1
|
Perdaens O, van Pesch V. Should We Consider Neurodegeneration by Itself or in a Triangulation with Neuroinflammation and Demyelination? The Example of Multiple Sclerosis and Beyond. Int J Mol Sci 2024; 25:12637. [PMID: 39684351 PMCID: PMC11641818 DOI: 10.3390/ijms252312637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Neurodegeneration is preeminent in many neurological diseases, and still a major burden we fail to manage in patient's care. Its pathogenesis is complicated, intricate, and far from being completely understood. Taking multiple sclerosis as an example, we propose that neurodegeneration is neither a cause nor a consequence by itself. Mitochondrial dysfunction, leading to energy deficiency and ion imbalance, plays a key role in neurodegeneration, and is partly caused by the oxidative stress generated by microglia and astrocytes. Nodal and paranodal disruption, with or without myelin alteration, is further involved. Myelin loss exposes the axons directly to the inflammatory and oxidative environment. Moreover, oligodendrocytes provide a singular metabolic and trophic support to axons, but do not emerge unscathed from the pathological events, by primary myelin defects and cell apoptosis or secondary to neuroinflammation or axonal damage. Hereby, trophic failure might be an overlooked contributor to neurodegeneration. Thus, a complex interplay between neuroinflammation, demyelination, and neurodegeneration, wherein each is primarily and secondarily involved, might offer a more comprehensive understanding of the pathogenesis and help establishing novel therapeutic strategies for many neurological diseases and beyond.
Collapse
Affiliation(s)
- Océane Perdaens
- Neurochemistry Group, Institute of NeuroScience, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium;
| | - Vincent van Pesch
- Neurochemistry Group, Institute of NeuroScience, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium;
- Department of Neurology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| |
Collapse
|
2
|
Jana M, Prieto S, Gorai S, Dasarathy S, Kundu M, Pahan K. Muscle-building supplement β-hydroxy β-methylbutyrate stimulates the maturation of oligodendroglial progenitor cells to oligodendrocytes. J Neurochem 2024; 168:1340-1358. [PMID: 38419348 PMCID: PMC11260247 DOI: 10.1111/jnc.16084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/10/2024] [Accepted: 02/06/2024] [Indexed: 03/02/2024]
Abstract
Oligodendrocytes are the myelinating cells in the CNS and multiple sclerosis (MS) is a demyelinating disorder that is characterized by progressive loss of myelin. Although oligodendroglial progenitor cells (OPCs) should be differentiated into oligodendrocytes, for multiple reasons, OPCs fail to differentiate into oligodendrocytes in MS. Therefore, increasing the maturation of OPCs to oligodendrocytes may be of therapeutic benefit for MS. The β-hydroxy β-methylbutyrate (HMB) is a muscle-building supplement in humans and this study underlines the importance of HMB in stimulating the maturation of OPCs to oligodendrocytes. HMB treatment upregulated the expression of different maturation markers including PLP, MBP, and MOG in cultured OPCs. Double-label immunofluorescence followed by immunoblot analyses confirmed the upregulation of OPC maturation by HMB. While investigating mechanisms, we found that HMB increased the maturation of OPCs isolated from peroxisome proliferator-activated receptor β-/- (PPARβ-/-) mice, but not PPARα-/- mice. Similarly, GW6471 (an antagonist of PPARα), but not GSK0660 (an antagonist of PPARβ), inhibited HMB-induced maturation of OPCs. GW9662, a specific inhibitor of PPARγ, also could not inhibit HMB-mediated stimulation of OPC maturation. Furthermore, PPARα agonist GW7647, but neither PPARβ agonist GW0742 nor PPARγ agonist GW1929, alone increased the maturation of OPCs. Finally, HMB treatment of OPCs led to the recruitment of PPARα, but neither PPARβ nor PPARγ, to the PLP gene promoter. These results suggest that HMB stimulates the maturation of OPCs via PPARα and that HMB may have therapeutic prospects in remyelination.
Collapse
Affiliation(s)
- Malabendu Jana
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
| | - Shelby Prieto
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Sukhamoy Gorai
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Sridevi Dasarathy
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Madhuchhanda Kundu
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Kalipada Pahan
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
| |
Collapse
|
3
|
Hasaniani N, Nouri S, Shirzad M, Rostami-Mansoor S. Potential therapeutic and diagnostic approaches of exosomes in multiple sclerosis pathophysiology. Life Sci 2024; 347:122668. [PMID: 38670451 DOI: 10.1016/j.lfs.2024.122668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Exosomes are bilayer lipid vesicles that are released by cells and contain proteins, nucleic acids, and lipids. They can be internalized by other cells, inducing inflammatory responses and instigating toxicities in the recipient cells. Exosomes can also serve as therapeutic vehicles by transporting protective cargo to maintain homeostasis. Multiple studies have shown that exosomes can initiate and participate in the regulation of neuroinflammation, improve neurogenesis, and are closely related to the pathogenesis of central nervous system (CNS) diseases, including multiple sclerosis (MS). Exosomes can be secreted by both neurons and glial cells in the CNS, and their contents change with disease occurrence. Due to their ability to penetrate the blood-brain barrier and their stability in peripheral fluids, exosomes are attractive biomarkers of CNS diseases. In recent years, exosomes have emerged as potential therapeutic agents for CNS diseases, including MS. However, the molecular pathways in the pathogenesis of MS are still unknown, and further research is needed to fully understand the role of exosomes in the occurrence or improvement of MS disease. Thereby, in this review, we intend to provide a more complete understanding of the pathways in which exosomes are involved and affect the occurrence or improvement of MS disease.
Collapse
Affiliation(s)
- Nima Hasaniani
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Sina Nouri
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Urmia University of Medical Sciences, Urmia, Iran
| | - Moein Shirzad
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Sahar Rostami-Mansoor
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
4
|
Nie Y, Chu C, Qin Q, Shen H, Wen L, Tang Y, Qu M. Lipid metabolism and oxidative stress in patients with Alzheimer's disease and amnestic mild cognitive impairment. Brain Pathol 2024; 34:e13202. [PMID: 37619589 PMCID: PMC10711261 DOI: 10.1111/bpa.13202] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
Lipid metabolism and oxidative stress are key mechanisms in Alzheimer's disease (AD). The link between plasma lipid metabolites and oxidative stress in AD patients is poorly understood. This study was to identify markers that distinguish AD and amnestic mild cognitive impairment (aMCI) from NC, and to reveal potential links between lipid metabolites and oxidative stress. We performed non-targeted lipid metabolism analysis of plasma from patients with AD, aMCI, and NC using LC-MS/MS. The plasma malondialdehyde (MDA), glutathione peroxidase (GSH-Px), and superoxide dismutase (SOD) levels were assessed. We found significant differences in lipid metabolism between patients with AD and aMCI compared to those in NC. AD severity is associated with lipid metabolites, especially TG (18:0_16:0_18:0) + NH4, TG (18:0_16:0_16:0) + NH4, LPC(16:1e)-CH3, and PE (20:0_20:4)-H. SPH (d16:0) + H, SPH (d18:1) + H, and SPH (d18:0) + H were high-performance markers to distinguish AD and aMCI from NC. The AUC of three SPHs combined to predict AD was 0.990, with specificity and sensitivity as 0.949 and 1, respectively; the AUC of three SPHs combined to predict aMCI was 0.934, with specificity and sensitivity as 0.900, 0.981, respectively. Plasma MDA concentrations were higher in the AD group than in the NC group (p = 0.003), whereas plasma SOD levels were lower in the AD (p < 0.001) and aMCI (p = 0.045) groups than in NC, and GSH-Px activity were higher in the AD group than in the aMCI group (p = 0.007). In addition, lipid metabolites and oxidative stress are widely associated. In conclusion, this study distinguished serum lipid metabolism in AD, aMCI, and NC subjects, highlighting that the three SPHs can distinguish AD and aMCI from NC. Additionally, AD patients showed elevated oxidative stress, and there are complex interactions between lipid metabolites and oxidative stress.
Collapse
Affiliation(s)
- Yuting Nie
- Department of NeurologyXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Changbiao Chu
- Department of NeurologyXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Qi Qin
- Department of NeurologyXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Huixin Shen
- Department of NeurologyXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Lulu Wen
- Department of NeurologyXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Yi Tang
- Department of NeurologyXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Miao Qu
- Department of NeurologyXuanwu Hospital, Capital Medical UniversityBeijingChina
| |
Collapse
|
5
|
Phung NV, Rong F, Xia WY, Fan Y, Li XY, Wang SA, Li FL. Nervonic acid and its sphingolipids: Biological functions and potential food applications. Crit Rev Food Sci Nutr 2023; 64:8766-8785. [PMID: 37114919 DOI: 10.1080/10408398.2023.2203753] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Nervonic acid, a 24-carbon fatty acid with only one double bond at the 9th carbon (C24:1n-9), is abundant in the human brain, liver, and kidney. It not only functions in free form but also serves as a critical component of sphingolipids which participate in many biological processes such as cell membrane formation, apoptosis, and neurotransmission. Recent studies show that nervonic acid supplementation is not only beneficial to human health but also can improve the many medical conditions such as neurological diseases, cancers, diabetes, obesity, and their complications. Nervonic acid and its sphingomyelins serve as a special material for myelination in infants and remyelination patients with multiple sclerosis. Besides, the administration of nervonic acid is reported to reduce motor disorder in mice with Parkinson's disease and limit weight gain. Perturbations of nervonic acid and its sphingolipids might lead to the pathogenesis of many diseases and understanding these mechanisms is critical for investigating potential therapeutic approaches for such diseases. However, available studies about this aspect are limited. In this review, relevant findings about functional mechanisms of nervonic acid have been comprehensively and systematically described, focusing on four interconnected functions: cellular structure, signaling, anti-inflammation, lipid mobilization, and their related diseases.
Collapse
Affiliation(s)
- Nghi Van Phung
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Fei Rong
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Wan Yue Xia
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Yong Fan
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
| | - Xian Yu Li
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Shi An Wang
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
| | - Fu Li Li
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
- Shandong Energy Institute, Qingdao, China
| |
Collapse
|
6
|
Cross-Regulation of the Cellular Redox System, Oxygen, and Sphingolipid Signalling. Metabolites 2023; 13:metabo13030426. [PMID: 36984866 PMCID: PMC10054022 DOI: 10.3390/metabo13030426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Redox-active mediators are now appreciated as powerful molecules to regulate cellular dynamics such as viability, proliferation, migration, cell contraction, and relaxation, as well as gene expression under physiological and pathophysiological conditions. These molecules include the various reactive oxygen species (ROS), and the gasotransmitters nitric oxide (NO∙), carbon monoxide (CO), and hydrogen sulfide (H2S). For each of these molecules, direct targets have been identified which transmit the signal from the cellular redox state to a cellular response. Besides these redox mediators, various sphingolipid species have turned out as highly bioactive with strong signalling potential. Recent data suggest that there is a cross-regulation existing between the redox mediators and sphingolipid molecules that have a fundamental impact on a cell’s fate and organ function. This review will summarize the effects of the different redox-active mediators on sphingolipid signalling and metabolism, and the impact of this cross-talk on pathophysiological processes. The relevance of therapeutic approaches will be highlighted.
Collapse
|
7
|
Min Y, Suminda GGD, Heo Y, Kim M, Ghosh M, Son YO. Metal-Based Nanoparticles and Their Relevant Consequences on Cytotoxicity Cascade and Induced Oxidative Stress. Antioxidants (Basel) 2023; 12:antiox12030703. [PMID: 36978951 PMCID: PMC10044810 DOI: 10.3390/antiox12030703] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
Emerging nanoscience allows us to take advantage of the improved evolutionary components and apply today’s advanced characterization and fabrication techniques to solve environmental and biological problems. Despite the promise that nanotechnology will improve our lives, the potential risks of technology remain largely uncertain. The lack of information on bio-impacts and the absence of consistent standards are the limitations of using metal-based nanoparticles (mNPs) for existing applications. To analyze the role played by the mNPs physicochemical characteristics and tactics to protect live beings, the field of nanotoxicology nowadays is focused on collecting and analyzing data from in vitro and in vivo investigations. The degree of reactive oxygen species (ROS) and oxidative stress caused by material nanoparticles (NPs) depends on many factors, such as size, shape, chemical composition, etc. These characteristics enable NPs to enter cells and interact with biological macromolecules and cell organelles, resulting in oxidative damage, an inflammatory response, the development of mitochondrial dysfunction, damage to genetic material, or cytotoxic effects. This report explored the mechanisms and cellular signaling cascades of mNPs-induced oxidative stress and the relevant health consequences.
