1
|
Georgoulis A, Louka M, Mylonas S, Stavros P, Nounesis G, Vorgias CE. Consensus protein engineering on the thermostable histone-like bacterial protein HUs significantly improves stability and DNA binding affinity. Extremophiles 2020; 24:293-306. [PMID: 31980943 DOI: 10.1007/s00792-020-01154-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 01/06/2020] [Indexed: 11/28/2022]
Abstract
Consensus-based protein engineering strategy has been applied to various proteins and it can lead to the design of proteins with enhanced biological performance. Histone-like HUs comprise a protein family with sequence variety within a highly conserved 3D-fold. HU function includes compacting and regulating bacterial DNA in a wide range of biological conditions in bacteria. To explore the possible impact of consensus-based design in the thermodynamic stability of HU proteins, the approach was applied using a dataset of sequences derived from a group of 40 mesostable, thermostable, and hyperthermostable HUs. The consensus-derived HU protein was named HUBest, since it is expected to perform best. The synthetic HU gene was overexpressed in E. coli and the recombinant protein was purified. Subsequently, HUBest was characterized concerning its correct folding and thermodynamic stability, as well as its ability to interact with plasmid DNA. A substantial increase in HUBest stability at high temperatures is observed. HUBest has significantly improved biological performance at ambience temperature, presenting very low Kd values for binding plasmid DNA as indicated from the Gibbs energy profile of HUBest. This Kd may be associated to conformational changes leading to decreased thermodynamic stability and, therefore, higher flexibility at ambient temperature.
Collapse
Affiliation(s)
- Anastasios Georgoulis
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, 157 01, Zografou, Greece
| | - Maria Louka
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, 157 01, Zografou, Greece
| | - Stratos Mylonas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, 157 01, Zografou, Greece
| | - Philemon Stavros
- Biomolecular Physics Laboratory, INRASTES, National Centre for Scientific Research "Demokritos", 153 10, Agia Paraskevi, Greece
| | - George Nounesis
- Biomolecular Physics Laboratory, INRASTES, National Centre for Scientific Research "Demokritos", 153 10, Agia Paraskevi, Greece
| | - Constantinos E Vorgias
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, 157 01, Zografou, Greece.
| |
Collapse
|
2
|
Stojkova P, Spidlova P, Stulik J. Nucleoid-Associated Protein HU: A Lilliputian in Gene Regulation of Bacterial Virulence. Front Cell Infect Microbiol 2019; 9:159. [PMID: 31134164 PMCID: PMC6523023 DOI: 10.3389/fcimb.2019.00159] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/26/2019] [Indexed: 12/29/2022] Open
Abstract
Nucleoid-associated proteins belong to a group of small but abundant proteins in bacterial cells. These transcription regulators are responsible for many important cellular processes and also are involved in pathogenesis of bacteria. The best-known nucleoid-associated proteins, such as HU, FIS, H-NS, and IHF, are often discussed. The most important findings in research concerning HU protein are described in this mini review. Its roles in DNA compaction, shape modulation, and negative supercoiling induction have been studied intensively. HU protein regulates bacteria survival, growth, SOS response, virulence genes expression, cell division, and many other cell processes. Elucidating the mechanism of HU protein action has been the subject of many research projects. This mini review provides a comprehensive overview of the HU protein.
Collapse
Affiliation(s)
| | - Petra Spidlova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| | | |
Collapse
|
3
|
Timofeev VI, Altukhov DA, Talyzina AA, Agapova YK, Vlaskina AV, Korzhenevskiy DA, Kleymenov SY, Bocharov EV, Rakitina TV. Structural plasticity and thermal stability of the histone-like protein from Spiroplasma melliferum are due to phenylalanine insertions into the conservative scaffold. J Biomol Struct Dyn 2017; 36:4392-4404. [PMID: 29283021 DOI: 10.1080/07391102.2017.1417162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The histone-like (HU) protein is one of the major nucleoid-associated proteins of the bacterial nucleoid, which shares high sequence and structural similarity with IHF but differs from the latter in DNA-specificity. Here, we perform an analysis of structural-dynamic properties of HU protein from Spiroplasma melliferum and compare its behavior in solution to that of another mycoplasmal HU from Mycoplasma gallisepticum. The high-resolution heteronuclear NMR spectroscopy was coupled with molecular-dynamics study and comparative analysis of thermal denaturation of both mycoplasmal HU proteins. We suggest that stacking interactions in two aromatic clusters in the HUSpm dimeric interface determine not only high thermal stability of the protein, but also its structural plasticity experimentally observed as slow conformational exchange. One of these two centers of stacking interactions is highly conserved among the known HU and IHF proteins. Second aromatic core described recently in IHFs and IHF-like proteins is considered as a discriminating feature of IHFs. We performed an electromobility shift assay to confirm high affinities of HUSpm to both normal and distorted dsDNA, which are the characteristics of HU protein. MD simulations of HUSpm with alanine mutations of the residues forming the non-conserved aromatic cluster demonstrate its role in dimer stabilization, as both partial and complete distortion of the cluster enhances local flexibility of HUSpm.
