein kinase C theta (PKCθ) regulates myoblast differentiation via phosphorylation of insulin receptor substrate-1 and ERK1/2. Results In this study, PKCθ knockdown (PKCθshRNA) myotubes had reduced inhibitory insulin receptor substrate-1 ser1095 phosphorylation, enhanced myoblast differentiation and cell fusion, and increased rates of protein synthesis as determined by [3H] phenylalanine incorporation. Phosphorylation of insulin receptor substrate-1 ser632/635 and extracellular signal-regulated kinase1/2 (ERK1/2) was increased in PKCθshRNA cells, with no change in ERK5 phosphorylation, highlighting a PKCθ-regulated myogenic pathway. Inhibition of PI3-kinase prevented cell differentiation and fusion in control cells, which was attenuated in PKCθshRNA cells. Thus, with reduced PKCθ, differentiation and fusion occur in the absence of PI3-kinase activity. Inhibition of the ERK kinase, MEK1/2, impaired differentiation and cell fusion in control cells. Differentiation was preserved in PKCθshRNA cells treated with a MEK1/2 inhibitor, although cell fusion was blunted, indicating PKCθ regulates differentiation via IRS1 and ERK1/2, and this occurs independently of MEK1/2 activation. Conclusion Cellular signaling regulating the myogenic program and protein synthesis are complex and intertwined. These studies suggest that PKCθ regulates myogenic and protein synthetic signaling via the modulation of IRS1and ERK1/2 phosphorylation. Myotubes lacking PKCθ had increased rates of protein synthesis and enhanced myotube development despite reduced activation of the canonical anabolic-signaling pathway. Further investigation of PKCθ regulated signaling may reveal important interactions regulating skeletal muscle health in an insulin resistant state.
Collapse
Affiliation(s)
- Joseph S Marino
- Center for Diabetes and Endocrine Research, Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH 43614, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|