1
|
Miller LA, Cossette C, Chourey S, Ye Q, Reddy CN, Rokach J, Powell WS. Inhibition of allergen-induced dermal eosinophilia by an oxoeicosanoid receptor antagonist in non-human primates. Br J Pharmacol 2020; 177:360-371. [PMID: 31655023 PMCID: PMC6989951 DOI: 10.1111/bph.14872] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/13/2019] [Accepted: 08/27/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE 5-Oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE), acting via the OXE receptor, is unique among 5-lipoxygenase products in its ability to directly induce human eosinophil migration, suggesting its involvement in eosinophilic diseases. To address this hypothesis, we synthesized selective indole-based OXE receptor antagonists. Because rodents lack an OXE receptor orthologue, we sought to determine whether these antagonists could attenuate allergen-induced skin eosinophilia in sensitized monkeys. EXPERIMENTAL APPROACH In a pilot study, cynomolgus monkeys with environmentally acquired sensitivity to Ascaris suum were treated orally with the "first-generation" OXE antagonist 230 prior to intradermal injection of 5-oxo-ETE or Ascaris extract. Eosinophils were evaluated in punch biopsy samples taken 6 or 24 hr later. We subsequently treated captive-bred rhesus monkeys sensitized to house dust mite (HDM) allergen with a more recently developed OXE antagonist, S-Y048, and evaluated its effects on dermal eosinophilia induced by either 5-oxo-ETE or HDM. KEY RESULTS In a pilot experiment, both 5-oxo-ETE and Ascaris extract induced dermal eosinophilia in cynomolgus monkeys, which appeared to be reduced by 230. Subsequently, we found that the related OXE antagonist S-Y048 is a highly potent inhibitor of 5-oxo-ETE-induced activation of rhesus monkey eosinophils in vitro and has a half-life in plasma of about 6 hr after oral administration. S-Y048 significantly inhibited eosinophil infiltration into the skin in response to both intradermally administered 5-oxo-ETE and HDM. CONCLUSIONS AND IMPLICATIONS 5-Oxo-ETE may play an important role in allergen-induced eosinophilia. Blocking its effects with S-Y048 may provide a novel therapeutic approach for eosinophilic diseases.
Collapse
Affiliation(s)
- Lisa A. Miller
- Present address:
California National Primate Research CenterUniversity of CaliforniaDavisCaliforniaUSA
| | - Chantal Cossette
- Meakins‐Christie Laboratories, Centre for Translational BiologyMcGill University Health CentreMontreal, QuebecCanada
| | - Shishir Chourey
- Present address:
California National Primate Research CenterUniversity of CaliforniaDavisCaliforniaUSA
- Claude Pepper Institute and Department of ChemistryFlorida Institute of TechnologyMelbourneFloridaUSA
- Department of Chemical DevelopmentAlbany Molecular Research Inc.Albany, New York
| | - Qiuji Ye
- Present address:
California National Primate Research CenterUniversity of CaliforniaDavisCaliforniaUSA
- Claude Pepper Institute and Department of ChemistryFlorida Institute of TechnologyMelbourneFloridaUSA
- Department of ChemistryRice UniversityHoustonTexas
| | - Chintam Nagendra Reddy
- Present address:
California National Primate Research CenterUniversity of CaliforniaDavisCaliforniaUSA
- Claude Pepper Institute and Department of ChemistryFlorida Institute of TechnologyMelbourneFloridaUSA
- Synthetic ChemistryOlon Ricerca Bioscience LLCConcordOhio
| | - Joshua Rokach
- Claude Pepper Institute and Department of ChemistryFlorida Institute of TechnologyMelbourneFloridaUSA
| | - William S. Powell
- Meakins‐Christie Laboratories, Centre for Translational BiologyMcGill University Health CentreMontreal, QuebecCanada
| |
Collapse
|
2
|
Powell WS, Rokach J. Biosynthesis, biological effects, and receptors of hydroxyeicosatetraenoic acids (HETEs) and oxoeicosatetraenoic acids (oxo-ETEs) derived from arachidonic acid. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:340-55. [PMID: 25449650 DOI: 10.1016/j.bbalip.2014.10.008] [Citation(s) in RCA: 221] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 10/10/2014] [Accepted: 10/21/2014] [Indexed: 12/14/2022]
