1
|
Lasser M, Tiber J, Lowery LA. The Role of the Microtubule Cytoskeleton in Neurodevelopmental Disorders. Front Cell Neurosci 2018; 12:165. [PMID: 29962938 PMCID: PMC6010848 DOI: 10.3389/fncel.2018.00165] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/28/2018] [Indexed: 12/28/2022] Open
Abstract
Neurons depend on the highly dynamic microtubule (MT) cytoskeleton for many different processes during early embryonic development including cell division and migration, intracellular trafficking and signal transduction, as well as proper axon guidance and synapse formation. The coordination and support from MTs is crucial for newly formed neurons to migrate appropriately in order to establish neural connections. Once connections are made, MTs provide structural integrity and support to maintain neural connectivity throughout development. Abnormalities in neural migration and connectivity due to genetic mutations of MT-associated proteins can lead to detrimental developmental defects. Growing evidence suggests that these mutations are associated with many different neurodevelopmental disorders, including intellectual disabilities (ID) and autism spectrum disorders (ASD). In this review article, we highlight the crucial role of the MT cytoskeleton in the context of neurodevelopment and summarize genetic mutations of various MT related proteins that may underlie or contribute to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Micaela Lasser
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - Jessica Tiber
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - Laura Anne Lowery
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| |
Collapse
|
2
|
Mutations in the microtubule-associated protein 1A (Map1a) gene cause Purkinje cell degeneration. J Neurosci 2015; 35:4587-98. [PMID: 25788676 DOI: 10.1523/jneurosci.2757-14.2015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The structural microtubule-associated proteins (MAPs) are critical for the organization of neuronal microtubules (MTs). Microtubule-associated protein 1A (MAP1A) is one of the most abundantly expressed MAPs in the mammalian brain. However, its in vivo function remains largely unknown. Here we describe a spontaneous mouse mutation, nm2719, which causes tremors, ataxia, and loss of cerebellar Purkinje neurons in aged homozygous mice. The nm2719 mutation disrupts the Map1a gene. We show that targeted deletion of mouse Map1a gene leads to similar neurodegenerative defects. Before neuron death, Map1a mutant Purkinje cells exhibited abnormal focal swellings of dendritic shafts and disruptions in axon initial segment (AIS) morphology. Furthermore, the MT network was reduced in the somatodendritic and AIS compartments, and both the heavy and light chains of MAP1B, another brain-enriched MAP, was aberrantly distributed in the soma and dendrites of mutant Purkinje cells. MAP1A has been reported to bind to the membrane-associated guanylate kinase (MAGUK) scaffolding proteins, as well as to MTs. Indeed, PSD-93, the MAGUK specifically enriched in Purkinje cells, was reduced in Map1a(-/-) Purkinje cells. These results demonstrate that MAP1A functions to maintain both the neuronal MT network and the level of PSD-93 in neurons of the mammalian brain.
Collapse
|
3
|
Kang EY, Ponzio M, Gupta PP, Liu F, Butensky A, Gutstein DE. Identification of binding partners for the cytoplasmic loop of connexin43: a novel interaction with β-tubulin. ACTA ACUST UNITED AC 2011; 15:397-406. [PMID: 19274588 DOI: 10.1080/15419060902783833] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Connexin43 (Cx43), a component of gap junctions, has a relatively large carboxy-terminal region with multiple proteomic interactions. Proteomic interactions with its cytoplasmic loop, however, are poorly defined. The goal of this study is to examine proteomic interactions involving the cytoplasmic loop (CL) of Cx43. The authors utilized various techniques, including glutathione-S-transferase (GST) pull-down, immunoblot analysis, two-dimensional (2D) gel electrophoresis, and mass spectrometry, to elucidate binding partners for Cx43-CL. The authors identified novel interactions with Cx43-CL involving α- and β-tubulin, myelin basic protein, and Purα. Because tubulin interacts with the C-terminus of Cx43 (Cx43-CT), the authors further investigated the nature of the interaction between β-tubulin and Cx43-CL. β-Tubulin binds with the full length of Cx43-CL with approximately one-fifth the affinity of the interaction between Cx43-CT and β-tubulin. This study demonstrates novel proteomic interactions involving Cx43-CL that may lead to a more complete understanding of trafficking and gating of gap junction channels.
