1
|
Handin N, Mickols E, Ölander M, Rudfeldt J, Blom K, Nyberg F, Senkowski W, Urdzik J, Maturi V, Fryknäs M, Artursson P. Conditions for maintenance of hepatocyte differentiation and function in 3D cultures. iScience 2021; 24:103235. [PMID: 34746700 PMCID: PMC8551077 DOI: 10.1016/j.isci.2021.103235] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/02/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022] Open
Abstract
Spheroid cultures of primary human hepatocytes (PHH) are used in studies of hepatic drug metabolism and toxicity. The cultures are maintained under different conditions, with possible confounding results. We performed an in-depth analysis of the influence of various culture conditions to find the optimal conditions for the maintenance of an in vivo like phenotype. The formation, protein expression, and function of PHH spheroids were followed for three weeks in a high-throughput 384-well format. Medium composition affected spheroid histology, global proteome profile, drug metabolism and drug-induced toxicity. No epithelial-mesenchymal transition was observed. Media with fasting glucose and insulin levels gave spheroids with phenotypes closest to normal PHH. The most expensive medium resulted in PHH features most divergent from that of native PHH. Our results provide a protocol for culture of healthy PHH with maintained function - a prerequisite for studies of hepatocyte homeostasis and more reproducible hepatocyte research. 3D spheroid cultures were established in 384-well format Eight different media variants were used to optimize the 3D cultures Optimized William's medium was as good as expensive commercial medium The 3D cultures were used to study drug metabolism and toxicity
Collapse
Affiliation(s)
- Niklas Handin
- Department of Pharmacy, Uppsala University, 75123 Uppsala, Sweden
| | - Evgeniya Mickols
- Department of Pharmacy, Uppsala University, 75123 Uppsala, Sweden
| | - Magnus Ölander
- Department of Pharmacy, Uppsala University, 75123 Uppsala, Sweden
| | - Jakob Rudfeldt
- Department of Medical Sciences, Division of Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden
| | - Kristin Blom
- Department of Medical Sciences, Division of Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden
| | - Frida Nyberg
- Department of Medical Sciences, Division of Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden
| | - Wojciech Senkowski
- Department of Medical Sciences, Division of Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden.,Biotech Research & Innovation Centre (BRIC) and Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Jozef Urdzik
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Varun Maturi
- Department of Pharmacy, Uppsala University, 75123 Uppsala, Sweden
| | - Mårten Fryknäs
- Department of Medical Sciences, Division of Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden
| | - Per Artursson
- Department of Pharmacy, Uppsala University, 75123 Uppsala, Sweden
| |
Collapse
|
2
|
Crist AM, Hinkle KM, Wang X, Moloney CM, Matchett BJ, Labuzan SA, Frankenhauser I, Azu NO, Liesinger AM, Lesser ER, Serie DJ, Quicksall ZS, Patel TA, Carnwath TP, DeTure M, Tang X, Petersen RC, Duara R, Graff-Radford NR, Allen M, Carrasquillo MM, Li H, Ross OA, Ertekin-Taner N, Dickson DW, Asmann YW, Carter RE, Murray ME. Transcriptomic analysis to identify genes associated with selective hippocampal vulnerability in Alzheimer's disease. Nat Commun 2021; 12:2311. [PMID: 33875655 PMCID: PMC8055900 DOI: 10.1038/s41467-021-22399-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 03/03/2021] [Indexed: 12/14/2022] Open
Abstract
Selective vulnerability of different brain regions is seen in many neurodegenerative disorders. The hippocampus and cortex are selectively vulnerable in Alzheimer's disease (AD), however the degree of involvement of the different brain regions differs among patients. We classified corticolimbic patterns of neurofibrillary tangles in postmortem tissue to capture extreme and representative phenotypes. We combined bulk RNA sequencing with digital pathology to examine hippocampal vulnerability in AD. We identified hippocampal gene expression changes associated with hippocampal vulnerability and used machine learning to identify genes that were associated with AD neuropathology, including SERPINA5, RYBP, SLC38A2, FEM1B, and PYDC1. Further histologic and biochemical analyses suggested SERPINA5 expression is associated with tau expression in the brain. Our study highlights the importance of embracing heterogeneity of the human brain in disease to identify disease-relevant gene expression.