Abstract
Arachidonic acid can be oxygenated by a variety of different enzymes, including lipoxygenases, cyclooxygenases, and cytochrome P450s, and can be converted to a complex mixture of oxygenated products as a result of lipid peroxidation. The initial products in these reactions are hydroperoxyeicosatetraenoic acids (HpETEs) and hydroxyeicosatetraenoic acids (HETEs). Oxoeicosatetraenoic acids (oxo-ETEs) can be formed by the actions of various dehydrogenases on HETEs or by dehydration of HpETEs. Although a large number of different HETEs and oxo-ETEs have been identified, this review will focus principally on 5-oxo-ETE, 5S-HETE, 12S-HETE, and 15S-HETE. Other related arachidonic acid metabolites will also be discussed in less detail. 5-Oxo-ETE is synthesized by oxidation of the 5-lipoxygenase product 5S-HETE by the selective enzyme, 5-hydroxyeicosanoid dehydrogenase. It actions are mediated by the selective OXE receptor, which is highly expressed on eosinophils, suggesting that it may be important in eosinophilic diseases such as asthma. 5-Oxo-ETE also appears to stimulate tumor cell proliferation and may also be involved in cancer. Highly selective and potent OXE receptor antagonists have recently become available and could help to clarify its pathophysiological role. The 12-lipoxygenase product 12S-HETE acts by the GPR31 receptor and promotes tumor cell proliferation and metastasis and could therefore be a promising target in cancer therapy. It may also be involved as a proinflammatory mediator in diabetes. In contrast, 15S-HETE may have a protective effect in cancer. In addition to GPCRs, higher concentration of HETEs and oxo-ETEs can activate peroxisome proliferator-activated receptors (PPARs) and could potentially regulate a variety of processes by this mechanism. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance".
Collapse
Affiliation(s)
- William S Powell
- Meakins-Christie Laboratories, Department of Medicine, McGill University, 3626St. Urbain Street, Montreal, Quebec H2X 2P2, Canada.
| | - Joshua Rokach
- Claude Pepper Institute and Department of Chemistry, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901, USA
| |
Collapse
|
3
|
Powell WS, Rokach J. The eosinophil chemoattractant 5-oxo-ETE and the OXE receptor. Prog Lipid Res 2013; 52:651-65. [PMID: 24056189 DOI: 10.1016/j.plipres.2013.09.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 09/10/2013] [Indexed: 01/04/2023]
Abstract
5-Oxo-ETE (5-oxo-6,8,11,14-eicosatetraenoic acid) is formed from the 5-lipoxygenase product 5-HETE (5S-hydroxy-6,8,11,14-eicosatetraenoic acid) by 5-hydroxyeicosanoid dehydrogenase (5-HEDH). The cofactor NADP(+) is a limiting factor in the synthesis of 5-oxo-ETE because of its low concentrations in unperturbed cells. Activation of the respiratory burst in phagocytic cells, oxidative stress, and cell death all dramatically elevate both intracellular NADP(+) levels and 5-oxo-ETE synthesis. 5-HEDH is widely expressed in inflammatory, structural, and tumor cells. Cells devoid of 5-lipoxygenase can synthesize 5-oxo-ETE by transcellular biosynthesis using inflammatory cell-derived 5-HETE. 5-Oxo-ETE is a chemoattractant for neutrophils, monocytes, and basophils and promotes the proliferation of tumor cells. However, its primary target appears to be the eosinophil, for which it is a highly potent chemoattractant. The actions of 5-oxo-ETE are mediated by the highly selective OXE receptor, which signals by activating various second messenger pathways through the release of the βγ-dimer from Gi/o proteins to which it is coupled. Because of its potent effects on eosinophils, 5-oxo-ETE may be an important mediator in asthma, and, because of its proliferative effects, may also contribute to tumor progression. Selective OXE receptor antagonists, which are currently under development, could be useful therapeutic agents in asthma and other allergic diseases.
