1
|
Park H, Shin GW, Lee SM, Jeong GW, Kim HY, Kim H, Choi HW, Lee-Kwon W, Kwon HM. One-hit kill: On the inactivation of RNA viruses by ultraviolet (UV)-C-induced genomic damage. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 257:112949. [PMID: 38865816 DOI: 10.1016/j.jphotobiol.2024.112949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/19/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024]
Abstract
Large scale outbreaks of infectious respiratory disease have repeatedly plagued the globe over the last 100 years. The scope and strength of the outbreaks are getting worse as pathogenic RNA viruses are rapidly evolving and highly evasive to vaccines and anti-viral drugs. Germicidal UV-C is considered as a robust agent to disinfect RNA viruses regardless of their evolution. While genomic damage by UV-C has been known to be associated with viral inactivation, the precise relationship between the damage and inactivation remains unsettled as genomic damage has been analyzed in small areas, typically under 0.5 kb. In this study, we assessed genomic damage by the reduced efficiency of reverse transcription of regions of up to 7.2 kb. Our data seem to indicate that genomic damage was directly proportional to the size of the genome, and a single hit of damage was sufficient for inactivation of RNA viruses. The high efficacy of UV-C is already effectively adopted to inactivate airborne RNA viruses.
Collapse
Affiliation(s)
- Hyun Park
- Department of Biological Sciences and Biomedical Engineering, Ulsan National Institute of Science and Technology Ulsan, Republic of Korea
| | - Go Woon Shin
- Department of Biological Sciences and Biomedical Engineering, Ulsan National Institute of Science and Technology Ulsan, Republic of Korea
| | - Sang Min Lee
- Department of Biological Sciences and Biomedical Engineering, Ulsan National Institute of Science and Technology Ulsan, Republic of Korea
| | - Gyu Won Jeong
- Department of Biological Sciences and Biomedical Engineering, Ulsan National Institute of Science and Technology Ulsan, Republic of Korea
| | - Hui Young Kim
- Department of Biological Sciences and Biomedical Engineering, Ulsan National Institute of Science and Technology Ulsan, Republic of Korea
| | - Hajin Kim
- Biomedical Engineering, Ulsan National Institute of Science and Technology Ulsan, Republic of Korea
| | | | - Whaseon Lee-Kwon
- Department of Biological Sciences and Biomedical Engineering, Ulsan National Institute of Science and Technology Ulsan, Republic of Korea.
| | - Hyug Moo Kwon
- Department of Biological Sciences and Biomedical Engineering, Ulsan National Institute of Science and Technology Ulsan, Republic of Korea.
| |
Collapse
|
2
|
Popov AA, Shamanin VA, Petruseva IO, Evdokimov AN, Lavrik OI. Use of qPCR to Evaluate Efficiency of the Bulky DNA Damage Removal in Extracts of Mammalian Cells with Different Maximum Lifespan. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1183-1191. [PMID: 39218017 DOI: 10.1134/s0006297924070022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/18/2024] [Accepted: 04/28/2024] [Indexed: 09/04/2024]
Abstract
Proteins of nucleotide excision repair system (NER) are responsible for detecting and removing a wide range of bulky DNA damages, thereby contributing significantly to the genome stability maintenance within mammalian cells. Evaluation of NER functional status in the cells is important for identifying pathological changes in the body and assessing effectiveness of chemotherapy. The following method, described herein, has been developed for better assessment of bulky DNA damages removal in vitro, based on qPCR. Using the developed method, NER activity was compared for the extracts of the cells from two mammals with different lifespans: a long-lived naked mole-rat (Heterocephalus glaber) and a short-lived mouse (Mus musculus). Proteins of the H. glaber cell extract have been shown to be 1.5 times more effective at removing bulky damage from the model DNA substrate than the proteins of the M. musculus cell extract. These results are consistent with the experimental data previously obtained. The presented method could be applied not only in fundamental studies of DNA repair in mammalian cells, but also in clinical practice.
Collapse
Affiliation(s)
- Aleksei A Popov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | | | - Irina O Petruseva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Aleksei N Evdokimov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Olga I Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch Russian Academy of Sciences, Novosibirsk, 630090, Russia.
- Novosibirsk National Research State University, Novosibirsk, 630090, Russia
| |
Collapse
|
3
|
Lin Q, Aihara M, Shirai A, Tanaka A, Takebayashi K, Yoshimura N, Torigoe N, Nagahara M, Minamikawa T, Otoi T. Porcine embryo development and inactivation of microorganisms after ultraviolet-C irradiation at 228 nm. Theriogenology 2023; 197:252-258. [PMID: 36525864 DOI: 10.1016/j.theriogenology.2022.12.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
It is important to prevent contamination inside the incubator as a method of preventing microbial infections during the embryo culture. In the present study, we examined the effects of ultraviolet-C (UV-C) irradiation, used for microorganism inactivation, on embryo development and the growth of bacteria, including Escherichia coli and Staphylococcus aureus, and the fungus Cladosporium cladosporioides. In the embryo irradiation experiment, we examined the effects of the plastic lid of the culture dish, irradiation distances (10, 20, and 25 cm), and different irradiation wavelengths (228 and 260 nm) during embryo culture for 7 days on the development and quality of porcine in vitro-fertilized embryos. None of the embryos cultured in dishes without plastic lids developed into blastocysts after irradiation with 228 nm UV-C. When porcine embryos were cultured in a culture dish with lids, the 228 nm UV-C irradiation decreased blastocyst formation rates of the embryos but not their quality, irrespective of the UV-C irradiation distance. Moreover, irradiation with 260 nm UV-C, even with plastic lids, had more detrimental effects on embryo development than irradiation with 228 nm UV-C. Investigation of the inactivating effects of UV-C irradiation at 228 nm and 260 nm on the growth of the bacteria and fungus showed that 260 nm UV-C reduced the viability to a greater extent than 228 nm UV-C. Moreover, the disinfection efficacy for the bacteria increased when the irradiation duration increased and the distance decreased. In conclusion, porcine embryos can develop into blastocysts without loss of quality even after continuous long-duration irradiation (7 days) with 228 nm UV-C, which can inactivate the growth of bacteria and the tested fungus; however, the development rate of the embryo is reduced.
Collapse
Affiliation(s)
- Qingyi Lin
- Bio-Innovation Research Center, Tokushima University, Tokushima, Japan; Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Mutsumi Aihara
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Akihiro Shirai
- Department of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Japan
| | - Ami Tanaka
- Department of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Japan
| | - Koki Takebayashi
- Bio-Innovation Research Center, Tokushima University, Tokushima, Japan; Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Naoaki Yoshimura
- Bio-Innovation Research Center, Tokushima University, Tokushima, Japan; Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Nanaka Torigoe
- Bio-Innovation Research Center, Tokushima University, Tokushima, Japan; Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Megumi Nagahara
- NOSAI Yamagata Central Veterinary Clinic Center, 9902171, Yamagata, Japan
| | - Takeo Minamikawa
- Division of Interdisciplinary Researches for Medicine and Photonics, Institute of Post-LED Photonics, Tokushima University, Tokushima, Japan
| | - Takeshige Otoi
- Bio-Innovation Research Center, Tokushima University, Tokushima, Japan; Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan.
| |
Collapse
|
4
|
Sadraeian M, Zhang L, Aavani F, Biazar E, Jin D. Viral inactivation by light. ELIGHT 2022; 2:18. [PMID: 36187558 PMCID: PMC9510523 DOI: 10.1186/s43593-022-00029-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/03/2022] [Accepted: 09/07/2022] [Indexed: 11/28/2022]
Abstract
Nowadays, viral infections are one of the greatest challenges for medical sciences and human society. While antiviral compounds and chemical inactivation remain inadequate, physical approaches based on irradiation provide new potentials for prevention and treatment of viral infections, without the risk of drug resistance and other unwanted side effects. Light across the electromagnetic spectrum can inactivate the virions using ionizing and non-ionizing radiations. This review highlights the anti-viral utility of radiant methods from the aspects of ionizing radiation, including high energy ultraviolet, gamma ray, X-ray, and neutron, and non-ionizing photo-inactivation, including lasers and blue light.
Collapse
Affiliation(s)
- Mohammad Sadraeian
- Present Address: Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007 Australia
| | - Le Zhang
- Present Address: Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007 Australia
| | - Farzaneh Aavani
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Hospital Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Esmaeil Biazar
- Department of Biomedical Engineering, Islamic Azad University, Tonekabon Branch, Tonekabon, Iran
| | - Dayong Jin
- Present Address: Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007 Australia
- UTS-SUStech Joint Research Centre for Biomedical Materials & Devices, Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, Guangdong China
| |
Collapse
|
5
|
Park J, Baruch-Torres N, Iwai S, Herrmann GK, Brieba LG, Yin YW. Human Mitochondrial DNA Polymerase Metal Dependent UV Lesion Bypassing Ability. Front Mol Biosci 2022; 9:808036. [PMID: 35355510 PMCID: PMC8959595 DOI: 10.3389/fmolb.2022.808036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/11/2022] [Indexed: 12/11/2022] Open
Abstract
Human mitochondrial DNA contains more UV-induced lesions than the nuclear DNA due to lack of mechanism to remove bulky photoproducts. Human DNA polymerase gamma (Pol γ) is the sole DNA replicase in mitochondria, which contains a polymerase (pol) and an exonuclease (exo) active site. Previous studies showed that Pol γ only displays UV lesion bypassing when its exonuclease activity is obliterated. To investigate the reaction environment on Pol γ translesion activity, we tested Pol γ DNA activity in the presence of different metal ions. While Pol γ is unable to replicate through UV lesions on DNA templates in the presence of Mg2+, it exhibits robust translesion DNA synthesis (TLS) on cyclobutane pyrimidine dimer (CPD)-containing template when Mg2+ was mixed with or completely replaced by Mn2+. Under these conditions, the efficiency of Pol γ′s TLS opposite CPD is near to that on a non-damaged template and is 800-fold higher than that of exonuclease-deficient Pol γ. Interestingly, Pol γ exhibits higher exonuclease activity in the presence of Mn2+ than with Mg2+, suggesting Mn2+-stimulated Pol γ TLS is not via suppressing its exonuclease activity. We suggest that Mn2+ ion expands Pol γ′s pol active site relative to Mg2+ so that a UV lesion can be accommodated and blocks the communication between pol and exo active sites to execute translesion DNA synthesis.