Collapse
Affiliation(s)
- Yunhui Min
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju-si 63243, Republic of Korea
| | | | - Yunji Heo
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si 63243, Republic of Korea
| | - Mangeun Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju-si 63243, Republic of Korea
| | - Mrinmoy Ghosh
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si 63243, Republic of Korea
- Department of Biotechnology, School of Bio, Chemical and Processing Engineering (SBCE), Kalasalingam Academy of Research and Educational, Krishnankoil 626126, India
- Correspondence: (M.G.); (Y.-O.S.); Tel.: +82-10-6752-9677 (M.G.); +82-64-754-3331 (Y.-O.S.)
| | - Young-Ok Son
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju-si 63243, Republic of Korea
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si 63243, Republic of Korea
- Bio-Health Materials Core-Facility Center, Jeju National University, Jeju-si 63243, Republic of Korea
- Practical Translational Research Center, Jeju National University, Jeju-si 63243, Republic of Korea
- Correspondence: (M.G.); (Y.-O.S.); Tel.: +82-10-6752-9677 (M.G.); +82-64-754-3331 (Y.-O.S.)
| |
Collapse
|
8
|
van den Bosch AMR, Hümmert S, Steyer A, Ruhwedel T, Hamann J, Smolders J, Nave KA, Stadelmann C, Kole MHP, Möbius W, Huitinga I. Ultrastructural Axon-Myelin Unit Alterations in Multiple Sclerosis Correlate with Inflammation. Ann Neurol 2022; 93:856-870. [PMID: 36565265 DOI: 10.1002/ana.26585] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Changes in the normal-appearing white matter (NAWM) in multiple sclerosis (MS) may contribute to disease progression. Here, we systematically quantified ultrastructural and subcellular characteristics of the axon-myelin unit in MS NAWM and determined how this correlates with low-grade inflammation. METHODS Human brain tissue obtained with short postmortem delay and fixation at autopsy enables systematic quantification of ultrastructural characteristics. In this study, we performed high-resolution immunohis tochemistry and quantitative transmission electron microscopy to study inflammation and ultrastructural characteristics of the axon-myelin unit in MS NAWM (n = 8) and control white matter (WM) in the optic nerve. RESULTS In the MS NAWM, there were more activated and phagocytic microglia cells (HLA+ P2RY12- and Iba1+ CD68+ ) and more T cells (CD3+ ) compared to control WM, mainly located in the perivascular space. In MS NAWM compared to control WM, there were, as expected, longer paranodes and juxtaparanodes and larger overlap between paranodes and juxtaparanodes. There was less compact myelin wrapping, a lower g-ratio, and a higher frequency of axonal mitochondria. Changes in myelin and axonal mitochondrial frequency correlated positively with the number of active and phagocytic microglia and lymphocytes in the optic nerve. INTERPRETATION These data suggest that in MS NAWM myelin detachment and uncompact myelin wrapping occurs, potassium channels are unmasked at the nodes of Ranvier, and axonal energy demand is increased, or mitochondrial transport is stagnated, accompanied by increased presence of activated and phagocytic microglia and T cells. These subclinical alterations to the axon-myelin unit in MS NAWM may contribute to disease progression. ANN NEUROL 2023.
Collapse
Affiliation(s)
- Aletta M R van den Bosch
- Department of Neuroimmunology, Netherlands Institute for Neuroscience, Royal Netherlands Academy for Arts and Sciences, Amsterdam, the Netherlands
| | - Sophie Hümmert
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Anna Steyer
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Torben Ruhwedel
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Jörg Hamann
- Department of Neuroimmunology, Netherlands Institute for Neuroscience, Royal Netherlands Academy for Arts and Sciences, Amsterdam, the Netherlands.,Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Joost Smolders
- Department of Neuroimmunology, Netherlands Institute for Neuroscience, Royal Netherlands Academy for Arts and Sciences, Amsterdam, the Netherlands.,Department of Neurology and Immunology, Multiple Sclerosis Center ErasMS, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Christine Stadelmann
- Department of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Maarten H P Kole
- Department of Axonal Signaling, Netherlands Institute for Neuroscience, Royal Netherlands Academy for Arts and Sciences, Amsterdam, the Netherlands.,Cell Biology, Neurobiology, and Biophysics, Department of Biology, Faculty of Science, University of Utrecht, Utrecht, the Netherlands
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Inge Huitinga
- Department of Neuroimmunology, Netherlands Institute for Neuroscience, Royal Netherlands Academy for Arts and Sciences, Amsterdam, the Netherlands.,Center for Neuroscience, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
9
|
N-Acetylcysteine Administration Attenuates Sensorimotor Impairments Following Neonatal Hypoxic-Ischemic Brain Injury in Rats. Int J Mol Sci 2022; 23:ijms232416175. [PMID: 36555816 PMCID: PMC9783020 DOI: 10.3390/ijms232416175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Hypoxic ischemic (HI) brain injury that occurs during neonatal period has been correlated with severe neuronal damage, behavioral deficits and infant mortality. Previous evidence indicates that N-acetylcysteine (NAC), a compound with antioxidant action, exerts a potential neuroprotective effect in various neurological disorders including injury induced by brain ischemia. The aim of the present study was to investigate the role of NAC as a potential therapeutic agent in a rat model of neonatal HI brain injury and explore its long-term behavioral effects. To this end, NAC (50 mg/kg/dose, i.p.) was administered prior to and instantly after HI, in order to evaluate hippocampal and cerebral cortex damage as well as long-term functional outcome. Immunohistochemistry was used to detect inducible nitric oxide synthase (iNOS) expression. The results revealed that NAC significantly alleviated sensorimotor deficits and this effect was maintained up to adulthood. These improvements in functional outcome were associated with a significant decrease in the severity of brain damage. Moreover, NAC decreased the short-term expression of iNOS, a finding implying that iNOS activity may be suppressed and that through this action NAC may exert its therapeutic action against neonatal HI brain injury.
Collapse
|
10
|
Sambolín-Escobales L, Feliciano-Quiñones A, Tirado-Castro L, Suárez C, Pacheco-Cruz D, Irizarry-Méndez N, Fonseca-Ferrer W, Hernández-López A, Colón-Romero M, Porter JT. Infusion of C20:0 ceramide into ventral hippocampus triggers anhedonia-like behavior in female and male rats. Front Behav Neurosci 2022; 16:899627. [PMID: 36090653 PMCID: PMC9449580 DOI: 10.3389/fnbeh.2022.899627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Increased long-chain C20:0 ceramides have been found in the serum of patients with depression. Moreover, ceramides are linked with increased microglia reactivity and inflammatory cytokine production, which are associated with depression. Since ceramides can readily cross the blood brain barrier, peripheral C20:0 ceramides could enter the brain, activate microglia, and induce depressive-like behavior. In this study, we determined whether localized infusion of C20:0 ceramides into the ventral hippocampus (VH) of rats is sufficient to activate microglia and induce depressive-like behaviors. Adult male and female rats received infusions of C20:0 ceramides or vehicle solution every other day for 2 weeks. After the third infusion, C20:0-infused animals showed reduced sucrose preference suggesting anhedonia-like behavior. In contrast, infusions of C20:0 ceramides did not affect immobility in the forced swim test or sucrose grooming suggesting that the behavioral effects of ceramides are task dependent. Furthermore, C20:0-infusions did not increase Iba-1 + microglia or inflammatory markers in the VH suggesting that localized increases in C20:0 ceramides in the VH are sufficient to induce anhedonia-like behavior without microglia activation.
Collapse
Affiliation(s)
- Lubriel Sambolín-Escobales
- Division of Pharmacology, Basic Sciences Department, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Adariana Feliciano-Quiñones
- Division of Pharmacology, Basic Sciences Department, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Lizmarie Tirado-Castro
- Division of Pharmacology, Basic Sciences Department, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Cristina Suárez
- Division of Pharmacology, Basic Sciences Department, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Dariangelly Pacheco-Cruz
- Biology and Biotechnology Department, Pontifical Catholic University of Puerto Rico, Ponce, Puerto Rico
| | - Nashaly Irizarry-Méndez
- Division of Pharmacology, Basic Sciences Department, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | | | - Anixa Hernández-López
- Division of Pharmacology, Basic Sciences Department, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | - María Colón-Romero
- Division of Pharmacology, Basic Sciences Department, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | - James T. Porter
- Division of Pharmacology, Basic Sciences Department, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
- *Correspondence: James T. Porter,
| |
Collapse
|
11
|
Facchinetti R, Valenza M, Gomiero C, Mancini GF, Steardo L, Campolongo P, Scuderi C. Co-Ultramicronized Palmitoylethanolamide/Luteolin Restores Oligodendrocyte Homeostasis via Peroxisome Proliferator-Activated Receptor-α in an In Vitro Model of Alzheimer's Disease. Biomedicines 2022; 10:1236. [PMID: 35740258 PMCID: PMC9219769 DOI: 10.3390/biomedicines10061236] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 12/22/2022] Open
Abstract
Oligodendrocytes are cells fundamental for brain functions as they form the myelin sheath and feed axons. They perform these critical functions thanks to the cooperation with other glial cells, mainly astrocytes. The astrocyte/oligodendrocyte crosstalk needs numerous mediators and receptors, such as peroxisome proliferator-activated receptors (PPARs). PPAR agonists promote oligodendrocyte precursor cells (OPCs) maturation in myelinating oligodendrocytes. In the Alzheimer's disease brain, deposition of beta-amyloid (Aβ) has been linked to several alterations, including astrogliosis and changes in OPCs maturation. However, very little is known about the molecular mechanisms. Here, we investigated for the first time the maturation of OPCs co-cultured with astrocytes in an in vitro model of Aβ1-42 toxicity. We also tested the potential beneficial effect of the anti-inflammatory and neuroprotective composite palmitoylethanolamide and luteolin (co-ultra PEALut), which is known to engage the isoform alfa of the PPARs. Our results show that Aβ1-42 triggers astrocyte reactivity and inflammation and reduces the levels of growth factors important for OPCs maturation. Oligodendrocytes indeed show low cell surface area and few arborizations. Co-ultra PEALut counteracts the Aβ1-42-induced inflammation and astrocyte reactivity preserving the morphology of co-cultured oligodendrocytes through a mechanism that in some cases involves PPAR-α. This is the first evidence of the negative effects exerted by Aβ1-42 on astrocyte/oligodendrocyte crosstalk and discloses a never-explored co-ultra PEALut ability in restoring oligodendrocyte homeostasis.
Collapse
Affiliation(s)
- Roberta Facchinetti
- Department of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome—P. le Aldo Moro, 5, 00185 Rome, Italy; (R.F.); (M.V.); (G.F.M.); (L.S.); (P.C.)
| | - Marta Valenza
- Department of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome—P. le Aldo Moro, 5, 00185 Rome, Italy; (R.F.); (M.V.); (G.F.M.); (L.S.); (P.C.)
| | | | - Giulia Federica Mancini
- Department of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome—P. le Aldo Moro, 5, 00185 Rome, Italy; (R.F.); (M.V.); (G.F.M.); (L.S.); (P.C.)
- Centro Europeo di Ricerca sul Cervello (CERC), IRCCS Santa Lucia Foundation Rome, 00143 Rome, Italy
| | - Luca Steardo
- Department of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome—P. le Aldo Moro, 5, 00185 Rome, Italy; (R.F.); (M.V.); (G.F.M.); (L.S.); (P.C.)
- Università Telematica Giustino Fortunato, 82100 Benevento, Italy
| | - Patrizia Campolongo
- Department of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome—P. le Aldo Moro, 5, 00185 Rome, Italy; (R.F.); (M.V.); (G.F.M.); (L.S.); (P.C.)
- Centro Europeo di Ricerca sul Cervello (CERC), IRCCS Santa Lucia Foundation Rome, 00143 Rome, Italy
| | - Caterina Scuderi
- Department of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome—P. le Aldo Moro, 5, 00185 Rome, Italy; (R.F.); (M.V.); (G.F.M.); (L.S.); (P.C.)
| |
Collapse
|
12
|
Podbielska M, Ariga T, Pokryszko-Dragan A. Sphingolipid Players in Multiple Sclerosis: Their Influence on the Initiation and Course of the Disease. Int J Mol Sci 2022; 23:ijms23105330. [PMID: 35628142 PMCID: PMC9140914 DOI: 10.3390/ijms23105330] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/05/2022] [Accepted: 05/08/2022] [Indexed: 02/06/2023] Open
Abstract
Sphingolipids (SLs) play a significant role in the nervous system, as major components of the myelin sheath, contributors to lipid raft formation that organize intracellular processes, as well as active mediators of transport, signaling and the survival of neurons and glial cells. Alterations in SL metabolism and content are observed in the course of central nervous system diseases, including multiple sclerosis (MS). In this review, we summarize the current evidence from studies on SLs (particularly gangliosides), which may shed new light upon processes underlying the MS background. The relevant aspects of these studies include alterations of the SL profile in MS, the role of antibodies against SLs and complexes of SL-ligand-invariant NKT cells in the autoimmune response as the core pathomechanism in MS. The contribution of lipid-raft-associated SLs and SL-laden extracellular vesicles to the disease etiology is also discussed. These findings may have diagnostic implications, with SLs and anti-SL antibodies as potential markers of MS activity and progression. Intriguing prospects of novel therapeutic options in MS are associated with SL potential for myelin repair and neuroprotective effects, which have not been yet addressed by the available treatment strategies. Overall, all these concepts are promising and encourage the further development of SL-based studies in the field of MS.