Collapse
Affiliation(s)
- Eunice Y Kang
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | |
Collapse
|
4
|
Faller EM, Brown DL. Modulation of microtubule dynamics by the microtubule-associated protein 1a. J Neurosci Res 2009; 87:1080-9. [DOI: 10.1002/jnr.21920] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
MAP1 structural organization in Drosophila: in vivo analysis of FUTSCH reveals heavy- and light-chain subunits generated by proteolytic processing at a conserved cleavage site. Biochem J 2008; 414:63-71. [DOI: 10.1042/bj20071449] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The MAP1 (microtubule-associated protein 1) family is a class of microtubule-binding proteins represented by mammalian MAP1A, MAP1B and the recently identified MAP1S. MAP1A and MAP1B are expressed in the nervous system and thought to mediate interactions of the microtubule-based cytoskeleton in neural development and function. The characteristic structural organization of mammalian MAP1s, which are composed of heavy- and light-chain subunits, requires proteolytic cleavage of a precursor polypeptide encoded by the corresponding map1 gene. MAP1 function in Drosophila appears to be fulfilled by a single gene, futsch. Although the futsch gene product is known to share several important functional properties with mammalian MAP1s, whether it adopts the same basic structural organization has not been addressed. Here, we report the identification of a Drosophila MAP1 light chain, LCf, produced by proteolytic cleavage of a futsch-encoded precursor polypeptide, and confirm co-localization and co-assembly of the heavy chain and LCf cleavage products. Furthermore, the in vivo properties of MAP1 proteins were further defined through precise MS identification of a conserved proteolytic cleavage site within the futsch-encoded MAP1 precursor and demonstration of light-chain diversity represented by multiple LCf variants. Taken together, these findings establish conservation of proteolytic processing and structural organization among mammalian and Drosophila MAP1 proteins and are expected to enhance genetic analysis of conserved MAP1 functions within the neuronal cytoskeleton.
Collapse
|
6
|
Abstract
MAP1-family proteins are classical microtubule-associated proteins (MAPs) that bind along the microtubule lattice and stabilize microtubules. MAP1-family proteins are classical microtubule-associated proteins (MAPs) that bind along the microtubule lattice. The founding members, MAP1A and MAP1B, are predominantly expressed in neurons, where they are thought to be important in the formation and development of axons and dendrites. Mammalian genomes usually contain three family members, MAP1A, MAP1B and a shorter, more recently identified gene called MAP1S. By contrast, only one family member, Futsch, is found in Drosophila. After their initial expression, the MAP1A and MAP1B polypeptides are cleaved into light and heavy chains, which are then assembled into mature complexes together with the separately encoded light chain 3 subunit (LC3). Both MAP1A and MAP1B are well known for their microtubule-stabilizing activity, but MAP1 proteins can also interact with other cellular components, including filamentous actin and signaling proteins. Furthermore, the activity of MAP1A and MAP1B is controlled by upstream signaling mechanisms, including the MAP kinase and glycogen synthase kinase-3 β pathways.
Collapse
Affiliation(s)
- Shelley Halpain
- Department of Cell Biology, The Scripps Research Institute and Institute for Childhood and Neglected Diseases, 10550 North Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Leif Dehmelt
- Department of Cell Biology, The Scripps Research Institute and Institute for Childhood and Neglected Diseases, 10550 North Torrey Pines Rd, La Jolla, CA 92037, USA
| |
Collapse
|
7
|
Abstract
Microtubules are very dynamic polymers whose assembly and disassembly is determined by whether their heterodimeric tubulin subunits are in a straight or curved conformation. Curvature is introduced by bending at the interfaces between monomers. Assembly and disassembly are primarily controlled by the hydrolysis of guanosine triphosphate (GTP) in a site that is completed by the association of two heterodimers. However, a multitude of associated proteins are able to fine-tune these dynamics so that microtubules are assembled and disassembled where and when they are required by the cell. We review the recent progress that has been made in obtaining a glimpse of the structural interactions involved.
Collapse
Affiliation(s)
- Linda A Amos
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom
| | | |
Collapse
|
8
|
Dougherty GW, Adler HJ, Rzadzinska A, Gimona M, Tomita Y, Lattig MC, Merritt RC, Kachar B. CLAMP, a novel microtubule-associated protein with EB-type calponin homology. CELL MOTILITY AND THE CYTOSKELETON 2005; 62:141-56. [PMID: 16206169 DOI: 10.1002/cm.20093] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microtubules (MTs) are polymers of alpha and beta tubulin dimers that mediate many cellular functions, including the establishment and maintenance of cell shape. The dynamic properties of MTs may be influenced by tubulin isotype, posttranslational modifications of tubulin, and interaction with microtubule-associated proteins (MAPs). End-binding (EB) family proteins affect MT dynamics by stabilizing MTs, and are the only MAPs reported that bind MTs via a calponin-homology (CH) domain (J Biol Chem 278 (2003) 49721-49731; J Cell Biol 149 (2000) 761-766). Here, we describe a novel 27 kDa protein identified from an inner ear organ of Corti library. Structural homology modeling demonstrates a CH domain in this protein similar to EB proteins. Northern and Western blottings confirmed expression of this gene in other tissues, including brain, lung, and testis. In the organ of Corti, this protein localized throughout distinctively large and well-ordered MT bundles that support the elongated body of mechanically stiff pillar cells of the auditory sensory epithelium. When ectopically expressed in Cos-7 cells, this protein localized along cytoplasmic MTs, promoted MT bundling, and efficiently stabilized MTs against depolymerization in response to high concentration of nocodazole and cold temperature. We propose that this protein, designated CLAMP, is a novel MAP and represents a new member of the CH domain protein family.