Collapse
Affiliation(s)
- Joon Park
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, United States
| | - Noe Baruch-Torres
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Mexico
| | - Shigenori Iwai
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Japan
| | - Geoffrey K. Herrmann
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, United States
| | - Luis G. Brieba
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Mexico
- *Correspondence: Luis G. Brieba, ; Y. Whitney Yin,
| | - Y. Whitney Yin
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, United States
- *Correspondence: Luis G. Brieba, ; Y. Whitney Yin,
| |
Collapse
|
6
|
Elveborg S, Monteil VM, Mirazimi A. Methods of Inactivation of Highly Pathogenic Viruses for Molecular, Serology or Vaccine Development Purposes. Pathogens 2022; 11:271. [PMID: 35215213 PMCID: PMC8879476 DOI: 10.3390/pathogens11020271] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 11/30/2022] Open
Abstract
The handling of highly pathogenic viruses, whether for diagnostic or research purposes, often requires an inactivation step. This article reviews available inactivation techniques published in peer-reviewed journals and their benefits and limitations in relation to the intended application. The bulk of highly pathogenic viruses are represented by enveloped RNA viruses belonging to the Togaviridae, Flaviviridae, Filoviridae, Arenaviridae, Hantaviridae, Peribunyaviridae, Phenuiviridae, Nairoviridae and Orthomyxoviridae families. Here, we summarize inactivation methods for these virus families that allow for subsequent molecular and serological analysis or vaccine development. The techniques identified here include: treatment with guanidium-based chaotropic salts, heat inactivation, photoactive compounds such as psoralens or 1.5-iodonaphtyl azide, detergents, fixing with aldehydes, UV-radiation, gamma irradiation, aromatic disulfides, beta-propiolacton and hydrogen peroxide. The combination of simple techniques such as heat or UV-radiation and detergents such as Tween-20, Triton X-100 or Sodium dodecyl sulfate are often sufficient for virus inactivation, but the efficiency may be affected by influencing factors including quantity of infectious particles, matrix constitution, pH, salt- and protein content. Residual infectivity of the inactivated virus could have disastrous consequences for both laboratory/healthcare personnel and patients. Therefore, the development of inactivation protocols requires careful considerations which we review here.
Collapse
Affiliation(s)
- Simon Elveborg
- Department of Clinical Microbiology, Uppsala University Hospital, 751 85 Uppsala, Sweden;
- Clinical Microbiology, Department of Medical Sciences, Uppsala University, 751 85 Uppsala, Sweden
| | - Vanessa M. Monteil
- Department of Laboratory Medicine, Karolinska Institutet, 141 52 Huddinge, Sweden;
| | - Ali Mirazimi
- Department of Laboratory Medicine, Karolinska Institutet, 141 52 Huddinge, Sweden;
- National Veterinary Institute, 751 89 Uppsala, Sweden
| |
Collapse
|
7
|
Sun B, Wang MD. Single-Molecule Optical-Trapping Techniques to Study Molecular Mechanisms of a Replisome. Methods Enzymol 2016; 582:55-84. [PMID: 28062045 DOI: 10.1016/bs.mie.2016.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The replisome is a multiprotein molecular machinery responsible for the replication of DNA. It is composed of several specialized proteins each with dedicated enzymatic activities, and in particular, helicase unwinds double-stranded DNA and DNA polymerase catalyzes the synthesis of DNA. Understanding how a replisome functions in the process of DNA replication requires methods to dissect the mechanisms of individual proteins and of multiproteins acting in concert. Single-molecule optical-trapping techniques have proved to be a powerful approach, offering the unique ability to observe and manipulate biomolecules at the single-molecule level and providing insights into the mechanisms of molecular motors and their interactions and coordination in a complex. Here, we describe a practical guide to applying these techniques to study the dynamics of individual proteins in the bacteriophage T7 replisome, as well as the coordination among them. We also summarize major findings from these studies, including nucleotide-specific helicase slippage and new lesion bypass pathway in T7 replication.
Collapse
Affiliation(s)
- B Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai, PR China
| | - M D Wang
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, United States; Howard Hughes Medical Institute, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
8
|
McLellan NL, Lee H, Habash MB. Evaluation of propidium monoazide and long-amplicon qPCR as an infectivity assay for coliphage. J Virol Methods 2016; 238:48-55. [PMID: 27744093 DOI: 10.1016/j.jviromet.2016.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 08/17/2016] [Accepted: 10/09/2016] [Indexed: 12/21/2022]
Abstract
Standardized and rapid assays for viable viral pathogens are needed to inform human health risk assessments. Conventional qPCR is designed to enumerate the gene copies of an organism in a sample, but does not identify those that originated from a viable pathogen. This study was undertaken to evaluate modified qPCR methods as infectivity assays for the enumeration of infectious MS2 coliphage. Propidium monoazide (PMA) treatment coupled with long-amplicon qPCR assays were assessed for their ability to quantify infectious MS2 in pure cultures and following inactivation by a range of UV light exposures and chlorine doses. The qPCR results were compared to the plaque assay, which was used as the standard to indicate the level of infectious MS2 in each sample. For pure cultures, PMA-qPCR results were not significantly different from the plaque assay (p>0.05). At >4 log inactivation, combined PMA and long-amplicon qPCR assays overestimated the level of infectious MS2 remaining (p<0.05). The most accurate long-amplicon qPCR infectivity assay targeted a 624-bp region at the 5' end of the genome. Modified qPCR approaches may be useful tools to monitor the loss of infectivity as a result of disinfection processes.
Collapse
Affiliation(s)
- Nicole L McLellan
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Hung Lee
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Marc B Habash
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
9
|
Comparison of UV-Induced Inactivation and RNA Damage in MS2 Phage across the Germicidal UV Spectrum. Appl Environ Microbiol 2015; 82:1468-1474. [PMID: 26712541 DOI: 10.1128/aem.02773-15] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 12/13/2015] [Indexed: 01/01/2023] Open
Abstract
Polychromatic UV irradiation is a common method of pathogen inactivation in the water treatment industry. To improve its disinfection efficacy, more information on the mechanisms of UV inactivation on microorganisms at wavelengths throughout the germicidal UV spectrum, particularly at below 240 nm, is necessary. This work examined UV inactivation of bacteriophage MS2, a common surrogate for enteric pathogens, as a function of wavelength. The bacteriophage was exposed to monochromatic UV irradiation from a tunable laser at wavelengths of between 210 nm and 290 nm. To evaluate the mechanisms of UV inactivation throughout this wavelength range, RT-qPCR (reverse transcription-quantitative PCR) was performed to measure genomic damage for comparison with genomic damage at 253.7 nm. The results indicate that the rates of RNA damage closely mirror the loss of viral infectivity across the germicidal UV spectrum. This demonstrates that genomic damage is the dominant cause of MS2 inactivation from exposure to germicidal UV irradiation. These findings contrast those for adenovirus, for which MS2 is used as a viral surrogate for validating polychromatic UV reactors.
Collapse
|
10
|
Sun B, Pandey M, Inman JT, Yang Y, Kashlev M, Patel SS, Wang MD. T7 replisome directly overcomes DNA damage. Nat Commun 2015; 6:10260. [PMID: 26675048 PMCID: PMC4703881 DOI: 10.1038/ncomms10260] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/22/2015] [Indexed: 11/09/2022] Open
Abstract
Cells and viruses possess several known ‘restart' pathways to overcome lesions during DNA replication. However, these ‘bypass' pathways leave a gap in replicated DNA or require recruitment of accessory proteins, resulting in significant delays to fork movement or even cell division arrest. Using single-molecule and ensemble methods, we demonstrate that the bacteriophage T7 replisome is able to directly replicate through a leading-strand cyclobutane pyrimidine dimer (CPD) lesion. We show that when a replisome encounters the lesion, a substantial fraction of DNA polymerase (DNAP) and helicase stay together at the lesion, the replisome does not dissociate and the helicase does not move forward on its own. The DNAP is able to directly replicate through the lesion by working in conjunction with helicase through specific helicase–DNAP interactions. These observations suggest that the T7 replisome is fundamentally permissive of DNA lesions via pathways that do not require fork adjustment or replisome reassembly. Genomic instability can result from stalled or collapsed replication fork at sites of unrepaired DNA lesions. Here the authors uncover a new lesion bypass pathway for the T7 replisome, where leading strand template lesions can be overcome through interaction between the replisome's helicase and polymerase components.