Collapse
Affiliation(s)
- Vladimir I Timofeev
- a National Research Centre 'Kurchatov Institute', Kurchatov Complex of NBICS-Technologies , Akad. Kurchatova sqr., 1, Moscow 123182 , Russian Federation.,b Federal Scientific Research Center 'Crystallography and Photonics' RAS , Leninskii pr., 59, Moscow 119333 , Russian Federation
| | - Dmitry A Altukhov
- a National Research Centre 'Kurchatov Institute', Kurchatov Complex of NBICS-Technologies , Akad. Kurchatova sqr., 1, Moscow 123182 , Russian Federation
| | - Anna A Talyzina
- c Moscow Institute of Physics and Technology , Institutskiy per., 9, Dolgoprudny, Moscow Region 141700 , Russian Federation
| | - Yulia K Agapova
- a National Research Centre 'Kurchatov Institute', Kurchatov Complex of NBICS-Technologies , Akad. Kurchatova sqr., 1, Moscow 123182 , Russian Federation
| | - Anna V Vlaskina
- a National Research Centre 'Kurchatov Institute', Kurchatov Complex of NBICS-Technologies , Akad. Kurchatova sqr., 1, Moscow 123182 , Russian Federation
| | - Dmitry A Korzhenevskiy
- a National Research Centre 'Kurchatov Institute', Kurchatov Complex of NBICS-Technologies , Akad. Kurchatova sqr., 1, Moscow 123182 , Russian Federation
| | - Sergey Yu Kleymenov
- d Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences , Leninsky Prospekt. 33, bld. 2, Moscow 119071 , Russian Federation.,e Russian Academy of Sciences, Koltzov Institute of Developmental Biology , ul. Vavilova, 26, Moscow 119334 , Russian Federation
| | - Eduard V Bocharov
- a National Research Centre 'Kurchatov Institute', Kurchatov Complex of NBICS-Technologies , Akad. Kurchatova sqr., 1, Moscow 123182 , Russian Federation.,f Shemyakin&Ovchinnikov Institute of Bioorganic Chemistry RAS , str. Miklukho-Maklaya 16/10, Moscow 117997 , Russian Federation
| | - Tatiana V Rakitina
- a National Research Centre 'Kurchatov Institute', Kurchatov Complex of NBICS-Technologies , Akad. Kurchatova sqr., 1, Moscow 123182 , Russian Federation.,f Shemyakin&Ovchinnikov Institute of Bioorganic Chemistry RAS , str. Miklukho-Maklaya 16/10, Moscow 117997 , Russian Federation
| |
Collapse
|
4
|
Alotaibi M, Reyes BD, Le T, Luong P, Valafar F, Metzger RP, Fogel GB, Hecht D. Structure-based analysis of Bacilli and plasmid dihydrofolate reductase evolution. J Mol Graph Model 2017; 71:135-153. [PMID: 27914300 PMCID: PMC5203806 DOI: 10.1016/j.jmgm.2016.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 10/04/2016] [Accepted: 10/10/2016] [Indexed: 12/15/2022]
Abstract
Dihydrofolate reductase (DHFR), a key enzyme in tetrahydrofolate-mediated biosynthetic pathways, has a structural motif known to be highly conserved over a wide range of organisms. Given its critical role in purine and amino acid synthesis, DHFR is a well established therapeutic target for treating a wide range of prokaryotic and eukaryotic infections as well as certain types of cancer. Here we present a structural-based computer analysis of bacterial (Bacilli) and plasmid DHFR evolution. We generated a structure-based sequence alignment using 7 wild-type DHFR x-ray crystal structures obtained from the RCSB Protein Data Bank and 350 chromosomal and plasmid homology models we generated from sequences obtained from the NCBI Protein Database. We used these alignments to compare active site and non-active site conservation in terms of amino acid residues, secondary structure and amino acid residue class. With respect to amino acid sequences and residue classes, active-site positions in both plasmid and chromosomal DHFR are significantly more conserved than non-active site positions. Secondary structure conservation was similar for active site and non-active site positions. Plasmid-encoded DHFR proteins have greater degree of sequence and residue class conservation, particularly in sequence positions associated with a network of concerted protein motions, than chromosomal-encoded DHFR proteins. These structure-based were used to build DHFR specific phylogenetic trees from which evidence for horizontal gene transfer was identified.
Collapse
Affiliation(s)
- Mona Alotaibi
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182-1030, USA; King Saud University, P.O. Box 245714, Riyadh 11312, Saudi Arabia.
| | - Ben Delos Reyes
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182-1030, USA
| | - Tin Le
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182-1030, USA
| | - Phuong Luong
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182-1030, USA
| | - Faramarz Valafar
- Bioinformatics and Medical Informatics Research Center, San Diego State University, San Diego, CA 92182-7720, USA.
| | - Robert P Metzger
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182-1030, USA.
| | - Gary B Fogel
- Natural Selection, Inc., 6480 Weathers Place, Suite 350, San Diego, CA 92121, USA.
| | - David Hecht
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182-1030, USA; Department of Chemistry, Southwestern College, 900 Otay Lakes Rd., Chula Vista, CA 91910, USA.
| |
Collapse
|
5
|
Structural basis of the high thermal stability of the histone-like HU protein from the mollicute Spiroplasma melliferum KC3. Sci Rep 2016; 6:36366. [PMID: 27808161 PMCID: PMC5093408 DOI: 10.1038/srep36366] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 10/13/2016] [Indexed: 02/07/2023] Open
Abstract
The three-dimensional structure of the histone-like HU protein from the mycoplasma Spiroplasma melliferum KC3 (HUSpm) was determined at 1.4 Å resolution, and the thermal stability of the protein was evaluated by differential scanning calorimetry. A detailed analysis revealed that the three-dimensional structure of the HUSpm dimer is similar to that of its bacterial homologues but is characterized by stronger hydrophobic interactions at the dimer interface. This HUSpm dimer interface lacks salt bridges but is stabilized by a larger number of hydrogen bonds. According to the DSC data, HUSpm has a high denaturation temperature, comparable to that of HU proteins from thermophilic bacteria. To elucidate the structural basis of HUSpm thermal stability, we identified amino acid residues potentially responsible for this property and modified them by site-directed mutagenesis. A comparative analysis of the melting curves of mutant and wild-type HUSpm revealed the motifs that play a key role in protein thermal stability: non-conserved phenylalanine residues in the hydrophobic core, an additional hydrophobic loop at the N-terminal region of the protein, the absence of the internal cavity present at the dimer interface of some HU proteins, and the presence of additional hydrogen bonds between the monomers that are missing in homologous proteins.