Collapse
Affiliation(s)
- Gerard W Dougherty
- Section on Structural Cell Biology, NIDCD, NIH, Bethesda, Maryland 20892-8027, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Chien CL, Lu KS, Lin YS, Hsieh CJ, Hirokawa N. The functional cooperation of MAP1A heavy chain and light chain 2 in the binding of microtubules. Exp Cell Res 2005; 308:446-58. [PMID: 15936015 DOI: 10.1016/j.yexcr.2005.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2005] [Revised: 05/03/2005] [Accepted: 05/04/2005] [Indexed: 12/01/2022]
Abstract
Microtubule-associated protein 1A (MAP1A) is a high-molecular-weight protein that is comprised of a heavy chain and a light chain (LC2) and is widely distributed along the microtubules in both mature neurons and glial cells. To illustrate the interaction among the MAP1A heavy chain, light chain, and microtubule, we prepared DNA constructs with Myc-, EGFP-, or DsRed-tags for full-length MAP1A DNA expressing whole MAP1A protein, two domains of MAP1A heavy chain, and light chain. Distribution patterns of various MAP1A domains as well as their interactions with microtubules were monitored in a non-neuronal COS7 and a neuronal Neuro2A cells. Our data revealed that a complete MAP1A protein, which contains both heavy chain and LC2, could be colocalized with microtubule networks not only in Neuro2A cells but also in transfected COS7 cells. Filamentous structures failed to be visualized along microtubules in COS7 cells transfected with MAP1A heavy chain or LC2 alone. Whereas, after introducing MAP1A heavy chain with LC2 into COS7 cells, both heavy chain and LC2 could be colocalized with microtubules. From our functional analysis, both MAP1A and its LC2 could protect microtubules against the challenge of nacodazol. Data collected from yeast two-hybrid assays of various MAP1A domains confirmed that the interaction of LC2 and NH2-terminal of MAP1A heavy chain is important for microtubule binding. From our analysis of MAP1A functional domains, we suggest that interactions between MAP1A heavy chain and LC2 are critical for the binding of microtubules.
Collapse
Affiliation(s)
- Chung-Liang Chien
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei, 100, Taiwan.
| | | | | | | | | |
Collapse
|
10
|
Xu H, He J, Richardson JS, Li XM. The response of synaptophysin and microtubule-associated protein 1 to restraint stress in rat hippocampus and its modulation by venlafaxine. J Neurochem 2005; 91:1380-8. [PMID: 15584914 DOI: 10.1111/j.1471-4159.2004.02827.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
As part of our continuing study of neural plasticity in rat hippocampus, we examined two structural proteins involved in neuronal plasticity, synaptophysin (SYP) and microtubule-associated protein 1 (MAP1) for their response to repeated restraint stress and modulation of such response by the antidepressant drug venlafaxine. This drug has the pharmacological action of inhibiting the reuptake of serotonin and norepinephrine in nerve terminals. We subjected the rats to restraint stress for 4 h per day for three days, and then injected the animals intraperitoneally (i.p.) with vehicle or 5 mg/kg/day of venlafaxine for various time periods. In all, eight groups of 10 rats each were used. The expression of these two proteins in hippocampal tissue of the rats was examined by means of western blot and immunohistochemical staining techniques. We found that restraint stress decreased the expression of SYP in the rat hippocampus by 50% (p < 0.01), and increased the expression of MAP1 by 60% (p < 0.01). SYP returned to the pre-stress levels in three weeks and MAP1 in two weeks. In animals treated with venlafaxine post-stress, SYP returned to pre-stress levels after 2 weeks and MAP1 after 1 week. These findings enhance our understanding of the compromise of the hippocampus by stressful assaults, and may be relevant to the action of venlafaxine in the treatment of patients with major depression, a mental disease thought to be related to the mal-adaptation of subjects to environmental stressors.