Collapse
Affiliation(s)
- Angela M Crist
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Kelly M Hinkle
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Xue Wang
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA
| | | | | | | | - Isabelle Frankenhauser
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Paracelsus Medical Private University, Salzburg, Austria
| | - Nkem O Azu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Elizabeth R Lesser
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA
| | - Daniel J Serie
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA
| | | | - Tulsi A Patel
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Troy P Carnwath
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Michael DeTure
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Xiaojia Tang
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | | | - Ranjan Duara
- Wien Center for Alzheimer's Disease and Memory Disorders, Mount Sinai Medical Center, Miami Beach, FL, USA
| | | | - Mariet Allen
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Nilüfer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Yan W Asmann
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA
| | - Rickey E Carter
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA
| | | |
Collapse
|
3
|
Li J, Guo M, Tian X, Wang X, Yang X, Wu P, Liu C, Xiao Z, Qu Y, Yin Y, Wang C, Zhang Y, Zhu Z, Liu Z, Peng C, Zhu T, Liang Q. Virus-Host Interactome and Proteomic Survey Reveal Potential Virulence Factors Influencing SARS-CoV-2 Pathogenesis. MED 2020; 2:99-112.e7. [PMID: 32838362 PMCID: PMC7373048 DOI: 10.1016/j.medj.2020.07.002] [Citation(s) in RCA: 218] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/27/2020] [Accepted: 07/15/2020] [Indexed: 02/05/2023]
Abstract
Background The ongoing coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a global public health concern due to relatively easy person-to-person transmission and the current lack of effective antiviral therapy. However, the exact molecular mechanisms of SARS-CoV-2 pathogenesis remain largely unknown. Methods Genome-wide screening was used to establish intraviral and viral-host interactomes. Quantitative proteomics was used to investigate the peripheral blood mononuclear cell (PBMC) proteome signature in COVID-19. Findings We elucidated 286 host proteins targeted by SARS-CoV-2 and >350 host proteins that are significantly perturbed in COVID-19-derived PBMCs. This signature in severe COVID-19 PBMCs reveals a significant upregulation of cellular proteins related to neutrophil activation and blood coagulation, as well as a downregulation of proteins mediating T cell receptor signaling. From the interactome, we further identified that non-structural protein 10 interacts with NF-κB-repressing factor (NKRF) to facilitate interleukin-8 (IL-8) induction, which potentially contributes to IL-8-mediated chemotaxis of neutrophils and the overexuberant host inflammatory response observed in COVID-19 patients. Conclusions Our study not only presents a systematic examination of SARS-CoV-2-induced perturbation of host targets and cellular networks but it also reveals insights into the mechanisms by which SARS-CoV-2 triggers cytokine storms, representing a powerful resource in the pursuit of therapeutic interventions. Funding National Key Research and Development Project of China, National Natural Science Foundation of China, National Science and Technology Major Project, Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, Shanghai Science and Technology Commission, Shanghai Municipal Health Commission, Shanghai Municipal Key Clinical Specialty, Innovative Research Team of High-level Local Universities in Shanghai, Interdisciplinary Program of Shanghai Jiao Tong University, SII Challenge Fund for COVID-19 Research, Chinese Academy of Sciences (CAS) Large Research Infrastructure of Maintenance and Remolding Project, and Chinese Academy of Sciences Key Technology Talent Program. Genome-wide screens identify 58 binary interactions between 29 SARS-CoV-2 proteins Virus-host interactome identifies 286 host targets for SARS-CoV-2 proteins Quantitative analysis depicts the overall proteome signature in COVID-19 PBMCs Nsp10 targets NKRF to facilitate IL-8 induction
The COVID-19 pandemic is caused by SARS-CoV-2, but little is known about the functions of its viral proteins. The authors characterized the SARS-CoV-2 intraviral and virus-host interaction networks in human cells and identified 286 potential host targets. Quantitative proteomic analysis revealed elevated levels of IL-6 and IL-8 in PBMCs collected from severe COVID-19 patients compared with mild ones, and the functional annotation of differentially expressed proteins implicate pathways involved in neutrophil activation, T cell receptor signaling, and the coagulation cascade. Combining virus-host interactome with COVID-19 proteomic analysis, the authors found that nsp10 interacts with NKRF to mediate IL-8 expression, providing a potential molecular mechanism for SARS-CoV-2-induced cytokine storm and marking it as a possible emerging therapeutic target.
Collapse
Affiliation(s)
- Jingjiao Li
- Research Center of Translational Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Mingquan Guo
- Shanghai Institute of Phage, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Xiaoxu Tian
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Xin Wang
- Research Center of Translational Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xing Yang
- Research Center of Translational Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ping Wu
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Chengrong Liu
- Research Center of Translational Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zixuan Xiao
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Yafei Qu
- Research Center of Translational Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yue Yin
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Chunxia Wang
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Yucai Zhang
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Zhaoqin Zhu
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Zhenshan Liu
- Research Center of Translational Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Tongyu Zhu
- Shanghai Institute of Phage, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qiming Liang
- Research Center of Translational Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
4
|
Wahlmüller FC, Sokolikova B, Rieger D, Geiger M. New lipid interaction partners stimulate the inhibition of activated protein C by cell-penetrating protein C inhibitor. Thromb Haemost 2017; 111:41-52. [DOI: 10.1160/th13-06-0478] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 08/24/2013] [Indexed: 12/18/2022]
Abstract
SummaryProtein C inhibitor (PCI, SerpinA5) is a heparin-binding serpin which can penetrate through cellular membranes. Selected negatively charged phospholipids like unsaturated phosphatidylserine and oxidised phosphatidylethanolamine bind to PCI and stimulate its inhibitory activity towards different proteases. The interaction of phospholipids with PCI might also alter the lipid distribution pattern of blood cells and influence the remodelling of cellular membranes. Here we showed that PCI is an additional binding partner of phosphatidic acid (PA), cardiolipin (CL), and phosphoinositides (PIPs). Protein lipid overlay assays exhibited a unique binding pattern of PCI towards different lipid species. In addition PA, CL, and unsaturated, monophosphorylated PIPs stimulated the inhibitory property of PCI towards activated protein C in a heparin like manner. As shown for kallistatin (SerpinA4) and vaspin (SerpinA12), the incubation of cells with PCI led to the activation of protein kinase B (AKT), which could be achieved through direct interaction of PCI with PIPs. This model is supported by the fact that PCI stimulated the PIP-dependent 5-phosphatase SHIP2 in vitro, which would result in AKT activation. Hence the interaction of PCI with different lipids might not only stimulate the inhibition of potential target protease by PCI, but could also alter intracellular lipid signalling.
