1
|
Palos-Fernández R, Aguilar-Pontes MV, Puebla-Planas G, Berger H, Studt-Reinhold L, Strauss J, Di Pietro A, López-Berges MS. Copper acquisition is essential for plant colonization and virulence in a root-infecting vascular wilt fungus. PLoS Pathog 2024; 20:e1012671. [PMID: 39495784 PMCID: PMC11563359 DOI: 10.1371/journal.ppat.1012671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/14/2024] [Accepted: 10/15/2024] [Indexed: 11/06/2024] Open
Abstract
Plant pathogenic fungi provoke devastating agricultural losses and are difficult to control. How these organisms acquire micronutrients during growth in the host environment remains poorly understood. Here we show that efficient regulation of copper acquisition mechanisms is crucial for plant colonization and virulence in the soilborne ascomycete Fusarium oxysporum, the causal agent of vascular wilt disease in more than 150 different crops. Using a combination of RNA-seq and ChIP-seq, we establish a direct role of the transcriptional regulator Mac1 in activation of copper deficiency response genes, many of which are induced during plant infection. Loss of Mac1 impaired growth of F. oxysporum under low copper conditions and abolishes pathogenicity on tomato plants and on the invertebrate animal host Galleria mellonella. Importantly, overexpression of two Mac1 target genes encoding a copper reductase and a copper transporter was sufficient to restore virulence in the mac1 mutant background. Our results establish a previously unrecognized role of copper reduction and uptake in fungal infection of plants and reveal new ways to protect crops from phytopathogens.
Collapse
Affiliation(s)
- Rafael Palos-Fernández
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba, Spain
| | - María Victoria Aguilar-Pontes
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba, Spain
| | - Gema Puebla-Planas
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba, Spain
| | - Harald Berger
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, BOKU University, Vienna, Austria
| | - Lena Studt-Reinhold
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, BOKU University, Vienna, Austria
| | - Joseph Strauss
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, BOKU University, Vienna, Austria
| | - Antonio Di Pietro
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba, Spain
| | - Manuel Sánchez López-Berges
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
2
|
Moraes D, Silva-Bailão MG, Bailão AM. Molecular aspects of copper homeostasis in fungi. ADVANCES IN APPLIED MICROBIOLOGY 2024; 129:189-229. [PMID: 39389706 DOI: 10.1016/bs.aambs.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Copper homeostasis in fungi is a tightly regulated process crucial for cellular functions. Fungi acquire copper from their environment, with transporters facilitating its uptake into the cell. Once inside, copper is utilized in various metabolic pathways, including respiration and antioxidant defense. However, excessive copper can be toxic by promoting cell damage mainly due to oxidative stress and metal displacements. Fungi employ intricate regulatory mechanisms to maintain optimal copper levels. These involve transcription factors that control the expression of genes involved in copper transport, storage, and detoxification. Additionally, chaperone proteins assist in copper trafficking within the cell, ensuring its delivery to specific targets. Furthermore, efflux pumps help remove excess copper from the cell. Altogether, these mechanisms enable fungi to balance copper levels, ensuring proper cellular function while preventing toxicity. Understanding copper homeostasis in fungi is not only essential for fungal biology but also holds implications for various applications, including biotechnology and antifungal drug development.
Collapse
Affiliation(s)
- Dayane Moraes
- Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | | | | |
Collapse
|
3
|
Yan K, Guo L, Zhang B, Chang M, Meng J, Deng B, Liu J, Hou L. MAC Family Transcription Factors Enhance the Tolerance of Mycelia to Heat Stress and Promote the Primordial Formation Rate of Pleurotus ostreatus. J Fungi (Basel) 2023; 10:13. [PMID: 38248923 PMCID: PMC10816978 DOI: 10.3390/jof10010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Accepted: 12/10/2023] [Indexed: 01/23/2024] Open
Abstract
Pleurotus ostreatus is a typical tetrapolar heterologous edible mushroom, and its growth and development regulatory mechanism has become a research hotspot in recent years. The MAC1 protein is a transcription factor that perceives copper and can regulate the expression of multiple genes, thereby affecting the growth and development of organisms. However, its function in edible mushrooms is still unknown. In this study, two transcription factor genes, PoMCA1a and PoMAC1b, were identified. Afterwards, PoMAC1 overexpression (OE) and RNA interference (RNAi) strains were constructed to further explore gene function. The results showed that the PoMAC1 mutation had no significant effect on the growth rate of mycelia. Further research has shown that OE-PoMAC1a strains and RNAi-PoMAC1b strains exhibit strong tolerance under 32 °C heat stress. However, under 40 °C heat stress, the OE of PoMAC1a and PoMAC1b promoted the recovery of mycelial growth after heat stress. Second, the OE of PoMAC1a can promote the rapid formation of primordia and shorten the cultivation cycle. In summary, this study indicated that there are functional differences between PoMAC1a and PoMAC1b under different heat stresses during the vegetative growth stage, and PoMAC1a has a positive regulatory effect on the formation of primordia during the reproductive growth stage.
Collapse
Affiliation(s)
- Kexing Yan
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (K.Y.); (L.G.); (B.Z.); (M.C.); (J.M.); (B.D.)
| | - Lifeng Guo
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (K.Y.); (L.G.); (B.Z.); (M.C.); (J.M.); (B.D.)
| | - Benfeng Zhang
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (K.Y.); (L.G.); (B.Z.); (M.C.); (J.M.); (B.D.)
| | - Mingchang Chang
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (K.Y.); (L.G.); (B.Z.); (M.C.); (J.M.); (B.D.)
- Shanxi Research Center for Engineering Technology of Edible Fungi, Jinzhong 030801, China
| | - Junlong Meng
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (K.Y.); (L.G.); (B.Z.); (M.C.); (J.M.); (B.D.)
- Shanxi Research Center for Engineering Technology of Edible Fungi, Jinzhong 030801, China
| | - Bing Deng
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (K.Y.); (L.G.); (B.Z.); (M.C.); (J.M.); (B.D.)
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Jinzhong 030801, China
| | - Jingyu Liu
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (K.Y.); (L.G.); (B.Z.); (M.C.); (J.M.); (B.D.)
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Jinzhong 030801, China
| | - Ludan Hou
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (K.Y.); (L.G.); (B.Z.); (M.C.); (J.M.); (B.D.)
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Jinzhong 030801, China
| |
Collapse
|
4
|
Moraes D, Rodrigues JGC, Silva MG, Soares LW, Soares CMDA, Bailão AM, Silva-Bailão MG. Copper acquisition and detoxification machineries are conserved in dimorphic fungi. FUNGAL BIOL REV 2023. [DOI: 10.1016/j.fbr.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Culbertson EM, Culotta VC. Copper in infectious disease: Using both sides of the penny. Semin Cell Dev Biol 2021; 115:19-26. [PMID: 33423931 DOI: 10.1016/j.semcdb.2020.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/28/2020] [Accepted: 12/08/2020] [Indexed: 12/17/2022]
Abstract
The transition metal Cu is an essential micronutrient that serves as a co-factor for numerous enzymes involved in redox and oxygen chemistry. However, Cu is also a potentially toxic metal, especially to unicellular microbes that are in direct contact with their environment. Since 400 BCE, Cu toxicity has been leveraged for its antimicrobial properties and even today, Cu based materials are being explored as effective antimicrobials against human pathogens spanning bacteria, fungi, and viruses, including the SARS-CoV-2 agent of the 2019-2020 pandemic. Given that Cu has the double-edged property of being both highly toxic and an essential micronutrient, it plays an active and complicated role at the host-pathogen interface. Humans have evolved methods of incorporating Cu into innate and adaptive immune processes and both sides of the penny (Cu toxicity and Cu as a nutrient) are employed. Here we review the evolution of Cu in biology and its multi-faceted roles in infectious disease, from the viewpoints of the microbial pathogens as well as the animal hosts they infect.