Collapse
Key Words
- 12-HHT
- 12-hydroxy-5Z,8E,10E-heptadecatrienoic acid
- 4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoic acid
- 5,12-diHETE
- 5,15-diHETE
- 5-HEDH
- 5-HEPE
- 5-HETE
- 5-HETrE
- 5-HODE
- 5-HpETE
- 5-LO
- 5-Lipoxygenase
- 5-Oxo-ETE
- 5-hydroxyeicosanoid dehydrogenase
- 5-lipoxygenase
- 5-oxo-12-HETE
- 5-oxo-12S-hydroxy-6E,8Z,10E,14Z-eicosatetraenoic acid
- 5-oxo-15-HETE
- 5-oxo-15S-hydroxy-6E,8Z,11Z,13E-eicosatetraenoic acid
- 5-oxo-20-HETE
- 5-oxo-20-hydroxy-6E,8Z,11Z,14Z-eicosatetraenoic acid
- 5-oxo-6E,8Z,11Z,14Z,17Z-eicosapentaenoic acid
- 5-oxo-6E,8Z,11Z,14Z-eicosatetraenoic acid
- 5-oxo-6E,8Z,11Z-eicosatrienoic acid
- 5-oxo-6E,8Z-octadecadienoic acid
- 5-oxo-7-glutathionyl factor-8,11,14-eicosatrienoic acid
- 5-oxo-EPE
- 5-oxo-ETE
- 5-oxo-ETrE
- 5-oxo-ODE
- 5S,12S-dihydroxy-6E,8Z,10E,14Z-eicosatetraenoic acid
- 5S,15S-dihydroxy-6E,8Z,11Z,13E-eicosatetraenoic acid
- 5S-hydroperoxy-6E,8Z,11Z,14Z-eicosatetraenoic acid
- 5S-hydroxy-6E,8Z,11Z,14Z,17Z-eicosapentaenoic acid
- 5S-hydroxy-6E,8Z,11Z,14Z-eicosatetraenoic acid
- 5S-hydroxy-6E,8Z,11Z-eicosatrienoic acid
- 5S-hydroxy-6E,8Z-octadecadienoic acid
- 5Z,8Z,11Z,14Z,17Z-eicosapentaenoic acid
- 5Z,8Z,11Z-eicosatrienoic acid
- 5Z,8Z-octadecadienoic acid
- Asthma
- Chemoattractants
- DHA
- ECL
- EPA
- Eosinophils
- FOG(7)
- G protein-coupled receptor
- GPCR
- Inflammation
- LT
- LXA(4)
- Mead acid
- PAF
- PI3K
- PLC
- PMA
- PUFA
- Sebaleic acid
- StAR
- eosinophil chemotactic lipid
- leukotriene
- lipoxin A(4)
- phorbol myristate acetate
- phosphoinositide-3 kinase
- phospholipase C
- platelet-activating
- polyunsaturated fatty acid
- steroidogenic acute regulatory protein
- uPAR
- urokinase-type plasminogen activator receptor
Collapse
Affiliation(s)
- William S Powell
- Meakins-Christie Laboratories, Department of Medicine, McGill University, 3626 St. Urbain Street, Montreal, Quebec H2X 2P2, Canada.
| | | |
Collapse
|
4
|
Affiliation(s)
- Motonao Nakamura
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of Tokyo, Hongo, Tokyo, Japan.
| | | |
Collapse
|
5
|
Grant GE, Rubino S, Gravel S, Wang X, Patel P, Rokach J, Powell WS. Enhanced formation of 5-oxo-6,8,11,14-eicosatetraenoic acid by cancer cells in response to oxidative stress, docosahexaenoic acid and neutrophil-derived 5-hydroxy-6,8,11,14-eicosatetraenoic acid. Carcinogenesis 2011; 32:822-8. [PMID: 21393477 DOI: 10.1093/carcin/bgr044] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The 5-lipoxygenase (5-LO) product 5-oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE), which is a potent chemoattractant for myeloid cells, is known to promote the survival of prostate cancer cells. In the present study, we found that PC3 prostate cancer cells and cell lines derived from breast (MCF7) and lung (A-427) cancers contain 5-hydroxyeicosanoid dehydrogenase (5-HEDH) activity and have the ability to synthesize 5-oxo-ETE from its precursor 5S-hydroxy-6,8,11,14-eicosatetraenoic acid (5-HETE) when added as an exogenous substrate. H(2)O(2) strongly stimulated the synthesis of 5-oxo-ETE and induced dramatic increases in the levels of both glutathione disulfide and NADP(+). The effects of H(2)O(2) on 5-oxo-ETE and NADP(+) were blocked by N-ethylmaleimide (NEM), indicating that this effect was mediated by the glutathione reductase-dependent generation of NADP(+), the cofactor required by 5-HEDH. 5-Oxo-ETE synthesis was also stimulated by agents that have cytotoxic effects on tumor cells, including 4,7,10,13,16,19-docosahexaenoic acid, tamoxifen and MK-886. Because PC3 cells have only modest 5-LO activity compared with inflammatory cells, we investigated their ability to contribute to the transcellular biosynthesis of 5-oxo-ETE from neutrophil-derived 5-HETE. Stimulation of neutrophils with arachidonic acid and calcium ionophore in the presence of PC3 cells led to a large and selective increase in 5-oxo-ETE synthesis compared with controls in which PC3 cell 5-oxo-ETE synthesis was selectively blocked by pretreatment with NEM. The ability of prostate tumor cells to synthesize 5-oxo-ETE may contribute to tumor cell proliferation as well as the influx of inflammatory cells, which may further induce cell proliferation through the release of cytokines. 5-Oxo-ETE may be an attractive target in cancer therapy.