Collapse
Affiliation(s)
- Haiyun Xu
- Neuropsychiatry Research Unit, Department of Psychiatry, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | | | | | | |
Collapse
|
11
|
Orbán-Németh Z, Simader H, Badurek S, Tranciková A, Propst F. Microtubule-associated protein 1S, a short and ubiquitously expressed member of the microtubule-associated protein 1 family. J Biol Chem 2004; 280:2257-65. [PMID: 15528209 DOI: 10.1074/jbc.m408984200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The related high molecular mass microtubule-associated proteins (MAPs) MAP1A and MAP1B are predominantly expressed in the nervous system and are involved in axon guidance and synaptic function. MAP1B is implicated in fragile X mental retardation, giant axonal neuropathy, and ataxia type 1. We report the functional characterization of a novel member of the microtubule-associated protein 1 family, which we termed MAP1S (corresponding to sequence data bank entries for VCY2IP1 and C19ORF5). MAP1S contains the three hallmark domains of the microtubule-associated protein 1 family but hardly any additional sequences. It decorates neuronal microtubules and copurifies with tubulin from brain. MAP1S is synthesized as a precursor protein that is partially cleaved into heavy and light chains in a tissue-specific manner. Heavy and light chains interact to form the MAP1S complex. The light chain binds, bundles, and stabilizes microtubules and binds to actin. The heavy chain appears to regulate light chain activity. In contrast to MAP1A and MAP1B, MAP1S is expressed in a wide range of tissues in addition to neurons and represents the non-neuronal counterpart of this cytolinker family.
Collapse
Affiliation(s)
- Zsuzsanna Orbán-Németh
- Institute of Biochemistry and Molecular Cell Biology, Vienna Biocenter, University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | | | | | | | | |
Collapse
|
12
|
Di Giovanni S, Faden AI, Yakovlev A, Duke-Cohan JS, Finn T, Thouin M, Knoblach S, De Biase A, Bregman BS, Hoffman EP. Neuronal plasticity after spinal cord injury: identification of a gene cluster driving neurite outgrowth. FASEB J 2004; 19:153-4. [PMID: 15522907 DOI: 10.1096/fj.04-2694fje] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Functional recovery after spinal cord injury (SCI) may result in part from axon outgrowth and related plasticity through coordinated changes at the molecular level. We employed microarray analysis to identify a subset of genes the expression patterns of which were temporally coregulated and correlated to functional recovery after SCI. Steady-state mRNA levels of this synchronously regulated gene cluster were depressed in both ventral and dorsal horn neurons within 24 h after injury, followed by strong re-induction during the following 2 wk, which paralleled functional recovery. The identified cluster includes neuritin, attractin, microtubule-associated protein 1a, and myelin oligodendrocyte protein genes. Transcriptional and protein regulation of this novel gene cluster was also evaluated in spinal cord tissue and in single neurons and was shown to play a role in axonal plasticity. Finally, in vitro transfection experiments in primary dorsal root ganglion cells showed that cluster members act synergistically to drive neurite outgrowth.
Collapse
Affiliation(s)
- Simone Di Giovanni
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kanamori A, Nakamura M, Nakanishi Y, Nagai A, Mukuno H, Yamada Y, Negi A. Akt is activated via insulin/IGF-1 receptor in rat retina with episcleral vein cauterization. Brain Res 2004; 1022:195-204. [PMID: 15353229 DOI: 10.1016/j.brainres.2004.06.077] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2004] [Revised: 06/29/2004] [Accepted: 06/29/2004] [Indexed: 10/26/2022]
Abstract
The Akt serine/threonine kinase mediates pro-survival signalings in retina and was reported to be activated in a response to some retinal and optic nerve injuries. Human and experimental glaucoma induce apoptosis of retinal ganglion cells (RGCs). The purpose of this study is to test whether episcleral vein cauterization (EVC) to chronically elevate intraocular pressures (IOPs) in rats increase apoptosis of RGCs and affect activation of Akt and its upstream insulin-like growth factor (IGF)-1 receptor/Insulin receptor. Three episcleral veins in left eyes of Sprague-Dawley rats were cauterized to elevate IOPs. Up to 6 months, IOPs were monitored and the retina was dissected at several time points. The numbers of terminal dUTP nick end labeling (TUNEL)-positive cells and those of RGCs labeled with fluorogold were counted in flat-mounted retina. Immunohistochemistry and immunoblotting were performed to identify cells expressing phosphorylated Akt and to quantify the phospho- to total ratios of Akt and IGF-1 receptor/insulin receptor. EVC significantly elevated IOPs up to 2 months, increased TUNEL-positive cells in an IOP-dependent fashion, and reduced 34.5% of RGCs at 6 months (P<0.001) compared with contralateral retinas. Phosphorylated Akt was specifically expressed in RGCs until 1 month after cauterization. Akt (P=0.036) and IGF-1 receptor/Insulin receptor (P=0.003) were transiently phosphorylated at 3 days. Intrinsic activation of the IGF-1 receptor/Insulin receptor to Akt pathway may occur in RGCs in retina with EVC.