Collapse
Affiliation(s)
- Edward M Culbertson
- The Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Valeria C Culotta
- The Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| |
Collapse
|
6
|
Croft T, Venkatakrishnan P, Lin SJ. NAD + Metabolism and Regulation: Lessons From Yeast. Biomolecules 2020; 10:E330. [PMID: 32092906 PMCID: PMC7072712 DOI: 10.3390/biom10020330] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/15/2020] [Accepted: 02/16/2020] [Indexed: 12/13/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential metabolite involved in various cellular processes. The cellular NAD+ pool is maintained by three biosynthesis pathways, which are largely conserved from bacteria to human. NAD+ metabolism is an emerging therapeutic target for several human disorders including diabetes, cancer, and neuron degeneration. Factors regulating NAD+ homeostasis have remained incompletely understood due to the dynamic nature and complexity of NAD+ metabolism. Recent studies using the genetically tractable budding yeast Saccharomyces cerevisiae have identified novel NAD+ homeostasis factors. These findings help provide a molecular basis for how may NAD+ and NAD+ homeostasis factors contribute to the maintenance and regulation of cellular function. Here we summarize major NAD+ biosynthesis pathways, selected cellular processes that closely connect with and contribute to NAD+ homeostasis, and regulation of NAD+ metabolism by nutrient-sensing signaling pathways. We also extend the discussions to include possible implications of NAD+ homeostasis factors in human disorders. Understanding the cross-regulation and interconnections of NAD+ precursors and associated cellular pathways will help elucidate the mechanisms of the complex regulation of NAD+ homeostasis. These studies may also contribute to the development of effective NAD+-based therapeutic strategies specific for different types of NAD+ deficiency related disorders.
Collapse
Affiliation(s)
| | | | - Su-Ju Lin
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA 95616, USA; (T.C.); (P.V.)
| |
Collapse
|
7
|
Kim MS, Cho KH, Park KH, Jang J, Hahn JS. Activation of Haa1 and War1 transcription factors by differential binding of weak acid anions in Saccharomyces cerevisiae. Nucleic Acids Res 2019; 47:1211-1224. [PMID: 30476185 PMCID: PMC6379682 DOI: 10.1093/nar/gky1188] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 10/31/2018] [Accepted: 11/07/2018] [Indexed: 01/03/2023] Open
Abstract
In Saccharomyces cerevisiae, Haa1 and War1 transcription factors are involved in cellular adaptation against hydrophilic weak acids and lipophilic weak acids, respectively. However, it is unclear how these transcription factors are differentially activated depending on the identity of the weak acid. Using a field-effect transistor (FET)-type biosensor based on carbon nanofibers, in the present study we demonstrate that Haa1 and War1 directly bind to various weak acid anions with different affinities. Haa1 is most sensitive to acetate, followed by lactate, whereas War1 is most sensitive to benzoate, followed by sorbate, reflecting their differential activation during weak acid stresses. We show that DNA binding by Haa1 is induced in the presence of acetic acid and that the N-terminal Zn-binding domain is essential for this activity. Acetate binds to the N-terminal 150-residue region, and the transcriptional activation domain is located between amino acid residues 230 and 483. Our data suggest that acetate binding converts an inactive Haa1 to the active form, which is capable of DNA binding and transcriptional activation.
Collapse
Affiliation(s)
- Myung Sup Kim
- School of Chemical and Biological Engineering, Seoul National University, Institute of Chemical Processes, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Kyung Hee Cho
- School of Chemical and Biological Engineering, Seoul National University, Institute of Chemical Processes, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Kwang Hyun Park
- School of Chemical and Biological Engineering, Seoul National University, Institute of Chemical Processes, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jyongsik Jang
- School of Chemical and Biological Engineering, Seoul National University, Institute of Chemical Processes, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Ji-Sook Hahn
- School of Chemical and Biological Engineering, Seoul National University, Institute of Chemical Processes, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
8
|
James Theoga Raj C, Lin SJ. Cross-talk in NAD + metabolism: insights from Saccharomyces cerevisiae. Curr Genet 2019; 65:1113-1119. [PMID: 30993413 DOI: 10.1007/s00294-019-00972-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 04/11/2019] [Indexed: 02/07/2023]
Abstract
NAD+ (nicotinamide adenine dinucleotide) is an essential metabolite involved in a myriad of cellular processes. The NAD+ pool is maintained by three biosynthesis pathways, which are largely conserved from bacteria to human with some species-specific differences. Studying the regulation of NAD+ metabolism has been difficult due to the dynamic flexibility of NAD+ intermediates, the redundancy of biosynthesis pathways, and the complex interconnections among them. The budding yeast Saccharomyces cerevisiae provides an efficient genetic model for the isolation and study of factors that regulate specific NAD+ biosynthesis pathways. A recent study has uncovered a putative cross-regulation between the de novo NAD+ biosynthesis and copper homeostasis mediated by a copper-sensing transcription factor Mac1. Mac1 appears to work with the Hst1-Sum1-Rfm1 complex to repress the expression of de novo NAD+ biosynthesis genes. Here, we extend the discussions to include additional nutrient- and stress-sensing pathways that have been associated with the regulation of NAD+ homeostasis. NAD+ metabolism is an emerging therapeutic target for several human diseases. NAD+ preservation also helps ameliorate age-associated metabolic disorders. Recent findings in yeast contribute to the understanding of the molecular basis underlying the cross-regulation of NAD+ metabolism and other signaling pathways.
Collapse
Affiliation(s)
- Christol James Theoga Raj
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, One Shields Ave., Davis, CA, 95616, USA
| | - Su-Ju Lin
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, One Shields Ave., Davis, CA, 95616, USA.
| |
Collapse
|
9
|
James Theoga Raj C, Croft T, Venkatakrishnan P, Groth B, Dhugga G, Cater T, Lin SJ. The copper-sensing transcription factor Mac1, the histone deacetylase Hst1, and nicotinic acid regulate de novo NAD + biosynthesis in budding yeast. J Biol Chem 2019; 294:5562-5575. [PMID: 30760525 DOI: 10.1074/jbc.ra118.006987] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/01/2019] [Indexed: 12/16/2022] Open
Abstract
NADH (NAD+) is an essential metabolite involved in various cellular biochemical processes. The regulation of NAD+ metabolism is incompletely understood. Here, using budding yeast (Saccharomyces cerevisiae), we established an NAD+ intermediate-specific genetic system to identify factors that regulate the de novo branch of NAD+ biosynthesis. We found that a mutant strain (mac1Δ) lacking Mac1, a copper-sensing transcription factor that activates copper transport genes during copper deprivation, exhibits increases in quinolinic acid (QA) production and NAD+ levels. Similar phenotypes were also observed in the hst1Δ strain, deficient in the NAD+-dependent histone deacetylase Hst1, which inhibits de novo NAD+ synthesis by repressing BNA gene expression when NAD+ is abundant. Interestingly, the mac1Δ and hst1Δ mutants shared a similar NAD+ metabolism-related gene expression profile, and deleting either MAC1 or HST1 de-repressed the BNA genes. ChIP experiments with the BNA2 promoter indicated that Mac1 works with Hst1-containing repressor complexes to silence BNA expression. The connection of Mac1 and BNA expression suggested that copper stress affects de novo NAD+ synthesis, and we show that copper stress induces both BNA expression and QA production. Moreover, nicotinic acid inhibited de novo NAD+ synthesis through Hst1-mediated BNA repression, hindered the reuptake of extracellular QA, and thereby reduced de novo NAD+ synthesis. In summary, we have identified and characterized novel NAD+ homeostasis factors. These findings will expand our understanding of the molecular basis and regulation of NAD+ metabolism.