Collapse
Affiliation(s)
- Gail E Grant
- Meakins-Christie Laboratories, Department of Medicine, McGill University, 3626 St Urbain Street, Montreal, Quebec, Canada H2X 2P2
| | | | | | | | | | | | | |
Collapse
|
6
|
Grant GE, Rokach J, Powell WS. 5-Oxo-ETE and the OXE receptor. Prostaglandins Other Lipid Mediat 2009; 89:98-104. [PMID: 19450703 DOI: 10.1016/j.prostaglandins.2009.05.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2009] [Accepted: 05/06/2009] [Indexed: 11/26/2022]
Abstract
5-Oxo-ETE is a product of the 5-lipoxygenase pathway that is formed by the oxidation of 5-HETE by 5-hydroxyeicosanoid dehydrogenase (5-HEDH). 5-HEDH is a microsomal NADP(+)-dependent enzyme that is highly selective for 5-HETE. 5-Oxo-ETE synthesis is regulated by intracellular NADP(+) levels and is dramatically increased under conditions that favor oxidation of NADPH to NADP(+) such as oxidative stress and the respiratory burst in phagocytic cells. 5-Oxo-ETE is a potent chemoattractant for eosinophils and has similar effects on neutrophils, basophils and monocytes. It elicits infiltration of eosinophils and, to a lesser extent, neutrophils into the skin after intradermal injection in humans. It also promotes the survival of tumor cells and has been shown to block the induction of apoptosis by 5-LO inhibitors. 5-Oxo-ETE acts by the G(i/o)-coupled OXE receptor, which was also known as TG1019, R527 and hGPCR48. Although the pathophysiological role of 5-oxo-ETE is not well understood, it may play important roles in asthma and allergic diseases, cancer, and cardiovascular disease. The availability of a selective antagonist would help to clarify the role of 5-oxo-ETE and may be of therapeutic benefit.
Collapse
Affiliation(s)
- Gail E Grant
- Meakins-Christie Laboratories, McGill University, QC, Canada
| | | | | |
Collapse
|
7
|
Patel P, Cossette C, Anumolu JR, Gravel S, Lesimple A, Mamer OA, Rokach J, Powell WS. Structural Requirements for Activation of the 5-Oxo-6E,8Z, 11Z,14Z-eicosatetraenoic Acid (5-Oxo-ETE) Receptor: Identification of a Mead Acid Metabolite with Potent Agonist Activity. J Pharmacol Exp Ther 2008; 325:698-707. [DOI: 10.1124/jpet.107.134908] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
8
|
Kim S, Bellone S, Maxey KM, Powell WS, Lee GJ, Rokach J. Synthesis of 15R-PGD2: a potential DP2 receptor agonist. Bioorg Med Chem Lett 2005; 15:1873-6. [PMID: 15780624 DOI: 10.1016/j.bmcl.2005.02.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Revised: 02/03/2005] [Accepted: 02/04/2005] [Indexed: 11/28/2022]
Abstract
The first total synthesis of 15R-PGD(2)3 was accomplished. The approach used in this report is also an efficient method to produce 15R-PGE(2). 15R-PGD(2), a potential DP(2) receptor agonist, could be an important novel tool for defining the role of this receptor in inflammatory diseases.
Collapse
Affiliation(s)
- Seongjin Kim
- Claude Pepper Institute and Department of Chemistry, Florida Institute of Technology, 150 W. University Blvd., Melbourne, FL 32901, USA
| | | | | | | | | | | |
Collapse
|
9
|
|
10
|
Khanapure SP, Saha G, Powell WS, Rokach J. The design and synthesis of a 5-HETE affinity chromatography ligand for 5-hydroxyeicosanoid dehydrogenase. Tetrahedron Lett 2000. [DOI: 10.1016/s0040-4039(00)00971-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Saha G, Basu MK, Kim S, Jung YJ, Adiyaman Y, Adiyaman M, Powell WS, FitzGerald GA, Rokach J. A convenient strategy for the synthesis of β,γ-unsaturated aldehydes and acids. A construction of skipped dienes. Tetrahedron Lett 1999. [DOI: 10.1016/s0040-4039(99)01498-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|