Collapse
Affiliation(s)
- Maria Podbielska
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- Laboratory of Microbiome Immunobiology, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
- Correspondence: ; Tel.: +48-71-370-99-12
| | - Toshio Ariga
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | | |
Collapse
|
13
|
Zhu Z, Quadri Z, Crivelli SM, Elsherbini A, Zhang L, Tripathi P, Qin H, Roush E, Spassieva SD, Nikolova-Karakashian M, McClintock TS, Bieberich E. Neutral Sphingomyelinase 2 Mediates Oxidative Stress Effects on Astrocyte Senescence and Synaptic Plasticity Transcripts. Mol Neurobiol 2022; 59:3233-3253. [PMID: 35294731 PMCID: PMC9023069 DOI: 10.1007/s12035-022-02747-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 01/11/2022] [Indexed: 11/26/2022]
Abstract
We have shown that deficiency of neutral sphingomyelinase 2 (nSMase2), an enzyme generating the sphingolipid ceramide, improves memory in adult mice. Here, we performed sphingolipid and RNA-seq analyses on the cortex from 10-month-old nSMase2-deficient (fro/fro) and heterozygous (+ /fro) mice. fro/fro cortex showed reduced levels of ceramide, particularly in astrocytes. Differentially abundant transcripts included several functionally related groups, with decreases in mitochondrial oxidative phosphorylation and astrocyte activation transcripts, while axon guidance and synaptic transmission and plasticity transcripts were increased, indicating a role of nSMase2 in oxidative stress, astrocyte activation, and cognition. Experimentally induced oxidative stress decreased the level of glutathione (GSH), an endogenous inhibitor of nSMase2, and increased immunolabeling for ceramide in primary + /fro astrocytes, but not in fro/fro astrocytes. β-galactosidase activity was lower in 5-week-old fro/fro astrocytes, indicating delayed senescence due to nSMase2 deficiency. In fro/fro cortex, levels of the senescence markers C3b and p27 and the proinflammatory cytokines interleukin 1β, interleukin 6, and tumor necrosis factor α were reduced, concurrent with twofold decreased phosphorylation of their downstream target, protein kinase Stat3. RNA and protein levels of the ionotropic glutamate receptor subunit 2B (Grin2b/NR2B) were increased by twofold, which was previously shown to enhance cognition. This was consistent with threefold reduced levels of exosomes carrying miR-223-3p, a micro-RNA downregulating NR2B. In summary, our data show that nSMase2 deficiency prevents oxidative stress-induced elevation of ceramide and secretion of exosomes by astrocytes that suppress neuronal function, indicating a role of nSMase2 in the regulation of neuroinflammation and cognition.
Collapse
Affiliation(s)
- Zhihui Zhu
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY
| | - Zainuddin Quadri
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY
- Veterans Affairs Medical Center, Lexington, KY 40502, United States
| | - Simone M. Crivelli
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY
| | - Ahmed Elsherbini
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY
| | - Liping Zhang
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY
- Veterans Affairs Medical Center, Lexington, KY 40502, United States
| | - Priyanka Tripathi
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY
- Veterans Affairs Medical Center, Lexington, KY 40502, United States
| | - Haiyan Qin
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY
| | - Emily Roush
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY
| | - Stefka D. Spassieva
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY
| | | | - Timothy S. McClintock
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY
| | - Erhard Bieberich
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY
- Veterans Affairs Medical Center, Lexington, KY 40502, United States
| |
Collapse
|
14
|
Youssef MI, Ma J, Chen Z, Hu WW. Potential therapeutic agents for ischemic white matter damage. Neurochem Int 2021; 149:105116. [PMID: 34229025 DOI: 10.1016/j.neuint.2021.105116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/24/2021] [Indexed: 11/19/2022]
Abstract
Ischemic white matter damage (WMD) is increasingly being considered as one of the major causes of neurological disorders in older adults and preterm infants. The functional consequences of WMD triggers a progressive cognitive decline and dementia particularly in patients with ischemic cerebrovascular diseases. Despite the major stride made in the pathogenesis mechanisms of ischemic WMD in the last century, effective medications are still not available. So, there is an urgent need to explore a promising approach to slow the progression or modify its pathological course. In this review, we discussed the animal models, the pathological mechanisms and the potential therapeutic agents for ischemic WMD. The development in the studies of anti-oxidants, free radical scavengers, anti-inflammatory or anti-apoptotic agents and neurotrophic factors in ischemic WMD were summarized. The agents which either alleviate oligodendrocyte damage or promote its proliferation or differentiation may have potential value for the treatment of ischemic WMD. Moreover, drugs with multifaceted protective activities or a wide therapeutic window may be optimal for clinical translation.
Collapse
Affiliation(s)
- Mahmoud I Youssef
- Department of Pharmacology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Jing Ma
- Department of Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China.
| | - Zhong Chen
- Department of Pharmacology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China.
| | - Wei-Wei Hu
- Department of Pharmacology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China.
| |
Collapse
|
15
|
Kwon YJ, Lee GM, Liu KH, Jung DH. Effect of Korean Red Ginseng on Plasma Ceramide Levels in Postmenopausal Women with Hypercholesterolemia: A Pilot Randomized Controlled Trial. Metabolites 2021; 11:metabo11070417. [PMID: 34202864 PMCID: PMC8307748 DOI: 10.3390/metabo11070417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 01/21/2023] Open
Abstract
Cardiovascular disease (CVD) is a crucial cause of death in postmenopausal women. Plasma ceramide concentrations are correlated with the development of atherosclerosis and are significant predictors of CVD. Here, we conducted a 4-week, double-blinded, placebo-controlled clinical pilot study to investigate the effect of Korean red ginseng (KRG) on serum ceramide concentrations in 68 postmenopausal women with hypercholesterolemia. Patients were randomly assigned to two groups: the experimental group (n = 36) received KRG and the control (n = 32) group received placebo, 2 g each, once daily. Serum ceramides were measured using liquid chromatography–tandem mass spectrometry at baseline and study completion, with changes in serum ceramide levels as the primary end point. We detected significantly greater mean changes in C16 ceramide levels (d18:1/16:0: −6.4 ± 6.3 pmol/mL vs. 14.6 ± 6.8 pmol/mL, respectively, p = 0.040; d18:1/22:0: −20.8 ± 24.4 pmol/mL vs. 71.1 ± 26.2 pmol/mL, respectively, p = 0.020). Additionally, changes in the median C16 (d18:1/16:0) and C22 (d18:1/22:0) ceramide levels were significantly greater in KRG-group subjects with metabolic syndrome than those without. Therefore, we found that KRG decreases the serum levels of several ceramides in postmenopausal women with hypercholesterolemia, suggesting it may be beneficial for preventing CVD in these individuals.
Collapse
Affiliation(s)
- Yu-Jin Kwon
- Department of Family Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin 16995, Korea;
| | - Gyung-Min Lee
- BK 21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea;
| | - Kwang-Hyeon Liu
- BK 21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea;
- Correspondence: (K.-H.L.); (D.-H.J.); Tel.: +82-01-8967-9802 (K.-H.L.); +82-10-4204-8998 (D.-H.J.)
| | - Dong-Hyuk Jung
- Department of Family Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin 16995, Korea;
- Correspondence: (K.-H.L.); (D.-H.J.); Tel.: +82-01-8967-9802 (K.-H.L.); +82-10-4204-8998 (D.-H.J.)
| |
Collapse
|
16
|
de Oliveira LG, Angelo YDS, Iglesias AH, Peron JPS. Unraveling the Link Between Mitochondrial Dynamics and Neuroinflammation. Front Immunol 2021; 12:624919. [PMID: 33796100 PMCID: PMC8007920 DOI: 10.3389/fimmu.2021.624919] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 02/25/2021] [Indexed: 12/13/2022] Open
Abstract
Neuroinflammatory and neurodegenerative diseases are a major public health problem worldwide, especially with the increase of life-expectancy observed during the last decades. For many of these diseases, we still lack a full understanding of their etiology and pathophysiology. Nonetheless their association with mitochondrial dysfunction highlights this organelle as an important player during CNS homeostasis and disease. Markers of Parkinson (PD) and Alzheimer (AD) diseases are able to induce innate immune pathways induced by alterations in mitochondrial Ca2+ homeostasis leading to neuroinflammation. Additionally, exacerbated type I IFN responses triggered by mitochondrial DNA (mtDNA), failures in mitophagy, ER-mitochondria communication and mtROS production promote neurodegeneration. On the other hand, regulation of mitochondrial dynamics is essential for CNS health maintenance and leading to the induction of IL-10 and reduction of TNF-α secretion, increased cell viability and diminished cell injury in addition to reduced oxidative stress. Thus, although previously solely seen as power suppliers to organelles and molecular processes, it is now well established that mitochondria have many other important roles, including during immune responses. Here, we discuss the importance of these mitochondrial dynamics during neuroinflammation, and how they correlate either with the amelioration or worsening of CNS disease.
Collapse
Affiliation(s)
- Lilian Gomes de Oliveira
- Neuroimmune Interactions Laboratory, Immunology Department - Institute of Biomedical Sciences (ICB) IV, University of São Paulo (USP), São Paulo, Brazil
- Neuroimmunology of Arboviruses Laboratory, Scientific Platform Pasteur-USP, University of São Paulo (USP), São Paulo, Brazil
| | - Yan de Souza Angelo
- Neuroimmune Interactions Laboratory, Immunology Department - Institute of Biomedical Sciences (ICB) IV, University of São Paulo (USP), São Paulo, Brazil
- Neuroimmunology of Arboviruses Laboratory, Scientific Platform Pasteur-USP, University of São Paulo (USP), São Paulo, Brazil
| | - Antonio H Iglesias
- Loyola University Medical Center, Stritch School of Medicine, Loyola University Chicago, Chicago, IL, United States
| | - Jean Pierre Schatzmann Peron
- Neuroimmune Interactions Laboratory, Immunology Department - Institute of Biomedical Sciences (ICB) IV, University of São Paulo (USP), São Paulo, Brazil
- Neuroimmunology of Arboviruses Laboratory, Scientific Platform Pasteur-USP, University of São Paulo (USP), São Paulo, Brazil
- Loyola University Medical Center, Stritch School of Medicine, Loyola University Chicago, Chicago, IL, United States
| |
Collapse
|
17
|
Nowack L, Teschers CS, Albrecht S, Gilmour R. Oligodendroglial glycolipids in (Re)myelination: implications for multiple sclerosis research. Nat Prod Rep 2021; 38:890-904. [PMID: 33575689 DOI: 10.1039/d0np00093k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Covering: up to 2020 This short review surveys aspects of glycolipid-based natural products and their biological relevance in multiple sclerosis (MS). The role of isolated gangliosides in disease models is discussed together with an overview of ganglioside-inspired small molecule drugs and imaging probes. The discussion is extended to neurodegeneration in a more general context and addresses the need for more efficient synthetic methods to generate (glyco)structures that are of therapeutic relevance.
Collapse
Affiliation(s)
- Luise Nowack
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany. and Institute of Neuropathology, University Hospital Münster, Pottkamp 2, 48149 Münster, Germany.
| | - Charlotte S Teschers
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany.
| | - Stefanie Albrecht
- Institute of Neuropathology, University Hospital Münster, Pottkamp 2, 48149 Münster, Germany.
| | - Ryan Gilmour
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany.
| |
Collapse
|
18
|
Giussani P, Prinetti A, Tringali C. The role of Sphingolipids in myelination and myelin stability and their involvement in childhood and adult demyelinating disorders. J Neurochem 2020; 156:403-414. [PMID: 33448358 DOI: 10.1111/jnc.15133] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 01/02/2023]
Abstract
Multiple sclerosis (MS) represents the most common demyelinating disease affecting the central nervous system (CNS) in adults as well as in children. Furthermore, in children, in addition to acquired diseases such as MS, genetically inherited diseases significantly contribute to the incidence of demyelinating disorders. Some genetic defects lead to sphingolipid alterations that are able to elicit neurological symptoms. Sphingolipids are essential for brain development, and their aberrant functionality may thus contribute to demyelinating diseases such as MS. In particular, sphingolipidoses caused by deficits of sphingolipid-metabolizing enzymes, are often associated with demyelination. Sphingolipids are not only structural molecules but also bioactive molecules involved in the regulation of cellular events such as development of the nervous system, myelination and maintenance of myelin stability. Changes in the sphingolipid metabolism deeply affect plasma membrane organization. Thus, changes in myelin sphingolipid composition might crucially contribute to the phenotype of diseases characterized by demyelinalization. Here, we review key features of several sphingolipids such as ceramide/dihydroceramide, sphingosine/dihydrosphingosine, glucosylceramide and, galactosylceramide which act in myelin formation during rat brain development and in human brain demyelination during the pathogenesis of MS, suggesting that this knowledge could be useful in identifying targets for possible therapies.