Collapse
|
6
|
HU histone-like DNA-binding protein from Thermus thermophilus: structural and evolutionary analyses. Extremophiles 2016; 20:695-709. [DOI: 10.1007/s00792-016-0859-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/14/2016] [Indexed: 10/21/2022]
|
7
|
Boyko K, Gorbacheva M, Rakitina T, Korzhenevskiy D, Vanyushkina A, Kamashev D, Lipkin A, Popov V. Expression, purification, crystallization and preliminary X-ray crystallographic analysis of the histone-like HU protein from Spiroplasma melliferum KC3. Acta Crystallogr F Struct Biol Commun 2015; 71:24-7. [PMID: 25615963 PMCID: PMC4304742 DOI: 10.1107/s2053230x14025333] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 11/18/2014] [Indexed: 11/10/2022] Open
Abstract
HU proteins belong to the nucleoid-associated proteins (NAPs) that are involved in vital processes such as DNA compaction and reparation, gene transcription etc. No data are available on the structures of HU proteins from mycoplasmas. To this end, the HU protein from the parasitic mycoplasma Spiroplasma melliferum KC3 was cloned, overexpressed in Escherichia coli and purified to homogeneity. Prismatic crystals of the protein were obtained by the vapour-diffusion technique at 4°C. The crystals diffracted to 1.36 Å resolution (the best resolution ever obtained for a HU protein). The diffraction data were indexed in space group C2 and the structure of the protein was solved by the molecular-replacement method with one monomer per asymmetric unit.
Collapse
Affiliation(s)
- Konstantin Boyko
- Laboratory of Enzyme Engineering, A. N. Bach Institute of Biochemistry, RAS, Leninsky Prospekt 33/2, Moscow 119071, Russian Federation
- The Protein Factory, NBICS Center, National Research Centre ‘Kurchatov Institute’, Akad. Kurchatova Square 1, Moscow 123182, Russian Federation
| | - Marina Gorbacheva
- Laboratory of Enzyme Engineering, A. N. Bach Institute of Biochemistry, RAS, Leninsky Prospekt 33/2, Moscow 119071, Russian Federation
- The Protein Factory, NBICS Center, National Research Centre ‘Kurchatov Institute’, Akad. Kurchatova Square 1, Moscow 123182, Russian Federation
| | - Tatiana Rakitina
- The Protein Factory, NBICS Center, National Research Centre ‘Kurchatov Institute’, Akad. Kurchatova Square 1, Moscow 123182, Russian Federation
- Laboratory of Hormonal Regulation Proteins, Institute of Bioorganic Chemistry, RAS, Miklukho-Maklaya 16/10, Moscow 117997, Russian Federation
| | - Dmitry Korzhenevskiy
- The Protein Factory, NBICS Center, National Research Centre ‘Kurchatov Institute’, Akad. Kurchatova Square 1, Moscow 123182, Russian Federation
| | - Anna Vanyushkina
- SRI of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow 119435, Russian Federation
| | - Dmitry Kamashev
- SRI of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow 119435, Russian Federation
| | - Alexey Lipkin
- The Protein Factory, NBICS Center, National Research Centre ‘Kurchatov Institute’, Akad. Kurchatova Square 1, Moscow 123182, Russian Federation
| | - Vladimir Popov
- Laboratory of Enzyme Engineering, A. N. Bach Institute of Biochemistry, RAS, Leninsky Prospekt 33/2, Moscow 119071, Russian Federation
- The Protein Factory, NBICS Center, National Research Centre ‘Kurchatov Institute’, Akad. Kurchatova Square 1, Moscow 123182, Russian Federation
| |
Collapse
|
8
|
Engineering of Bacillus lipase by directed evolution for enhanced thermal stability: effect of isoleucine to threonine mutation at protein surface. Mol Biol Rep 2010; 38:2919-26. [DOI: 10.1007/s11033-010-9954-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 01/15/2010] [Indexed: 11/25/2022]
|
9
|
Dumon C, Varvak A, Wall MA, Flint JE, Lewis RJ, Lakey JH, Morland C, Luginbühl P, Healey S, Todaro T, DeSantis G, Sun M, Parra-Gessert L, Tan X, Weiner DP, Gilbert HJ. Engineering hyperthermostability into a GH11 xylanase is mediated by subtle changes to protein structure. J Biol Chem 2008; 283:22557-64. [PMID: 18515360 DOI: 10.1074/jbc.m800936200] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Understanding the structural basis for protein thermostability is of considerable biological and biotechnological importance as exemplified by the industrial use of xylanases at elevated temperatures in the paper pulp and animal feed sectors. Here we have used directed protein evolution to generate hyperthermostable variants of a thermophilic GH11 xylanase, EvXyn11. The Gene Site Saturation Mutagenesis (GSSM) methodology employed assesses the influence on thermostability of all possible amino acid substitutions at each position in the primary structure of the target protein. The 15 most thermostable mutants, which generally clustered in the N-terminal region of the enzyme, had melting temperatures (Tm) 1-8 degrees C higher than the parent protein. Screening of a combinatorial library of the single mutants identified a hyperthermostable variant, EvXyn11TS, containing seven mutations. EvXyn11TS had a Tm approximately 25 degrees C higher than the parent enzyme while displaying catalytic properties that were similar to EvXyn11. The crystal structures of EvXyn11 and EvXyn11TS revealed an absence of substantial changes to identifiable intramolecular interactions. The only explicable mutations are T13F, which increases hydrophobic interactions, and S9P that apparently locks the conformation of a surface loop. This report shows that the molecular basis for the increased thermostability is extraordinarily subtle and points to the requirement for new tools to interrogate protein folding at non-ambient temperatures.