Collapse
Affiliation(s)
- Bo Sun
- Department of Physics, Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853, USA.,Howard Hughes Medical Institute, Cornell University, Ithaca, New York 14853, USA.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Manjula Pandey
- Department of Biochemistry and Molecular Biology, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | - James T Inman
- Department of Physics, Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853, USA.,Howard Hughes Medical Institute, Cornell University, Ithaca, New York 14853, USA
| | - Yi Yang
- Department of Physics, Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853, USA.,Howard Hughes Medical Institute, Cornell University, Ithaca, New York 14853, USA
| | - Mikhail Kashlev
- NCI Center for Cancer Research, Frederick, Maryland 21702, USA
| | - Smita S Patel
- Department of Biochemistry and Molecular Biology, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | - Michelle D Wang
- Department of Physics, Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853, USA.,Howard Hughes Medical Institute, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
11
|
Sonohara Y, Iwai S, Kuraoka I. An in vitro method for detecting genetic toxicity based on inhibition of RNA synthesis by DNA lesions. Genes Environ 2015; 37:8. [PMID: 27350805 PMCID: PMC4918014 DOI: 10.1186/s41021-015-0014-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/09/2015] [Indexed: 11/25/2022] Open
Abstract
Introduction A wide variety of DNA lesions such as ultraviolet light-induced photoproducts and chemically induced bulky adducts and crosslinks (intrastrand and interstrand) interfere with replication and lead to mutations and cell death. In the human body, these damages may cause cancer, inborn diseases, and aging. So far, mutation-related actions of DNA polymerases during replication have been intensively studied. However, DNA lesions also block RNA synthesis, making the detection of their effects on transcription equally important for chemical safety assessment. Previously, we established an in vivo method for detecting DNA damage induced by ultraviolet light and/or chemicals via inhibition of RNA polymerase by visualizing transcription. Results Here, we present an in vitro method for detecting the effects of chemically induced DNA lesions using in vitro transcription with T7 RNA polymerase and real-time reverse transcription polymerase chain reaction (PCR) based on inhibition of in vitro RNA synthesis. Conventional PCR and real-time reverse transcription PCR without in vitro transcription can detect DNA lesions such as complicated cisplatin DNA adducts but not UV-induced lesions. We found that only this combination of in vitro transcription and real-time reverse transcription PCR can detect both cisplatin- and UV-induced DNA lesions that interfere with transcription. Conclusions We anticipate that this method will be useful for estimating the potential transcriptional toxicity of chemicals in terminally differentiated cells engaged in active transcription and translation but not in replication.
Collapse
Affiliation(s)
- Yuina Sonohara
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 Japan
| | - Shigenori Iwai
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 Japan
| | - Isao Kuraoka
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 Japan
| |
Collapse
|
12
|
Wenke BB, Huiting LN, Frankel EB, Lane BF, Núñez ME. Base pair opening in a deoxynucleotide duplex containing a cis-syn thymine cyclobutane dimer lesion. Biochemistry 2013; 52:9275-85. [PMID: 24328089 DOI: 10.1021/bi401312r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The cis-syn thymine cyclobutane dimer is a DNA photoproduct implicated in skin cancer. We compared the stability of individual base pairs in thymine dimer-containing duplexes to undamaged parent 10-mer duplexes. UV melting thermodynamic measurements, CD spectroscopy, and 2D NOESY NMR spectroscopy confirm that the thymine dimer lesion is locally and moderately destabilizing within an overall B-form duplex conformation. We measured the rates of exchange of individual imino protons by NMR using magnetization transfer from water and determined the equilibrium constant for the opening of each base pair K(op). In the normal duplex K(op) decreases from the frayed ends of the duplex toward the center, such that the central TA pair is the most stable with a K(op) of 8 × 10⁻⁷. In contrast, base pair opening at the 5'T of the thymine dimer is facile. The 5'T of the dimer has the largest equilibrium constant (K(op) = 3 × 10⁻⁴) in its duplex, considerably larger than even the frayed penultimate base pairs. Notably, base pairing by the 3'T of the dimer is much more stable than by the 5'T, indicating that the predominant opening mechanism for the thymine dimer lesion is not likely to be flipping out into solution as a single unit. The dimer asymmetrically affects the stability of the duplex in its vicinity, destabilizing base pairing on its 5' side more than on the 3' side. The striking differences in base pair opening between parent and dimer duplexes occur independently of the duplex-single strand melting transitions.
Collapse
Affiliation(s)
- Belinda B Wenke
- Department of Chemistry, Mount Holyoke College , South Hadley, Massachusetts 01075, United States
| | | | | | | | | |
Collapse
|
13
|
Wigginton KR, Pecson BM, Sigstam T, Bosshard F, Kohn T. Virus inactivation mechanisms: impact of disinfectants on virus function and structural integrity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:12069-78. [PMID: 23098102 DOI: 10.1021/es3029473] [Citation(s) in RCA: 238] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Oxidative processes are often harnessed as tools for pathogen disinfection. Although the pathways responsible for bacterial inactivation with various biocides are fairly well understood, virus inactivation mechanisms are often contradictory or equivocal. In this study, we provide a quantitative analysis of the total damage incurred by a model virus (bacteriophage MS2) upon inactivation induced by five common virucidal agents (heat, UV, hypochlorous acid, singlet oxygen, and chlorine dioxide). Each treatment targets one or more virus functions to achieve inactivation: UV, singlet oxygen, and hypochlorous acid treatments generally render the genome nonreplicable, whereas chlorine dioxide and heat inhibit host-cell recognition/binding. Using a combination of quantitative analytical tools, we identified unique patterns of molecular level modifications in the virus proteins or genome that lead to the inhibition of these functions and eventually inactivation. UV and chlorine treatments, for example, cause site-specific capsid protein backbone cleavage that inhibits viral genome injection into the host cell. Combined, these results will aid in developing better methods for combating waterborne and foodborne viral pathogens and further our understanding of the adaptive changes viruses undergo in response to natural and anthropogenic stressors.
Collapse
Affiliation(s)
- Krista Rule Wigginton
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
14
|
Rumora AE, Kolodziejczak KM, Malhowski Wagner A, Núñez ME. Thymine dimer-induced structural changes to the DNA duplex examined with reactive probes (†). Biochemistry 2012; 47:13026-35. [PMID: 19006320 DOI: 10.1021/bi801417u] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Despite significant progress in the past decade, questions still remain about the complete structural, dynamic, and thermodynamic effect of the cis-syn cyclobutane pyrimidine dimer lesion (hereafter called the thymine dimer) on double-stranded genomic DNA. We examined a 19-mer oligodeoxynucleotide duplex containing a thymine dimer lesion using several small, base-selective reactive chemical probes. These molecules probe whether the presence of the dimer causes the base pairs to be more accessible to the solution, either globally or adjacent to the dimer. Though all of the probes confirm that the overall structure of the dimer-containing duplex is conserved compared to that of the undamaged parent duplex, reactions with both diethyl pyrocarbonate and Rh(bpy)(2)(chrysi)(3+) indicate that the duplex is locally destabilized near the lesion. Reactions with potassium permanganate and DEPC hint that the dimer-containing duplex may also be globally more accessible to the solution through a subtle shift in the double-stranded DNA ↔ single-stranded DNA equilibrium. To begin to distinguish between kinetic and thermodynamic effects, we determined the helix melting thermodynamic parameters for the dimer-containing and undamaged parent duplexes by microcalorimetry and UV melting. The presence of the thymine dimer causes this DNA duplex to be slightly less stable enthalpically but slightly less unstable entropically at 298 K, causing the overall free energy of duplex melting to remain unchanged by the dimer lesion within the error of the experiment. Here we consider these results in the context of what has been learned about the thymine dimer lesion from NMR, X-ray crystallographic, and molecular biological methods.
Collapse
Affiliation(s)
- Amy E Rumora
- Department of Chemistry, Mount Holyoke College, South Hadley, Massachusetts 01075
| | | | | | | |
Collapse
|
15
|
Lim S, Song I, Guengerich FP, Choi JY. Effects of N(2)-alkylguanine, O(6)-alkylguanine, and abasic lesions on DNA binding and bypass synthesis by the euryarchaeal B-family DNA polymerase vent (exo(-)). Chem Res Toxicol 2012; 25:1699-707. [PMID: 22793782 DOI: 10.1021/tx300168p] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Archaeal and eukaryotic B-family DNA polymerases (pols) mainly replicate chromosomal DNA but stall at lesions, which are often bypassed with Y-family pols. In this study, a B-family pol Vent (exo(-)) from the euryarchaeon Thermococcus litoralis was studied with three types of DNA lesions-N(2)-alkylG, O(6)-alkylG, and an abasic (AP) site-in comparison with a model Y-family pol Dpo4 from Sulfolobus solfataricus, to better understand the effects of various DNA modifications on binding, bypass efficiency, and fidelity of pols. Vent (exo(-)) readily bypassed N(2)-methyl(Me)G and O(6)-MeG, but was strongly blocked at O(6)-benzyl(Bz)G and N(2)-BzG, whereas Dpo4 efficiently bypassed N(2)-MeG and N(2)-BzG and partially bypassed O(6)-MeG and O(6)-BzG. Vent (exo(-)) bypassed an AP site to an extent greater than Dpo4, corresponding with steady-state kinetic data. Vent (exo(-)) showed ~110-, 180-, and 300-fold decreases in catalytic efficiency (k(cat)/K(m)) for nucleotide insertion opposite an AP site, N(2)-MeG, and O(6)-MeG but ~1800- and 5000-fold decreases opposite O(6)-BzG and N(2)-BzG, respectively, as compared to G, whereas Dpo4 showed little or only ~13-fold decreases opposite N(2)-MeG and N(2)-BzG but ~260-370-fold decreases opposite O(6)-MeG, O(6)-BzG, and the AP site. Vent (exo(-)) preferentially misinserted G opposite N(2)-MeG, T opposite O(6)-MeG, and A opposite an AP site and N(2)-BzG, while Dpo4 favored correct C insertion opposite those lesions. Vent (exo(-)) and Dpo4 both bound modified DNAs with affinities similar to unmodified DNA. Our results indicate that Vent (exo(-)) is as or more efficient as Dpo4 in synthesis opposite O(6)-MeG and AP lesions, whereas Dpo4 is much or more efficient opposite (only) N(2)-alkylGs than Vent (exo(-)), irrespective of DNA-binding affinity. Our data also suggest that Vent (exo(-)) accepts nonbulky DNA lesions (e.g., N(2)- or O(6)-MeG and an AP site) as manageable substrates despite causing error-prone synthesis, whereas Dpo4 strongly favors minor-groove N(2)-alkylG lesions over major-groove or noninstructive lesions.