Collapse
Affiliation(s)
- Paola Giussani
- Department of Medical Biotechnology and Translational Medicine, Università di Milano, LITA Segrate, Segrate, Italy
| | - Alessandro Prinetti
- Department of Medical Biotechnology and Translational Medicine, Università di Milano, LITA Segrate, Segrate, Italy
| | - Cristina Tringali
- Department of Medical Biotechnology and Translational Medicine, Università di Milano, LITA Segrate, Segrate, Italy
| |
Collapse
|
19
|
Ferreira HB, Neves B, Guerra IM, Moreira A, Melo T, Paiva A, Domingues MR. An overview of lipidomic analysis in different human matrices of multiple sclerosis. Mult Scler Relat Disord 2020; 44:102189. [PMID: 32516740 DOI: 10.1016/j.msard.2020.102189] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 02/06/2023]
Abstract
Multiple sclerosis is a chronic inflammatory and neurodegenerative disease of the central nervous system, and it is one of the most common neurological cause of disability in young adults. It is known that several factors contribute to increase the risk of development and pathogenesis of multiple sclerosis, nonetheless, but the true etiology of this pathology remains unknown. Similar to other inflammatory diseases, oxidative stress and lipid peroxidation are also associated to multiple sclerosis. Alterations in the lipid profile seem to be a hallmark of this pathology which can contribute to the dysregulation of lipid homeostasis and lipid metabolism in multiple sclerosis. Lipidomic studies analysed in this review clearly demonstrate the role of lipids in inflammatory processes, in immunity, and in the onset and development of multiple sclerosis. Several investigations reported alterations of some molecular lipid species, in particular, with decrease of fatty acids (FA) 18:2 and 20:4 and total polyunsaturated FA, with compensatory increases of saturated FA with shorter carbon chains. Oxidized phospholipids were reported in few studies as well. Also, it was shown that clinical lipidomics has potential as a tool to aid both in multiple sclerosis diagnosis and therapeutics by allowing a detailed lipidome profiling of the patients suffering with this disease.
Collapse
Affiliation(s)
- Helena Beatriz Ferreira
- Mass Spectrometry Center & QOPNA/LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Bruna Neves
- Mass Spectrometry Center & QOPNA/LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Inês M Guerra
- Mass Spectrometry Center & QOPNA/LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ana Moreira
- Mass Spectrometry Center & QOPNA/LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; CICECO, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193 Aveiro, Portugal
| | - Tânia Melo
- Mass Spectrometry Center & QOPNA/LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193 Aveiro, Portugal
| | - Artur Paiva
- Unidade de Gestão Operacional em Citometria, Centro Hospitalar e Universitário de Coimbra (CHUC, Portugal); Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.; Instituto Politécnico de Coimbra, ESTESC - Coimbra Health School, Ciências Biomédicas Laboratoriais, Portugal
| | - M Rosário Domingues
- Mass Spectrometry Center & QOPNA/LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193 Aveiro, Portugal.
| |
Collapse
|
20
|
Mottahedin A, Blondel S, Ek J, Leverin AL, Svedin P, Hagberg H, Mallard C, Ghersi-Egea JF, Strazielle N. N-acetylcysteine inhibits bacterial lipopeptide-mediated neutrophil transmigration through the choroid plexus in the developing brain. Acta Neuropathol Commun 2020; 8:4. [PMID: 31973769 PMCID: PMC6979079 DOI: 10.1186/s40478-019-0877-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 12/23/2019] [Indexed: 12/17/2022] Open
Abstract
The etiology of neurological impairments associated with prematurity and other perinatal complications often involves an infectious or pro-inflammatory component. The use of antioxidant molecules have proved useful to protect the neonatal brain from injury. The choroid plexuses-CSF system shapes the central nervous system response to inflammation at the adult stage, but little is known on the neuroimmune interactions that take place at the choroidal blood-CSF barrier during development. We previously described that peripheral administration to neonatal mice of the TLR2 ligand PAM3CSK4 (P3C), a prototypic Gram-positive bacterial lipopeptide, induces the migration of innate immune cells to the CSF. Here we showed in neonatal rats exposed to P3C that the migration of neutrophils into the CSF, which occurred through the choroid plexuses, is abolished following administration of the antioxidant drug N-acetylcysteine. Combining light sheet microscopy imaging of choroid plexus, a differentiated model of the blood-CSF barrier, and multiplex cytokine assays, we showed that the choroidal epithelium responds to the bacterial insult by a specific pattern of cytokine secretion, leading to a selective accumulation of neutrophils in the choroid plexus and to their trafficking into CSF. N-acetylcysteine acted by blocking neutrophil migration across both the endothelium of choroidal stromal vessels and the epithelium forming the blood-CSF barrier, without interfering with neutrophil blood count, neutrophil tropism for choroid plexus, and choroidal chemokine-driven chemotaxis. N-acetylcysteine reduced the injury induced by hypoxia-ischemia in P3C-sensitized neonatal rats. Overall, the data show that a double endothelial and epithelial check point controls the transchoroidal migration of neutrophils into the developing brain. They also point to the efficacy of N-acetylcysteine in reducing the deleterious effects of inflammation-associated perinatal injuries by a previously undescribed mechanism, i.e. the inhibition of innate immune cell migration across the choroid plexuses, without interfering with the systemic inflammatory response to infection.
Collapse
|
21
|
Xu Y, Fang Z, Wu C, Xu H, Kong J, Huang Q, Zhang H. The Long-Term Effects of Adolescent Social Defeat Stress on Oligodendrocyte Lineage Cells and Neuroinflammatory Mediators in Mice. Neuropsychiatr Dis Treat 2020; 16:1321-1330. [PMID: 32547035 PMCID: PMC7250299 DOI: 10.2147/ndt.s247497] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/30/2020] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Adverse childhood and adolescent experiences are associated with the emergences of psychopathology later in life and have negative consequences on white matter integrity. However, this adversity-induced white matter impairment remains not fully investigated. METHODS Adolescent Balb/c mice were subjected to intermittent social defeat stress once a day during postnatal days 25 to 40. Then, the subjects were allowed to recover for three weeks before sacrifice. At the end, oligodendrocyte (OL) lineage cells, cell proliferation, and microglia activation, as well as myelin basic protein (MBP) levels in frontal cortex and hippocampus were evaluated. The levels of interleukin (IL)-1β and IL-6 in the brain regions were assessed. RESULTS MBP protein level in frontal cortex, but not in the hippocampus of defeated mice, decreased significantly compared to controls. The numeral densities of mature OLs, oligodendrocyte progenitor cells, and proliferating cells in medial prefrontal cortex were comparable between the defeated mice and controls. The defeated mice, however, showed significantly higher IL-1β level, although IL-6 level and numeral density of microglia in frontal cortex did not change relative to controls. CONCLUSION These results indicate that effects of intermittent social defeat stress on the white matter integrity and OL lineage cells in mouse brain are region- and developmental stage-specific. Upregulated IL-1β may contribute to this negative consequence though the underlying mechanism remains to be investigated.
Collapse
Affiliation(s)
- Yingjuan Xu
- Shantou University Mental Health Center, Shantou, Guangdong, People's Republic of China
| | - Zeman Fang
- Shantou University Mental Health Center, Shantou, Guangdong, People's Republic of China
| | - Cairu Wu
- Shantou University Mental Health Center, Shantou, Guangdong, People's Republic of China
| | - Haiyun Xu
- Shantou University Mental Health Center, Shantou, Guangdong, People's Republic of China.,Affiliated Kangning Hospital, School of Psychiatry, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Jiming Kong
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
| | - Qingjun Huang
- Shantou University Mental Health Center, Shantou, Guangdong, People's Republic of China
| | - Handi Zhang
- Shantou University Mental Health Center, Shantou, Guangdong, People's Republic of China
| |
Collapse
|
22
|
Siegfried G, Descarpentrie J, Evrard S, Khatib AM. Proprotein convertases: Key players in inflammation-related malignancies and metastasis. Cancer Lett 2019; 473:50-61. [PMID: 31899298 PMCID: PMC7115805 DOI: 10.1016/j.canlet.2019.12.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/19/2022]
Abstract
Many cancers occur from locations of inflammation due to chronic irritation and/or infection. Tumor microenvironment contains various different inflammatory cells and mediators that orchestrate diverse neoplastic processes, including proliferation, survival, adhesion and migration. In parallel, tumor cells have adapted some of the signaling molecules used by inflammatory cells, such as selectins and chemokines as well as their receptors for invasion, extravasation and subsequently metastasis. Expression and/or activation of the majority of these molecules is mediated by the proprotein convertases (PCs); proteases expressed by both tumor cells and inflammatory cells. This review analyzes the potential role of these enzymatic system in inflammation-associated cancer impacting on the malignant and metastatic potential of cancer cells, describing the possible use of PCs as a new anti-inflammatory therapeutic approach to tumor progression and metastasis. Proteins maturation by the proprotein convertases plays important role in inflammation-related cancer and metastasis. Protein precursors require the proprotein convertases for the induction of inflammation. Understanding of the molecular mechanism linking the proprotein convertases to inflammation will allow novel therapies. Inhibitors of the proprotein convertases constitute great potential for cancer treatment.
Collapse
Affiliation(s)
- Geraldine Siegfried
- Univ. Bordeaux, 33000, Bordeaux, France; INSERM UMR1029, 33400, Pessac, France.
| | - Jean Descarpentrie
- Univ. Bordeaux, 33000, Bordeaux, France; INSERM UMR1029, 33400, Pessac, France.
| | - Serge Evrard
- Univ. Bordeaux, 33000, Bordeaux, France; Institut Bergonié, 33076, Bordeaux, France.
| | - Abdel-Majid Khatib
- Univ. Bordeaux, 33000, Bordeaux, France; INSERM UMR1029, 33400, Pessac, France.
| |
Collapse
|
23
|
Donkels C, Peters M, Fariña Núñez MT, Nakagawa JM, Kirsch M, Vlachos A, Scheiwe C, Schulze-Bonhage A, Prinz M, Beck J, Haas CA. Oligodendrocyte lineage and myelination are compromised in the gray matter of focal cortical dysplasia type IIa. Epilepsia 2019; 61:171-184. [PMID: 31872870 DOI: 10.1111/epi.16415] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 01/26/2023]
Abstract
OBJECTIVES Focal cortical dysplasias (FCDs) are local malformations of the human neocortex and a leading cause of medically intractable epilepsy. FCDs are characterized by local architectural disturbances of the neocortex and often by a blurred gray-white matter boundary indicating abnormal white matter myelination. We have recently shown that myelination is also compromised in the gray matter of dysplastic areas, since transcripts encoding factors for oligodendrocyte differentiation and myelination are downregulated and myelin fibers appear fractured and disorganized. METHODS Here, we characterized the gray matter-associated myelination pathology in detail by in situ hybridization, immunohistochemistry, and electron microscopy with markers for myelin, mature oligodendrocytes, and oligodendrocyte precursor cells in tissue sections of FCD IIa and control cortices. In addition, we isolated oligodendrocyte precursor cells from resected dysplastic tissue and performed proliferation assays. RESULTS We show that the proportion of myelinated gray matter is similar in the dysplastic cortex to that in controls and myelinated fibers extend up to layer III. On the ultrastructural level, however, we found that the myelin sheaths of layer V axons are thinner in dysplastic specimens than in controls. In addition, the density of oligodendrocyte precursor cells and of mature oligodendrocytes was reduced. Finally, we show for the first time that oligodendrocyte precursor cells isolated from resected dysplastic cortex have a reduced proliferation capacity in comparison to controls. SIGNIFICANCE These results indicate that proliferation and differentiation of oligodendrocyte precursor cells and the formation of myelin sheaths are compromised in FCD and might contribute to the epileptogenicity of this cortical malformation.