Collapse
Affiliation(s)
- Christol James Theoga Raj
- From the Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, California 95616
| | - Trevor Croft
- From the Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, California 95616
| | - Padmaja Venkatakrishnan
- From the Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, California 95616
| | - Benjamin Groth
- From the Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, California 95616
| | - Gagandeep Dhugga
- From the Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, California 95616
| | - Timothy Cater
- From the Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, California 95616
| | - Su-Ju Lin
- From the Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, California 95616
| |
Collapse
|
10
|
The Role of Copper Homeostasis at the Host-Pathogen Axis: From Bacteria to Fungi. Int J Mol Sci 2019; 20:ijms20010175. [PMID: 30621285 PMCID: PMC6337107 DOI: 10.3390/ijms20010175] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/28/2018] [Accepted: 12/29/2018] [Indexed: 02/01/2023] Open
Abstract
Copper is an essential trace element participating in many vital biological processes, however it becomes a toxic agent when in excess. Thus, precise and tight regulation of copper homeostasis processes, including transport, delivery, storage, detoxification, and efflux machineries, is important, ensuring that only the amount needed to sustain basic biological functions and simultaneously prevent copper toxicity in the cell is maintained. Numerous exciting studies have revealed that copper plays an indispensable role at the microbial pathogen-host axis for entities ranging from pathogenic bacteria to deadly fungal species. Analyses of copper homeostases in bacteria and fungi extensively demonstrate that copper is utilized by the host immune system as an anti-microbial agent. The expression of copper efflux and detoxification from microbial pathogens is induced to counteract the host's copper bombardment, which in turn disrupts these machineries, resulting in the attenuation of microbial survival in host tissue. We hereby review the latest work in copper homeostases in pathogenic bacteria and fungi and focus on the maintenance of a copper balance at the pathogen-host interaction axis.
Collapse
|
11
|
Garcia Silva-Bailão M, Lobato Potenciano da Silva K, Raniere Borges dos Anjos L, de Sousa Lima P, de Melo Teixeira M, Maria de Almeida Soares C, Melo Bailão A. Mechanisms of copper and zinc homeostasis in pathogenic black fungi. Fungal Biol 2018; 122:526-537. [DOI: 10.1016/j.funbio.2017.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/01/2017] [Accepted: 12/04/2017] [Indexed: 02/08/2023]
|
12
|
Lai YH, Kuo C, Kuo MT, Chen HHW. Modulating Chemosensitivity of Tumors to Platinum-Based Antitumor Drugs by Transcriptional Regulation of Copper Homeostasis. Int J Mol Sci 2018; 19:ijms19051486. [PMID: 29772714 PMCID: PMC5983780 DOI: 10.3390/ijms19051486] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/10/2018] [Accepted: 05/12/2018] [Indexed: 12/21/2022] Open
Abstract
Platinum (Pt)-based antitumor agents have been effective in treating many human malignancies. Drug importing, intracellular shuffling, and exporting—carried out by the high-affinity copper (Cu) transporter (hCtr1), Cu chaperone (Ato x1), and Cu exporters (ATP7A and ATP7B), respectively—cumulatively contribute to the chemosensitivity of Pt drugs including cisplatin and carboplatin, but not oxaliplatin. This entire system can also handle Pt drugs via interactions between Pt and the thiol-containing amino acid residues in these proteins; the interactions are strongly influenced by cellular redox regulators such as glutathione. hCtr1 expression is induced by acute Cu deprivation, and the induction is regulated by the transcription factor specific protein 1 (Sp1) which by itself is also regulated by Cu concentration variations. Copper displaces zinc (Zn) coordination at the zinc finger (ZF) domains of Sp1 and inactivates its DNA binding, whereas Cu deprivation enhances Sp1-DNA interactions and increases Sp1 expression, which in turn upregulates hCtr1. Because of the shared transport system, chemosensitivity of Pt drugs can be modulated by targeting Cu transporters. A Cu-lowering agent (trientine) in combination with a Pt drug (carboplatin) has been used in clinical studies for overcoming Pt-resistance. Future research should aim at further developing effective Pt drug retention strategies for improving the treatment efficacy.
Collapse
Affiliation(s)
- Yu-Hsuan Lai
- Department of Radiation Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan.
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan.
| | - Chin Kuo
- Department of Radiation Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan.
| | - Macus Tien Kuo
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| | - Helen H W Chen
- Department of Radiation Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan.
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
13
|
Abstract
Fungal cells colonize and proliferate in distinct niches, from soil and plants to diverse tissues in human hosts. Consequently, fungi are challenged with the goal of obtaining nutrients while simultaneously elaborating robust regulatory mechanisms to cope with a range of availability of nutrients, from scarcity to excess. Copper is essential for life but also potentially toxic. In this review we describe the sophisticated homeostatic mechanisms by which fungi acquire, utilize, and control this biochemically versatile trace element. Fungal pathogens, which can occupy distinct host tissues that have their own intrinsic requirements for copper homeostasis, have evolved mechanisms to acquire copper to successfully colonize the host, disseminate to other tissues, and combat host copper bombardment mechanisms that would otherwise mitigate virulence.
Collapse
Affiliation(s)
| | | | - Dennis J Thiele
- Department of Pharmacology and Cancer Biology.,Department of Molecular Genetics and Microbiology, and.,Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710;
| |
Collapse
|
14
|
Cuf2 Is a Transcriptional Co-Regulator that Interacts with Mei4 for Timely Expression of Middle-Phase Meiotic Genes. PLoS One 2016; 11:e0151914. [PMID: 26986212 PMCID: PMC4795683 DOI: 10.1371/journal.pone.0151914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 03/07/2016] [Indexed: 11/19/2022] Open
Abstract
The Schizosaccharomyces pombe cuf2+ gene encodes a nuclear regulator that is required for timely activation and repression of several middle-phase genes during meiotic differentiation. In this study, we sought to gain insight into the mechanism by which Cuf2 regulates meiotic gene expression. Using a chromatin immunoprecipitation approach, we demonstrate that Cuf2 is specifically associated with promoters of both activated and repressed target genes, in a time-dependent manner. In case of the fzr1+ gene whose transcription is positively affected by Cuf2, promoter occupancy by Cuf2 results in a concomitant increased association of RNA polymerase II along its coding region. In marked contrast, association of RNA polymerase II with chromatin decreases when Cuf2 negatively regulates target gene expression such as wtf13+. Although Cuf2 operates through a transcriptional mechanism, it is unable to perform its function in the absence of the Mei4 transcription factor, which is a member of the conserved forkhead protein family. Using coimmunoprecipitation experiments, results showed that Cuf2 is a binding partner of Mei4. Bimolecular fluorescence complementation experiments brought further evidence that an association between Cuf2 and Mei4 occurs in the nucleus. Analysis of fzr1+ promoter regions revealed that two FLEX-like elements, which are bound by the transcription factor Mei4, are required for chromatin occupancy by Cuf2. Together, results reported here revealed that Cuf2 and Mei4 co-regulate the timely expression of middle-phase genes during meiosis.
Collapse
|
15
|
Wu X, Kim H, Seravalli J, Barycki JJ, Hart PJ, Gohara DW, Di Cera E, Jung WH, Kosman DJ, Lee J. Potassium and the K+/H+ Exchanger Kha1p Promote Binding of Copper to ApoFet3p Multi-copper Ferroxidase. J Biol Chem 2016; 291:9796-806. [PMID: 26966178 DOI: 10.1074/jbc.m115.700500] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Indexed: 01/24/2023] Open
Abstract
Acquisition and distribution of metal ions support a number of biological processes. Here we show that respiratory growth of and iron acquisition by the yeast Saccharomyces cerevisiae relies on potassium (K(+)) compartmentalization to the trans-Golgi network via Kha1p, a K(+)/H(+) exchanger. K(+) in the trans-Golgi network facilitates binding of copper to the Fet3p multi-copper ferroxidase. The effect of K(+) is not dependent on stable binding with Fet3p or alteration of the characteristics of the secretory pathway. The data suggest that K(+) acts as a chemical factor in Fet3p maturation, a role similar to that of cations in folding of nucleic acids. Up-regulation of KHA1 gene in response to iron limitation via iron-specific transcription factors indicates that K(+) compartmentalization is linked to cellular iron homeostasis. Our study reveals a novel functional role of K(+) in the binding of copper to apoFet3p and identifies a K(+)/H(+) exchanger at the secretory pathway as a new molecular factor associated with iron uptake in yeast.