Collapse
|
5
|
Cell penetrating SERPINA5 (ProteinC inhibitor, PCI): More questions than answers. Semin Cell Dev Biol 2017; 62:187-193. [DOI: 10.1016/j.semcdb.2016.10.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/26/2016] [Indexed: 12/31/2022]
|
6
|
Einfinger K, Badrnya S, Furtmüller M, Handschuh D, Lindner H, Geiger M. Phospholipid Binding Protein C Inhibitor (PCI) Is Present on Microparticles Generated In Vitro and In Vivo. PLoS One 2015; 10:e0143137. [PMID: 26580551 PMCID: PMC4651509 DOI: 10.1371/journal.pone.0143137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/31/2015] [Indexed: 12/11/2022] Open
Abstract
Protein C inhibitor is a secreted, non-specific serine protease inhibitor with broad protease reactivity. It binds glycosaminoglycans and anionic phospholipids, which can modulate its activity. Anionic phospholipids, such as phosphatidylserine are normally localized to the inner leaflet of the plasma membrane, but are exposed on activated and apoptotic cells and on plasma membrane-derived microparticles. In this report we show by flow cytometry that microparticles derived from cultured cells and activated platelets incorporated protein C inhibitor during membrane blebbing. Moreover, protein C inhibitor is present in/on microparticles circulating in normal human plasma as judged from Western blots, ELISAs, flow cytometry, and mass spectrometry. These plasma microparticles are mainly derived from megakaryocytes. They seem to be saturated with protein C inhibitor, since they do not bind added fluorescence-labeled protein C inhibitor. Heparin partially removed microparticle-bound protein C inhibitor, supporting our assumption that protein C inhibitor is bound via phospholipids. To assess the biological role of microparticle-bound protein C inhibitor we performed protease inhibition assays and co-precipitated putative binding partners on microparticles with anti-protein C inhibitor IgG. As judged from amidolytic assays microparticle-bound protein C inhibitor did not inhibit activated protein C or thrombin, nor did microparticles modulate the activity of exogenous protein C inhibitor. Among the proteins co-precipitating with protein C inhibitor, complement factors, especially complement factor 3, were most striking. Taken together, our data do not support a major role of microparticle-associated protein C inhibitor in coagulation, but rather suggest an interaction with proteins of the complement system present on these phospholipid vesicles.
Collapse
Affiliation(s)
- Katrin Einfinger
- Center of Physiology and Pharmacology, Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Sigrun Badrnya
- Center of Physiology and Pharmacology, Department of Physiology, Medical University of Vienna, Vienna, Austria
| | - Margareta Furtmüller
- Center of Physiology and Pharmacology, Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Daniela Handschuh
- Center of Physiology and Pharmacology, Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Herbert Lindner
- Biocenter, Division of Clinical Biochemistry, Innsbruck Medical University, Innsbruck, Austria
| | - Margarethe Geiger
- Center of Physiology and Pharmacology, Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
7
|
Saito A. Diversity of human plasma protein C inhibitor. Thromb Res 2011; 130:661-6. [PMID: 22206708 DOI: 10.1016/j.thromres.2011.11.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 09/05/2011] [Accepted: 11/22/2011] [Indexed: 11/28/2022]
Abstract
Protein C inhibitor was purified from human plasma by use of a dermatan sulfate or heparin column, followed by hydroxyapatite, gel filtration and ion exchange columns. A dimer of protein C inhibitor was detected by SDS-PAGE under reducing conditions, in addition to two forms of monomer species. One of the monomers, 52-kDa PCI, formed a stable complex with activated protein C, urokinase, plasma and tissue kallikrein, but the dimer species and 48-kDa PCI were inactive. When the monomer and dimer forms of protein C inhibitor were applied to 2D-PAGE, more than 20 spots were observed by Western blot analysis and were confirmed to be protein C inhibitor by MALDI-TOF mass spectrometry. The heterogeneity of the protein C inhibitor species was not due to glycosylation or phosphorylation.
Collapse
Affiliation(s)
- Akio Saito
- Department of Biochemistry, Faculty of Medicine, Kinki University, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan.
| |
Collapse
|
8
|
Calvo E, Mizurini DM, Sá-Nunes A, Ribeiro JMC, Andersen JF, Mans BJ, Monteiro RQ, Kotsyfakis M, Francischetti IMB. Alboserpin, a factor Xa inhibitor from the mosquito vector of yellow fever, binds heparin and membrane phospholipids and exhibits antithrombotic activity. J Biol Chem 2011; 286:27998-8010. [PMID: 21673107 DOI: 10.1074/jbc.m111.247924] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The molecular mechanism of factor Xa (FXa) inhibition by Alboserpin, the major salivary gland anticoagulant from the mosquito and yellow fever vector Aedes albopictus, has been characterized. cDNA of Alboserpin predicts a 45-kDa protein that belongs to the serpin family of protease inhibitors. Recombinant Alboserpin displays stoichiometric, competitive, reversible and tight binding to FXa (picomolar range). Binding is highly specific and is not detectable for FX, catalytic site-blocked FXa, thrombin, and 12 other enzymes. Alboserpin displays high affinity binding to heparin (K(D) ~ 20 nM), but no change in FXa inhibition was observed in the presence of the cofactor, implying that bridging mechanisms did not take place. Notably, Alboserpin was also found to interact with phosphatidylcholine and phosphatidylethanolamine but not with phosphatidylserine. Further, annexin V (in the absence of Ca(2+)) or heparin outcompetes Alboserpin for binding to phospholipid vesicles, suggesting a common binding site. Consistent with its activity, Alboserpin blocks prothrombinase activity and increases both prothrombin time and activated partial thromboplastin time in vitro or ex vivo. Furthermore, Alboserpin prevents thrombus formation provoked by ferric chloride injury of the carotid artery and increases bleeding in a dose-dependent manner. Alboserpin emerges as an atypical serpin that targets FXa and displays unique phospholipid specificity. It conceivably uses heparin and phosphatidylcholine/phosphatidylethanolamine as anchors to increase protein localization and effective concentration at sites of injury, cell activation, or inflammation.