Collapse
Affiliation(s)
- Seonhee Lim
- Division of Pharmacology, Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do 440-746, Republic of Korea
| | | | | | | |
Collapse
|
16
|
Song Q, Sherrer SM, Suo Z, Taylor JS. Preparation of site-specific T=mCG cis-syn cyclobutane dimer-containing template and its error-free bypass by yeast and human polymerase η. J Biol Chem 2012; 287:8021-8. [PMID: 22262850 DOI: 10.1074/jbc.m111.333591] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
C-to-T mutations are a hallmark of UV light and, in humans, occur preferentially at methylated Py(m)CG sites, which are also sites of preferential cyclobutane pyrimidine dimer (CPD) formation. In response, cells have evolved DNA damage bypass polymerases, of which polymerase η (pol η) appears to be specifically adapted to synthesize past cis-syn CPDs. Although T=T CPDs are stable, CPDs containing C or 5-methylcytosine ((m)C) are not and spontaneously deaminate to U or T at pH 7 and 37 °C over a period of hours or days, making their preparation and study difficult. Furthermore, there is evidence to suggest that, depending on solvent polarity, a C or an (m)C in a CPD can adopt three tautomeric forms, one of which could code as T. Although many in vitro studies have established that synthesis past T or U in a CPD by pol η occurs in a highly error-free manner, the only in vitro evidence that synthesis past C or (m)C in a CPD also occurs in an error-free manner is for an (m)C in the 5'-position of an (m)C=T CPD. Herein, we describe the preparation and characterization of an oligodeoxynucleotide containing a CPD of a T(m)CG site, one of the major sites of C methylation and C-to-T mutations found in the p53 gene of basal and squamous cell cancers. We also demonstrate that both yeast and human pol η synthesize past the 3'-(m)C CPD in a >99% error-free manner, consistent with the highly water-exposed nature of the active site.
Collapse
Affiliation(s)
- Qian Song
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, USA
| | | | | | | |
Collapse
|
17
|
Reis AMC, Mills WK, Ramachandran I, Friedberg EC, Thompson D, Queimado L. Targeted detection of in vivo endogenous DNA base damage reveals preferential base excision repair in the transcribed strand. Nucleic Acids Res 2011; 40:206-19. [PMID: 21911361 PMCID: PMC3245927 DOI: 10.1093/nar/gkr704] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Endogenous DNA damage is removed mainly via base excision repair (BER), however, whether there is preferential strand repair of endogenous DNA damage is still under intense debate. We developed a highly sensitive primer-anchored DNA damage detection assay (PADDA) to map and quantify in vivo endogenous DNA damage. Using PADDA, we documented significantly higher levels of endogenous damage in Saccharomyces cerevisiae cells in stationary phase than in exponential phase. We also documented that yeast BER-defective cells have significantly higher levels of endogenous DNA damage than isogenic wild-type cells at any phase of growth. PADDA provided detailed fingerprint analysis at the single-nucleotide level, documenting for the first time that persistent endogenous nucleotide damage in CAN1 co-localizes with previously reported spontaneous CAN1 mutations. To quickly and reliably quantify endogenous strand-specific DNA damage in the constitutively expressed CAN1 gene, we used PADDA on a real-time PCR setting. We demonstrate that wild-type cells repair endogenous damage preferentially on the CAN1 transcribed strand. In contrast, yeast BER-defective cells accumulate endogenous damage preferentially on the CAN1 transcribed strand. These data provide the first direct evidence for preferential strand repair of endogenous DNA damage and documents the major role of BER in this process.
Collapse
Affiliation(s)
- António M C Reis
- Department of Dermatology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | | | | | | |
Collapse
|
18
|
Pecson BM, Ackermann M, Kohn T. Framework for using quantitative PCR as a nonculture based method to estimate virus infectivity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:2257-63. [PMID: 21322644 DOI: 10.1021/es103488e] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Measuring the efficiency of virus disinfection with quantitative PCR (qPCR) has been criticized as inadequate due to the production of false-positive signals. Such a claim, however, presupposes an understanding of the theoretical qPCR response. Many studies have assumed that the loss in qPCR signal upon disinfection should equal the loss in infectivity, without accounting for the fact that qPCR typically assays only a fraction of the viral genome. This study aimed to develop a theoretical framework to relate viral infectivity with genome damage measured by qPCR. The framework quantified damage to the entire genome based on the qPCR amplification of smaller sections, assuming single-hit inactivation and a Poissonian distribution of damage. The framework was tested and modified using UV(254) inactivation studies with bacteriophage MS2 (culturing and qPCR of approximately half the genome). Genome regions showed heterogeneous sensitivities to UV(254) treatment, thus deviating from the assumption of Poissonian damage. We offered two modifications to account for these deviations and confirmed that the qPCR-based framework accurately estimated virus infectivity. This framework offers the potential to monitor the infectivity of viruses that remain nonculturable (norovirus). While developed for UV(254)-inactivated virus, the framework should apply to any disinfection technique that causes inactivation via single genomic lesions.
Collapse
Affiliation(s)
- Brian M Pecson
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Station 2, 1015 Lausanne, Switzerland
| | | | | |
Collapse
|
19
|
Ganesan AK, Hanawalt PC. Transcription-coupled nucleotide excision repair of a gene transcribed by bacteriophage T7 RNA polymerase in Escherichia coli. DNA Repair (Amst) 2010; 9:958-63. [PMID: 20638914 DOI: 10.1016/j.dnarep.2010.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 05/28/2010] [Accepted: 06/22/2010] [Indexed: 11/17/2022]
Abstract
Transcription-coupled nucleotide excision repair (TC-NER) removes certain kinds of lesions from the transcribed strand of expressed genes. The signal for TC-NER is thought to be RNA polymerase stalled at a lesion in the DNA template. In Escherichia coli, the stalled polymerase is dissociated from the lesion by the transcription repair coupling factor (Mfd protein), which also recruits excision repair proteins to the site resulting in efficient removal of the lesion. TC-NER has been documented in cells from a variety of organisms ranging from bacteria to humans. In each case, the RNA polymerase involved has been a multimeric protein complex. To ascertain whether a gene transcribed by the monomeric RNA polymerase of bacteriophage T7 could be repaired by TC-NER, we constructed strains of E. coli in which the chromosomal lacZ gene is controlled by a T7 promoter. In the absence of T7 RNA polymerase, little or no beta-galactosidase is produced, indicating that the E. coli RNA polymerase does not transcribe lacZ efficiently, if at all, in these strains. By introducing a plasmid (pAR1219) carrying the T7 gene 1 under control of the E. coli lac UV5 promoter into these strains, we obtained derivatives in which the level of T7 RNA polymerase could be regulated. In cultures containing upregulated levels of the polymerase, beta-galactosidase was actively produced indicating that the T7 RNA polymerase transcribes the lacZ gene efficiently. Under these conditions, we observed that UV-induced cyclobutane pyrimidine dimers were removed more rapidly from the transcribed strand of lacZ than from the nontranscribed strand, supporting the conclusion that TC-NER occurred in this gene. This response was absent in an mfd-1 mutant, indicating that the underlying mechanism may be similar to that for the bacterial RNA polymerase.
Collapse
Affiliation(s)
- Ann K Ganesan
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA.
| | | |
Collapse
|
20
|
Rochette PJ, Brash DE. Human telomeres are hypersensitive to UV-induced DNA Damage and refractory to repair. PLoS Genet 2010; 6:e1000926. [PMID: 20442874 PMCID: PMC2861706 DOI: 10.1371/journal.pgen.1000926] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 03/29/2010] [Indexed: 12/23/2022] Open
Abstract
Telomeric repeats preserve genome integrity by stabilizing chromosomes, a function that appears to be important for both cancer and aging. In view of this critical role in genomic integrity, the telomere's own integrity should be of paramount importance to the cell. Ultraviolet light (UV), the preeminent risk factor in skin cancer development, induces mainly cyclobutane pyrimidine dimers (CPD) which are both mutagenic and lethal. The human telomeric repeat unit (5′TTAGGG/CCCTAA3′) is nearly optimal for acquiring UV-induced CPD, which form at dipyrimidine sites. We developed a ChIP–based technique, immunoprecipitation of DNA damage (IPoD), to simultaneously study DNA damage and repair in the telomere and in the coding regions of p53, 28S rDNA, and mitochondrial DNA. We find that human telomeres in vivo are 7-fold hypersensitive to UV-induced DNA damage. In double-stranded oligonucleotides, this hypersensitivity is a property of both telomeric and non-telomeric repeats; in a series of telomeric repeat oligonucleotides, a phase change conferring UV-sensitivity occurs above 4 repeats. Furthermore, CPD removal in the telomere is almost absent, matching the rate in mitochondria known to lack nucleotide excision repair. Cells containing persistent high levels of telomeric CPDs nevertheless proliferate, and chronic UV irradiation of cells does not accelerate telomere shortening. Telomeres are therefore unique in at least three respects: their biophysical UV sensitivity, their prevention of excision repair, and their tolerance of unrepaired lesions. Utilizing a lesion-tolerance strategy rather than repair would prevent double-strand breaks at closely-opposed excision repair sites on opposite strands of a damage-hypersensitive repeat. Telomeres consist of a repeated sequence located at each end of each chromosome. This repeated sequence is required for chromosomal stability and integrity, a function important for both cancer and aging. The DNA sequence of human telomeres is 5–10 kb of a repeated double-strand hexamer (5′TTAGGG/5′CCCTAA). In theory, this sequence is nearly optimal for acquiring UV-induced DNA damage. We developed a novel technique, the immunoprecipitation of DNA damage (IPoD), to study DNA damage induction and repair in the telomere and in coding regions (p53, 28S rDNA, and mitochondrial DNA). We find that human telomeres are hypersensitive to UV-induced DNA photoproducts and that the removal of those DNA photoproducts is almost absent. Cells containing persistent high levels of telomeric DNA damage nevertheless proliferate and chronic UV irradiation of cells does not accelerate telomere shortening. Telomeres are therefore unique in at least three respects: their biophysical UV sensitivity, their prevention of excision repair, and their tolerance of unrepaired lesions.