Collapse
Affiliation(s)
- Xiaobin Wu
- From the Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0664, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China 200234
| | - Heejeong Kim
- From the Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0664
| | - Javier Seravalli
- From the Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0664
| | - Joseph J Barycki
- From the Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0664
| | - P John Hart
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229-3900
| | - David W Gohara
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104
| | - Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104
| | - Won Hee Jung
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Korea 456-756, and
| | - Daniel J Kosman
- Department of Biochemistry, University at Buffalo, Buffalo, New York 14214-3000
| | - Jaekwon Lee
- From the Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0664,
| |
Collapse
|
16
|
Lv X, Zheng F, Li C, Zhang W, Chen G, Liu W. Characterization of a copper responsive promoter and its mediated overexpression of the xylanase regulator 1 results in an induction-independent production of cellulases in Trichoderma reesei. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:67. [PMID: 25926888 PMCID: PMC4413991 DOI: 10.1186/s13068-015-0249-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/30/2015] [Indexed: 05/07/2023]
Abstract
BACKGROUND Trichoderma reesei represents an important workhorse for industrial production of cellulases as well as other proteins. The large-scale production is usually performed in a substrate-inducing manner achieved by a fine-tuned cooperation of a suite of transcription factors. Their production and subsequent analysis are, however, often either difficult to manipulate or complicated by the concomitant production of other inducible proteins. Alternatives to control gene expression independent of the nutritional state are thus preferred in some cases to facilitate not only biochemical studies of proteins but also genetic engineering of the producer. RESULTS We identified a copper transporter encoding gene tcu1 (jgi:Trire2:52315) in T. reesei, the transcription of which was highly responsive to copper availability. Whereas excess copper repressed the expression of tcu1 from T. reesei, eliminating copper addition in the medium resulted in a high-level transcription of tcu1. The usefulness of the system was further illustrated by the high-level expression of specific cellulases driven by the tcu1 promoter in T. reesei when cultivated on D-glucose or glycerol as the sole carbon source. A recombinant T. reesei strain, which overexpressed the main transcription activator of hydrolases (xylanase regulator 1) under the control of tcu1 promoter, was found to be relieved from the carbon catabolite repression and thus displayed a constitutive cellulase expression. Moreover, the amount and activities of cellulases produced by this strain on glycerol or glucose fully recapitulated those of the parental strain produced on Avicel. CONCLUSION Expression of T. reesei tcu1 gene was tightly controlled by copper availability, and a homologous protein expression system was developed based on this promoter. Deregulation of XYR1 (xylanase regulator 1) mediated by the tcu1 promoter not only overcame the carbon catabolite repression of cellulases but also resulted in their full expression even on the non-inducing carbon sources.
Collapse
Affiliation(s)
- Xinxing Lv
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, No.27 Shanda South Road, Jinan, 250100 Shandong People’s Republic of China
| | - Fanglin Zheng
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, No.27 Shanda South Road, Jinan, 250100 Shandong People’s Republic of China
| | - Chunyan Li
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, No.27 Shanda South Road, Jinan, 250100 Shandong People’s Republic of China
| | - Weixin Zhang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, No.27 Shanda South Road, Jinan, 250100 Shandong People’s Republic of China
| | - Guanjun Chen
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, No.27 Shanda South Road, Jinan, 250100 Shandong People’s Republic of China
| | - Weifeng Liu
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, No.27 Shanda South Road, Jinan, 250100 Shandong People’s Republic of China
| |
Collapse
|
17
|
Abstract
Copper is an essential but potentially toxic redox-active metal, so the levels and distribution of this metal are carefully regulated to ensure that it binds to the correct proteins. Previous studies of copper-dependent transcription in the yeast Saccharomyces cerevisiae have focused on the response of genes to changes in the exogenous levels of copper. We now report that yeast copper genes are regulated in response to the DNA-damaging agents methyl methanesulfonate (MMS) and hydroxyurea by a mechanism(s) that requires the copper-responsive transcription factors Mac1 and AceI, copper superoxide dismutase (Sod1) activity, and the Rad53 checkpoint kinase. Furthermore, in copper-starved yeast, the response of the Rad53 pathway to MMS is compromised due to a loss of Sod1 activity, consistent with the model that yeast imports copper to ensure Sod1 activity and Rad53 signaling. Crucially, the Mac1 transcription factor undergoes changes in its redox state in response to changing levels of copper or MMS. This study has therefore identified a novel regulatory relationship between cellular redox, copper homeostasis, and the DNA damage response in yeast.
Collapse
|
18
|
Abstract
All living organisms require nutrient minerals for growth and have developed mechanisms to acquire, utilize, and store nutrient minerals effectively. In the aqueous cellular environment, these elements exist as charged ions that, together with protons and hydroxide ions, facilitate biochemical reactions and establish the electrochemical gradients across membranes that drive cellular processes such as transport and ATP synthesis. Metal ions serve as essential enzyme cofactors and perform both structural and signaling roles within cells. However, because these ions can also be toxic, cells have developed sophisticated homeostatic mechanisms to regulate their levels and avoid toxicity. Studies in Saccharomyces cerevisiae have characterized many of the gene products and processes responsible for acquiring, utilizing, storing, and regulating levels of these ions. Findings in this model organism have often allowed the corresponding machinery in humans to be identified and have provided insights into diseases that result from defects in ion homeostasis. This review summarizes our current understanding of how cation balance is achieved and modulated in baker's yeast. Control of intracellular pH is discussed, as well as uptake, storage, and efflux mechanisms for the alkali metal cations, Na(+) and K(+), the divalent cations, Ca(2+) and Mg(2+), and the trace metal ions, Fe(2+), Zn(2+), Cu(2+), and Mn(2+). Signal transduction pathways that are regulated by pH and Ca(2+) are reviewed, as well as the mechanisms that allow cells to maintain appropriate intracellular cation concentrations when challenged by extreme conditions, i.e., either limited availability or toxic levels in the environment.
Collapse
|
19
|
Liang ZD, Tsai WB, Lee MY, Savaraj N, Kuo MT. Specificity protein 1 (sp1) oscillation is involved in copper homeostasis maintenance by regulating human high-affinity copper transporter 1 expression. Mol Pharmacol 2011; 81:455-64. [PMID: 22172574 DOI: 10.1124/mol.111.076422] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Copper is an essential micronutrient for cell growth but is toxic in excess. Copper transporter (Ctr1) plays an important role in regulating adequate copper levels in mammalian cells. We have shown previously that expression of the human high-affinity copper transporter (hCtr1) was transcriptionally up-regulated under copper-depleted conditions and down-regulated under replete conditions; moreover, elevated hCtr1 levels suppress hCtr1 expression. Specificity protein 1 (Sp1) regulates expression of hCtr1 under copper-stressed conditions. In this study, we made the following important observations: 1) Sp1 expression is down-regulated under copper-replete conditions but up-regulated under copper-depleted conditions. These up- and down-regulations of Sp1 in turn regulate hCtr1 expression to control copper homeostasis. 2) Copper-regulated Sp1 expression involved Sp1 binding to its own promoter as demonstrated by the chromatin immunoprecipitation assay; therefore, Sp1 is also transcriptionally self-regulated via hCtr1/copper intermediation. 3) Both zinc finger and glutamine-rich transactivation domains of Sp1 are involved in the Sp1-mediated hCtr1 and Sp1 regulation by copper stresses. 4) Although Sp3 expression is also regulated by copper availability, Sp3 does not regulate hCtr1 homeostasis. Collectively, our results demonstrated that mammalian cells use Sp1 oscillation in response to copper availability to regulate copper homeostasis through hCtr1 expression in a tripartite inter-regulatory relationship. These findings have important implications in mammalian copper physiology regulation.