Collapse
Affiliation(s)
- Akiyasu Kanamori
- Department of Organ Therapeutics, Division of Ophthalmology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
Park SM, Liu G, Kubal A, Fury M, Cao L, Marx SO. Direct interaction between BKCa potassium channel and microtubule-associated protein 1A. FEBS Lett 2004; 570:143-8. [PMID: 15251455 DOI: 10.1016/j.febslet.2004.06.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Accepted: 06/14/2004] [Indexed: 10/26/2022]
Abstract
The BKCa channel, a potassium channel that is allosterically activated by voltage and calcium, is expressed in both excitable and non-excitable cells. The channel plays an important role in regulating membrane excitability. The channel activity can be modulated by post-translational modifications such as phosphorylation. Recently, hippocampal BKCa channels were shown to be directly modulated by assembly/disassembly of the submembranous actin cytoskeleton. Here, we report that the BKCa channel physically interacts with the light chain of microtubule associated protein 1A (MAP1A). The light chain was isolated in a yeast two-hybrid screen of a human brain cDNA library. The specificity of the interaction was demonstrated in biochemical experiments utilizing GST fusion protein pulldown assays and reciprocal co-immunoprecipitations from rat brain. Furthermore, utilizing immunofluorescence, the BKCa channel and MAP1A co-localize in the Purkinje cell layer of the cerebellum. These studies identify a novel interaction between the C-terminal tail of the BKCa channel and the light chain of MAP1A, which enables channel association with and modulation by the cytoskeleton.
Collapse
Affiliation(s)
- Soo Mi Park
- Department of Physiology and Cellular Biophysics, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | | | | | | | | | | |
Collapse
|
15
|
Kalvelyte A, Imbrasaite A, Bukauskiene A, Verselis VK, Bukauskas FF. Connexins and apoptotic transformation. Biochem Pharmacol 2003; 66:1661-72. [PMID: 14555247 PMCID: PMC3689318 DOI: 10.1016/s0006-2952(03)00540-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We examined the influence of connexin (Cx) expression on the development of apoptosis in HeLa parental cells (coupling deficient cell line) and HeLa cells expressing wild-type Cx43 and Cxs fused with enhanced green fluorescent protein (EGFP). EGFP was attached to the C-terminus of Cx32 and Cx43, Cx32-EGFP and Cx43-EGFP, respectively, and to the N-terminus of Cx32, EGFP-Cx32. All fusion proteins assembled into junctional plaques (JPs) at areas of cell-cell contact, but only the C-terminal fusion proteins formed functional gap junction (GJ) channels as well as hemichannels. In each cell line, apoptosis was induced by treatment with various agents including anisomycin, camptothecin, cis-platinum, colchicine, cycloheximide, etoposide, staurosporin and taxol. Using fluorescence microscopy, time-lapse imaging and dual whole-cell voltage clamp techniques, we correlated the changes in functional properties of GJ channels and Cx distribution with the progression of apoptosis based on cells' labeling with acridine orange and ethidium bromide (EB). The early phase of apoptosis (a viable apoptotic (VA) state) was characterized by shrinkage of the cells and by increased internalization of JPs accompanied by decreased cell-cell coupling. The apoptotic reagents had no direct effect on electrical cell-cell coupling. Transformation from a VA to a nonviable apoptotic (NVA) state was faster in HeLa cells expressing Cx43 or Cx43-EGFP than in HeLa parental cells. The potent GJ uncoupler, octanol, slowed the transition of HelaCx43-EGFP cells into a NVA state. In the absence of apoptotic reagents, the rate of EB uptake was higher in HeLaCx43-EGFP than in HeLa parental cells consistent with the presence of open Cx43-EGFP hemichannels. However, in both cell lines the rate of EB uptake decreased proportionally during the development of apoptosis suggesting that membrane permeability ascribed to Cx hemichannels is reduced. Cells expressing Cx32-EGFP and EGFP-Cx32 demonstrate the same apoptotic patterns as HeLaCx43-EGFP and HeLa parental cells, respectively. Intracellular levels of ATP in HeLaCx43-EGFP cells were substantially lower than in HeLa parental cells, and ATP added to the medium abolished the accelerated transition from a VA to a NVA state in HeLaCx43-EGFP cells. In summary, Cx32 or Cx43 accelerates transformation of cells into a NVA state or secondary necrosis and this depends on the ability of Cxs to form functional GJ channels and hemichannels.