Collapse
Affiliation(s)
- Eric Calvo
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
|
10
|
Mann HJ, Short MA, Schlichting DE. Protein C in critical illness. Am J Health Syst Pharm 2009; 66:1089-96. [PMID: 19498123 DOI: 10.2146/ajhp080276] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PURPOSE The role of protein C in critical illness is assessed. SUMMARY Conversion of protein C to activated protein C (APC) requires thrombin and thrombomodulin. When thrombin is not bound to thrombomodulin, it can convert fibrinogen to fibrin, factor V to factor Va, and factor VIII to factor VIIIa but will not convert protein C to APC. When thrombin is bound to thrombomodulin, it can convert protein C to APC but cannot convert fibrinogen, factor V, or factor VIII. Activation of protein C is accelerated by the presence of endothelial protein C receptors. In conjunction with protein S, APC limits coagulation by inactivating factors Va and VIIIa, which decreases thrombin-mediated inflammation. By inhibiting the formation of thrombin and the release of proinflammatory cytokines, APC reduces the inflammatory response to infection. By inducing cell signaling, APC directly modulates the cellular response to infection, resulting in antiinflammatory, cytoprotective, and barrier-protective activities. APC is metabolized by protease inhibitors and other proteins in the plasma. Conversion of protein C to APC is impaired in severe sepsis. During severe sepsis, endogenous levels of the inactive precursor protein C are reduced because of decreased production by the liver and degradation by enzymes. More than 85% of patients with severe sepsis have low levels of protein C. Absolute levels of protein C correlate with morbidity and mortality outcomes of the sepsis population, regardless of age, infecting microorganism, presence of shock, disseminated intravascular coagulation, degree of hypercoagulation, or severity of illness. CONCLUSION The protein C pathway is a natural homeostatic regulator with multiple mechanisms of action. Blood protein C concentration is inversely correlated with morbidity and mortality in sepsis and other critical illness.
Collapse
Affiliation(s)
- Henry J Mann
- College of Pharmacy, Center for Excellence in Critical Care, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | |
Collapse
|
11
|
Abstract
Protein C inhibitor (PCI) is a member of the serine protease inhibitor (serpin) family. PCI was initially found to be an inhibitor of activated protein C, and later shown to be a potent inhibitor of blood coagulation and fibrinolysis such as that mediated by urokinase type-plasminogen activator. Therefore, the protein came to be known as plasminogen activator inhibitor-3. It also inhibits proteases involved in fertilization. PCI is broadly conserved, and is found in human, rhesus monkey, cow, rabbit, rat, mouse and chicken. The human PCI gene is located on chromosome 14q32.1 in a cluster of genes encoding related serpins. Sp1- and AP2-binding sites in the 5'-flanking region act as promoter and enhancer, respectively, for its expression in the liver. PCI mRNA is expressed in many organs in primates, but only in the reproductive organs in rodents. Recent studies using transgenic mice expressing the human gene have suggested that PCI is also involved in regulation of lung remodeling, tissue regeneration, vascular permeability, proteolysis in the kidney and tumor cell invasion. A protease inhibitor-independent activity of PCI, the prevention of anti-angiogenesis and metastasis of tumor cells, has also been observed. Thus, PCI is a unique multi-functional serpin playing diverse roles in the thrombosis and hemostasis in multiple organs and tissues of a variety of species.
Collapse
Affiliation(s)
- K Suzuki
- Department of Molecular Pathobiology, Mie University Graduate School of Medicine, Tsu-city, Mie, Japan.
| |
Collapse
|
12
|
Nomura S, Ozaki Y, Ikeda Y. Function and role of microparticles in various clinical settings. Thromb Res 2008; 123:8-23. [DOI: 10.1016/j.thromres.2008.06.006] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2008] [Revised: 05/16/2008] [Accepted: 06/09/2008] [Indexed: 12/18/2022]
|
13
|
Baumgärtner P, Geiger M, Zieseniss S, Malleier J, Huntington JA, Hochrainer K, Bielek E, Stoeckelhuber M, Lauber K, Scherfeld D, Schwille P, Wäldele K, Beyer K, Engelmann B. Phosphatidylethanolamine critically supports internalization of cell-penetrating protein C inhibitor. ACTA ACUST UNITED AC 2007; 179:793-804. [PMID: 18025309 PMCID: PMC2080921 DOI: 10.1083/jcb.200707165] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although their contribution remains unclear, lipids may facilitate noncanonical routes of protein internalization into cells such as those used by cell-penetrating proteins. We show that protein C inhibitor (PCI), a serine protease inhibitor (serpin), rapidly transverses the plasma membrane, which persists at low temperatures and enables its nuclear targeting in vitro and in vivo. Cell membrane translocation of PCI necessarily requires phosphatidylethanolamine (PE). In parallel, PCI acts as a lipid transferase for PE. The internalized serpin promotes phagocytosis of bacteria, thus suggesting a function in host defense. Membrane insertion of PCI depends on the conical shape of PE and is associated with the formation of restricted aqueous compartments within the membrane. Gain- and loss-of-function mutations indicate that the transmembrane passage of PCI requires a branched cavity between its helices H and D, which, according to docking studies, precisely accommodates PE. Our findings show that its specific shape enables cell surface PE to drive plasma membrane translocation of cell-penetrating PCI.
Collapse
Affiliation(s)
- Petra Baumgärtner
- Vaskuläre Biologie und Hämostase, Institut für Klinische Chemie, 81377 Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Plasma membrane proteins serve essential functions for cells, interacting with both cellular and extracellular components, structures and signaling molecules. Additionally, plasma membrane proteins comprise more than two-thirds of the known protein targets for existing drugs. Consequently, defining membrane proteomes is crucial to understanding the role of plasma membranes in fundamental biological processes and for finding new targets for action in drug development. MS-based identification methods combined with chromatographic and traditional cell-biology techniques are powerful tools for proteomic mapping of proteins from organelles. However, the separation and identification of plasma membrane proteins remains a challenge for proteomic technology because of their hydrophobicity and microheterogeneity. Creative approaches to solve these problems and potential pitfalls will be discussed. Finally, a representative overview of the impressive achievements in this field will also be given.