Collapse
Affiliation(s)
- Zheng D Liang
- Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | | | | | | | | |
Collapse
|
20
|
Ding C, Yin J, Tovar EMM, Fitzpatrick DA, Higgins DG, Thiele DJ. The copper regulon of the human fungal pathogen Cryptococcus neoformans H99. Mol Microbiol 2011; 81:1560-76. [PMID: 21819456 DOI: 10.1111/j.1365-2958.2011.07794.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cryptococcus neoformans is a human fungal pathogen that is the causative agent of cryptococcosis and fatal meningitis in immuno-compromised hosts. Recent studies suggest that copper (Cu) acquisition plays an important role in C. neoformans virulence, as mutants that lack Cuf1, which activates the Ctr4 high affinity Cu importer, are hypo-virulent in mouse models. To understand the constellation of Cu-responsive genes in C. neoformans and how their expression might contribute to virulence, we determined the transcript profile of C. neoformans in response to elevated Cu or Cu deficiency. We identified two metallothionein genes (CMT1 and CMT2), encoding cysteine-rich Cu binding and detoxifying proteins, whose expression is dramatically elevated in response to excess Cu. We identified a new C. neoformans Cu transporter, CnCtr1, that is induced by Cu deficiency and is distinct from CnCtr4 and which shows significant phylogenetic relationship to Ctr1 from other fungi. Surprisingly, in contrast to other fungi, we found that induction of both CnCTR1 and CnCTR4 expression under Cu limitation, and CMT1 and CMT2 in response to Cu excess, are dependent on the CnCuf1 Cu metalloregulatory transcription factor. These studies set the stage for the evaluation of the specific Cuf1 target genes required for virulence in C. neoformans.
Collapse
Affiliation(s)
- Chen Ding
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | | | | | | | | | | |
Collapse
|
21
|
|
22
|
Wegner SV, Sun F, Hernandez N, He C. The tightly regulated copper window in yeast. Chem Commun (Camb) 2011; 47:2571-3. [DOI: 10.1039/c0cc04292g] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Cadmium regulates copper homoeostasis by inhibiting the activity of Mac1, a transcriptional activator of the copper regulon, in Saccharomyces cerevisiae. Biochem J 2010; 431:257-65. [DOI: 10.1042/bj20100638] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cadmium is a toxic metal and the mechanism of its toxicity has been studied in various model systems from bacteria to mammals. We employed Saccharomyces cerevisiae as a model system to study cadmium toxicity at the molecular level because it has been used to identify the molecular mechanisms of toxicity found in higher organisms. cDNA microarray and Northern blot analyses revealed that cadmium salts inhibited the expression of genes related to copper metabolism. Western blotting, Northern blotting and chromatin immunoprecipitation experiments indicated that CTR1 expression was inhibited at the transcriptional level through direct inhibition of the Mac1 transcriptional activator. The decreased expression of CTR1 results in cellular copper deficiency and inhibition of Fet3 activity, which eventually impairs iron uptake. In this way, cadmium exhibits a negative effect on both iron and copper homoeostasis.
Collapse
|
24
|
Role of glutathione in the regulation of Cisplatin resistance in cancer chemotherapy. Met Based Drugs 2010; 2010. [PMID: 20885916 PMCID: PMC2946579 DOI: 10.1155/2010/430939] [Citation(s) in RCA: 199] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 08/25/2010] [Indexed: 12/18/2022] Open
Abstract
Three mechanisms have been proposed for the role of glutathione (GSH) in regulating cisplatin (CDDP) sensitivities that affects its ultimate cell-killing ability: (i) GSH may serve as a cofactor in facilitating multidrug resistance protein 2- (MRP2-) mediated CDDP efflux in mammalian cells, since MRP2-transfected cells were shown to confer CDDP resistance; (ii) GSH may serve as a redox-regulating cytoprotector based on the observations that many CDDP-resistant cells overexpress GSH and γ-glutamylcysteine synthesis (γ-GCS), the rate-limiting enzyme for GSH biosynthesis; (iii) GSH may function as a copper (Cu) chelator. Elevated GSH expression depletes the cellular bioavailable Cu pool, resulting in upregulation of the high-affinity Cu transporter (hCtr1) which is also a CDDP transporter. This has been demonstrated that overexpression of GSH by transfection with γ-GCS conferred sensitization to CDDP toxicity. This review describes how these three models were developed and critically reviews their importance to overall CDDP cytotoxicity in cancer cell treatments.
Collapse
|
25
|
Woodacre A, Mason RP, Jeeves RE, Cashmore AM. Copper-dependent transcriptional regulation by Candida albicans Mac1p. MICROBIOLOGY-SGM 2008; 154:1502-1512. [PMID: 18451059 DOI: 10.1099/mic.0.2007/013441-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We have previously shown that copper uptake and regulation in the opportunistic pathogen Candida albicans has some similarities to those in Saccharomyces cerevisiae, including the activation of the copper transporter gene CaCTR1 under low-copper conditions by the transcription factor CaMac1p. However, in this study, further analysis has shown that the actual mechanism of regulation by CaMac1p is different from that of its S. cerevisiae homologue. We demonstrate for the first time, to our knowledge, that the CaMAC1 gene is transcriptionally autoregulated in a copper-dependent manner, in contrast to ScMAC1, which is constitutively transcribed. We also demonstrate that the presence of one copper response element in the promoters of CaCTR1, CaMAC1 and the ferric/cupric reductase gene CaFRE7 is sufficient for normal levels of copper-responsive transcription. In contrast, two promoter elements are essential for normal levels of copper-dependent transcriptional activation by ScMac1p. CaMac1p is also involved in the regulation of the iron-responsive transcriptional repressor gene SFU1 and the alternative oxidase gene AOX2. This work describes a key feature of the copper uptake system in C. albicans that distinguishes it from similar processes in the model yeast S. cerevisiae. The importance of copper uptake in the environment of the human host and the implications for the disease process are discussed.
Collapse
Affiliation(s)
| | - Robert P Mason
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK
| | - Rose E Jeeves
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK
| | | |
Collapse
|
26
|
Song IS, Chen HHW, Aiba I, Hossain A, Liang ZD, Klomp LWJ, Kuo MT. Transcription factor Sp1 plays an important role in the regulation of copper homeostasis in mammalian cells. Mol Pharmacol 2008; 74:705-13. [PMID: 18483225 DOI: 10.1124/mol.108.046771] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Copper is an essential metal nutrient, yet copper overload is toxic. Here, we report that human copper transporter (hCtr) 1 plays an important role in the maintenance of copper homeostasis by demonstrating that expression of hCtr1 mRNA was up-regulated under copper-depleted conditions and down-regulated under copper-replete conditions. Overexpression of full-length hCtr1 by transfection with a recombinant hCtr1 cDNA clone reduced endogenous hCtr1 mRNA levels, whereas overexpression of N terminus-deleted hCtr1 did not change endogenous hCtr1 mRNA levels, suggesting that increased functional hCtr1 transporter, which leads to increased intracellular copper content, down-regulates the endogenous hCtr1 mRNA. A luciferase assay using reporter constructs containing the hCtr1 promoter sequences revealed that three Sp1 binding sites are involved in the basal and copper concentration-dependent regulation of hCtr1 expression. Modulation of Sp1 levels affected the expression of hCtr1. We further demonstrated that the zinc-finger domain of Sp1 functions as a sensor of copper that regulates hCtr1 up and down in response to copper concentration variations. Our results demonstrate that mammalian copper homeostasis is maintained at the hCtr1 mRNA level, which is regulated by the Sp1 transcription factor.