Collapse
Affiliation(s)
- Patrick J. Rochette
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut, United States of America
- Yale Comprehensive Cancer Center, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Douglas E. Brash
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut, United States of America
- Yale Comprehensive Cancer Center, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
21
|
Rasmussen AM, Lind MC, Kim S, Schaefer HF. Hydration of the Lowest Triplet States of the DNA/RNA Pyrimidines. J Chem Theory Comput 2010; 6:930-9. [DOI: 10.1021/ct900478c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Andrew M. Rasmussen
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602
| | - Maria C. Lind
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602
| | - Sunghwan Kim
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602
| | - Henry F. Schaefer
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
22
|
Dahlmann HA, Vaidyanathan VG, Sturla SJ. Investigating the biochemical impact of DNA damage with structure-based probes: abasic sites, photodimers, alkylation adducts, and oxidative lesions. Biochemistry 2009; 48:9347-59. [PMID: 19757831 PMCID: PMC2789562 DOI: 10.1021/bi901059k] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
DNA sustains a wide variety of damage, such as the formation of abasic sites, pyrimidine dimers, alkylation adducts, or oxidative lesions, upon exposure to UV radiation, alkylating agents, or oxidative conditions. Since these forms of damage may be acutely toxic or mutagenic and potentially carcinogenic, it is of interest to gain insight into how their structures impact biochemical processing of DNA, such as synthesis, transcription, and repair. Lesion-specific molecular probes have been used to study polymerase-mediated translesion DNA synthesis of abasic sites and TT dimers, while other probes have been developed for specifically investigating the alkylation adduct O(6)-Bn-G and the oxidative lesion 8-oxo-G. In this review, recent examples of lesion-specific molecular probes are surveyed; their specificities of incorporation opposite target lesions compared to unmodified nucleotides are discussed, and limitations of their applications under physiologically relevant conditions are assessed.
Collapse
Affiliation(s)
| | | | - Shana J. Sturla
- To whom correspondence should be addressed: ; Phone: 612-626-0496; Fax: 612-624-0139
| |
Collapse
|
23
|
Affiliation(s)
- Anthony J Berdis
- Department of Pharmacology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA.
| |
Collapse
|
24
|
Karata K, Vidal AE, Woodgate R. Construction of a circular single-stranded DNA template containing a defined lesion. DNA Repair (Amst) 2009; 8:852-6. [PMID: 19386556 DOI: 10.1016/j.dnarep.2009.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 03/05/2009] [Accepted: 03/10/2009] [Indexed: 11/19/2022]
Abstract
We report a concise and efficient method to make a circular single-stranded DNA containing a defined DNA lesion. In this protocol, phagemid DNA containing Uracil is used as a template to synthesize a complementary DNA strand using T7 DNA polymerase and an oligonucleotide primer including a site-specific DNA lesion. The ligated lesion-containing strand can be recovered after the phage-derived template DNA is degraded by treatment with E. coli Uracil DNA glycosylase and Exonucleases I and III. The resulting product is a circular single-stranded DNA containing a defined DNA lesion suitable for in vitro translesion replication assays.
Collapse
Affiliation(s)
- Kiyonobu Karata
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| | | | | |
Collapse
|
25
|
Morrison H, Harmon H. “Hot Spots” Associated with the Photoinduced Binding of cis-Dichloro bis(1,10 phenanthroline)rhodium(III) Chloride to HIV-1 and c-raf DNA¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2000)0720731hsawtp2.0.co2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Cannistraro VJ, Taylor JS. Ability of polymerase eta and T7 DNA polymerase to bypass bulge structures. J Biol Chem 2007; 282:11188-96. [PMID: 17303570 DOI: 10.1074/jbc.m608478200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA misalignment occurs in homopolymer tracts during replication and can lead to frameshift mutations. Polymerase (pol) recognition of primer-templates containing bulge structures and the transmission of a bulge through a polymerase binding site or replication complex are important components of frameshift mutagenesis. In this report, we describe the interaction of the catalytic core of pol eta with primer-templates containing bulge structures by single round primer extension. We found that pol eta could stabilize a frayed primer terminus, which enhances its ability to extend primer-templates containing bulges. Based on methylphosphonate-DNA mapping, pol eta interacts with the single strand template but not appreciably with the template strand of the DNA stem greater than two nucleotides from the primer terminus. These latter characteristics, combined with the ability to stabilize a frayed primer terminus, may explain why primer-templates containing template bulges are extended so efficiently by pol eta. Although pol eta could accommodate large bulges and continue synthesis without obstruction, bulge structures in the template, but not in the primer, caused termination of the T7 DNA replication complex. Terminations occurred when the template bulge neared the helix-loop-helix domain of the polymerase thumb. Terminations were not observed, however, when bulge structures approached the site of interaction of the DNA with the extended thumb and thioredoxin. At low temperature, however, terminations did occur at this site.
Collapse
|
27
|
McCulloch SD, Kunkel TA. Multiple solutions to inefficient lesion bypass by T7 DNA polymerase. DNA Repair (Amst) 2006; 5:1373-83. [PMID: 16876489 PMCID: PMC1892196 DOI: 10.1016/j.dnarep.2006.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 06/08/2006] [Accepted: 06/13/2006] [Indexed: 10/24/2022]
Abstract
We hypothesize that enzymatic switching during translesion synthesis (TLS) to relieve stalled replication forks occurs during transitions from preferential to disfavored use of damaged primer-templates, and that the polymerase or 3'-exonuclease used for each successive nucleotide incorporated is the one whose properties result in the highest efficiency and the highest fidelity of bypass. Testing this hypothesis requires quantitative determination of the relative lesion bypass ability of both TLS polymerases and major replicative polymerases. As a model of the latter, here we measure the efficiency and fidelity of cis-syn TT dimer and abasic site bypass using the structurally well-characterized T7 DNA polymerase. No bypass of either lesion occurred during a single round of synthesis, and the exonuclease activity of wild-type T7 DNA polymerase was critical in preventing TLS. When repetitive cycling of the exonuclease-deficient enzyme was allowed, limited bypass did occur but hundreds to thousands of cycles were required to achieve even a single bypass event. Analysis of TLS fidelity indicated that these rare bypass events involved rearrangements of the template and primer strands, insertions opposite the lesion, and combinations of these events, with the choice among these strongly depending on the sequence context of the lesion. Moreover, the presence of a lesion affected the fidelity of copying adjacent undamaged template bases, even when lesion bypass itself was correct. The results also indicate that a TT dimer presents a different type of block to the polymerase than an abasic site, even though both lesions are extremely potent blocks to processive synthesis. The approaches used here to quantify the efficiency and fidelity of TLS can be applied to other polymerase-lesion combinations, to provide guidance as to which of many possible polymerases is most likely to bypass various lesions in biological contexts.
Collapse
Affiliation(s)
- Scott D. McCulloch
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, United States
| | - Thomas A. Kunkel
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, United States
| |
Collapse
|
28
|
Lièvre A, Landi B, Côté JF, Veyrie N, Zucman-Rossi J, Berger A, Laurent-Puig P. Absence of mutation in the putative tumor-suppressor gene KLF6 in colorectal cancers. Oncogene 2005; 24:7253-6. [PMID: 16044160 DOI: 10.1038/sj.onc.1208867] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The KLF6 gene encodes the Krüppel-like factor 6, a transcription factor that has been individualized as a tumor-suppressor gene involved in the regulation of cell proliferation and differentiation. Recently, high frequency (42%) of KLF6 mutations have been reported in colorectal cancers (CRC) as in prostate cancers, astrocytic gliomas and hepatocellular carcinomas. The aims of the study was to confirm the frequency of KLF6 mutations in a larger series of CRC than that previously published by using DNA extracted from frozen tissue samples, which have been proved to generate less mutational artefact than that extracted from formalin-fixed paraffin-embedded tissue samples, in order to compare KLF6 mutation frequency with that of other common genetic alterations and to determine genotype-phenotype correlations. Amplification and direct sequencing of KLF6 exon 2 of 76 CRC and matched normal frozen tissues was performed. Polymorphisms were observed in 14 cases, among which two (T35T and S116S) had not already been reported. No KLF6 somatic mutation was observed. Our data suggest a minor role of KLF6 mutation in colorectal carcinogenesis and underline the fact that the validity of sequence informations obtained from DNA extracted from formalin-fixed tissues may be limited.