Collapse
Affiliation(s)
- Djuro Josic
- Department of Medicine, Brown Medical School, Providence, RI, USA.
| | | |
Collapse
|
15
|
Hayashi T, Nishioka J, Nakagawa N, Kamada H, Gabazza EC, Kobayashi T, Hattori A, Suzuki K. Protein C inhibitor directly and potently inhibits activated hepatocyte growth factor activator. J Thromb Haemost 2007; 5:1477-85. [PMID: 17456194 DOI: 10.1111/j.1538-7836.2007.02594.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Hepatocyte growth factor (HGF) plays an important role in tissue repair and regeneration. HGF activator (HGFA), a factor XIIa-like serine protease, activates HGF precursor to HGF. The precursor of HGFA, proHGFA, is activated by thrombin generated at sites of tissue injury. It is known that protein C inhibitor (PCI), an inhibitor of activated protein C (APC), also inhibits thrombin-thrombomodulin (TM) complex. OBJECTIVES In the present study we evaluated the effect of PCI on thrombin-catalyzed proHGFA activation in the presence of TM, and on HGFA activity. RESULTS PCI did not inhibit thrombin-TM-mediated proHGFA activation, but it directly inhibited activated HGFA by forming an enzyme inhibitor complex. The second-order rate constants (m(-1) min(-1)) of the reaction between HGFA and PCI in the presence or absence of heparin (10 U mL(-1)) were 4.3 x 10(6) and 4.0 x 10(6), respectively. The inhibition of HGFA by PCI resulted in a significant decrease of HGFA-catalyzed activation of HGF precursor. Exogenous HGFA added to normal human plasma formed a complex with plasma PCI, and this complex formation was competitively inhibited by APC in the presence of heparin, but very weakly in the absence of heparin. We also demonstrated using recombinant R362A-PCI that Arg362 residue of PCI is important for HGFA inhibition by PCI as judged from the three-dimensional structures constructed using docking models of PCI and HGFA or APC. CONCLUSION These observations indicate that PCI is a potent inhibitor of activated HGFA, suggesting a novel function for PCI in the regulation of tissue repair and regeneration.
Collapse
Affiliation(s)
- T Hayashi
- Department of Molecular Pathobiology, Mie University Graduate School of Medicine, Tsu-city, Mie, Japan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Malleier JM, Oskolkova O, Bochkov V, Jerabek I, Sokolikova B, Perkmann T, Breuss J, Binder BR, Geiger M. Regulation of protein C inhibitor (PCI) activity by specific oxidized and negatively charged phospholipids. Blood 2007; 109:4769-76. [PMID: 17332248 DOI: 10.1182/blood-2006-09-046953] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractProtein C inhibitor (PCI) is a serpin with affinity for heparin and phosphatidylethanolamine (PE). We analyzed the interaction of PCI with different phospholipids and their oxidized forms. PCI bound to oxidized PE (OxPE), and oxidized and unoxidized phosphatidylserine (PS) immobilized on microtiter plates and in aqueous suspension. Binding to OxPE and PS was competed by heparin, but not by the aminophospholipid-binding protein annexin V or the PCI-binding lipid retinoic acid. PS and OxPE stimulated the inhibition of activated protein C (aPC) by PCI in a Ca++-dependent manner, indicating that binding of both, aPC (Ca++ dependent) and PCI (Ca++ independent), to phospholipids is necessary. A peptide corresponding to the heparin-binding site of PCI abolished the stimulatory effect of PS on aPC inhibition. No stimulatory effect of phospholipids on aPC inhibition was seen with a PCI mutant lacking the heparin-binding site. A heparin-like effect of phospholipids (OxPE) was not seen with antithrombin III, another heparin-binding serpin, suggesting that it is specific for PCI. PCI and annexin V were found to be endogenously colocalized in atherosclerotic plaques, supporting the hypothesis that exposure of oxidized PE and/or PS may be important for the local regulation of PCI activity in vivo.
Collapse
Affiliation(s)
- Julia M Malleier
- Department of Vascular Biology and Thrombosis Research, Center for Biomolecular Medicine and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, A-1090 Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Li W, Adams TE, Kjellberg M, Stenflo J, Huntington JA. Structure of native protein C inhibitor provides insight into its multiple functions. J Biol Chem 2007; 282:13759-68. [PMID: 17337440 DOI: 10.1074/jbc.m701074200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Protein C inhibitor (PCI) is a multifunctional serpin with wide ranging protease inhibitory functions, unique cofactor binding activities, and potential non-inhibitory functions akin to the hormone-transporting serpins. To gain insight into the molecular mechanisms utilized by PCI we developed a robust expression system in Escherichia coli and solved the crystal structure of PCI in its native state. The five monomers obtained from our two crystal forms provide an NMR-like ensemble revealing regions of inherent flexibility. The reactive center loop (RCL) of PCI is long and highly flexible with no evidence of hinge region incorporation into beta-sheet A, as seen for other heparin-binding serpins. We adapted an extrinsic fluorescence method for determining dissociation constants for heparin and find that the N-terminal tail of PCI and residues adjacent to helix H are not involved in heparin binding. The minimal heparin length capable of tight binding to PCI was determined to be chains of eight monosaccharide units. A large hydrophobic pocket occupied by hydrophobic crystal contacts was found in an analogous position to the hormone-binding site in thyroxine-binding globulin. In conclusion, the data presented here provide important insights into the mechanisms by which PCI exercises its multiple inhibitory and non-inhibitory functions.
Collapse
Affiliation(s)
- Wei Li
- Department of Haematology, Division of Structural Medicine, Thrombosis Research Unit, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 2XY, United Kingdom
| | | | | | | | | |
Collapse
|
18
|
Regnault V, Béguin S, Lecompte T. Calibrated automated thrombin generation in frozen-thawed platelet-rich plasma to detect hypercoagulability. PATHOPHYSIOLOGY OF HAEMOSTASIS AND THROMBOSIS 2004; 33:23-9. [PMID: 12853709 DOI: 10.1159/000071638] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2003] [Accepted: 04/01/2003] [Indexed: 11/19/2022]
Abstract
To enhance the practical applicability of the calibrated automated thrombogram (CAT) we investigated whether frozen-thawed platelet-rich plasma (ft-PRP) can be used to assess the function of the protein C inhibitory pathway, while preserving the natural phospholipid composition. Recalcified ft-PRP triggered with 0.5 pM recombinant human tissue factor shows a median thrombin potential of 1,779 nM x min, against 1,576 nM x min for fresh PRP. To obtain approximately 70% inhibition, 6.7 nM activated protein C (APC) has to be added, instead of 25 nM in fresh PRP; so the relative APC resistance of PRP appears to depend upon the presence of intact platelets. Factor VIII, added to normal ft-PRP to obtain a concentration of 3.3 U/ml, increases the thrombin potential in the presence of APC 1.5-fold, from 524 to 808 nM x min, in keeping with previously published increases in thrombotic risk in patients with high factor VIII levels. We conclude that thrombography in ft-PRP, with and without added APC, can be used to assess known risk factors for thrombosis, which allows the design of large clinical studies aimed at proving the relationship between thrombin potential and clinical outcome.