Collapse
Affiliation(s)
- Im-Sook Song
- Department of Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Balamurugan K, Schaffner W. Copper homeostasis in eukaryotes: Teetering on a tightrope. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:737-46. [PMID: 16784785 DOI: 10.1016/j.bbamcr.2006.05.001] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Revised: 04/28/2006] [Accepted: 05/05/2006] [Indexed: 01/05/2023]
Abstract
The transition metal copper is an essential trace element for both prokaryotes and eukaryotes. However, intracellular free copper has to be strictly limited due to its toxic side effects, not least the generation of reactive oxygen species (ROS) via redox cycling. Thus, all organisms have sophisticated copper homeostasis mechanisms that regulate uptake, distribution, sequestration and export of copper. From insects to mammals, metal-responsive transcription factor (MTF-1), a zinc finger transcription factor, controls expression of metallothioneins and other components involved in heavy metal homeostasis. In the fruit fly Drosophila, MTF-1 paradoxically acts as an activator under both high and low copper concentrations. Namely, under high copper conditions, MTF-1 activates metallothioneins in order to protect the cell, while under low copper conditions MTF-1 activates the copper importer Ctr1B in order to acquire scarce copper from the surroundings. This review highlights the current knowledge of copper homeostasis in eukaryotes with a focus on Drosophila and the role of MTF-1.
Collapse
Affiliation(s)
- Kuppusamy Balamurugan
- Institute of Molecular Biology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | |
Collapse
|
28
|
Beaudoin J, Labbé S. Copper induces cytoplasmic retention of fission yeast transcription factor cuf1. EUKARYOTIC CELL 2006; 5:277-92. [PMID: 16467469 PMCID: PMC1405903 DOI: 10.1128/ec.5.2.277-292.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Copper homeostasis within the cell is established and preserved by different mechanisms. Changes in gene expression constitute a way of maintaining this homeostasis. In Schizosaccharomyces pombe, the Cuf1 transcription factor is critical for the activation of copper transport gene expression under conditions of copper starvation. However, in the presence of elevated intracellular levels of copper, the mechanism of Cuf1 inactivation to turn off gene expression remains unclear. In this study, we provide evidence that inactivation of copper transport gene expression by Cuf1 is achieved through a copper-dependent, cytosolic retention of Cuf1. We identify a minimal nuclear localization sequence (NLS) between amino acids 11 to 53 within the Cuf1 N terminus. Deletion of this region and specific mutation of the Lys13, Arg16, Arg19, Lys24, Arg28, Lys45, Arg47, Arg50, and Arg53 residues to alanine within this putative NLS is sufficient to abrogate nuclear targeting of Cuf1. Under conditions of copper starvation, Cuf1 resides in the nucleus. However, in the presence of excess copper as well as silver ions, Cuf1 is sequestered in the cytoplasm, a process which requires the putative copper binding motif, 328Cys-X-Cys-X3-Cys-X-Cys-X2-Cys-X2-His342 (designated C-rich), within the C-terminal region of Cuf1. Deletion of this region and mutation of the Cys residues within the C-rich motif result in constitutive nuclear localization of Cuf1. By coexpressing the Cuf1 N terminus with its C terminus in trans and by using a two-hybrid assay, we show that these domains physically interact with each other in a copper-dependent manner. We propose a model wherein copper induces conformational changes in Cuf1 that promote a physical interaction between the Cuf1 N terminus and the C-rich motif in the C terminus that masks the NLS. Cuf1 is thereby sequestered in the cytosol under conditions of copper excess, thereby extinguishing copper transport gene expression.
Collapse
Affiliation(s)
- Jude Beaudoin
- Département de Biochimie, Faculté de médecine, Université de Sherbrooke, 3001 12e Ave Nord, Sherbrooke, Québec J1H 5N4, Canada
| | | |
Collapse
|
29
|
Keller G, Bird A, Winge DR. Independent metalloregulation of Ace1 and Mac1 in Saccharomyces cerevisiae. EUKARYOTIC CELL 2006; 4:1863-71. [PMID: 16278453 PMCID: PMC1287855 DOI: 10.1128/ec.4.11.1863-1871.2005] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ace1 and Mac1 undergo reciprocal copper metalloregulation in yeast cells. Mac1 is functional as a transcriptional activator in copper-deficient cells, whereas Ace1 is a transcriptional activator in copper-replete cells. Cells undergoing a transition from copper-deficient to copper-sufficient conditions through a switch in the growth medium show a rapid inactivation of Mac1 and a corresponding rise in Ace1 activation. Cells analyzed after the transition show a massive accumulation of cellular copper. Under these copper shock conditions we show, using two epitope-tagged variants of Mac1, that copper-mediated inhibition of Mac function is independent of induced protein turnover. The transcription activity of Mac1 is rapidly inhibited in the copper-replete cells, whereas chromatin immunoprecipitation studies showed only partial copper-induced loss of DNA binding. Thus, the initial event in copper inhibition of Mac1 function is likely copper inhibition of the transactivation activity. Copper inhibition of Mac1 in transition experiments is largely unaffected in cells overexpressing copper-binding proteins within the nucleus. Likewise, high expression of a copper-binding, non-DNA-binding Mac1 mutant is without effect on the copper activation of Ace1. Thus, metalloregulation of Ace1 and Mac1 occurs independently.
Collapse
Affiliation(s)
- Greg Keller
- University of Utah Health Sciences Center, Salt Lake City, UT 84132, USA
| | | | | |
Collapse
|
30
|
Huang GH, Nie XY, Chen JY. CaMac1, a Candida albicans copper ion-sensing transcription factor, promotes filamentous and invasive growth in Saccharomyces cerevisiae. Acta Biochim Biophys Sin (Shanghai) 2006; 38:213-7. [PMID: 16518547 DOI: 10.1111/j.1745-7270.2006.00146.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Molecular mechanisms of morphogenesis share many common components between Candida albicans and Saccharomyces cerevisiae. The Kss1-associated MAPK cascade and the cAMP/PKA pathway are two important signal transduction pathways that control morphogenesis in S. cerevisiae. A C. albicans copper ion-sensing transcription factor gene, CaMAC1, was cloned from C. albicans SC5314. Ectopic expression of CaMAC1 in S. cerevisiae promoted filamentous and invasive growth. In diploid cells, CaMac1 could suppress the filamentous growth defect of mutants in the Kss1-associated MAPK pathway and the cAMP/PKA pathway. In haploid strains, ectopic expression of CaMAC1 suppressed the invasive growth defect of mutants in the MAPK pathway (ste7, ste12 and tec1), but failed to suppress the invasive growth defect of the flo8 mutant. Our results suggest that the activation of CaMac1 is independent of the MAPK and cAMP/PKA pathways in filament formation, but requires Flo8 factor for invasive growth. In the media containing a high concentration of CuSO4, the yeast filamentous and invasive growth was blocked. The activating effect of CaMac1 is inhibited by copper ions.
Collapse
Affiliation(s)
- Guang-Hua Huang
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | |
Collapse
|
31
|
Rutherford JC, Bird AJ. Metal-responsive transcription factors that regulate iron, zinc, and copper homeostasis in eukaryotic cells. EUKARYOTIC CELL 2004; 3:1-13. [PMID: 14871932 PMCID: PMC329510 DOI: 10.1128/ec.3.1.1-13.2004] [Citation(s) in RCA: 200] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Julian C Rutherford
- Division of Hematology, Department of Internal Medicine, University of Utah Health Sciences Center, Salt Lake City, Utah 84132, USA
| | | |
Collapse
|
32
|
Marvin ME, Mason RP, Cashmore AM. The CaCTR1 gene is required for high-affinity iron uptake and is transcriptionally controlled by a copper-sensing transactivator encoded by CaMAC1. MICROBIOLOGY-SGM 2004; 150:2197-2208. [PMID: 15256562 DOI: 10.1099/mic.0.27004-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The ability of Candida albicans to acquire iron from the hostile environment of the host is known to be necessary for virulence and appears to be achieved using a similar system to that described for Saccharomyces cerevisiae. In S. cerevisiae, high-affinity iron uptake is dependent upon the acquisition of copper. The authors have previously identified a C. albicans gene (CaCTR1) that encodes a copper transporter. Deletion of this gene results in a mutant strain that grows predominantly as pseudohyphae and displays aberrant morphology in low-copper conditions. This paper demonstrates that invasive growth by C. albicans is induced by low-copper conditions and that this is augmented in a Cactr1-null strain. It also shows that deletion of CaCTR1 results in defective iron uptake. In S. cerevisiae, genes that facilitate high-affinity copper uptake are controlled by a copper-sensing transactivator, ScMac1p. The authors have now identified a C. albicans gene (CaMAC1) that encodes a copper-sensing transactivator. A Camac1-null mutant displays phenotypes similar to those of a Cactr1-null mutant and has no detectable CaCTR1 transcripts in low-copper conditions. It is proposed that high-affinity copper uptake by C. albicans is necessary for reductive iron uptake and is transcriptionally controlled by CaMac1p in a similar manner to that in S. cerevisiae.