Collapse
Affiliation(s)
- Audrone Kalvelyte
- Laboratory of Developmental Biology, Institute of Biochemistry, 12
Mokslininku Str., LT-2600 Vilnius, Lithuania
| | - Ausra Imbrasaite
- Laboratory of Developmental Biology, Institute of Biochemistry, 12
Mokslininku Str., LT-2600 Vilnius, Lithuania
| | - Angele Bukauskiene
- Department of Neuroscience, Albert Einstein College of Medicine, 1300
Morris Park Avenue, New York, NY 10461, USA
| | - Vytas K. Verselis
- Department of Neuroscience, Albert Einstein College of Medicine, 1300
Morris Park Avenue, New York, NY 10461, USA
| | - Feliksas F. Bukauskas
- Department of Neuroscience, Albert Einstein College of Medicine, 1300
Morris Park Avenue, New York, NY 10461, USA
- Corresponding author. Tel.: +1-718-430-4130; fax:
+1-718-430-8944. (F.F. Bukauskas)
| |
Collapse
|
16
|
Abstract
EB1 family proteins are evolutionarily conserved proteins that bind microtubule plus-ends and centrosomes and regulate the dynamics and organization of microtubules. Human EB1 family proteins, which include EB1, EBF3, and RP1, also associate with the tumor suppressor protein adenomatous polyposis coli (APC) and p150glued, a component of the dynactin complex. The structural basis for interaction between human EB1 family proteins and their associated proteins has not been defined in detail. EB1 family proteins have a calponin homology (CH) domain at their N terminus and an EB1-like C-terminal motif at their C terminus; the functional importance of these domains has not been determined. To better understand functions of human EB1 family proteins and to reveal functional similarities and differences among these proteins, we performed detailed characterizations of interactions between human EB1 family proteins and their associated proteins. We show that amino acids 1-133 of EB1 and EBF3 and the corresponding region of RP1, which contain a CH domain, are necessary and sufficient for binding microtubules, thus demonstrating for the first time that a CH domain contributes to binding microtubules. EB1 family proteins use overlapping but different regions that contain the EB1-like C-terminal motif to associate with APC and p150glued. Neither APC nor p150glued binding domain is necessary for EB1 or EBF3 to induce microtubule bundling, which requires amino acids 1-181 and 1-185 of EB1 and EBF3, respectively. We also determined that the EB1 family protein-binding regions are amino acids 2781-2820 and 18-111 of APC and p150glued, respectively.
Collapse
Affiliation(s)
- Wen Bu
- Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | |
Collapse
|
17
|
Cornea-Hébert V, Watkins KC, Roth BL, Kroeze WK, Gaudreau P, Leclerc N, Descarries L. Similar ultrastructural distribution of the 5-HT(2A) serotonin receptor and microtubule-associated protein MAP1A in cortical dendrites of adult rat. Neuroscience 2002; 113:23-35. [PMID: 12123681 DOI: 10.1016/s0306-4522(02)00146-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
As visualized by light and electron microscopic immunocytochemistry, the distribution of the neuronal serotonin-2A (5-HT(2A)) receptor is mainly intracellular throughout adult rat brain. This localization is particularly striking in the pyramidal cells of cerebral cortex, the dendrites of which are intensely immunoreactive, but without any labeling of their spines. In view of recent yeast two-hybrid and biochemical results suggesting an association of 5-HT(2A) receptors with the cytoskeletal microtubule-associated protein MAP1A, the respective subcellular distributions of the receptors and of MAP1A were compared by quantitative electron microscopic immunocytochemistry in dendrites of adult rat frontoparietal cortex. Counts of silver-intensified immunogold particles revealed a higher density of 5-HT(2A) receptors in smaller rather than larger dendrites, and an apportionment between pre-defined compartments representing the plasma membrane and the cytoplasm that was proportional to the relative surface area of these compartments. MAP1A immunoreactivity also predominated in smaller versus larger dendrites, but with a slightly lower proportion of labeling in the plasma membrane versus cytoplasmic compartment. The co-localization of 5-HT(2A) receptors and MAP1A protein in the same dendrites could be demonstrated in double immunolabeling experiments. These results confirmed the predominantly somato-dendritic, intracellular localization of 5-HT(2A) receptors in cerebral cortex, showed their higher concentration in distal as opposed to proximal dendrites, and suggested their potential association to the cytoskeleton in cortical neurons in vivo. Such a distribution of 5-HT(2A) receptors reinforces our earlier hypothesis that 5-HT(2A) receptors participate in intraneuronal signaling processes involving the cytoskeleton, and raises the possibility that their activation could be dependent upon that of another co-localized, plasma membrane-bound, 5-HT receptor.