Collapse
Affiliation(s)
- Véronique Regnault
- INSERM ERIT-M 0323 et EA 3452, Faculté de Médecine, Université Henri Poincaré, CHU de Nancy, Nancy, France.
| | | | | |
Collapse
|
19
|
Sayinalp N, Haznedaroğlu IC, Büyükaşik Y, Göker H, Aksu S, Koçoğlu H, Ozcebe OI, Koşar A, Kirazli S, Dündar SV. Protein C Inhibitor and Serum Amyloid a in Immune Thrombocytopaenic Purpura. J Int Med Res 2004; 32:62-5. [PMID: 14997708 DOI: 10.1177/147323000403200110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In immune thrombocytopaenic purpura (ITP), phagocytic cells prematurely destroy platelets opsonized by anti-platelet auto-antibodies, while residual platelets rescued from these autoimmune attacks are hyperfunctioning. The exact pathobiological basis of this phenomenon is unknown. Protein C inhibitor (PCI), a platelet α-granule pro-coagulant molecule, is released on activation of platelets. Serum amyloid A (SAA; an acute phase protein), however, inhibits platelet aggregation and modulates platelet adhesion. We aimed to assess circulating soluble plasma PCI and SAA concentrations in 17 patients with newly diagnosed ITP and ten healthy volunteers. Plasma PCI concentrations tended to be higher in ITP patients, despite absolute thrombocytopaenia, than in normal controls. SAA levels were significantly higher in ITP patients compared with the control group. We conclude that secretion of the α-granule PCI content of platelets could result from platelet activation, and that PCI may be the link between platelet microparticles and haemostatically active ITP platelets. Increased concentrations of SAA and PCI may interfere with the disordered and compensatory pro-coagulant mechanisms of ITP.
Collapse
Affiliation(s)
- N Sayinalp
- Department of Haematology, Hacettepe University Medical School, Ankara, Turkey.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Glasscock LN, Gerlitz B, Cooper ST, Grinnell BW, Church FC. Basic residues in the 37-loop of activated protein C modulate inhibition by protein C inhibitor but not by alpha(1)-antitrypsin. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1649:106-17. [PMID: 12818196 DOI: 10.1016/s1570-9639(03)00164-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The role of lysines 37-39 (chymotrypsin numbering) in the 37-loop of the serine protease activated protein C (APC) was studied by expressing acidic and neutral recombinant APC (rAPC) mutants. Activity of the APC mutants was assessed using human plasma and plasma-purified and recombinant derivatives of protein C inhibitor (PCI; also known as plasminogen activator inhibitor-3) and alpha(1)-antitrypsin, with and without heparin. The catalytic properties of the mutants to small peptidyl substrates were essentially the same as wild-type rAPC (wt-rAPC), yet their plasma anticoagulant activities were diminished. Analysis of the rAPC-protease inhibitor complexes formed after addition of wt-rAPC and mutants to plasma revealed no change in the inhibition pattern by alpha(1)-antitrypsin but a reduction in mutant complex formation by PCI in the presence of heparin. Using purified serpins, we found that inhibition rates of the mutants were the same as wt-rAPC with alpha(1)-antitrypsin; however, PCI (plasma-derived and recombinant forms) inhibition rates of the acidic mutants were slightly faster than that of wt-rAPC without heparin. By contrast, PCI-heparin inhibition rates of the mutants were not substantially accelerated compared to wt-rAPC. The mutants had reduced heparin-binding properties compared to wt-rAPC. Molecular modeling of the PCI-APC complex with heparin suggests that heparin may function not only to bridge PCI to APC, but also to alleviate putative non-optimal intermolecular interactions. Our results suggest that the basic residues of the 37-loop of APC are involved in macromolecular substrate interactions and in heparin binding, and they influence inhibition by PCI (with or without heparin) but not by alpha(1)-antitrypsin, two important blood plasma serpins.
Collapse
Affiliation(s)
- Laura N Glasscock
- Department of Pathology, Center for Thrombosis and Hemostasis, The University of North Carolina School of Medicine, Chapel Hill, NC 27599-7035, USA
| | | | | | | | | |
Collapse
|
21
|
Mosnier LO, Buijtenhuijs P, Marx PF, Meijers JCM, Bouma BN. Identification of thrombin activatable fibrinolysis inhibitor (TAFI) in human platelets. Blood 2003; 101:4844-6. [PMID: 12595308 DOI: 10.1182/blood-2002-09-2944] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thrombin activatable fibrinolysis inhibitor (TAFI) is a carboxypeptidase B-like proenzyme that after activation down-regulates fibrinolysis. Platelets are known to contain antifibrinolytic factors that are secreted during platelet activation. Therefore, the presence of TAFI in platelets was analyzed. TAFI was identified in platelets in a concentration of about 50 ng/1 x 109 platelets and was secreted on platelet activation. Thrombin-mediated activation of platelet-derived TAFI resembled that of plasma-derived TAFI with respect to stimulation by thrombomodulin and spontaneous loss of activity at 37 degrees C. The different glycosylation of platelet-derived TAFI compared with plasma-derived TAFI suggests that platelet-derived TAFI is synthesized in the megakaryocyte. This suggestion was substantiated by the detection of mRNA in the megakaryocytic cell lines DAMI and CHRF, representing the intermediate and late stages of megakaryocyte development. These results establish the presence of TAFI in platelets and suggest a role for platelet-derived TAFI in the protection of the clot against fibrinolysis.