Collapse
Affiliation(s)
- Marcus E Marvin
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK
| | - Robert P Mason
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK
| | | |
Collapse
|
33
|
Beaudoin J, Mercier A, Langlois R, Labbé S. The Schizosaccharomyces pombe Cuf1 is composed of functional modules from two distinct classes of copper metalloregulatory transcription factors. J Biol Chem 2003; 278:14565-77. [PMID: 12578838 DOI: 10.1074/jbc.m300861200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In fission yeast, the genes encoding proteins that are components of the copper transporter family are controlled at the transcriptional level by the Cuf1 transcription factor. Under low copper availability, Cuf1 induces expression of the copper transporter genes. In contrast, sufficient levels of copper inactivate Cuf1 and expression of its target genes. Our study reveals that Cuf1 harbors a putative copper-binding motif, Cys-X-Cys-X(3)-Cys-X-Cys-X(2)-Cys-X(2)-His, within its carboxyl-terminal region to sense changing environmental copper levels. Binding studies reveal that the amino-terminal 174-residue segment of Cuf1 expressed as a fusion protein in Escherichia coli specifically interacts with the cis-acting copper transporter promoter element CuSE (copper-signaling element). Within this region, the first 61 amino acids of Cuf1 exhibit more overall homology to the Saccharomyces cerevisiae Ace1 copper-detoxifying factor (from residues 1 to 63) than to Mac1, its functional ortholog. Consistently, we demonstrate that a chimeric Cuf1 protein bearing the amino-terminal 63-residue segment of Ace1 complements cuf1 Delta null phenotypes. Furthermore, we show that Schizosaccharomyces pombe cuf1Delta mutant cells expressing the full-length S. cerevisiae Ace1 protein are hypersensitive to copper ions, with a concomitant up-regulation of CuSE-mediated gene expression in fission yeast. Taken together, these studies reveal that S. cerevisiae Ace1 1-63 is functionally exchangeable with S. pombe Cuf1 1-61, and the nature of the amino acids located downstream of this amino-terminal conserved region may be crucial in dictating the type of regulatory response required to establish and maintain copper homeostasis.
Collapse
Affiliation(s)
- Jude Beaudoin
- Département de Biochimie and Sherbrooke Positron Emission Tomography Center, Université de Sherbrooke, Quebec J1H 5N4, Canada
| | | | | | | |
Collapse
|
34
|
Affiliation(s)
- Dennis R Winge
- University of Utah Health Sciences Center, Salt Lake City, Utah 84132, USA
| |
Collapse
|
35
|
Beaudoin J, Labbé S. The fission yeast copper-sensing transcription factor Cuf1 regulates the copper transporter gene expression through an Ace1/Amt1-like recognition sequence. J Biol Chem 2001; 276:15472-80. [PMID: 11278870 DOI: 10.1074/jbc.m011256200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcriptional regulation of genes encoding critical components of copper transport is essential for copper homeostasis and growth in yeast. Analysis of regulatory regions in the promoter of the ctr4(+) copper transporter gene in fission yeast Schizosaccharomyces pombe reveals the identity of a conserved copper-signaling element (CuSE), which is recognized by the transcription factor Cuf1. We demonstrate that CuSE is necessary for transcriptional activation in response to copper deprivation conditions. Interestingly, the CuSE element bears a strong sequence similarity to the recognition site, denoted MRE (metal regulatory element), which is recognized by a distinct class of copper sensors required for copper detoxification, including Ace1 from Saccharomyces cerevisiae and Amt1 from Candida glabrata. When a consensus MRE from S. cerevisiae is introduced into S. pombe, transcription is induced by copper deprivation in a Cuf1-dependent manner, similar to regulation by Mac1, the nuclear sensor for regulating the expression of genes encoding components involved in copper transport in S. cerevisiae. UV-cross-linking experiments show that the Cuf1 protein directly binds the CuSE. These results demonstrate that the Cuf1 nutritional copper-sensing factor possesses a module that functions similarly to domains found in the Ace1/Amt1 class of metalloregulatory factors, which allows the protein to act through a closely related MRE-like sequence to regulate copper transport gene expression in S. pombe.
Collapse
Affiliation(s)
- J Beaudoin
- Département de Biochimie, Université de Sherbrooke, Sherbrooke, Québec, J1H 5N4, Canada
| | | |
Collapse
|
36
|
Voutsina A, Fragiadakis GS, Boutla A, Alexandraki D. The second cysteine-rich domain of Mac1p is a potent transactivator that modulates DNA binding efficiency and functionality of the protein. FEBS Lett 2001; 494:38-43. [PMID: 11297731 DOI: 10.1016/s0014-5793(01)02298-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mac1p is a Saccharomyces cerevisiae DNA binding transcription factor that activates genes involved in copper uptake. A copper-induced N-C-terminal intramolecular interaction and copper-independent homodimerization affect its function. Here, we present a functional analysis of Mac1p deletion derivatives that attributes new roles to the second cysteine-rich (REPII) domain of the protein. This domain exhibits the copper-responsive potent transactivation function when assayed independently and, in the context of the entire protein, modulates the efficiency of Mac1p binding to DNA. The efficiency of binding to both copper-response promoter elements can determine the in vivo functionality of Mac1p independent of homodimerization.
Collapse
Affiliation(s)
- A Voutsina
- Foundation for Research and Technology-HELLAS, Institute of Molecular Biology and Biotechnology, Heraklion, Crete, Greece
| | | | | | | |
Collapse
|
37
|
Heredia J, Crooks M, Zhu Z. Phosphorylation and Cu+ coordination-dependent DNA binding of the transcription factor Mac1p in the regulation of copper transport. J Biol Chem 2001; 276:8793-7. [PMID: 11134042 DOI: 10.1074/jbc.m008179200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Copper ions are essential at a proper level yet toxic when present in excess. To maintain a proper intracellular level, cells must be able to sense the changes in copper ion concentrations. The yeast transcription factor Mac1p plays a critical role in the transcriptional regulation of CTR1 and CTR3, both encoding high affinity copper ion transporters. Here we report that the Mac1p binding of the copper ion-responsive elements (CuREs) in the promoters of CTR1 and CTR3 is affected by copper ions. On one hand, the Mac1p DNA binding is Cu(+) coordination-dependent, and on the other hand, exogenous Cu(+) and isoelectronic Ag(+) ions disrupt the DNA binding of Mac1p. These results suggest that the Mac1p is able to sense two different levels of copper ions. These two levels are probably the physiological and toxic copper levels in yeast cells. Furthermore, we found that Mac1p undergoes posttranslational phosphorylation modification in yeast and that the phosphorylation is required for the Mac1p to become DNA-binding active. Nonphosphorylated Mac1p is unable to bind the CTR1 promoter DNA. The data support the model of intradomain interactions and indicate further that the phosphorylation probably prevents the inhibition of DNA-binding domain activity by the activation domain of Mac1p. Taken together, these findings demonstrate that Mac1p functions critically in maintaining a proper intracellular concentration of copper ions.