Collapse
Affiliation(s)
- Claire Dumon
- Institute for Cell and Molecular Biosciences, Newcastle University, The Medical School, Newcastle Upon Tyne NE2 4HH, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Chan CH, Liang HK, Hsiao NW, Ko MT, Lyu PC, Hwang JK. Relationship between local structural entropy and protein thermostability. Proteins 2006; 57:684-91. [PMID: 15532068 DOI: 10.1002/prot.20263] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We developed a technique to compute structural entropy directly from protein sequences. We explored the possibility of using structural entropy to identify residues involved in thermal stabilization of various protein families. Examples include methanococcal adenylate kinase, Ribonuclease HI and holocytochrome c(551). Our results show that the positions of the largest structural entropy differences between wild type and mutant usually coincide with the residues relevant to thermostability. We also observed a good linear relationship between the average structural entropy and the melting temperatures for adenylate kinase and its chimeric constructs. To validate this linear relationship, we compiled a large dataset comprised of 1153 sequences and found that most protein families still display similar linear relationships. Our results suggest that the multitude of interactions involved in thermal stabilization may be generalized into the tendency of proteins to maintain local structural conservation. The linear relationship between structural entropy and protein thermostability should be useful in the study of protein thermal stabilization.
Collapse
Affiliation(s)
- Chen-Hsiung Chan
- Department of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | | | | | | | | | | |
Collapse
|
11
|
Kar S, Edgar R, Adhya S. Nucleoid remodeling by an altered HU protein: reorganization of the transcription program. Proc Natl Acad Sci U S A 2005; 102:16397-402. [PMID: 16258062 PMCID: PMC1283455 DOI: 10.1073/pnas.0508032102] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacterial nucleoid organization is believed to have minimal influence on the global transcription program. Using an altered bacterial histone-like protein, HUalpha, we show that reorganization of the nucleoid configuration can dynamically modulate the cellular transcription pattern. The mutant protein transformed the loosely packed nucleoid into a densely condensed structure. The nucleoid compaction, coupled with increased global DNA supercoiling, generated radical changes in the morphology, physiology, and metabolism of wild-type K-12 Escherichia coli. Many constitutive housekeeping genes involved in nutrient utilization were repressed, whereas many quiescent genes associated with virulence were activated in the mutant. We propose that, as in eukaryotes, the nucleoid architecture dictates the global transcription profile and, consequently, the behavior pattern in bacteria.
Collapse
Affiliation(s)
- Sudeshna Kar
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264, USA
| | | | | |
Collapse
|
12
|
Zaremba M, Sasnauskas G, Urbanke C, Siksnys V. Conversion of the Tetrameric Restriction Endonuclease Bse634I into a Dimer: Oligomeric Structure–Stability–Function Correlations. J Mol Biol 2005; 348:459-78. [PMID: 15811381 DOI: 10.1016/j.jmb.2005.02.037] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Revised: 02/02/2005] [Accepted: 02/20/2005] [Indexed: 11/30/2022]
Abstract
The Bse634I restriction endonuclease is a tetramer and belongs to the type IIF subtype of restriction enzymes. It requires two recognition sites for its optimal activity and cleaves plasmid DNA with two sites much faster than a single-site DNA. We show that disruption of the tetramerisation interface of Bse634I by site-directed mutagenesis converts the tetrameric enzyme into a dimer. Dimeric W228A mutant cleaves plasmid DNA containing one or two sites with the same efficiency as the tetramer cleaves the two-site plasmid. Hence, the catalytic activity of the Bse634I tetramer on a single-site DNA is down-regulated due to the cross-talking interactions between the individual dimers. The autoinhibition within the Bse634I tetramer is relieved by bridging two DNA copies into the synaptic complex that promotes fast and concerted cleavage at both sites. Cleavage analysis of the oligonucleotide attached to the solid support revealed that Bse634I is able to form catalytically competent synaptic complexes by bridging two molecules of the cognate DNA, cognate DNA-miscognate DNA and cognate DNA-product DNA. Taken together, our data demonstrate that a single W228A mutation converts a tetrameric type IIF restriction enzyme Bse634I into the orthodox dimeric type IIP restriction endonuclease. However, the stability of the dimer towards chemical denaturants, thermal inactivation and proteolytic degradation are compromised.
Collapse
Affiliation(s)
- M Zaremba
- Institute of Biotechnology, Graiciuno 8, Vilnius LT-02241, Lithuania
| | | | | | | |
Collapse
|
13
|
Kimura K, Numata T, Kakuta Y, Kimura M. Amino acids conserved at the C-terminal half of the ribonuclease T2 family contribute to protein stability of the enzymes. Biosci Biotechnol Biochem 2005; 68:1748-57. [PMID: 15322360 DOI: 10.1271/bbb.68.1748] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The ribonuclease MC1 (RNase MC1) from the seeds of the bitter gourd belongs to the RNase T2 family. We evaluated the contribution of 11 amino acids conserved in the RNase T2 family to protein folding of RNase MC1. Thermal unfolding experiments showed that substitution of Tyr(101), Phe(102), Ala(105), and Phe(190) resulted in a significant decrease in themostability; the T(m) values were 47-58 degrees C compared to that for the wild type (64 degrees C). Mutations of Pro(125), Gly(127), Gly(144), and Val(165) caused a moderate decrease in thermostability (T(m): 60-62 degrees C). In contrast, mutations of Asp(107) and Gly(173) did little effect on thermostability. The contribution of Tyr(101), Phe(102), Pro(125), and Gly(127) to protein stability was further corroborated by means of Gdn-HCl unfolding and protease digestions. Taken together, it appeared that Tyr(101), Phe(102), Ala(105), Pro(125), Gly(127), Gly(144), Leu(162), Val(165), and Phe(190) conserved in the RNase T2 family play an important role in the stability of the proteins.