Collapse
Affiliation(s)
- Laurent O Mosnier
- Thrombosis and Haemostasis Laboratory, Department of Haematology, University Medical Center Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
22
|
Wakita T, Hayashi T, Nishioka J, Tamaru H, Akita N, Asanuma K, Kamada H, Gabazza EC, Ido M, Kawamura J, Suzuki K. Regulation of carcinoma cell invasion by protein C inhibitor whose expression is decreased in renal cell carcinoma. Int J Cancer 2003; 108:516-23. [PMID: 14696115 DOI: 10.1002/ijc.11594] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Protein C inhibitor (PCI), a member of the serine protease inhibitor family, is produced in various human tissues, including the liver, kidney and testis. In addition to inhibiting the anticoagulant protein C pathway, PCI also inhibits urinary plasminogen activator (uPA), which is a well-known mediator of tumor cell invasion. In the present study, to clarify the biologic significance of PCI in the kidney, we compared the expression of PCI between human renal cell carcinoma (RCC) tissue and nontumor kidney tissue. The PCI antigen level in RCC tissue was found to be significantly lower than in nontumor kidney tissue, and expression of PCI mRNA was detected in normal renal proximal tubular epithelial cells (RPTEC), but not in RCC or in an RCC cell line (Caki-1 cells). No differences were detected between the nucleotide sequence of the major cis-elements in the promoter region of the PCI gene from nontumor kidney and RCC tissues, RPTEC and Caki-1 cells, an RPTEC-derived RCC cell line. The in vitro invasiveness of Caki-1 cells transfected with a PCI expression vector was significantly decreased compared to mock-transfected Caki-1 cells, and it was blocked in the presence of anti-PCI antibody. Since PCI itself did not affect the proliferation rate of Caki-1 cells or cell expression of uPA in vitro, the effect of uPA, PCI, heat-inactivated PCI and plasminogen activator inhibitor (PAI)-1 on the invasive potential of cultured RCC cells was evaluated. The in vitro invasiveness of Caki-1 cells, which express uPA, was significantly enhanced by the addition of uPA, and it was inhibited by anti-uPA antibody, PCI and PAI-1, but not by heat-inactivated PCI. In addition, uPA activity was significantly decreased and uPA-PCI complex level was significantly increased in the culture medium of PCI expression vector-transfected Caki-1 cells as compared to mock-transfected Caki-1 cells. These findings strongly suggest that PCI regulates the invasive potential of RCC cells by inhibiting uPA secreted by these cells. The results of our study suggest that PCI might be a potential therapeutic agent for inhibiting renal tumor invasion.
Collapse
Affiliation(s)
- Toshiaki Wakita
- Department of Molecular Pathobiology, Mie University School of Medicine, Tsu-city, Mie, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Microparticles released from platelets (PMPs) may play a role in the normal hemostatic response to vascular injury because they demonstrate prothrombinase activity. PMPs were first observed as released vesicles from platelets following adhesion to vessel walls, and flow cytometry is now the most widely used method for studying PMPs. PMPs are thought to play a role in clinical disease because they express phospholipids that function as procoagulants. High shear stress can initiate both platelet aggregation and shedding of procoagulant-containing PMP, suggesting that PMP generation by high shear stress occurs in small diseased arteries and arterioles under various clinical conditions. In addition, the possibility that PMPs evoke cellular responses in their immediate microenvironments has recently been suggested. Despite many interesting findings, the significance of PMPs in various clinical conditions remains controversial. For example, it is not known whether PMPs found in peripheral blood vessels cause thrombosis, or if they are the results of thrombosis. There has been some question about whether the PMPs found in thromboses are consumed locally, meaning that PMPs circulating in the peripheral blood are not functionally important. Currently, the number of clinical disorders associated with elevated PMPs is increasing.
Collapse
Affiliation(s)
- S Nomura
- First Department of Internal Medicine, Kansai Medical University, Moriguchi, Osaka, Japan.
| |
Collapse
|
24
|
Ilveskero S, Siljander P, Lassila R. Procoagulant activity on platelets adhered to collagen or plasma clot. Arterioscler Thromb Vasc Biol 2001; 21:628-35. [PMID: 11304482 DOI: 10.1161/01.atv.21.4.628] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In a new 2-stage assay of platelet procoagulant activity (PCA), we first subjected gel-filtered platelets to adhesion on collagen (as a model of primary hemostasis) or plasma clots (as a model of preformed thrombus) for 30 minutes, and then the adherent platelets were supplemented with pooled, reptilase-treated, diluted plasma. Defibrinated plasma provided coagulation factors for assembly on platelet membranes without uncontrolled binding of thrombin to fibrin(ogen). Platelet adhesion to both surfaces showed modest individual variation, which increased at platelet densities that allowed aggregation. However, adhesion-induced PCA varied individually and surface-independently >3-fold, suggesting a uniform platelet procoagulant mechanism. Permanently adhered platelets showed markedly enhanced PCA when compared with the platelet pool in suspension, even after strong activation. The rate of thrombin generation induced by clot-adherent platelets was markedly faster than on collagen-adherent platelets during the initial phase of coagulation, whereas collagen-induced PCA proceeded slowly, strongly promoted by tissue thromboplastin. Therefore at 10 minutes, after adjustment for adhered platelets, collagen supported soluble thrombin formation as much as 5 times that of the thrombin-retaining clots. Activation of platelets by their firm adhesion was accompanied by formation of microparticles, representing about one third of the total soluble PCA. Collagen-adhered platelets provide soluble thrombin and microparticles, whereas the preformed clot serves to localize and accelerate hemostasis at the injury site, with the contribution of retained thrombin and microparticles.