Collapse
Affiliation(s)
- V Cornea-Hébert
- Départements de pathologie et biologie cellulaire et de physiologie, Faculté de médecine, Université de Montréal, P.O. Box 6128, Succursale Centre-ville, Montreal, Quebec, Canada H3C 3J7
| | | | | | | | | | | | | |
Collapse
|
18
|
Vaillant AR, Zanassi P, Walsh GS, Aumont A, Alonso A, Miller FD. Signaling mechanisms underlying reversible, activity-dependent dendrite formation. Neuron 2002; 34:985-98. [PMID: 12086645 DOI: 10.1016/s0896-6273(02)00717-1] [Citation(s) in RCA: 202] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Neuronal activity and neurotrophins play a central role in the formation, maintenance, and plasticity of dendritic arbors. Here, we show that neuronal activity, mediated by electrical stimulation, KCl depolarization, or cholinergic receptor activation, promotes reversible dendrite formation in sympathetic neurons and that this effect is enhanced by NGF. Activity-dependent dendrite formation is accompanied by increased association of HMW MAP2 with microtubules and increased microtubule stability. Inhibition of either CaMKII or the MEK-ERK pathway, both of which phosphorylate MAP2, inhibits dendrite formation, but inhibition of both pathways simultaneously is required for dendrites to retract. These data indicate that neuronal activity signals via CamKII and the ERKs to regulate MAP2:microtubule interactions and hence reversible dendrite stability, and to provide a mechanism whereby activity and neurotrophins converge intracellularly to dynamically regulate dendritic morphology.
Collapse
Affiliation(s)
- Andrew R Vaillant
- Center for Neuronal Survival, Brain Tumor Research Center, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4
| | | | | | | | | | | |
Collapse
|
19
|
Cassimeris L, Spittle C. Regulation of microtubule-associated proteins. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 210:163-226. [PMID: 11580206 DOI: 10.1016/s0074-7696(01)10006-9] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Microtubule-associated proteins (MAPs) function to regulate the assembly dynamics and organization of microtubule polymers. Upstream regulation of MAP activities is the major mechanism used by cells to modify and control microtubule assembly and organization. This review summarizes the functional activities of MAPs found in animal cells and discusses how these MAPs are regulated. Mechanisms controlling gene expression, isoform-specific expression, protein localization, phosphorylation, and degradation are discussed. Additional regulatory mechanisms include synergy or competition between MAPs and the activities of cofactors or binding partners. For each MAP it is likely that regulation in vivo reflects a composite of multiple regulatory mechanisms.
Collapse
Affiliation(s)
- L Cassimeris
- Department of Biological Sciences, Lehigh University Bethlehem, Pennsylvania 18015, USA
| | | |
Collapse
|
20
|
Microtubule-associated protein 1A (MAP1A) and MAP1B: light chains determine distinct functional properties. J Neurosci 2002. [PMID: 11896150 DOI: 10.1523/jneurosci.22-06-02106.2002] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The microtubule-associated proteins 1A (MAP1A) and 1B (MAP1B) are distantly related protein complexes consisting of heavy and light chains and are thought to play a role in regulating the neuronal cytoskeleton, MAP1B during neuritogenesis and MAP1A in mature neurons. To elucidate functional differences between MAP1B and MAP1A and to determine the role of the light chain in the MAP1A protein complex, we chose to investigate the functional properties of the light chain of MAP1A (LC2) and compare them with the light chain of MAP1B (LC1). We found that LC2 binds to microtubules in vivo and in vitro and induces rapid polymerization of tubulin. A microtubule-binding domain in its NH(2) terminus was found to be necessary and sufficient for these activities. The analysis of LC1 revealed that it too bound to microtubules and induced tubulin polymerization via a crucial but structurally unrelated NH(2)-terminal domain. The two light chains differed, however, in their effects on microtubule bundling and stability in vivo. Furthermore, we identified actin filament binding domains located at the COOH terminus of LC2 and LC1 and obtained evidence that binding to actin filaments is attributable to direct interaction with actin. Our findings establish LC2 as a crucial determinant of MAP1A function, reveal LC2 as a potential linker of neuronal microtubules and microfilaments, and suggest that the postnatal substitution of MAP1B by MAP1A leads to expression of a protein with an overlapping but distinct set of functions.