Collapse
Affiliation(s)
- Kazumi Kimura
- Laboratory of Biochemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| | | | | | | |
Collapse
|
14
|
Ruiz-Sanz J, Filimonov VV, Christodoulou E, Vorgias CE, Mateo PL. Thermodynamic analysis of the unfolding and stability of the dimeric DNA-binding protein HU from the hyperthermophilic eubacterium Thermotoga maritima and its E34D mutant. ACTA ACUST UNITED AC 2004; 271:1497-507. [PMID: 15066175 DOI: 10.1111/j.1432-1033.2004.04057.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have studied the stability of the histone-like, DNA-binding protein HU from the hyperthermophilic eubacterium Thermotoga maritima and its E34D mutant by differential scanning microcalorimetry and CD under acidic conditions at various concentrations within the range of 2-225 micro m of monomer. The thermal unfolding of both proteins is highly reversible and clearly follows a two-state dissociation/unfolding model from the folded, dimeric state to the unfolded, monomeric one. The unfolding enthalpy is very low even when taking into account that the two disordered DNA-binding arms probably do not contribute to the cooperative unfolding, whereas the quite small value for the unfolding heat capacity change (3.7 kJ.K(-1).mol(-1)) stabilizes the protein within a broad temperature range, as shown by the stability curves (Gibbs energy functions vs. temperature), even though the Gibbs energy of unfolding is not very high either. The protein is stable at pH 4.00 and 3.75, but becomes considerably less so at pH 3.50 and below, to the point that a simple decrease in concentration will lead to unfolding of both the wild-type and the mutant protein at pH 3.50 and low temperatures. This indicates that various acid residues lose their charges leaving uncompensated positively charged clusters. The wild-type protein is more stable than its E34D mutant, particularly at pH 4.00 and 3.75 although less so at 3.50 (1.8, 1.6 and 0.6 kJ.mol(-1) at 25 degrees C for DeltaDeltaG at pH 4.00, 3.75 and 3.50, respectively), which seems to be related to the effect of a salt bridge between E34 and K13.
Collapse
Affiliation(s)
- Javier Ruiz-Sanz
- Department of Physical Chemistry, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | | | | | | | | |
Collapse
|
15
|
Durney MA, Wechselberger RW, Kalodimos CG, Kaptein R, Vorgias CE, Boelens R. An alternate conformation of the hyperthermostable HU protein from Thermotoga maritima has unexpectedly high flexibility. FEBS Lett 2004; 563:49-54. [PMID: 15063721 DOI: 10.1016/s0014-5793(04)00247-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2004] [Revised: 02/26/2004] [Accepted: 02/26/2004] [Indexed: 11/23/2022]
Abstract
The homodimeric HU protein from the hyperthermophile Thermotoga maritima (HUTmar) is a model system which can yield insights into the molecular determinants of thermostability in proteins. Unusually for a thermostable protein, HUTmar exists in a structurally heterogeneous state as evidenced by the assignment of two distinct and approximately equally populated forms in solution. Relaxation measurements combined with chemical shift, hydrogen exchange, and nuclear Overhauser enhancement data confirm the main structural features of both forms. In addition, these data support a two-state model for HUTmar in which the major form closely resembles the X-ray structure while the very flexible minor form is less structured. HUTmar may therefore be a new example of the small class of hyperthermostable proteins with unexpected flexibility.
Collapse
Affiliation(s)
- Michael A Durney
- Bijvoet Center for Biomolecular Research, Universiteit Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
16
|
Zeeb M, Lipps G, Lilie H, Balbach J. Folding and association of an extremely stable dimeric protein from Sulfolobus islandicus. J Mol Biol 2004; 336:227-40. [PMID: 14741218 DOI: 10.1016/j.jmb.2003.12.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
ORF56 is a plasmid-encoded protein from Sulfolobus islandicus, which probably controls the copy number of the pRN1 plasmid by binding to its own promotor. The protein showed an extremely high stability in denaturant, heat, and pH-induced unfolding transitions, which can be well described by a two-state reaction between native dimers and unfolded monomers. The homodimeric character of native ORF56 was confirmed by analytical ultracentrifugation. Far-UV circular dichroism and fluorescence spectroscopy gave superimposable denaturant-induced unfolding transitions and the midpoints of both heat as well as denaturant-induced unfolding depend on the protein concentration supporting the two-state model. This model was confirmed by GdmSCN-induced unfolding monitored by heteronuclear 2D NMR spectroscopy. Chemical denaturation was accomplished by GdmCl and GdmSCN, revealing a Gibbs free energy of stabilization of -85.1 kJ/mol at 25 degrees C. Thermal unfolding was possible only above 1 M GdmCl, which shifted the melting temperature (t(m)) below the boiling point of water. Linear extrapolation of t(m) to 0 M GdmCl yielded a t(m) of 107.5 degrees C (5 microM monomer concentration). Additionally, ORF56 remains natively structured over a remarkable pH range from pH 2 to pH 12. Folding kinetics were followed by far-UV CD and fluorescence after either stopped-flow or manual mixing. All kinetic traces showed only a single phase and the two probes revealed coincident folding rates (k(f), k(u)), indicating the absence of intermediates. Apparent first-order refolding rates depend linearly on the protein concentration, whereas the unfolding rates do not. Both lnk(f) and lnk(u) depend linearly on the GdmCl concentration. Together, folding and association of homodimeric ORF56 are concurrent events. In the absence of denaturant ORF56 refolds fast (7.0 x 10(7)M(-1)s(-1)) and unfolds extremely slowly (5.7 year(-1)). Therefore, high stability is coupled to a slow unfolding rate, which is often observed for proteins of extremophilic organisms.
Collapse
Affiliation(s)
- Markus Zeeb
- Laboratorium für Biochemie III, Universität Bayreuth, D-95440 Bayreuth, Germany
| | | | | | | |
Collapse
|
17
|
Ramstein J, Hervouet N, Coste F, Zelwer C, Oberto J, Castaing B. Evidence of a thermal unfolding dimeric intermediate for the Escherichia coli histone-like HU proteins: thermodynamics and structure. J Mol Biol 2003; 331:101-21. [PMID: 12875839 DOI: 10.1016/s0022-2836(03)00725-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The Escherichia coli histone-like HU protein pool is composed of three dimeric forms: two homodimers, EcHUalpha(2) and EcHUbeta(2), and a heterodimer, EcHUalphabeta. The relative abundance of these dimeric forms varies during cell growth and in response to environmental changes, suggesting that each dimer plays different physiological roles. Here, differential scanning calorimetry and circular dichroism (CD) were used to study the thermal stability of the three E.coli HU dimers and show that each of them has its own thermodynamic signature. Unlike the other HU proteins studied so far, which melt through a single step (N(2)<-->2D), this present thermodynamic study shows that the three E.coli dimers melt according to a two-step mechanism (N(2)<-->I(2)<-->2D). The native dimer, N(2), melts partially into a dimeric intermediate, I(2), which in turn yields the unfolded monomers, D. In addition, the crystal structure of the EcHUalpha(2) dimer has been solved. Comparative thermodynamic and structural analysis between EcHUalpha(2) and the HU homodimer from Bacillus stearothermophilus suggests that the E.coli dimer is constituted by two subdomains of different energetic properties. The CD study indicates that the intermediate, I(2), corresponds to an HU dimer having partly lost its alpha-helices. The partially unfolded dimer I(2) is unable to complex with high-affinity, single-stranded break-containing DNA. These structural, thermodynamic and functional results suggest that the N(2)<-->I(2) equilibrium plays a central role in the physiology of E.coli HU. The I(2) molecular species seems to be the EcHUbeta(2) preferential conformation, possibly related to its role in the E.coli cold-shock adaptation. Besides, I(2) might be required in E.coli for the HU chain exchange, which allows the heterodimer formation from homodimers.