Collapse
Affiliation(s)
- S Ilveskero
- Wihuri Research Institute and Helsinki University Central Hospital, Helsinki, Finland
| | | | | |
Collapse
|
25
|
Uhrin P, Dewerchin M, Hilpert M, Chrenek P, Schöfer C, Zechmeister-Machhart M, Krönke G, Vales A, Carmeliet P, Binder BR, Geiger M. Disruption of the protein C inhibitor gene results in impaired spermatogenesis and male infertility. J Clin Invest 2000; 106:1531-9. [PMID: 11120760 PMCID: PMC381472 DOI: 10.1172/jci10768] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Protein C inhibitor (PCI) is a nonspecific, heparin-binding serpin (serine protease inhibitor) that inactivates many plasmatic and extravascular serine proteases by forming stable 1:1 complexes. Proteases inhibited by PCI include the anticoagulant activated protein C, the plasminogen activator urokinase, and the sperm protease acrosin. In humans PCI circulates as a plasma protein but is also present at high concentrations in organs of the male reproductive tract. The biological role of PCI has not been defined so far. However, the colocalization of high concentrations of PCI together with several of its target proteases in the male reproductive tract suggests a role of PCI in reproduction. We generated mice lacking PCI by homologous recombination. Here we show that PCI(-/-) mice are apparently healthy but that males of this genotype are infertile. Infertility was apparently caused by abnormal spermatogenesis due to destruction of the Sertoli cell barrier, perhaps due to unopposed proteolytic activity. The resulting sperm are malformed and are morphologically similar to abnormal sperm seen in some cases of human male infertility. This animal model might therefore be useful for analyzing the molecular bases of these human conditions.
Collapse
Affiliation(s)
- P Uhrin
- Department of Vascular Biology and Thrombosis Research, University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Falls LA, Furie B, Furie BC. Role of phosphatidylethanolamine in assembly and function of the factor IXa-factor VIIIa complex on membrane surfaces. Biochemistry 2000; 39:13216-22. [PMID: 11052674 DOI: 10.1021/bi0009789] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phospholipid membranes play a significant role during the proteolytic activation of blood coagulation proteins. This investigation identifies a role for phosphatidylethanolamine (PE) during the activation of factor X by the tenase complex, an enzymatic complex composed of the serine protease, factor IXa, a protein cofactor, factor VIIIa, a phospholipid membrane, and Ca(2+). Phospholipid vesicles composed of PE, phosphatidylserine (PS), and phosphatidylcholine support factor Xa generation. The K(m) and k(cat) for factor X activation by the tenase complex are independent of PE in the presence of 20% PS. At lower PS concentrations, the presence of 20 or 35% PE lowers the K(m) and increases the k(cat) as compared to those in vesicles without PE. The effect of PE on the k(cat) of the tenase complex is mediated through factor VIIIa. PE also enhances factor Xa generation by facilitating tenase complex formation; PE lowers the K(d(app)) of factor IXa for both phospholipid/Ca(2+) and phospholipid/Ca(2+)/factor VIIIa complexes in the presence of suboptimal PS. In addition, the K(d)s of factor IXa and factor X were lower for phospholipid vesicles containing PE. N-Methyl-PE increased the k(cat) and decreased the K(d(app)), whereas N,N-dimethyl-PE had no effect on either parameter, indicating the importance of headgroup size. Lyso-PE had no effect on kinetic parameters, indicating the sn-2 acyl chain dependence of the PE effect. Together, these results demonstrate a role for PE in the assembly and activity of the tenase complex and further extend the understanding of the importance of PE-containing membranes in hemostasis.
Collapse
Affiliation(s)
- L A Falls
- Center for Hemostasis and Thrombosis Research, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | |
Collapse
|
27
|
Oka S, Gabazza EC, Taguchi Y, Yamaguchi M, Nakashima S, Suzuki K, Adachi Y, Imoto I. Role of activated protein C in Helicobacter pylori-associated gastritis. Infect Immun 2000; 68:2863-9. [PMID: 10768983 PMCID: PMC97498 DOI: 10.1128/iai.68.5.2863-2869.2000] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The protein C (PC) pathway has recently been suggested to play a role in the regulation of the inflammatory response. To further extend the anti-inflammatory effect of activated PC (APC) in vivo, particularly its biological relevance to human disease, the activity of APC in the mucosa of patients with Helicobacter pylori-associated gastritis and the effect of vacuolating cytotoxin (VacA), cytotoxin-associated antigen (CagA), and H. pylori lipopolysaccharide (LPS) on PC activation were evaluated. This study comprised 35 patients with chronic gastritis. There were 20 patients with and 15 without H. pylori infection. The levels of PC and APC-PC inhibitor (PCI) complex were measured by immunoassays. The level of PC was significantly decreased and the level of APC-PCI complex was significantly increased in biopsy specimens from gastric corpus and antrum in patients with H. pylori-associated gastritis as compared to H. pylori-negative subjects. The concentrations of VacA, CagA, and LPS were significantly correlated with those of the APC-PCI complex in biopsy mucosal specimens from the gastric corpus and antrum. H. pylori LPS, VacA, and CagA induced a dose-dependent activation of PC on the surface of monocytic cells. APC inhibited the secretion of tumor necrosis factor alpha (TNF-alpha) induced by H. pylori LPS. Overall, these results suggest that H. pylori infection is associated with increased APC generation in the gastric mucosa. The inhibitory activity of APC on TNF-alpha secretion may serve to protect H. pylori-induced gastric mucosal damage.
Collapse
Affiliation(s)
- S Oka
- The Third Department of Internal Medicine, Mie University School of Medicine, Tsu, Mie, Japan
| | | | | | | | | | | | | | | |
Collapse
|
28
|
|
29
|
Protein C inhibitor in platelets? Blood 2000. [DOI: 10.1182/blood.v95.5.1880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|