Collapse
Affiliation(s)
- Catharina Donkels
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Myriam Peters
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Mateo T Fariña Núñez
- Department of Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Julia M Nakagawa
- Department of Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Matthias Kirsch
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christian Scheiwe
- Department of Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Schulze-Bonhage
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Epilepsy Center Freiburg, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,BrainLinks-BrainTools, Cluster of Excellence, University of Freiburg, Freiburg, Germany
| | - Marco Prinz
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute of Neuropathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Jürgen Beck
- Department of Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Carola A Haas
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany.,BrainLinks-BrainTools, Cluster of Excellence, University of Freiburg, Freiburg, Germany
| |
Collapse
|
24
|
Doria M, Nury T, Delmas D, Moreau T, Lizard G, Vejux A. Protective function of autophagy during VLCFA-induced cytotoxicity in a neurodegenerative cell model. Free Radic Biol Med 2019; 137:46-58. [PMID: 31004752 DOI: 10.1016/j.freeradbiomed.2019.04.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/12/2019] [Accepted: 04/13/2019] [Indexed: 02/08/2023]
Abstract
In recent years, a particular interest has focused on the accumulation of fatty acids with very long chains (VLCFA) in the occurrence of neurodegenerative diseases such as Alzheimer's disease, multiple sclerosis or dementia. Indeed, it seems increasingly clear that this accumulation of VLCFA in the central nervous system is accompanied by a progressive demyelination resulting in death of neuronal cells. Nevertheless, molecular mechanisms by which VLCFA result in toxicity remain unclear. This study highlights for the first time in 3 different cellular models (oligodendrocytes 158 N, primary mouse brain culture, and patient fibroblasts) the types of cell death involved where VLCFA-induced ROS production leads to autophagy. The autophagic process protects the cell from this VLCFA-induced toxicity. Thus, autophagy in addition to oxidative stress can offer new therapeutic approaches.
Collapse
Affiliation(s)
- Margaux Doria
- Université de Bourgogne Franche-Comté, Dijon, F-21000, France; Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270, Inserm, F-21000, Dijon, France
| | - Thomas Nury
- Université de Bourgogne Franche-Comté, Dijon, F-21000, France; Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270, Inserm, F-21000, Dijon, France
| | - Dominique Delmas
- Université de Bourgogne Franche-Comté, Dijon, F-21000, France; - Inserm Research Center LNC UMR U1231 - Team "Cancer and Adaptive Immune Response", Bioactive Molecules and Health Research Group, Dijon, F-21000, France
| | - Thibault Moreau
- Université de Bourgogne Franche-Comté, Dijon, F-21000, France; Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270, Inserm, F-21000, Dijon, France; - Department of Neurology, University Hospital, F-2100, Dijon, France
| | - Gérard Lizard
- Université de Bourgogne Franche-Comté, Dijon, F-21000, France; Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270, Inserm, F-21000, Dijon, France
| | - Anne Vejux
- Université de Bourgogne Franche-Comté, Dijon, F-21000, France; Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270, Inserm, F-21000, Dijon, France.
| |
Collapse
|
25
|
Beckmann N, Kadow S, Schumacher F, Göthert JR, Kesper S, Draeger A, Schulz-Schaeffer WJ, Wang J, Becker JU, Kramer M, Kühn C, Kleuser B, Becker KA, Gulbins E, Carpinteiro A. Pathological manifestations of Farber disease in a new mouse model. Biol Chem 2019; 399:1183-1202. [PMID: 29908121 DOI: 10.1515/hsz-2018-0170] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/07/2018] [Indexed: 11/15/2022]
Abstract
Farber disease (FD) is a rare lysosomal storage disorder resulting from acid ceramidase deficiency and subsequent ceramide accumulation. No treatments are clinically available and affected patients have a severely shortened lifespan. Due to the low incidence, the pathogenesis of FD is still poorly understood. Here, we report a novel acid ceramidase mutant mouse model that enables the study of pathogenic mechanisms of FD and ceramide accumulation. Asah1tmEx1 mice were generated by deletion of the acid ceramidase signal peptide sequence. The effects on lysosomal targeting and activity of the enzyme were assessed. Ceramide and sphingomyelin levels were quantified by liquid chromatography tandem-mass spectrometry (LC-MS/MS) and disease manifestations in several organ systems were analyzed by histology and biochemistry. We show that deletion of the signal peptide sequence disrupts lysosomal targeting and enzyme activity, resulting in ceramide and sphingomyelin accumulation. The affected mice fail to thrive and die early. Histiocytic infiltrations were observed in many tissues, as well as lung inflammation, liver fibrosis, muscular disease manifestations and mild kidney injury. Our new mouse model mirrors human FD and thus offers further insights into the pathogenesis of this disease. In the future, it may also facilitate the development of urgently needed therapies.
Collapse
Affiliation(s)
- Nadine Beckmann
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstraße 55, D-45147 Essen, Germany
| | - Stephanie Kadow
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstraße 55, D-45147 Essen, Germany
| | - Fabian Schumacher
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstraße 55, D-45147 Essen, Germany.,Department of Toxicology, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, D-14558 Nuthetal, Germany
| | - Joachim R Göthert
- Department of Hematology, University Hospital Essen, Hufelandstraße 55, D-45147 Essen, Germany
| | - Stefanie Kesper
- Department of Hematology, University Hospital Essen, Hufelandstraße 55, D-45147 Essen, Germany
| | - Annette Draeger
- Institute of Anatomy, University of Bern, Baltzerstr. 2, CH-3012 Bern, Switzerland
| | - Walter J Schulz-Schaeffer
- Insitute of Neuropathology, University of the Saarland, Kirrberger Str. 100, D-66421 Homburg, Germany
| | - Jiang Wang
- Department of Pathology and Laboratory Medicine, UC Health University Hospital, 234 Goodman Street, Cincinnati, OH 45219, USA
| | - Jan U Becker
- Institute of Pathology, University Hospital Cologne, Kerpener Straße 62, D-50937 Cologne, Germany
| | - Melanie Kramer
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstraße 55, D-45147 Essen, Germany
| | - Claudine Kühn
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstraße 55, D-45147 Essen, Germany
| | - Burkhard Kleuser
- Department of Toxicology, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, D-14558 Nuthetal, Germany
| | - Katrin Anne Becker
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstraße 55, D-45147 Essen, Germany
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstraße 55, D-45147 Essen, Germany.,Department of Surgery, University of Cincinnati, 231 Albert Sabin Way, ML 0558, Cincinnati, OH 45229, USA
| | - Alexander Carpinteiro
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstraße 55, D-45147 Essen, Germany.,Department of Hematology, University Hospital Essen, Hufelandstraße 55, D-45147 Essen, Germany
| |
Collapse
|
26
|
Role of Bioactive Sphingolipids in Inflammation and Eye Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1161:149-167. [PMID: 31562629 DOI: 10.1007/978-3-030-21735-8_14] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inflammation is a common underlying factor in a diversity of ocular diseases, ranging from macular degeneration, autoimmune uveitis, glaucoma, diabetic retinopathy and microbial infection. In addition to the variety of known cellular mediators of inflammation, such as cytokines, chemokines and lipid mediators, there is now considerable evidence that sphingolipid metabolites also play a central role in the regulation of inflammatory pathways. Various sphingolipid metabolites, such as ceramide (Cer), ceramide-1-phosphate (C1P), sphingosine-1-phosphate (S1P), and lactosylceramide (LacCer) can contribute to ocular inflammatory diseases through multiple pathways. For example, inflammation generates Cer from sphingomyelins (SM) in the plasma membrane, which induces death receptor ligand formation and leads to apoptosis of retinal pigment epithelial (RPE) and photoreceptor cells. Inflammatory stress by reactive oxygen species leads to LacCer accumulation and S1P secretion and induces proliferation of retinal endothelial cells and eventual formation of new vessels. In sphingolipid/lysosomal storage disorders, sphingolipid metabolites accumulate in lysosomes and can cause ocular disorders that have an inflammatory etiology. Sphingolipid metabolites activate complement factors in the immune-response mediated pathogenesis of macular degeneration. These examples highlight the integral association between sphingolipids and inflammation in ocular diseases.
Collapse
|
27
|
Enhanced release of acid sphingomyelinase-enriched exosomes generates a lipidomics signature in CSF of Multiple Sclerosis patients. Sci Rep 2018; 8:3071. [PMID: 29449691 PMCID: PMC5814401 DOI: 10.1038/s41598-018-21497-5] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 02/01/2018] [Indexed: 01/09/2023] Open
Abstract
Multiple Sclerosis (MuS) is a complex multifactorial neuropathology, resulting in heterogeneous clinical presentation. A very active MuS research field concerns the discovery of biomarkers helpful to make an early and definite diagnosis. The sphingomyelin pathway has emerged as a molecular mechanism involved in MuS, since high levels of ceramides in cerebrospinal fluid (CSF) were related to axonal damage and neuronal dysfunction. Ceramides are the hydrolysis products of sphingomyelins through a reaction catalyzed by a family of enzymes named sphingomyelinases, which were recently related to myelin repair in MuS. Here, using a lipidomic approach, we observed low levels of several sphingomyelins in CSF of MuS patients compared to other inflammatory and non-inflammatory, central or peripheral neurological diseases. Starting by this result, we investigated the sphingomyelinase activity in CSF, showing a significantly higher enzyme activity in MuS. In support of these results we found high number of total exosomes in CSF of MuS patients and a high number of acid sphingomyelinase-enriched exosomes correlated to enzymatic activity and to disease severity. These data are of diagnostic relevance and show, for the first time, high number of acid sphingomyelinase-enriched exosomes in MuS, opening a new window for therapeutic approaches/targets in the treatment of MuS.
Collapse
|
28
|
Avola R, Graziano ACE, Pannuzzo G, Alvares E, Cardile V. Krabbe's leukodystrophy: Approaches and models in vitro. J Neurosci Res 2017; 94:1284-92. [PMID: 27638610 DOI: 10.1002/jnr.23846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 06/30/2016] [Accepted: 07/01/2016] [Indexed: 01/12/2023]
Abstract
This Review describes some in vitro approaches used to investigate the mechanisms involved in Krabbe's disease, with particular regard to the cellular systems employed to study processes of inflammation, apoptosis, and angiogenesis. The aim was to update the knowledge on the results obtained from in vitro models of this neurodegenerative disorder and provide stimuli for future research. For a long time, the nonavailability of established neural cells has limited the understanding of neuropathogenic mechanisms in Krabbe's leukodystrophy. More recently, the development of new Krabbe's disease cell models has allowed the identification of neurologically relevant pathogenic cascades, including the major role of elevated psychosine levels. Thus, direct and/or indirect roles of psychosine in the release of cytokines, reactive oxygen species, and nitric oxide and in the activation of kinases, caspases, and angiogenic factors results should be clearer. In parallel, it is now understood that the presence of globoid cells precedes oligodendrocyte apoptosis and demyelination. The information described here will help to continue the research on Krabbe's leukodystrophy and on potential new therapeutic approaches for this disease that even today, despite numerous attempts, is without cure. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rosanna Avola
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy
| | | | - Giovanna Pannuzzo
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy
| | - Elisa Alvares
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy
| | - Venera Cardile
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy.
| |
Collapse
|
29
|
Modeling neurological diseases using iPSC-derived neural cells : iPSC modeling of neurological diseases. Cell Tissue Res 2017; 371:143-151. [PMID: 29079884 DOI: 10.1007/s00441-017-2713-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 10/13/2017] [Indexed: 12/14/2022]
Abstract
Developing efficient models for neurological diseases enables us to uncover disease mechanisms and develop therapeutic strategies to treat them. Discovery of reprogramming somatic cells to induced pluripotent stem cells (iPSCs) has revolutionized the way of modeling human diseases, especially neurological diseases. Currently almost all types of neural cells, including but not limited to neural stem cells, neurons, astrocytes, oligodendrocytes and microglia, can be derived from iPSCs following developmental principles. These iPSC-derived neural cells provide valuable tools for studying neurological disease mechanisms, developing potential therapies, and deepening our understanding of the nervous system.
Collapse
|
30
|
Joseph B, Khan M, Rhee P. Non-invasive diagnosis and treatment strategies for traumatic brain injury: an update. J Neurosci Res 2017; 96:589-600. [PMID: 28836292 DOI: 10.1002/jnr.24132] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 06/26/2017] [Accepted: 07/10/2017] [Indexed: 12/28/2022]
Abstract
PURPOSE OF REVIEW Traumatic Brain Injury (TBI) remains the leading cause of morbidity and mortality in U.S. Since the last decade, there have been several advances in the understanding and management of TBI that have shown the potential to improve outcomes. The aim of this review is to provide a useful overview of these potential diagnostic and treatment strategies that have yet to be proven, along with an assessment of their impact on outcomes after a TBI. RECENT FINDINGS Recent technical advances in the management of a TBI are grounded in a better understanding of the pathophysiology of primary and secondary insult to the brain after a TBI. Hence, clinical trials on humans should proceed in order to evaluate their efficacy and safety. SUMMARY Mortality associated with TBI remains high. Nonetheless, new diagnostic and therapeutic techniques have the potential to enhance early detection and prevention of secondary brain insult.