Collapse
Affiliation(s)
- Jean Ramstein
- Centre de Biophysique Moléculaire, CNRS, affiliated to the University of Orléans, rue Charles Sadron, 45071 Orléans cedex 02, France
| | | | | | | | | | | |
Collapse
|
18
|
England JL, Shakhnovich BE, Shakhnovich EI. Natural selection of more designable folds: a mechanism for thermophilic adaptation. Proc Natl Acad Sci U S A 2003; 100:8727-31. [PMID: 12843403 PMCID: PMC166380 DOI: 10.1073/pnas.1530713100] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2003] [Indexed: 11/18/2022] Open
Abstract
An open question of great interest in biophysics is whether variations in structure cause protein folds to differ in the number of amino acid sequences that can fold to them stably, i.e., in their designability. Recently, we have shown that a novel quantitative measure of a fold's tertiary topology, called its contact trace, strongly correlates with the fold's designability. Here, we investigate the relationship between a fold's contact trace and its relative frequency of usage in mesophilic vs. thermophilic eubacteria. We observe that thermophilic organisms exhibit a bias toward using folds of higher contact trace when compared with mesophiles. We establish this difference both for the distributions of folds at the whole-proteome level and also through more focused structural comparisons of orthologous proteins. Our findings suggest that thermophilic adaptation in bacterial genomes occurs in part through natural selection of more designable folds, pointing to designability as a key component of protein fitness.
Collapse
Affiliation(s)
- Jeremy L England
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
19
|
Schuler B, Kremer W, Kalbitzer HR, Jaenicke R. Role of entropy in protein thermostability: folding kinetics of a hyperthermophilic cold shock protein at high temperatures using 19F NMR. Biochemistry 2002; 41:11670-80. [PMID: 12269809 DOI: 10.1021/bi026293l] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We used (19)F NMR to extend the temperature range accessible to detailed kinetic and equilibrium studies of a hyperthermophilic protein. Employing an optimized incorporation strategy, the small cold shock protein from the bacterium Thermotoga maritima (TmCsp) was labeled with 5-fluorotryptophan. Although chaotropically induced unfolding transitions revealed a significant decrease in the stabilization free energy upon fluorine labeling, the protein's kinetic folding mechanism is conserved. Temperature- and guanidinium chloride-dependent equilibrium unfolding transitions monitored by (19)F NMR agree well with the results from optical spectroscopy, and provide a stringent test of the two-state folding character of TmCsp. Folding and unfolding rate constants at high temperatures were determined from the (19)F NMR spectra close to the midpoint of thermal unfolding by global line shape analysis. In combination with results from stopped-flow experiments at lower temperatures, they show that the folding rate constant of TmCsp and its temperature dependence closely resemble those of its mesophilic homologue from Bacillus subtilis, BsCspB. However, the unfolding rate constant of TmCsp is two orders of magnitude lower over the entire temperature range that was investigated. Consequently, the difference in conformational stability between the two proteins is solely due to the unfolding rate constant over a wide temperature range. A thermodynamic analysis points to an important role of entropic factors in the stabilization of TmCsp relative to its mesophilic homologues.
Collapse
Affiliation(s)
- Benjamin Schuler
- Institut für Biophysik und Physikalische Biochemie, Universität Regensburg, Universitätsstrasse 31, 93040 Regensburg, Germany.
| | | | | | | |
Collapse
|
20
|
Gibert Y, Spada S, Wall JG, Pembroke JT. Cloning and characterisation of the Hint homologue of the thermophile Thermus thermophilus. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 2002; 12:179-85. [PMID: 11762193 DOI: 10.3109/10425170109080772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Screening of a genomic library of the thermophile Thermus thermophilus revealed a novel thermophilic hint gene, homologues of which are highly conserved in genera from archaea to mammals. Hint belongs to the HIT protein super-family, which contains two broad groups, Fhit, associated with tumour suppression in eukaryotes and Hint with putatitively protein kinase C inhibitory activity. In T. thermophilus the 321 bp gene has a GC content of 67% overall and 94.4% in the third nucleotide position, with unusually no thymine as a wobble base. The gene product, a small highly conserved 11,996 Da predicted soluble cytoplasmic protein, offers an ideal opportunity to investigate thermostabilising amino acid substitutions. Here we report on the characterisation of the novel hint sequence.