Collapse
|
21
|
Bonnet C, Boucher D, Lazereg S, Pedrotti B, Islam K, Denoulet P, Larcher JC. Differential binding regulation of microtubule-associated proteins MAP1A, MAP1B, and MAP2 by tubulin polyglutamylation. J Biol Chem 2001; 276:12839-48. [PMID: 11278895 DOI: 10.1074/jbc.m011380200] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The major neuronal post-translational modification of tubulin, polyglutamylation, can act as a molecular potentiometer to modulate microtubule-associated proteins (MAPs) binding as a function of the polyglutamyl chain length. The relative affinity of Tau, MAP2, and kinesin has been shown to be optimal for tubulin modified by approximately 3 glutamyl units. Using blot overlay assays, we have tested the ability of polyglutamylation to modulate the interaction of two other structural MAPs, MAP1A and MAP1B, with tubulin. MAP1A and MAP2 display distinct behavior in terms of tubulin binding; they do not compete with each other, even when the polyglutamyl chains of tubulin are removed, indicating that they have distinct binding sites on tubulin. Binding of MAP1A and MAP1B to tubulin is also controlled by polyglutamylation and, although the modulation of MAP1B binding resembles that of MAP2, we found that polyglutamylation can exert a different mode of regulation toward MAP1A. Interestingly, although the affinity of the other MAPs tested so far decreases sharply for tubulins carrying long polyglutamyl chains, the affinity of MAP1A for these tubulins is maintained at a significant level. This differential regulation exerted by polyglutamylation toward different MAPs might facilitate their selective recruitment into distinct microtubule populations, hence modulating their functional properties.
Collapse
Affiliation(s)
- C Bonnet
- Biochimie Cellulaire, CNRS FRE 2219, Université Pierre et Marie Curie, 9 quai Saint-Bernard, Case 265, 75252 Paris, Cedex 05, France
| | | | | | | | | | | | | |
Collapse
|
22
|
Hunter AM, Brown DL. Effects of microtubule-associated protein (MAP) expression on methylmercury-induced microtubule disassembly. Toxicol Appl Pharmacol 2000; 166:203-13. [PMID: 10906284 DOI: 10.1006/taap.2000.8953] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The sensitivity of microtubules (MTs) to methylmercury- (MeHg) induced disassembly was compared in undifferentiated, MAP1A- and MAP2C-transfected, and neuronally differentiated P19 Embyronal Carcinoma (EC) cells. The extent of MT disassembly was examined qualitatively by immunofluorescence microscopy and Western blotting and quantitatively by dot blotting of polymer and soluble proteins extracts. Immunofluorescence microscopy showed that MeHg disassembled MTs in a time- and dose-dependent manner and that MTs in both MAP2C-transfected and neuronally differentiated cells, but not those in MAP1A-transfected cells, were significantly more resistant to MeHg-induced MT depolymerization than those in undifferentiated cells. These results suggest that MAP2C has a greater ability to stabilize MTs against MeHg-induced disassembly than MAP1A. Surprisingly, however, when the extent of MT disassembly was assessed by Western blotting and by quantitative dot blotting, no change was observed in the amounts of tubulin, MAP2, or MAP1A, in the polymer and soluble fractions in MeHg-treated samples, compared to the control cells that were not treated. These data show that, although MeHg treatment resulted in the disassembly of MTs, they were not depolymerized as detergent-soluble subunits, but rather appeared to form insoluble tubulin-MAP oligomers or aggregates.
Collapse
Affiliation(s)
- A M Hunter
- Department of Biology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | | |
Collapse
|
23
|
Abstract
MAP1B is a microtubule-associated phosphoprotein that is particularly highly expressed in developing neurons. There is experimental evidence that it plays an important role in neuronal differentiation, especially the extension of axons and dendrites, but exactly what role is unclear. Recent experiments have shed light on the gene structure of MAP1B and identified some of the kinases that phosphorylate the protein. Implicit in these findings is the idea that MAP1B regulates the organisation of microtubules in neurites and is itself regulated in a complex way and at a number of levels.
Collapse
Affiliation(s)
- P R Gordon-Weeks
- Centre for Developmental Neurobiology, GKT School of Biomedical Sciences, King's College London, London WC2B 5RL.
| | | |
Collapse
|