Collapse
Affiliation(s)
- Bellal Joseph
- Division of Trauma, Critical Care, Emergency Surgery, and Burns, Department of Surgery, University of Arizona, Tucson, Arizona, USA
| | - Muhammad Khan
- Division of Trauma, Critical Care, Emergency Surgery, and Burns, Department of Surgery, University of Arizona, Tucson, Arizona, USA
| | - Peter Rhee
- Division of Acute Care Surgery, Department of Surgery, Grady Memorial Hospital, Atlanta, Georgia, USA
| |
Collapse
|
31
|
Miller LG, Young JA, Ray SK, Wang G, Purohit S, Banik NL, Dasgupta S. Sphingosine Toxicity in EAE and MS: Evidence for Ceramide Generation via Serine-Palmitoyltransferase Activation. Neurochem Res 2017; 42:2755-2768. [PMID: 28474276 DOI: 10.1007/s11064-017-2280-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 04/07/2017] [Accepted: 04/22/2017] [Indexed: 12/12/2022]
Abstract
Multiple sclerosis (MS) is a demyelinating disorder characterized by massive neurodegeneration and profound axonal loss. Since myelin is enriched with sphingolipids and some of them display toxicity, biological function of sphingolipids in demyelination has been investigated in MS brain tissues. An elevation of sphingosine with a decrease in monoglycosylceramide and psychosine (myelin markers) was observed in MS white matter and plaque compared to normal brain tissue. This indicated that sphingosine toxicity might mediate oligodendrocyte degeneration. To explain the source of sphingosine accumulation, total sphingolipid profile was investigated in Lewis rats after inducing experimental autoimmune encephalomyelitis (EAE) and also in human oligodendrocytes in culture. An intermittent increase in ceramide followed by sphingosine accumulation in EAE spinal cord along with a stimulation of serine-palmitoyltransferase (SPT) activity was observed. Apoptosis was identified in the lumbar spinal cord, the most prominent demyelinating area, in the EAE rats. TNFα and IFNγ stimulation of oligodendrocytes in culture also led to an accumulation of ceramide with an elevation of sphingosine. Ceramide elevation was drastically blocked by myriocin, an inhibitor of SPT, and also by FTY720. Myriocin treatment also protected oligodendrocytes from cytokine mediated apoptosis or programmed cell death. Hence, we propose that sphingosine toxicity may contribute to demyelination in both EAE and MS, and the intermittent ceramide accumulation in EAE may, at least partly, be mediated via SPT activation, which is a novel observation that has not been previously reported.
Collapse
Affiliation(s)
- Lawrence G Miller
- Department of Neurology and Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC, 29425, USA
| | - Jennifer A Young
- Department of Neurology and Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC, 29425, USA
| | - Swapan K Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC, 29209, USA
| | - Guanghu Wang
- Institute of Molecular Medicine and Genetics, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Sharad Purohit
- Center for Biotechnology and Genomic Medicine, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Naren L Banik
- Department of Neurology and Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC, 29425, USA
| | - Somsankar Dasgupta
- Institute of Molecular Medicine and Genetics, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.
| |
Collapse
|
32
|
Kumar H, Savaliya M, Biswas S, Nayak PG, Maliyakkal N, Manjunath Setty M, Gourishetti K, Pai KSR. Assessment of the in vitro cytotoxicity and in vivo anti-tumor activity of the alcoholic stem bark extract/fractions of Mimusops elengi Linn. Cytotechnology 2016; 68:861-77. [PMID: 25701190 PMCID: PMC4960137 DOI: 10.1007/s10616-014-9839-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 12/23/2014] [Indexed: 01/14/2023] Open
Abstract
Various parts of Mimusops elengi Linn. (Sapotaceae) have been used widely in traditional Indian medicine for the treatment of pain, inflammation and wounds. The study was conducted to explore the use of stem bark of M. elengi on pharmacological grounds and to evaluate the scientific basis of cytotoxic and anti-tumor activity. Extract/fractions were prepared and in vitro cytotoxicity was assessed using SRB assay. Most effective fractions were subjected to fluorescence microscopy based acridine orange/ethidium bromide (AO/EB) and Hoechst 33342 staining to determine apoptosis induction and DNA fragmentation assay. Comet and micronuclei assay were performed to assess genotoxicity. Cell cycle analysis was also performed. In vivo anti-tumor potential was evaluated by Ehrlich ascites carcinoma (EAC) model in mice. The alcoholic stem bark extract of M. elengi along with four fractions showed potential in vitro cytotoxicity in SRB assay. Of these, dichloromethane and ethyl acetate fractions were selected for further studies. The fractions revealed apoptosis inducing potential in AO/EB and Hoechst 33342 staining, which was further confirmed by DNA fragmentation assay. Genotoxic potential was revealed by comet and micronuclei assay. Fractions also exhibited specific cell cycle inhibition in G0/G1 phase. In EAC model, ethyl acetate fraction along with the standard (cisplatin) effectively reduced the increase in body weight compared to control and improved mean survival time. Both fractions were able to restore the altered hematological and biochemical parameters. Hence, M. elengi stem bark may be a possible therapeutic candidate having cytotoxic and anti-tumor potential.
Collapse
Affiliation(s)
- Harish Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, 576104, Karnataka, India
| | - Mihir Savaliya
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, 576104, Karnataka, India
| | - Subhankar Biswas
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, 576104, Karnataka, India
| | - Pawan G Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, 576104, Karnataka, India
| | - Naseer Maliyakkal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, 576104, Karnataka, India
| | - M Manjunath Setty
- Department of Pharmacognosy, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, 576104, Karnataka, India
| | - Karthik Gourishetti
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, 576104, Karnataka, India
| | - K Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, 576104, Karnataka, India.
| |
Collapse
|
33
|
He Y, Jackman NA, Thorn TL, Vought VE, Hewett SJ. Interleukin-1β protects astrocytes against oxidant-induced injury via an NF-κB-dependent upregulation of glutathione synthesis. Glia 2015; 63:1568-80. [PMID: 25880604 DOI: 10.1002/glia.22828] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 03/12/2015] [Indexed: 01/17/2023]
Abstract
Astrocytes produce and export the antioxidant glutathione (GSH). Previously, we found that interleukin-1β (IL-1β) enhanced the expression of astrocyte system xc (-) , the transporter that delivers the rate-limiting substrate for GSH synthesis-cyst(e)ine. Herein, we demonstrate directly that IL-1β mediates a time-dependent increase in extracellular GSH levels in cortical astrocyte cultures, suggesting both enhanced synthesis and export. This increased GSH production was blocked by inhibition of nuclear factor-κB (NF-κB) activity but not by inhibition of p38 MAPK. To determine whether this increase could provide protection against oxidative stress, the oxidants tert-butyl hydroperoxide (tBOOH) and ferrous sulfate (FeSO4 ) were employed. IL-1β treatment prevented the increase in reactive oxygen species produced in astrocytes following tBOOH exposure. Additionally, the toxicity induced by tBOOH or FeSO4 exposure was significantly attenuated following treatment with IL-1β, an effect reversed by concomitant exposure to l-buthionine-S,R-sulfoximine (BSO), which prevented the IL-1β-mediated rise in GSH production. IL-1β failed to increase GSH or to provide protection against t-BOOH toxicity in astrocyte cultures derived from IL-1R1 null mutant mice. Overall, our data indicate that under certain conditions IL-1β may be an important stimulus for increasing astrocyte GSH production, and potentially, total antioxidant capacity in brain, via an NF-κB-dependent process.
Collapse
Affiliation(s)
- Yan He
- Department of Biology and Program in Neuroscience, Syracuse University, Syracuse, New York
| | - Nicole A Jackman
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut
| | - Trista L Thorn
- Department of Biology and Program in Neuroscience, Syracuse University, Syracuse, New York
| | - Valarie E Vought
- Department of Biology and Program in Neuroscience, Syracuse University, Syracuse, New York
| | - Sandra J Hewett
- Department of Biology and Program in Neuroscience, Syracuse University, Syracuse, New York
| |
Collapse
|
34
|
Munshi SU, Panda H, Holla P, Rewari BB, Jameel S. MicroRNA-150 is a potential biomarker of HIV/AIDS disease progression and therapy. PLoS One 2014; 9:e95920. [PMID: 24828336 PMCID: PMC4020752 DOI: 10.1371/journal.pone.0095920] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 04/01/2014] [Indexed: 12/28/2022] Open
Abstract
Background The surrogate markers of HIV/AIDS progression include CD4 T cell count and plasma viral load. But, their reliability has been questioned in patients on anti-retroviral therapy (ART). Five microRNAs (miRNAs) - miR-16, miR-146b-5p, miR-150, miR-191 and miR-223 in peripheral blood mononuclear cells (PBMCs) were earlier found to assign HIV/AIDS patients into groups with varying CD4 T cell counts and viral loads. In this pilot study, we profiled the expression of these five miRNAs in PBMCs, and two of these miRNAs (miR-146b-5p and miR-150) in the plasma of HIV/AIDS patients, including those on ART and those who developed ART resistance, to evaluate if these are biomarkers of disease progression and therapy. Results We quantified miRNA levels by quantitative reverse transcription polymerase chain reaction (qRT-PCR) using RNA isolated from PBMCs and plasma of healthy persons or HIV-infected patients who were (1) asymptomatic; (2) symptomatic and ART naïve; (3) on ART; and (4) failing ART. Our results show miR-150 (p<0.01) and to a lesser extent miR-146b-5p (p<0.05) levels in PBMCs to reliably distinguish between ART-naïve AIDS patients, those on ART, and those developing drug resistance and failing ART. The plasma levels of these two miRNAs also varied significantly between patients in these groups and between patients and healthy controls (p values <0.05). Conclusions We report for the first time that PBMC and plasma levels of miR-150 and miR-146b-5p are predictive of HIV/AIDS disease progression and therapy.
Collapse
Affiliation(s)
- Saif Ullah Munshi
- Virology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Harekrushna Panda
- ICGEB-Emory Vaccine Centre, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Prasida Holla
- Virology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Bharat Bhushan Rewari
- ART Department, National AIDS Control Organization and Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Shahid Jameel
- Virology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- * E-mail:
| |
Collapse
|
35
|
Trompier D, Vejux A, Zarrouk A, Gondcaille C, Geillon F, Nury T, Savary S, Lizard G. Brain peroxisomes. Biochimie 2014; 98:102-10. [DOI: 10.1016/j.biochi.2013.09.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/12/2013] [Indexed: 02/06/2023]
|
36
|
Czubowicz K, Strosznajder R. Ceramide in the molecular mechanisms of neuronal cell death. The role of sphingosine-1-phosphate. Mol Neurobiol 2014; 50:26-37. [PMID: 24420784 PMCID: PMC4181317 DOI: 10.1007/s12035-013-8606-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 12/08/2013] [Indexed: 01/27/2023]
Abstract
Ceramide and sphingosine-1-phosphate (S1P), two important bioactive sphingolipids, have been suggested as being key players in the pathology of Alzheimer’s disease in inflammation and cancer. However, their role in the molecular mechanisms of neuronal death has not been fully elucidated. Our study indicated that ceramide significantly enhanced the level of free radicals and decreased the viability of the human neuroblastoma cell line (SH-SY5Y) through inhibition of the prosurvival PI3-K/Akt pathway. Ceramide also decreased anti-apoptotic (Bcl-2) and increased pro-apoptotic (Bax, Hrk) mRNA/protein levels. Concomitantly, our study indicated that ceramide induced poly(ADP-ribose) polymerase-1 (PARP-1) activation and accumulation of poly(ADP-ribose) PAR, a signalling molecule involved in mitochondria-nucleus cross-talk and mitochondria integrity. Ceramide treatment significantly decreased the level of apoptosis-inducing factor (AIF) in the mitochondria. The PARP-1 inhibitor (PJ-34) prevented AIF release from the mitochondria. In addition, our data showed that exogenously added S1P increased the viability of SH-SY5Y through the S1P (1,3) receptor-dependent mechanism. It was also revealed that the S1P and PARP-1 inhibitor (PJ-34) decreased oxidative stress, gene expression of the pro-apoptotic Hrk protein and up-regulated the anti-apoptotic Bcl-2 protein. Our data demonstrate that neuronal cell death evoked by ceramide is regulated by PARP/PAR/AIF and by S1P receptor signalling. In summary, our results suggest that PARP-1 inhibitor(s) and modulators of sphingosine-1-phosphate receptor(s) should be considered in potential therapeutic strategies directed at neurodegenerative diseases.