Collapse
Affiliation(s)
- Y Gibert
- Industrial Biochemistry Group, Department of Chemical and Environmental Sciences, University of Limerick, Limerick, Ireland
| | | | | | | |
Collapse
|
21
|
Affiliation(s)
- Dieter Perl
- Laboratorium für Biochemie, Universität Bayreuth, 95440 Bayreuth, Germany
| | | |
Collapse
|
22
|
Fields PA. Review: Protein function at thermal extremes: balancing stability and flexibility. Comp Biochem Physiol A Mol Integr Physiol 2001; 129:417-31. [PMID: 11423314 DOI: 10.1016/s1095-6433(00)00359-7] [Citation(s) in RCA: 326] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
No organism can survive across the entire temperature range found in the biosphere, and a given species can rarely support active metabolism across more than a few tens of degrees C. Nevertheless, life can be maintained at surprisingly extreme temperatures, from below -50 to over 110 degrees C. That proteins, which are assembled with the same 20 amino acids in all species, can function well at both extremes of this range illustrates the plasticity available in the construction of these macromolecules. In studying proteins from extremophiles, researchers have found no new amino acids, covalent modifications or structural motifs that explain the ability of these molecules to function in such harsh environments. Rather, subtle redistributions of the same intramolecular interactions required for protein stabilization at moderate temperatures are sufficient to maintain structural integrity at hot or cold extremes. The key to protein function, whether in polar seas or hot springs, is the maintenance of an appropriate balance between molecular stability on the one hand and structural flexibility on the other. Stability is needed to ensure the appropriate geometry for ligand binding, as well as to avoid denaturation, while flexibility is necessary to allow catalysis at a metabolically appropriate rate. Comparisons of homologous proteins from organisms spanning a wide range of thermal habitats show that adaptive mutations, as well as stabilizing solutes, maintain a balance between these two attributes, regardless of the temperature at which the protein functions.
Collapse
Affiliation(s)
- P A Fields
- Biological Sciences Department, Hopkins Marine Station, Stanford University, 120 Oceanview Blvd., Pacific Grove, CA 93950, USA.
| |
Collapse
|
23
|
Rath A, Davidson AR. The design of a hyperstable mutant of the Abp1p SH3 domain by sequence alignment analysis. Protein Sci 2000; 9:2457-69. [PMID: 11206067 PMCID: PMC2144507 DOI: 10.1110/ps.9.12.2457] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We have characterized the thermodynamic stability of the SH3 domain from the Saccharomyces cerevisiae Abp1p protein and found it to be relatively low compared to most other SH3 domains, with a Tm of 60 degrees C and a deltaGu of 3.08 kcal/mol. Analysis of a large alignment of SH3 domains led to the identification of atypical residues at eight positions in the wild-type Abp1p SH3 domain sequence that were subsequently replaced by the residue seen most frequently at that position in the alignment. Three of the eight mutants constructed in this way displayed increases in Tm ranging from 8 to 15 degrees C with concomitant increases in deltaGu of up to 1.4 kcal/mol. The effects of these substitutions on folding thermodynamics and kinetics were entirely additive, and a mutant containing all three was dramatically stabilized with a Tm greater than 90 degrees C and a deltaGu more than double that of the wild-type domain. The folding rate of this hyperstable mutant was 10-fold faster than wild-type, while its unfolding rate was fivefold slower. All of the stabilized mutants were still able to bind a target peptide with wild-type affinity. We have analyzed the stabilizing amino acid substitutions isolated in this study and several other similar sequence alignment based studies. In approximately 25% of cases, increased stability can be explained by enhanced propensity of the substituted residue for the local backbone conformation at the mutagenized site.
Collapse
Affiliation(s)
- A Rath
- Department of Biochemistry, University of Toronto, Ontario, Canada
| | | |
Collapse
|
24
|
Arrizubieta MJ, Polaina J. Increased thermal resistance and modification of the catalytic properties of a beta-glucosidase by random mutagenesis and in vitro recombination. J Biol Chem 2000; 275:28843-8. [PMID: 10871610 DOI: 10.1074/jbc.m003036200] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bglB gene from Paenibacillus polymyxa was subjected to random mutagenesis mediated by error prone polymerase chain reaction amplification and DNA shuffling. After this treatment, mutant variants of the encoded beta-glucosidase with enhanced thermal resistance were selected. We identified five amino acid substitutions at four different positions of the sequence that increased the resistance of the enzyme to heat denaturation. Four of the mutations, H62R, M319V, M319I, and M361I, did not change the kinetic parameters of the enzyme. However, mutant N223Y, which caused only a marginal increase in thermoresistance, showed an 8-fold decrease in K(m). Copies of the bglB gene carrying each one of the individual mutations were recombined in vitro by DNA shuffling. As a result, we obtained an enzyme that simultaneously exhibited a 20-fold increase in heat resistance and an 8-fold increase in the catalytic efficiency. The structural basis of the properties conferred by the mutations was analyzed using homology-based structural models. The four mutations causing a more pronounced effect on thermoresistance were located in loops, on the periphery of the (alpha/beta)(8) barrel that conforms the structure of the protein. Mutation N223Y, which modifies the catalytic properties of the enzyme, was on one of the barrel beta-strands that shape the active center.
Collapse
Affiliation(s)
- M J Arrizubieta
- Instituto de Agroquimica y Tecnologia de los Alimentos, Consejo Superior de Investigaciones Cientifícas, Apdo. 73, E46100-Burjassot, Valencia, Spain
| | | |
Collapse
|
25
|
Gonzalez-Blasco G, Sanz-Aparicio J, Gonzalez B, Hermoso JA, Polaina J. Directed evolution of beta -glucosidase A from Paenibacillus polymyxa to thermal resistance. J Biol Chem 2000; 275:13708-12. [PMID: 10788490 DOI: 10.1074/jbc.275.18.13708] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The beta-glucosidase encoded by the bglA gene from Paenibacillus polymyxa has a half-life time of 15 min at 35 degrees C and no detectable activity at 55 degrees C. We have isolated random mutations that enhance the thermoresistance of the enzyme. Following a directed evolution strategy, we have combined some of the isolated mutations to obtain a beta-glucosidase with a half-life of 12 min at 65 degrees C, in the range of resistance of thermophilic enzymes. No significant alteration of the kinetic parameters of the enzyme was observed. One of the mutants isolated in the screening for thermoresistant beta-glucosidase had the same resistance to denaturation as the wild type. This mutation caused the accumulation of enzyme in E. coli, probably due to its lower turnover. The structural changes responsible for the properties of the mutant enzymes have been analyzed. The putative causes increasing thermoresistance are as follows: the formation of an extra salt bridge, the replacement of an Asn residue exposed to the solvent, stabilization of the hydrophobic core, and stabilization of the quaternary structure of the protein.