Collapse
Affiliation(s)
- Astrid Lièvre
- 1INSERM U490 Laboratoire de Toxicologie Moléculairei, Université René Descartes, 75006 Paris, France.
| | | | | | | | | | | | | |
Collapse
|
29
|
Belousova EA, Rechkunova NI, Lavrik OI. Thermostable DNA polymerases can perform translesion synthesis using 8-oxoguanine and tetrahydrofuran-containing DNA templates. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1764:97-104. [PMID: 16338185 DOI: 10.1016/j.bbapap.2005.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Revised: 10/31/2005] [Accepted: 11/01/2005] [Indexed: 10/25/2022]
Abstract
The translesion synthesis (TLS) capacity of the thermostable DNA polymerases Taq, Tte and Tte-seq utilizing a synthetic abasic site, tetrahydrofuran (THF), and an 8-oxoguanine-containing DNA template was investigated. Measurements with human DNA polymerase beta were used as a "positive control". Thermostable DNA polymerases were observed to perform TLS with different specificities on both substrates. With a THF-containing template, dGMP was preferentially inserted by all the DNA polymerases. In the presence of Mn(II) as a cofactor, all the polymerases incorporated dCMP opposite 8-oxoguanine whereas, in the presence of Mg(II) ions, dAMP was incorporated. It was found that none of the thermophilic DNA polymerases utilized dTTP with either an 8-oxoguanine or a THF-containing template. In all cases, DNA duplex containing THF as damage was processed to full length less effectively than DNA duplex containing 8-oxoguanine.
Collapse
Affiliation(s)
- Ekaterina A Belousova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, Lavrentieva Prospect 8, Novosibirsk 630090, Russia
| | | | | |
Collapse
|
30
|
Tornaletti S. Transcription arrest at DNA damage sites. Mutat Res 2005; 577:131-45. [PMID: 15904937 DOI: 10.1016/j.mrfmmm.2005.03.014] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2005] [Revised: 03/08/2005] [Accepted: 03/08/2005] [Indexed: 11/16/2022]
Abstract
Transcription arrest by RNA polymerase II at a DNA damage site on the transcribed strand is considered an essential step in initiation of transcription-coupled repair (TCR), a specialized repair pathway, which specifically removes lesions from transcribed strands of expressed genes. To understand how initiation of TCR occurs, it is necessary to characterize the properties of the transcription complex when it encounters a lesion in its path. The analysis of different types of arrested complexes should help us understand how an arrested RNA polymerase may signal the repair proteins to initiate a repair event. This article will review the recent literature describing how the presence of DNA damage along the DNA affects transcription elongation by RNA polymerase II and its implications for the initial steps of TCR.
Collapse
Affiliation(s)
- Silvia Tornaletti
- Department of Biological Sciences, Stanford University, Stanford, CA 94305-5020, USA.
| |
Collapse
|
31
|
Prakash S, Johnson RE, Prakash L. Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function. Annu Rev Biochem 2005; 74:317-53. [PMID: 15952890 DOI: 10.1146/annurev.biochem.74.082803.133250] [Citation(s) in RCA: 794] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review focuses on eukaryotic translesion synthesis (TLS) DNA polymerases, and the emphasis is on Saccharomyces cerevisiae and human Y-family polymerases (Pols) eta, iota, kappa, and Rev1, as well as on Polzeta, which is a member of the B-family polymerases. The fidelity, mismatch extension ability, and lesion bypass efficiencies of these different polymerases are examined and evaluated in the context of their structures. One major conclusion is that, despite the overall similarity of basic structural features among the Y-family polymerases, there is a high degree of specificity in their lesion bypass properties. Some are able to bypass a particular DNA lesion, whereas others are efficient at only the insertion step or the extension step of lesion bypass. This functional divergence is related to the differences in their structures. Polzeta is a highly specialized polymerase specifically adapted for extending primer termini opposite from a diverse array of DNA lesions, and depending upon the DNA lesion, it contributes to lesion bypass in a mutagenic or in an error-free manner. Proliferating cell nuclear antigen (PCNA) provides the central scaffold to which TLS polymerases bind for access to the replication ensemble stalled at a lesion site, and Rad6-Rad18-dependent protein ubiquitination is important for polymerase exchange.
Collapse
Affiliation(s)
- Satya Prakash
- Sealy Center for Molecular Science, University of Texas Medical Branch, Galveston, Texas 77555-1061, USA.
| | | | | |
Collapse
|
32
|
Johnson RE, Prakash L, Prakash S. Distinct mechanisms of cis-syn thymine dimer bypass by Dpo4 and DNA polymerase eta. Proc Natl Acad Sci U S A 2005; 102:12359-64. [PMID: 16116089 PMCID: PMC1194933 DOI: 10.1073/pnas.0504380102] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
UV-light-induced cyclobutane pyrimidine dimers (CPDs) present a severe block to synthesis by replicative DNA polymerases (Pols), whereas Poleta promotes proficient and error-free replication through CPDs. Although the archael Dpo4, which, like Poleta, belongs to the Y family of DNA Pols, can also replicate through a CPD, it is much less efficient than Poleta. The x-ray crystal structure of Dpo4 complexed with either the 3'-thymine (T) or the 5' T of a cis-syn TT dimer has indicated that, whereas the 3' T of the dimer forms a Watson-Crick base pair with the incoming dideoxy ATP, the 5' T forms a Hoogsteen base pair with the dideoxy ATP in syn conformation. Based upon these observations, a similar mechanism involving Hoogsteen base pairing of the 5' T of the dimer with the incoming A has been proposed for Poleta. Here we examine the mechanisms of CPD bypass by Dpo4 and Poleta using nucleotide analogs that specifically disrupt the Hoogsteen or Watson-Crick base pairing. Our results show that both Dpo4 and Poleta incorporate dATP opposite the 5' T of the CPD via Watson-Crick base pairing and not by Hoogsteen base pairing. Furthermore, opposite the 3' T of the dimer, the two Pols differ strikingly in the mechanisms of dATP incorporation, with Dpo4 incorporating opposite an abasic-like intermediate and Poleta using the normal Watson-Crick base pairing. These observations have important implications for the mechanisms used for the inefficient vs. efficient bypass of CPDs by DNA Pols.
Collapse
Affiliation(s)
- Robert E Johnson
- Sealy Center for Molecular Science, University of Texas Medical Branch, 6.104 Blocker Medical Research Building, Galveston, TX 77555-1061, USA
| | | | | |
Collapse
|
33
|
Sikorsky JA, Primerano DA, Fenger TW, Denvir J. Effect of DNA damage on PCR amplification efficiency with the relative threshold cycle method. Biochem Biophys Res Commun 2004; 323:823-30. [PMID: 15381074 DOI: 10.1016/j.bbrc.2004.08.168] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2004] [Indexed: 10/26/2022]
Abstract
Polymerase stop assays used to quantify DNA damage assume that single lesions are sufficient to block polymerase progression. To test the effect of specific lesions on PCR amplification efficiency, we amplified synthetic 90 base oligonucleotides containing normal or modified DNA bases using real-time PCR and determined the relative threshold cycle amplification efficiency of each template. We found that while the amplification efficiencies of templates containing a single 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) were not significantly perturbed, the presence of a single 8-oxo-7,8-dihydro-2'-deoxyadenosine, abasic site, or a cis-syn thymidine dimer dramatically reduced amplification efficiency. In addition, while templates containing two 8-oxodGs separated by 13 bases amplified as well as the unmodified template, the presence of two tandem 8-oxodGs substantially hindered amplification. From these findings, we conclude that the reduction in polymerase progression is dependent on the type of damage and the relative position of lesions within the template.
Collapse
Affiliation(s)
- Jan A Sikorsky
- Department of Microbiology, Immunology and Molecular Genetics, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25704, USA
| | | | | | | |
Collapse
|
34
|
Li Y, Dutta S, Doublié S, Bdour HM, Taylor JS, Ellenberger T. Nucleotide insertion opposite a cis-syn thymine dimer by a replicative DNA polymerase from bacteriophage T7. Nat Struct Mol Biol 2004; 11:784-90. [PMID: 15235589 DOI: 10.1038/nsmb792] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2004] [Accepted: 05/04/2004] [Indexed: 11/09/2022]
Abstract
Ultraviolet-induced DNA damage poses a lethal block to replication. To understand the structural basis for this, we determined crystal structures of a replicative DNA polymerase from bacteriophage T7 in complex with nucleotide substrates and a DNA template containing a cis-syn cyclobutane pyrimidine dimer (CPD). When the 3' thymine is the templating base, the CPD is rotated out of the polymerase active site and the fingers subdomain adopts an open orientation. When the 5' thymine is the templating base, the CPD lies within the polymerase active site where it base-pairs with the incoming nucleotide and the 3' base of the primer, while the fingers are in a closed conformation. These structures reveal the basis for the strong block of DNA replication that is caused by this photolesion.