Collapse
Affiliation(s)
- Kinga Czubowicz
- Laboratory of Preclinical Research and Environmental Agents, Department of Neurosurgery, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106, Warsaw, Poland
| | | |
Collapse
|
37
|
Babenko NA, Shakhova EG. Long-term food restriction prevents aging-associated sphingolipid turnover dysregulation in the brain. Arch Gerontol Geriatr 2013; 58:420-6. [PMID: 24439723 DOI: 10.1016/j.archger.2013.12.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 12/10/2013] [Accepted: 12/18/2013] [Indexed: 12/24/2022]
Abstract
Abnormalities of sphingolipid turnover in the brain during normal aging and age-related neurological disorders were associated with the neurons loss and cognitive malfunction. Calorie restriction (CR) prevented age-related deficits in hippocampal long-term potentiation and improved cognitive function at old age. In the paper we investigated the ceramide and sphingomyelin (SM) levels in the brain regions, which are critical for learning and memory of 3- and 24-month-old rats, as well as the correction of sphingolipid turnover in the brain of old rats, by means of the CR diet and modulators of SM turnover. Using the [methyl-(14)C-choline]SM, the neutral, but not the acid SMase activity has been observed to increase in both the hippocampus and brain cortex of 24-month-old rats with respect to 3-month-old animals. Age-dependent changes of neutral SMase activities were associated with ceramide accumulation and SM level drop in the brain structures studied. Treatment of the rats with the CR diet or N-acetylcysteine (NAC) or α-tocopherol acetate, but not an inhibitor of acid SMase imipramine, reduced the ceramide content and neutral SMase activity in the hippocampus of 24-month-old animals with respect to control rats of the same age. These results suggest that redox-sensitive neutral SMase plays important role in SM turnover dysregulation in both the hippocampus and neocortex at old age and that the CR diet can prevent the age-dependent accumulation of ceramide mainly via neutral SMase targeting.
Collapse
Affiliation(s)
- Nataliya A Babenko
- Department of Physiology of Ontogenesis, Institute of Biology, Kharkov Karazin National University, 4 Svobody pl., 61077 Kharkov, Ukraine.
| | - Elena G Shakhova
- Department of Physiology of Ontogenesis, Institute of Biology, Kharkov Karazin National University, 4 Svobody pl., 61077 Kharkov, Ukraine
| |
Collapse
|
38
|
Haughey NJ, Zhu X, Bandaru VVR. A biological perspective of CSF lipids as surrogate markers for cognitive status in HIV. J Neuroimmune Pharmacol 2013; 8:1136-46. [PMID: 24203462 PMCID: PMC3909934 DOI: 10.1007/s11481-013-9506-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 10/03/2013] [Indexed: 12/14/2022]
Abstract
The development and application of biomarkers to neurodegenerative diseases has become increasingly important in clinical practice and therapeutic trials. While substantial progress has been made at the basic science level in understanding the pathophysiology of HIV-Associated Neurocognitive Disorders (HAND), there are significant limitations in our current ability to predict the onset or trajectory of disease, and to accurately determine the effects of therapeutic interventions. Thus, the development of objective biomarkers is critical to further our understanding and treatment of HAND. In recent years, biomarker discovery efforts have largely been driven forward through the implementation of multiple "omics" approaches that include (but are not restricted to): Lipidomics, proteomics, metabolomics, genomics, transcriptomics, and advances in brain imaging approaches such as functional connectomics. In this paper we summarize our progress to date on lipidomic approaches to biomarker discovery, discuss how these data have influenced basic research on the neuropathology of HAND, and implications for the development of therapeutics that target metabolic pathways involved in lipid handling.
Collapse
Affiliation(s)
- Norman J Haughey
- Department of Neurology, Division of Neuroimmunology and Neurological Infections, The Johns Hopkins University School of Medicine, Pathology 517, 600 North Wolfe Street, Baltimore, MD, 21287, USA,
| | | | | |
Collapse
|
39
|
Chen H, Chan AY, Stone DU, Mandal NA. Beyond the cherry-red spot: Ocular manifestations of sphingolipid-mediated neurodegenerative and inflammatory disorders. Surv Ophthalmol 2013; 59:64-76. [PMID: 24011710 DOI: 10.1016/j.survophthal.2013.02.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 02/06/2013] [Accepted: 02/12/2013] [Indexed: 01/05/2023]
Abstract
Sphingolipids are a ubiquitous membrane lipid present in every cell and found most abundantly in neural tissues. Disorders such as Tay-Sachs or Niemann-Pick disease are the most familiar examples of dysfunction in sphingolipid metabolism and are typically associated with neurodegeneration and ocular findings such as blindness. More recently, the role of bioactive sphingolipids has been established in a multitude of cellular events, including cell survival, growth, senescence and apoptosis, inflammation, and neovascularization. We discuss our current knowledge and understanding of sphingolipid metabolism and signaling in the pathogenesis of ocular diseases.
Collapse
Affiliation(s)
- Hui Chen
- Department of Ophthalmology, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma, USA.,Dean A. McGee Eye Institute, Oklahoma City, Oklahoma, USA
| | - Annie Y Chan
- Department of Ophthalmology, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma, USA.,Dean A. McGee Eye Institute, Oklahoma City, Oklahoma, USA
| | - Donald U Stone
- Department of Ophthalmology, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma, USA.,Dean A. McGee Eye Institute, Oklahoma City, Oklahoma, USA
| | - Nawajes A Mandal
- Department of Ophthalmology, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma, USA.,Dean A. McGee Eye Institute, Oklahoma City, Oklahoma, USA
| |
Collapse
|
40
|
Assi E, Cazzato D, De Palma C, Perrotta C, Clementi E, Cervia D. Sphingolipids and brain resident macrophages in neuroinflammation: an emerging aspect of nervous system pathology. Clin Dev Immunol 2013; 2013:309302. [PMID: 24078816 PMCID: PMC3775448 DOI: 10.1155/2013/309302] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 08/01/2013] [Indexed: 12/25/2022]
Abstract
Sphingolipid metabolism is deeply regulated along the differentiation and development of the central nervous system (CNS), and the expression of a peculiar spatially and temporarily regulated sphingolipid pattern is essential for the maintenance of the functional integrity of the nervous system. Microglia are resident macrophages of the CNS involved in general maintenance of neural environment. Modulations in microglia phenotypes may contribute to pathogenic forms of inflammation. Since defects in macrophage/microglia activity contribute to neurodegenerative diseases, it will be essential to systematically identify the components of the microglial cell response that contribute to disease progression. In such complex processes, the sphingolipid systems have recently emerged to play important roles, thus appearing as a key new player in CNS disorders. This review provides a rationale for harnessing the sphingolipid metabolic pathway as a potential target against neuroinflammation.
Collapse
Affiliation(s)
- Emma Assi
- Department of Biomedical and Clinical Sciences, Unit of Clinical Pharmacology, CNR Institute of Neuroscience, “Luigi Sacco” University Hospital, University of Milan, 20157 Milan, Italy
| | - Denise Cazzato
- Department of Biomedical and Clinical Sciences, Unit of Clinical Pharmacology, CNR Institute of Neuroscience, “Luigi Sacco” University Hospital, University of Milan, 20157 Milan, Italy
| | - Clara De Palma
- Department of Biomedical and Clinical Sciences, Unit of Clinical Pharmacology, CNR Institute of Neuroscience, “Luigi Sacco” University Hospital, University of Milan, 20157 Milan, Italy
| | - Cristiana Perrotta
- Department of Biomedical and Clinical Sciences, Unit of Clinical Pharmacology, CNR Institute of Neuroscience, “Luigi Sacco” University Hospital, University of Milan, 20157 Milan, Italy
| | - Emilio Clementi
- Department of Biomedical and Clinical Sciences, Unit of Clinical Pharmacology, CNR Institute of Neuroscience, “Luigi Sacco” University Hospital, University of Milan, 20157 Milan, Italy
- E. Medea Scientific Institute, 23842 Bosisio Parini, Italy
| | - Davide Cervia
- Department of Biomedical and Clinical Sciences, Unit of Clinical Pharmacology, CNR Institute of Neuroscience, “Luigi Sacco” University Hospital, University of Milan, 20157 Milan, Italy
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy
| |
Collapse
|
41
|
Roy A, Jana M, Corbett GT, Ramaswamy S, Kordower JH, Gonzalez FJ, Pahan K. Regulation of cyclic AMP response element binding and hippocampal plasticity-related genes by peroxisome proliferator-activated receptor α. Cell Rep 2013; 4:724-37. [PMID: 23972989 DOI: 10.1016/j.celrep.2013.07.028] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 05/28/2013] [Accepted: 07/18/2013] [Indexed: 01/19/2023] Open
Abstract
Peroxisome proliferator-activated receptor α (PPARα) is a transcription factor that regulates genes involved in fatty acid catabolism. Here, we provide evidence that PPARα is constitutively expressed in nuclei of hippocampal neurons and, surprisingly, controls calcium influx and the expression of various plasticity-related genes via direct transcriptional regulation of cyclic AMP response element binding (CREB). Accordingly, Pparα-null, but not Pparβ-null, mice are deficient in CREB and memory-associated proteins and have decreased spatial learning and memory. Small hairpin RNA knockdown of PPARα in the hippocampus suppressed CREB and NR2A, rendering wild-type animals markedly poor in consolidating spatial memory, whereas introduction of PPARα to the hippocampus of Pparα-null mice increased hippocampal CREB and NR2A and improved spatial learning and memory. Through detailed analyses of CREB and NR2A activity, as well as spatial learning and memory in bone marrow chimeric animals lacking PPARα in the CNS, we uncover a mechanism for transcriptional control of Creb and associated plasticity genes by PPARα.
Collapse
Affiliation(s)
- Avik Roy
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Paintlia AS, Paintlia MK, Singh AK, Singh I. Modulation of Rho-Rock signaling pathway protects oligodendrocytes against cytokine toxicity via PPAR-α-dependent mechanism. Glia 2013; 61:1500-1517. [PMID: 23839981 DOI: 10.1002/glia.22537] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 12/13/2022]
Abstract
We earlier documented that lovastatin (LOV)-mediated inhibition of small Rho GTPases activity protects vulnerable oligodendrocytes (OLs) in mixed glial cell cultures stimulated with Th1 cytokines and in a murine model of multiple sclerosis (MS). However, the precise mechanism of OL protection remains unclear. We here employed genetic and biochemical approaches to elucidate the underlying mechanism that protects LOV treated OLs from Th1 (tumor necrosis factor-α) and Th17 (interleukin-17) cytokines toxicity in in vitro. Cytokines enhanced the reactive oxygen species (ROS) generation and mitochondrial membrane depolarization with corresponding lowering of glutathione (reduced) level in OLs and that were reverted by LOV. In addition, the expression of ROS detoxifying enzymes (catalase and superoxide-dismutase 2) and the transactivation of peroxisome proliferators-activated receptor (PPAR)-α/-β/-γ including PPAR-γ coactivator-1α were enhanced by LOV in similarly treated OLs. Interestingly, LOV-mediated inhibition of small Rho GTPases, i.e., RhoA and cdc42, and Rho-associated kinase (ROCK) activity enhanced the levels of PPAR ligands in OLs via extracellular signal regulated kinase (1/2)/p38 mitogen-activated protein kinase/cytoplasmic phospholipase 2/cyclooxygenase-2 signaling cascade activation. Small hairpin RNA transfection-based studies established that LOV mainly enhances PPAR-α and less so of PPAR-β and PPAR-γ transactivation that enhances ROS detoxifying defense in OLs. In support of this, the observed LOV-mediated protection was lacking in PPAR-α-deficient OLs exposed to cytokines. Collectively, these data provide unprecedented evidence that LOV-mediated inhibition of the Rho-ROCK signaling pathway boosts ROS detoxifying defense in OLs via PPAR-α-dependent mechanism that has implication in neurodegenerative disorders including MS.
Collapse
Affiliation(s)
- Ajaib S Paintlia
- Department of Pediatrics, Darby Children's Research Institute, Medical University of South Carolina, South Carolina
| | - Manjeet K Paintlia
- Department of Pediatrics, Darby Children's Research Institute, Medical University of South Carolina, South Carolina
| | - Avtar K Singh
- Department of Pathology and Laboratory Medicine, Ralph H. Johnson VA Medical Center, Charleston, South Carolina
| | - Inderjit Singh
- Department of Pediatrics, Darby Children's Research Institute, Medical University of South Carolina, South Carolina
| |
Collapse
|
43
|
Paintlia AS, Paintlia MK, Mohan S, Singh AK, Singh I. AMP-activated protein kinase signaling protects oligodendrocytes that restore central nervous system functions in an experimental autoimmune encephalomyelitis model. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:526-41. [PMID: 23759513 DOI: 10.1016/j.ajpath.2013.04.030] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 04/22/2013] [Accepted: 04/29/2013] [Indexed: 12/12/2022]
Abstract
AMP-activated protein kinase (AMPK) signaling is reported to protect neurons under pathologic conditions; however, its effect on oligodendrocytes (OLs) remains to be elucidated. We investigated whether AMPK signaling protects OLs to restore central nervous system (CNS) functions in an experimental autoimmune encephalomyelitis (EAE), a murine model of multiple sclerosis. Increased inflammation and demyelination in the CNS and peripheral immune responses were consistent with the observed clinical impairments in EAE animals, which were attenuated by treatment with metformin compared with vehicle. In addition, expressions of neurotrophic factors and of signatory genes of OL lineages were increased in the CNS of metformin-treated EAE animals. Likewise, metformin attenuated inflammatory response and enhanced expressions of neurotrophic factors, thereby protecting OLs via AMPK activation in mixed glial cultures stimulated with lipopolysaccharide/interferon γ in vitro, as evidenced by analysis of the expression of signatory genes of O1(+)/MBP(+) OLs and their cellular populations. Metformin also attenuated oxidative stress and malondialdehyde-containing protein levels, with corresponding induction of antioxidative defenses in OLs exposed to cytokines via AMPK activation. These effects of metformin were evident in the CNS of EAE animals. These data provide evidence that AMPK signaling is crucial to protect OLs and, thus, CNS functions in EAE animals. We conclude that AMPK activators, including metformin, have the potential to limit neurologic deficits in multiple sclerosis and related neurodegenerative disorders.