Collapse
Affiliation(s)
- G Gonzalez-Blasco
- Instituto de Agroquimica y Tecnologia de Alimentos, CSIC, E46980 Paterna (Valencia) and Departamento de Cristalografia, CMBE, Instituto de Quimica Fisica Rocasolano, CSIC, E28006 Madrid, Spain
| | | | | | | | | |
Collapse
|
26
|
Saitoh F, Kawamura S, Yamasaki N, Tanaka I, Kimura M. Arginine-55 in the beta-arm is essential for the activity of DNA-binding protein HU from Bacillus stearothermophilus. Biosci Biotechnol Biochem 1999; 63:2232-5. [PMID: 10664859 DOI: 10.1271/bbb.63.2232] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
DNA-binding protein HU (BstHU) from Bacillus stearothermophilus is a homodimeric protein which binds to DNA in a sequence-nonspecific manner. In order to identify the Arg residues essential for DNA binding, four Arg residues (Arg-53, Arg-55, Arg-58, and Arg-61) within the beta-arm structure were replaced either by Gln, Lys, or Glu residues, and the resulting mutants were characterized with respect to their DNA-binding activity by a filter-binding analysis and surface plasmon resonance analysis. The results indicate that three Arg residues (Arg-55, Arg-58, and Arg-61) play a crucial role in DNA binding as positively charged recognition groups in the order of Arg-55 > Arg-58 > Arg-61 and that these are required to decrease the dissociation rate constant for BstHU-DNA interaction. In contrast, the Arg-53 residue was found to make no contribution to the binding activity of BstHU.
Collapse
Affiliation(s)
- F Saitoh
- Laboratory of Biochemistry, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
27
|
Esser D, Rudolph R, Jaenicke R, Böhm G. The HU protein from Thermotoga maritima: recombinant expression, purification and physicochemical characterization of an extremely hyperthermophilic DNA-binding protein. J Mol Biol 1999; 291:1135-46. [PMID: 10518949 DOI: 10.1006/jmbi.1999.3022] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The histone-like protein TmHU from the hyperthermophilic eubacterium Thermotoga maritima was cloned, expressed to high levels in Escherichia coli, and purified to homogeneity by heat precipitation and cation exchange chromatography. CD spectroscopical studies with secondary structure analysis as well as comparative modeling demonstrate that the dimeric TmHU has a tertiary structure similar to other homologous HU proteins. The Tm of the protein was determined to be 96 degrees C, and thermal unfolding is nearly completely reversible. Surface plasmon resonance measurements for TmHU show that the protein binds to DNA in a highly cooperative manner, with a KD of 73 nM and a Hill coefficient of 7.6 for a 56 bp DNA fragment. It is demonstrated that TmHU is capable to increase the melting point of a synthetic, double-stranded DNA (poly[d(A-T)]) by 47 degrees C, thus suggesting that DNA stabilization may be a major function of this protein in hyperthermophiles. The significant in vitro protection of double-helical DNA may be useful for biotechnological applications.
Collapse
Affiliation(s)
- D Esser
- Institut für Biotechnologie, Martin-Luther-Universität Halle-Wittenberg, Saale, Germany.
| | | | | | | |
Collapse
|
28
|
Tominaga T, Nakagawa A, Tanaka I, Kawamura S, Kimura M. High-resolution crystals of the HU mutant K38N from Bacillus stearothermophilus. J Struct Biol 1999; 125:86-9. [PMID: 10196119 DOI: 10.1006/jsbi.1998.4076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The DNA-binding protein HU is ubiquitous in the prokaryotic cell. It is a major protein component of isolated nucleoids and is believed to control the tertiary structure of prokaryotic DNA. The Bacillus stearothermophilus HU (BstHU) mutants obtained by mutagenesis have been investigated. Crystallization experiments of BstHU-K38N (Lys38 is substituted with Asn) resulted in two forms of crystals suitable for high-resolution x-ray analysis. The first form belongs to the monoclinic space group C2 with unit-cell dimensions of a = 90.1 A, b = 43.5 A, c = 63.7 A, and beta = 135.1 degrees, and it diffracts x rays to 1.5-A resolution. The second form belongs to the tetragonal space group I41 with a = b = 62.6 A and c = 43.3 A, and it diffracts up to 1.8-A resolution.
Collapse
Affiliation(s)
- T Tominaga
- Graduate School of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | | | | | | | | |
Collapse
|
29
|
Engelhardt H, Peters J. Structural research on surface layers: a focus on stability, surface layer homology domains, and surface layer-cell wall interactions. J Struct Biol 1998; 124:276-302. [PMID: 10049812 DOI: 10.1006/jsbi.1998.4070] [Citation(s) in RCA: 154] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Surface layers (S-layers) from Bacteria and Archaea are built from protein molecules arrayed in a two-dimensional lattice, forming the outermost cell wall layer in many prokaryotes. In almost half a century of S-layer research a wealth of structural, biochemical, and genetic data have accumulated, but it has not been possible to correlate sequence data with the tertiary structure of S-layer proteins to date. In this paper, some highlights of structural aspects of archaeal and bacterial S-layers that allow us to draw some conclusions on molecular properties are reviewed. We focus on the structural requirements for the extraordinary stability of many S-layer proteins, the structural and functional aspects of the S-layer homology domain found in S-layers, extracellular enzymes and related functional proteins, and outer membrane proteins, and the molecular interactions of S-layer proteins with other cell wall components. Finally, the perspectives and requirements for structural research on S-layers, which indicate that the investigation of isolated protein domains will be a prerequisite for solving S-layer structures at atomic resolution, are discussed.
Collapse
Affiliation(s)
- H Engelhardt
- Max-Planck-Institut für Biochemie, Abteilung Molekulare Strukturbiologie, Martinsried, D-82152, Germany
| | | |
Collapse
|