Collapse
Affiliation(s)
- Ying Li
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
35
|
Quach N, Goodman MF, Shibata D. In vitro mutation artifacts after formalin fixation and error prone translesion synthesis during PCR. BMC Clin Pathol 2004; 4:1. [PMID: 15028125 PMCID: PMC368439 DOI: 10.1186/1472-6890-4-1] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2003] [Accepted: 02/12/2004] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND: Clinical specimens are routinely fixed in 10% buffered formalin and paraffin embedded. Although DNA is commonly extracted from fixed tissues and amplified by PCR, the effects of formalin fixation are relatively unknown. Formalin fixation is known to impair PCR, presumably through damage that blocks polymerase elongation, but an insidious possibility is error prone translesion synthesis across sites of damage, producing in vitro artifactual mutations during PCR. METHODS: To better understand the consequences of fixation, DNA specimens extracted from fresh or fixed tissues were amplified with Taq DNA polymerase, and their PCR products were cloned and sequenced. RESULTS: Significantly more (3- to 4-fold) mutations were observed with fixed DNA specimens. The majority of mutations were transitions, predominantly at A:T base pairs, randomly distributed along the template. CONCLUSIONS: Formalin fixation appears to cause random base damage, which can be bridged during PCR by Taq DNA polymerase through error prone translesion synthesis. Fixed DNA is a damaged but "readable" template.
Collapse
Affiliation(s)
- Nancy Quach
- Department of Pathology, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Myron F Goodman
- Hedco Molecular Biology Laboratories, Department of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Darryl Shibata
- Department of Pathology, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
36
|
Cannistraro VJ, Taylor JS. DNA-thumb interactions and processivity of T7 DNA polymerase in comparison to yeast polymerase eta. J Biol Chem 2004; 279:18288-95. [PMID: 14871898 DOI: 10.1074/jbc.m400282200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The replicative polymerase of bacteriophage T7 is structurally and mechanistically well characterized. The crystal structure of T7 DNA polymerase or gene 5 protein complexed to its processivity factor, Escherichia coli thioredoxin, a primer-template, and a dideoxynucleotide reveals how this enzyme interacts with the 3'-end of the primer-template, but does not show how thioredoxin confers processivity to the polymerase. In the crystal structure highly conserved amino acids Asn(335) and Ser(338) of the thumb subdomain of T7 DNA polymerase are seen to interact with phosphates 7 and 8 of the DNA template strand. Results with a mutant T7 DNA polymerase in which aliphatic residues are substituted for these amino acids and experiments with different length and methylphosphonate-modified primer-templates demonstrate that these interactions are essential for processive synthesis and d(A.T)(n) tract bypass. Our data with methylphosphonate-modified DNA suggests that thioredoxin confers processivity to T7 DNA polymerase in part by causing an interaction with the phosphate backbone or minor groove of DNA. Residues Asn(335) and Ser(338) may also function with a nearby helix-loop-helix motif located at residues 339-372 to enclose the DNA during processive synthesis. Our results suggest that this structure must be held close to the DNA by ionic interactions to function. These interactions also allow for DNA sliding but physically block the passage of a 3T bulge in the template. In contrast, yeast polymerase eta, a polymerase that non-mutagenically repairs cis-syn thymidine dimers, allows the same bulge to slide past its thumb subdomain during synthesis. A relaxed thumb interaction with the DNA could account for the notably low processivity of polymerase eta.
Collapse
|
37
|
Le Chatelier E, Bécherel OJ, d'Alençon E, Canceill D, Ehrlich SD, Fuchs RPP, Jannière L. Involvement of DnaE, the second replicative DNA polymerase from Bacillus subtilis, in DNA mutagenesis. J Biol Chem 2003; 279:1757-67. [PMID: 14593098 DOI: 10.1074/jbc.m310719200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In a large group of organisms including low G + C bacteria and eukaryotic cells, DNA synthesis at the replication fork strictly requires two distinct replicative DNA polymerases. These are designated pol C and DnaE in Bacillus subtilis. We recently proposed that DnaE might be preferentially involved in lagging strand synthesis, whereas pol C would mainly carry out leading strand synthesis. The biochemical analysis of DnaE reported here is consistent with its postulated function, as it is a highly potent enzyme, replicating as fast as 240 nucleotides/s, and stalling for more than 30 s when encountering annealed 5'-DNA end. DnaE is devoid of 3' --> 5'-proofreading exonuclease activity and has a low processivity (1-75 nucleotides), suggesting that it requires additional factors to fulfill its role in replication. Interestingly, we found that (i) DnaE is SOS-inducible; (ii) variation in DnaE or pol C concentration has no effect on spontaneous mutagenesis; (iii) depletion of pol C or DnaE prevents UV-induced mutagenesis; and (iv) purified DnaE has a rather relaxed active site as it can bypass lesions that generally block other replicative polymerases. These results suggest that DnaE and possibly pol C have a function in DNA repair/mutagenesis, in addition to their role in DNA replication.
Collapse
Affiliation(s)
- Emmanuelle Le Chatelier
- Génétique Microbienne, Institut National de la Recherche Agronomique, Domaine de Vilvert, 78352 Jouy-en-Josas Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
38
|
Washington MT, Prakash L, Prakash S. Mechanism of nucleotide incorporation opposite a thymine-thymine dimer by yeast DNA polymerase eta. Proc Natl Acad Sci U S A 2003; 100:12093-8. [PMID: 14527996 PMCID: PMC218718 DOI: 10.1073/pnas.2134223100] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
DNA polymerase eta (Poleta) has the unique ability to replicate through UV-light-induced cyclobutane pyrimidine dimers. Here we use pre-steady-state kinetic analyses to examine the mechanism of nucleotide incorporation opposite a cis-syn thymine-thymine (TT) dimer and an identical nondamaged sequence by yeast Poleta. Poleta displayed "burst" kinetics for nucleotide incorporation opposite both the damaged and nondamaged templates. Although a slight decrease occurred in the affinity (Kd) of nucleotide binding opposite the TT dimer relative to the nondamaged template, the rate (kpol) of nucleotide incorporation was the same whether the template was damaged or nondamaged. These results strongly support a mechanism in which the nucleotide is directly inserted opposite the TT dimer by using its intrinsic base-pairing ability without any hindrance from the distorted geometry of the lesion.
Collapse
Affiliation(s)
- M Todd Washington
- Sealy Center for Molecular Science, University of Texas Medical Branch, 6.104 Blocker Medical Research Building, 11th and Mechanic Streets, Galveston, TX 77555-1061, USA
| | | | | |
Collapse
|
39
|
Tornaletti S, Patrick SM, Turchi JJ, Hanawalt PC. Behavior of T7 RNA polymerase and mammalian RNA polymerase II at site-specific cisplatin adducts in the template DNA. J Biol Chem 2003; 278:35791-7. [PMID: 12829693 DOI: 10.1074/jbc.m305394200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription-coupled DNA repair is dedicated to the removal of DNA lesions from transcribed strands of expressed genes. RNA polymerase arrest at a lesion has been proposed as a sensitive signal for recruitment of repair enzymes to the lesion site. To understand how initiation of transcription-coupled repair may occur, we have characterized the properties of the transcription complex when it encounters a lesion in its path. Here we have compared the effect of cisplatin-induced intrastrand cross-links on transcription elongation by T7 RNA polymerase and mammalian RNA polymerase II. We found that a single cisplatin 1,2-d(GG) intrastrand cross-link or a single cisplatin 1,3-d(GTG) intrastrand cross-link is a strong block to both polymerases. Furthermore, the efficiency of the block at a cisplatin 1,2-d(GG) intrastrand cross-link was similar in several different nucleotide sequence contexts. Interestingly, some blockage was also observed when the single cisplatin 1,3-d(GTG) intrastrand cross-link was located in the non-transcribed strand. Transcription complexes arrested at the cisplatin adducts were substrates for the transcript cleavage reaction mediated by the elongation factor TFIIS, indicating that the RNA polymerase II complexes arrested at these lesions are not released from template DNA. Addition of TFIIS yielded a population of transcripts up to 30 nucleotides shorter than those arrested at the lesion. In the presence of nucleoside triphosphates, these shortened transcripts could be re-elongated up to the site of the lesion, indicating that the arrested complexes are stable and competent to resume elongation. These results show that cisplatin-induced lesions in the transcribed DNA strand constitute a strong physical barrier to RNA polymerase progression, and they support current models of transcription arrest and initiation of transcription-coupled repair.
Collapse
Affiliation(s)
- Silvia Tornaletti
- Department of Biological Sciences, Stanford University, Stanford, California 94305-5020, USA
| | | | | | | |
Collapse
|
40
|
Kalogeraki VS, Tornaletti S, Hanawalt PC. Transcription arrest at a lesion in the transcribed DNA strand in vitro is not affected by a nearby lesion in the opposite strand. J Biol Chem 2003; 278:19558-64. [PMID: 12646562 DOI: 10.1074/jbc.m301060200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cis-syn cyclobutane pyrimidine dimers (CPDs) are the most frequently formed lesions in UV-irradiated DNA. CPDs are repaired by the nucleotide excision repair pathway. Additionally, they are subject to transcription-coupled DNA repair. In the general model for transcription-coupled DNA repair, an RNA polymerase arrested at a lesion on the transcribed DNA strand facilitates repair by recruiting the repair machinery to the site of the lesion. Consistent with this model, transcription experiments in vitro have shown that CPDs in the transcribed DNA strand interfere with the translocation of prokaryotic and eukaryotic RNA polymerases. Here, we study the behavior of RNA polymerase when transcribing a template that contains two closely spaced lesions, one on each DNA strand. Similar DNA templates containing no CPD, or a single CPD on either the transcribed or the nontranscribed strand were used as controls. Using an in vitro transcription system with purified T7 RNA polymerase (T7 RNAP) or rat liver RNAP II, we characterized transcript length and efficiency of transcription in vitro. We also tested the sensitivity of the arrested RNAP II-DNA-RNA ternary complex, at a CPD in the transcribed strand, to transcription factor TFIIS. The presence of a nearby CPD in the nontranscribed strand did not affect the behavior of either RNA polymerase nor did it affect the reverse translocation ability of the RNAP II-arrested complex. Our results additionally indicate that the sequence context of a CPD affects the efficiency of T7 RNAP arrest more significantly than that of RNAP II.