Collapse
Affiliation(s)
- Ajaib S Paintlia
- Darby Children's Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | |
Collapse
|
44
|
Kovacic P, Somanathan R. Redox processes in neurodegenerative disease involving reactive oxygen species. Curr Neuropharmacol 2013; 10:289-302. [PMID: 23730253 PMCID: PMC3520039 DOI: 10.2174/157015912804143487] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 06/12/2012] [Accepted: 06/20/2012] [Indexed: 11/22/2022] Open
Abstract
Much attention has been devoted to neurodegenerative diseases involving redox processes. This review comprises an update involving redox processes reported in the considerable literature in recent years. The mechanism involves reactive oxygen species and oxidative stress, usually in the brain. There are many examples including Parkinson’s, Huntington’s, Alzheimer’s, prions, Down’s syndrome, ataxia, multiple sclerosis, Creutzfeldt-Jacob disease, amyotrophic lateral sclerosis, schizophrenia, and Tardive Dyskinesia. Evidence indicates a protective role for antioxidants, which may have clinical implications. A multifaceted approach to mode of action appears reasonable.
Collapse
Affiliation(s)
- Peter Kovacic
- Department of Chemistry and Biochemistry, San Diego State University, San Diego CA 92182 USA
| | | |
Collapse
|
45
|
Interleukin 10 antioxidant effect decreases leukocytes/endothelial interaction induced by tumor necrosis factor α. Shock 2013; 39:83-8. [PMID: 23247124 DOI: 10.1097/shk.0b013e318278ae36] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Little is known about the endothelial mechanisms involved in the anti-inflammatory effects of interleukin 10 (IL-10). The goal of this study was to evaluate the effects of IL-10 on endothelial oxidative stress and endothelial inflammation induced by tumor necrosis factor α (TNF-α). Production of reactive oxygen species (ROS) in perfused human umbilical vein endothelial cells (HUVECs) was studied by fluorescent microscopy using dichlorodihydrofluorescein diacetate. Tumor necrosis factor α (1 ng/mL) was added to the perfusion medium in the absence and presence of IL-10 (1 ng/mL). The role of phosphatidylinositol 3-kinase (PI3-kinase) was assessed using wortmannin and LY 2940002 (inhibitors of PI3-kinase). Specific inhibition of p110 α and p110 γ/δ PI3-kinase subunits was studied using A66 and TG100-115. As well, levels of ceramide and intercellular adhesion molecule 1 (ICAM-1) expression were measured. Finally, the effect of IL-10 on TNF-α-induced leukocyte/endothelium interaction was examined using an ex vivo perfused vessel model. Interleukin 10 significantly reduced dichlorodihydrofluorescein diacetate fluorescence induced by TNF-α in HUVECs (12.5% ± 3.2% vs. 111.7% ± 21.6% at 60 min). Pretreatment by LY2940002 or wortmannin restored ROS production induced by TNF-α in the presence of IL-10. In HUVECs treated by TNF-α + IL-10, inhibition of p110 α PI3-kinase subunit significantly increased ROS production, whereas p110 γ/δ inhibition did not have a significant effect. Pretreatment with IL-10 significantly decreased TNF-α-induced increased levels of ceramide (TNF-α vs. TNF-α + IL-10: 6,278 ± 1,013 vs. 1,440 ± 130 pmol/mg prot), as well as ICAM-1 expression and leukocyte adhesion (TNF-α vs. TNF-α + IL-10: 26.8 ± 2.6 vs. 6.7 ± 0.4 adherent leukocytes/field at 15 min). Interleukin 10 decreases the level of inflammation induced by TNF-α in endothelial cells by reducing the TNF-α-induced ROS production, ICAM-1 expression, and leukocyte adhesion to the endothelium. The antioxidant effect of IL-10 is mediated through PI3-kinase and is paralleled by a decrease in ceramide synthesis induced by TNF-α.
Collapse
|
46
|
Kushibiki T, Hirasawa T, Okawa S, Ishihara M. Blue Laser Irradiation Generates Intracellular Reactive Oxygen Species in Various Types of Cells. Photomed Laser Surg 2013; 31:95-104. [DOI: 10.1089/pho.2012.3361] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Toshihiro Kushibiki
- Department of Medical Engineering, National Defense Medical College, Saitama, Japan
| | - Takeshi Hirasawa
- Department of Medical Engineering, National Defense Medical College, Saitama, Japan
| | - Shinpei Okawa
- Department of Medical Engineering, National Defense Medical College, Saitama, Japan
| | - Miya Ishihara
- Department of Medical Engineering, National Defense Medical College, Saitama, Japan
| |
Collapse
|
47
|
Paintlia MK, Paintlia AS, Singh AK, Singh I. S-nitrosoglutathione induces ciliary neurotrophic factor expression in astrocytes, which has implications to protect the central nervous system under pathological conditions. J Biol Chem 2012; 288:3831-43. [PMID: 23264628 DOI: 10.1074/jbc.m112.405654] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Accumulating evidence suggests that reactive astrogliosis has beneficial and detrimental outcomes in various CNS disorders, but the mechanism behind this dichotomy is unclear. Recent advances in this direction suggested that NO signaling is critical to regulate the outcomes of reactive astrogliosis in vivo. Using biochemical and genetic approaches, we here investigated the effect of S-nitrosoglutathione (GSNO; a physiological NO donor) in astrocytes in vitro settings. GSNO enhanced the expressions of glial fibrillary acidic protein and neurotrophic factors including ciliary neurotrophic factor (CNTF) in astrocytes in a dose-dependent manner. The enhanced CNTF expression in GSNO-treated astrocytes was ascribed to NO-mediated sGC/cGMP/PKG signaling. It was associated with p38 MAPK-dependent increased peroxisome proliferator-activated receptor-γ transactivation. In addition, the chromatin accessibility of peroxisome proliferator-activated receptor-γ accompanied with ATF2 and CREB (cAMP-response element-binding protein) was enhanced across the CNTF gene promoter in GSNO treated astrocytes. Interestingly, secreted CNTF was responsible for increased expression of glial fibrillary acidic protein in GSNO-treated astrocytes in an autocrine manner via a JAK2- and STAT3-dependent mechanism. In addition, CNTF secreted by GSNO-treated astrocytes enhanced the differentiation of immature oligodendrocytes in vitro. These effects of GSNO were consistent with an endogenously produced NO in astrocytes stimulated with proinflammatory cytokines in vitro. We conclude that NO signaling induces CNTF expression in astrocytes that favors the beneficial outcomes of reactive astrogliosis in vivo. Our data suggest that the endogenously produced NO or its exogenous source has potential to modulate the outcomes of reactive astrogliosis to protect CNS under pathological conditions.
Collapse
Affiliation(s)
- Manjeet K Paintlia
- Darby Children's Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | |
Collapse
|
48
|
Correa F, Mallard C, Nilsson M, Sandberg M. Dual TNFα-induced effects on NRF2 mediated antioxidant defence in astrocyte-rich cultures: role of protein kinase activation. Neurochem Res 2012; 37:2842-55. [PMID: 22941452 DOI: 10.1007/s11064-012-0878-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 08/18/2012] [Accepted: 08/21/2012] [Indexed: 12/15/2022]
Abstract
Tumor necrosis factor-α (TNFα) is a pleiotropic molecule that can have both protective and detrimental effects in neurodegeneration. Here we have investigated the temporal effects of TNFα on the inducible Nrf2 system in astrocyte-rich cultures by determination of glutathione (GSH) levels, γglutamylcysteine ligase (γGCL) activity, the protein levels of Nrf2, Keap1, the catalytic and modulatory subunit of γGCL (γGCL-C and γGCL-M respectively). Astrocyte-rich cultures were exposed for 24 or 72 h to different concentrations of TNFα. Acute exposure (24 h) of astrocyte-rich cultures to 10 ng/mL of TNFα increased GSH, γGCL activity, the protein levels of γGCL-M, γGCL-C and Nrf2 in parallel with decreased levels of Keap1. Antioxidant responsive element (ARE)-mediated transcription was blocked by inhibitors of ERK1/2, JNK and Akt whereas inactivation of p38 and GSK3β further enhanced transcription. In contrast treatment with TNFα for 72 h decreased components of the Nrf2 system in parallel with an increase of Keap1. Stimulation of the Nrf2 system by tBHQ was intact after 24 h but blocked after 72 h treatment with TNFα. This down-regulation after 72 h correlated with activation of p38 MAPK and GSK3β, since inhibition of these signalling pathways reversed this effect. The upregulation of the Nrf2 system by TNFα (24 h treatment) protected the cells from oxidative stress through elevated γGCL activity whereas the down-regulation (72 h treatment) caused pronounced oxidative toxicity. One of the important implications of the results is that in a situation where Nrf2 is decreased, such as in Alzheimer's disease, the effect of TNFα is detrimental.
Collapse
Affiliation(s)
- Fernando Correa
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, PO BOX 420, 405 30 Göteborg, Sweden.
| | | | | | | |
Collapse
|
49
|
Patel J, Balabanov R. Molecular mechanisms of oligodendrocyte injury in multiple sclerosis and experimental autoimmune encephalomyelitis. Int J Mol Sci 2012; 13:10647-10659. [PMID: 22949885 PMCID: PMC3431883 DOI: 10.3390/ijms130810647] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/20/2012] [Accepted: 08/20/2012] [Indexed: 11/16/2022] Open
Abstract
New evidence has emerged over the last decade indicating that oligodendrocyte injury in multiple sclerosis (MS) is not a single unified phenomenon but rather a spectrum of processes ranging from massive immune destruction to a subtle cell death in the absence of significant inflammation. Experimentally, protection of oligodendrocytes against inflammatory injury results in protection against experimental autoimmune encephalitis, the animal model of multiple sclerosis. In this review, we will discuss the molecular mechanisms regulating oligodendrocyte injury and inflammatory demyelination. We draw attention to the injurious role of IFN-γ signaling in oligodendrocytes and the pro-inflammatory effect of their death. In conclusion, studying the molecular mechanisms of oligodendrocyte injury is likely to provide new perspective on the pathogenesis of MS and a rationale for cell protective therapies.
Collapse
Affiliation(s)
| | - Roumen Balabanov
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-312-942-8011; Fax: +1-312-942-5523
| |
Collapse
|
50
|
Metcalf R, Pandit SA. Mixing properties of sphingomyelin ceramide bilayers: a simulation study. J Phys Chem B 2012; 116:4500-9. [PMID: 22390271 DOI: 10.1021/jp212325e] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ceramide is the simplest molecule in the class of glycosphingolipids composed of a sphingosine backbone and acyl moiety. It plays significant roles in cell signaling; apoptosis; binding of hormones, toxins, and viruses; and many other biologically important functions. Sphingomyelin, ceramide with a phosphotidylcholine headgroup, is another biologically vital lipid present in the myelin sheath of nerve cell axons. Regions with high concentrations of ceramide can be formed in biological membranes composed of sphingomyelin by enzymatic catalysis with sphingomyelinase. To better understand the biophysical and thermodynamic properties of these molecules and their mixtures, we have preformed NPT molecular dynamics simulations of hydrated 16:0 sphingomyelin bilayers with increasing concentrations of 16:0 ceramide at 323, 332, 340, and 358 K. From analyses of electron densities, hydrogen bonding, NMR order parameters, partial molecular volume, and partial molecular area, we have identified possible structural changes corresponding to liquid ordered and liquid disordered phases. These structural changes are the results of changes in intra- and intermolecular hydrogen bonds between SM and Cer molecules. Our results correspond to DSC experiments for sphingomyelin bilayer concentrations up to 50% Cer. Above 50% concentration, we observe conformational changes in the SM headgroup similar to that of the umbrella model for lipid cholesterol mixtures.
Collapse
Affiliation(s)
- Rainer Metcalf
- Department of Physics, University of South Florida, Tampa, Florida 33620, United States
| | | |
Collapse
|