Collapse
Affiliation(s)
- Virginia S Kalogeraki
- Department of Biological Sciences, Stanford University, Stanford, California 94305-5020, USA
| | | | | |
Collapse
|
41
|
Taylor JS. New structural and mechanistic insight into the A-rule and the instructional and non-instructional behavior of DNA photoproducts and other lesions. Mutat Res 2002; 510:55-70. [PMID: 12459443 DOI: 10.1016/s0027-5107(02)00252-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The A-rule in mutagenesis was originally proposed to explain the preponderance of X-->T mutations observed for abasic sites and UV damaged sites. It was deduced that when a polymerase was faced with a non-instructional lesion, typified by an abasic site, it would preferentially incorporate an A. In the absence of any other compelling explanation, any lesion causing an X-->T mutation has often been classified as non-instructional to account for its apparent lack of instructional ability. The A-rule and the classification of lesions as non-instructional were formulated before the active sites of any polymerases or the mechanism by which they synthesized DNA were known. Since then, much structural and kinetic data on DNA polymerases has emerged to suggest mechanistic explanations for the A-rule and the instructive and non-instructive behavior of lesions such as cis-syn dimers. Polymerases involved in the replication of undamaged DNA have highly constrained active sites that evolved to only accommodate the templating base and the complementary nucleotide and as a result are relatively intolerant of modifications that alter the size and shape of the nascent base pair. On the other hand, DNA damage bypass polymerases have much more open and less constrained active sites, which are much more tolerant of modifications. An otherwise instructional lesion would become non-instructional if it were unable to fit into the active site, and thereby behave transiently like an abasic site, leading to the insertion of whichever nucleotide is favored by the polymerase, generally an A. In this review, what is known about the active sites and mechanisms of replicative and DNA damage bypass polymerases will be discussed with regard to the A-rule and non-instructive behavior of lesions, typified by dipyrimidine photoproducts.
Collapse
|
42
|
Abstract
Oxaliplatin is a third generation platinum compound that differs from cisplatin and carboplatin in having a broader spectrum of antitumour activity. Molecular studies suggest that oxaliplatin adducts are recognised and processed differently than those produced by the earlier generation Pt-containing drugs. We report here studies on the kinetics of the development of oxaliplatin resistance, and the changes in the cellular pharmacology of oxaliplatin that accompany the emergence of the resistant phenotype in five parental human tumour cell lines and their sub-lines selected for acquired oxaliplatin resistance in vitro. During selection, resistance did not substantially increase until after at least six cycles of oxaliplatin treatment. Oxaliplatin demonstrated schedule-dependency with a 1-h exposure being substantially less cytotoxic than a continuous exposure. Whole cell uptake was linear with concentration, but uptake in the resistant cells averaged only 27+/-10 S.D.% of that in the sensitive cells. Pt accumulation in DNA was markedly reduced in four of the five resistant cell lines, but this did not correlate with either IC(50) or total cellular accumulation. Four of the five resistant sub-lines also demonstrated increased tolerance to adducts in DNA that ranged from 3.1 to 7.6-fold. We conclude that development of acquired resistance to oxaliplatin is accompanied by independent defects in both whole cell uptake and in adduct formation.
Collapse
Affiliation(s)
- M Mishima
- Department of Obstetrics and Gynecology, University of Tokyo, Japan
| | | | | | | | | |
Collapse
|
43
|
Morrison H, Harmon H. "Hot spots" associated with the photoinduced binding of cis-dichloro bis(1,10 phenanthroline)rhodium(III) chloride to HIV-1 and c-raf DNA. Photochem Photobiol 2000; 72:731-8. [PMID: 11140260 DOI: 10.1562/0031-8655(2000)072<0731:hsawtp>2.0.co;2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The octahedral rhodium complex, cis-dichloro bis(1,10 phenanthroline)rhodium(III) chloride (BISPHEN), is known to form covalent linkages with DNA involving the attachment of the metal to a base. In order to determine the sequence selectivity of this chemistry, solutions of the complex containing one of the double-stranded DNA plasmids, pBSSK.c-raf (eco) or pBSKS+.XE.LTR-F (a construct that contains sequences derived from the long terminal repeat [LTR] region of the human immunodeficiency virus) have been irradiated using UVA light. The DNA samples were denatured after irradiation, a primer was annealed to one of the strands, and a complementary strand was constructed using a polymerase enzyme. Polyacrylamide gel sequencing analysis was used to reveal stops created in the complementary strand caused by the polymerase encountering a metal-bound base. The data indicate that "hot spots" primarily occur at, or adjacent to, guanines (G), with a particularly strong preference for strings of G. In the latter case, the hottest spot is at the 5'G. These results are consistent with our previously postulated mechanism for the covalent binding chemistry which involves photooxidation of deoxyguanosine by the excited state of the metal complex as the primary photochemical step.
Collapse
Affiliation(s)
- H Morrison
- Department of Chemistry, Purdue University, West Lafayette, IN 47907-1393, USA.
| | | |
Collapse
|
44
|
Lin X, Ramamurthi K, Mishima M, Kondo A, Howell SB. p53 interacts with the DNA mismatch repair system to modulate the cytotoxicity and mutagenicity of hydrogen peroxide. Mol Pharmacol 2000; 58:1222-9. [PMID: 11093757 DOI: 10.1124/mol.58.6.1222] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study focused on the question of how the DNA mismatch repair (MMR) system and p53 interact to maintain genomic integrity in the presence of the mutagenic stress induced by hydrogen peroxide (H(2)O(2)). The cytotoxic and mutagenic effects of H(2)O(2) were compared in four colon carcinoma sublines: HCT116, HCT116/E6, HCT116+ch3, and HCT116+ch3/E6, representing MMR(-)/p53(+), MMR(-)/p53(-), MMR(+)/p53(+), and MMR(+)/p53(-) phenotypes, respectively. Loss of p53 in MMR-proficient cells did not significantly alter cellular sensitivity to H(2)O(2), but disruption of p53 in MMR-deficient cells resulted in substantial resistance to H(2)O(2) (IC(50) values of 203.8 and 66.2 microM for MMR(-)/p53(-) and MMR(-)/p53(+) cells, respectively). The effect of loss of p53 and MMR function on sensitivity to the mutagenic effect of H(2)O(2) paralleled the effects on cytotoxic sensitivity. In MMR-deficient cells, loss of p53 resulted in a 3.5- and 2.2-fold increase in the generation of 6-thiogunaine and ouabain-resistant clones, respectively. Loss of MMR in combination with loss of p53 synergistically increased the frequency of frameshift mutations in the CA repeat tracts of the out-of-frame shuttle vector pZCA29 and further promoted instability of microsatellite sequences under H(2)O(2) stress. Flow cytometric analysis showed that H(2)O(2) treatment produced a G(l) and G(2)/M phase arrest in MMR(+)/p53(+) cells. Loss of MMR did not alter the ability of H(2)O(2) to activate either checkpoint; loss of p53 in either the MMR-proficient or deficient cells resulted in impairment of the G(l) arrest and a more pronounced G(2)/M arrest. H(2)O(2) caused a greater and more longed increase in p53 protein levels in MMR-proficient than in the MMR-deficient cells. The results demonstrate that the effect of disabling p53 function is modulated by the proficiency of the MMR system (and vice versa) and that there is an overlap between the functions of p53 and the MMR system with respect to the activation of apoptosis and mutagenesis after an oxidative stress.
Collapse
Affiliation(s)
- X Lin
- Department of Medicine and the Cancer Center, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | | | |
Collapse
|
45
|
Yuan F, Zhang Y, Rajpal DK, Wu X, Guo D, Wang M, Taylor JS, Wang Z. Specificity of DNA lesion bypass by the yeast DNA polymerase eta. J Biol Chem 2000; 275:8233-9. [PMID: 10713149 DOI: 10.1074/jbc.275.11.8233] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA polymerase eta (Pol(eta), xeroderma pigmentosum variant, or Rad30) plays an important role in an error-free response to unrepaired UV damage during replication. It faithfully synthesizes DNA opposite a thymine-thymine cis-syn-cyclobutane dimer. We have purified the yeast Pol(eta) and studied its lesion bypass activity in vitro with various types of DNA damage. The yeast Pol(eta) lacked a nuclease or a proofreading activity. It efficiently bypassed 8-oxoguanine, incorporating C, A, and G opposite the lesion with a relative efficiency of approximately 100:56:14, respectively. The yeast Pol(eta) efficiently incorporated a C opposite an acetylaminofluorene-modified G, and efficiently inserted a G or less frequently an A opposite an apurinic/apyrimidinic (AP) site but was unable to extend the DNA synthesis further in both cases. However, some continued DNA synthesis was observed in the presence of the yeast Pol(zeta) following the Pol(eta) action opposite an AP site, achieving true lesion bypass. In contrast, the yeast Pol(alpha) was able to bypass efficiently a template AP site, predominantly incorporating an A residue opposite the lesion. These results suggest that other than UV damage, Pol(eta) may also play a role in bypassing additional DNA lesions, some of which can be error-prone.
Collapse
Affiliation(s)
- F Yuan
- Graduate Center for Toxicology, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | | | | | | | | | |
Collapse
|