Collapse
Affiliation(s)
- J Heredia
- Department of Environmental Toxicology, University of California, Santa Cruz, California 95064, USA
| | | | | |
Collapse
|
38
|
Koizumi S, Suzuki K, Ogra Y, Gong P, Otuska F. Roles of zinc fingers and other regions of the transcription factor human MTF-1 in zinc-regulated DNA binding. J Cell Physiol 2000; 185:464-72. [PMID: 11056018 DOI: 10.1002/1097-4652(200012)185:3<464::aid-jcp18>3.0.co;2-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mammalian metallothionein genes are transcriptionally regulated by heavy metals through cis-acting metal responsive elements (MREs). The MRE-binding transcription factor-1 (MTF-1), a protein containing six C(2)H(2)-type Zn fingers, is essential for MRE-mediated transcriptional activation. DNA binding of MTF-1 is known to be stimulated by Zn in vitro, but the binding was also largely influenced by redox conditions, suggesting that redox signals could modulate MTF-1 activity. To locate the functional domain required for Zn regulation, several deletion mutants of human MTF-1b, a newly cloned transcriptionally active MTF-1 variant, were characterized. This analysis showed that the N-terminal region and Zn-finger domain play roles in metal response. Functional roles of individual Zn fingers were estimated by co-transfection assays by using an MRE-driven reporter gene and vectors that express MTF-1b mutants each carrying one defective finger. Mutations in the N-terminal four fingers dramatically reduced the transcriptional activity, and at least for three of them the transcriptional defect was due to reduced DNA binding. These results indicate that the six Zn fingers are not functionally equivalent, probably sharing distinct roles such as direct DNA recognition and regulatory functions.
Collapse
Affiliation(s)
- S Koizumi
- Division of Hazard Assessment, National Institute of Industrial Health, Kawasaki, Kanagawa, Japan.
| | | | | | | | | |
Collapse
|
39
|
Pena MM, Puig S, Thiele DJ. Characterization of the Saccharomyces cerevisiae high affinity copper transporter Ctr3. J Biol Chem 2000; 275:33244-51. [PMID: 10924521 DOI: 10.1074/jbc.m005392200] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Copper is an essential nutrient required for the activity of a number of enzymes with diverse biological roles. In the bakers' yeast Saccharomyces cerevisiae, copper is transported into cells by two high affinity copper transport proteins, Ctr1 and Ctr3. Although Ctr1 and Ctr3 are functionally redundant, they bear little homology at the amino acid sequence level. In this report, we characterize Ctr3 with respect to its localization, assembly, and post-transcriptional regulation. Ctr3 is an integral membrane protein that assembles as a trimer to form a competent copper uptake permease at the plasma membrane. Whereas the CTR1 and CTR3 genes are similarly regulated at the transcriptional level in response to copper, post-transcriptional regulation of these proteins is distinct. Unlike Ctr1, the Ctr3 transporter is neither regulated at the level of protein degradation nor endocytosis as a function of elevated copper levels. Our studies suggest that Ctr3 constitutes a fundamental module found in all eukaryotic high affinity copper transporters to date, which is sufficient for copper uptake but lacks elements for post-transcriptional regulation by copper.
Collapse
Affiliation(s)
- M M Pena
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0606, USA
| | | | | |
Collapse
|
40
|
Gross C, Kelleher M, Iyer VR, Brown PO, Winge DR. Identification of the copper regulon in Saccharomyces cerevisiae by DNA microarrays. J Biol Chem 2000; 275:32310-6. [PMID: 10922376 DOI: 10.1074/jbc.m005946200] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Saccharomyces cerevisiae, copper ions regulate gene expression through the two transcriptional activators, Ace1 and Mac1. Ace1 mediates copper-induced gene expression in cells exposed to stressful levels of copper salts, whereas Mac1 activates a subset of genes under copper-deficient conditions. DNA microarray hybridization experiments revealed a limited set of yeast genes differentially expressed under growth conditions of excess copper or copper deficiency. Mac1 activates the expression of six S. cerevisiae genes, including CTR1, CTR3, FRE1, FRE7, YFR055w, and YJL217w. Two of the last three newly identified Mac1 target genes have no known function; the third, YFR055w, is homologous to cystathionine gamma-lyase encoded by CYS3. Several genes that are differentially expressed in cells containing a constitutively active Mac1, designated Mac1(up1), are not direct targets of Mac1. Induction or repression of these genes is likely a secondary effect of cells because of constitutive Mac1 activity. Elevated copper levels induced the expression of the metallothioneins CUP1 and CRS5 and two genes, FET3 and FTR1, in the iron uptake system. Copper-induced FET3 and FTR1 expression arises from an indirect copper effect on cellular iron pools.
Collapse
Affiliation(s)
- C Gross
- University of Utah Health Sciences Center, Departments of Medicine and Biochemistry, Salt Lake City, Utah 84132, USA
| | | | | | | | | |
Collapse
|
41
|
Keller G, Gross C, Kelleher M, Winge DR. Functional independence of the two cysteine-rich activation domains in the yeast Mac1 transcription factor. J Biol Chem 2000; 275:29193-9. [PMID: 10887177 DOI: 10.1074/jbc.m001552200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mac1 is a transcriptional activator whose activity is inhibited by copper ions. Mutagenesis studies were carried out to map residues important in the copper inhibition of Mac1 activity. Seven new missense mutations were identified that resulted in copper-independent Mac1 transcriptional activation. All seven mutations were clustered in one of two C-terminal cysteine-rich motifs, designated the C1 motif. All but one of the constitutive Mac1 mutations occurred in one of the conserved six residues in the (264)CXC[(X)(4)]CXC[(X)(2)]C[(X)(2)][H(279)]C1 motif. The lone exception was a L260S substitution. Two additional MAC1 mutations exhibiting constitutive activity were in-frame deletions encompassing portions C1. Engineered mutations in the second cysteine-rich motif did not yield a constitutively active Mac1. These results are consistent with the C1 motif being the copper-regulatory switch. Both cysteine-rich motifs exhibited transactivation activity, although the C1 activator was weak relative to the C2 activator. Limited copper metalloregulation of Mac1 was observed with only the C1 activator fused to the N-terminal DNA binding domain. Thus, the two Cys-rich motifs appear to function independently. The C1 motif appears to be a functional copper-regulatory domain.
Collapse
Affiliation(s)
- G Keller
- University of Utah Health Sciences Center, Salt Lake City, Utah 84132, USA
| | | | | | | |
Collapse
|
42
|
Labbé S, Peña MM, Fernandes AR, Thiele DJ. A copper-sensing transcription factor regulates iron uptake genes in Schizosaccharomyces pombe. J Biol Chem 1999; 274:36252-60. [PMID: 10593913 DOI: 10.1074/jbc.274.51.36252] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Copper and iron serve essential functions as catalytic co-factors in a wide variety of critical cellular enzymes. Studies in yeast have demonstrated an absolute dependence upon copper acquisition for proper assembly and function of the iron transport machinery. We have cloned genes for a high affinity copper transporter (Ctr4) and copper-sensing transcription factor (Cuf1) from Schizosaccharomyces pombe. Interestingly, the primary structure of Ctr4 and a putative human high affinity copper transport protein, hCtr1, suggests that they are derived from a fusion of the functionally redundant but structurally distinct Ctr1 and Ctr3 copper transporters from Saccharomyces cerevisiae. Furthermore, although Cuf1 activates ctr4(+) gene expression under copper starvation conditions, under these same conditions Cuf1 directly represses expression of genes encoding components of the iron transport machinery. These studies have identified an evolutionary step in which copper transport modules have been fused, and describe a mechanism by which a copper-sensing factor directly represses expression of the iron uptake genes under conditions in which the essential copper co-factor is scarce.
Collapse
Affiliation(s)
- S Labbé
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0606, USA
| | | | | | | |
Collapse
|
43
|
Abstract
Copper is required for processes as conserved as respiration and as specialized as protein modification. Recent exciting findings from studies in yeast cells have revealed the presence of specific pathways for copper transport, trafficking and signal transduction that maintain the delicate balance of this essential yet toxic metal ion.
Collapse
Affiliation(s)
- S Labbé
- Dept of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109-0606, USA
| | | |
Collapse
|
44
|
Serpe M, Joshi A, Kosman DJ. Structure-function analysis of the protein-binding domains of Mac1p, a copper-dependent transcriptional activator of copper uptake in Saccharomyces cerevisiae. J Biol Chem 1999; 274:29211-9. [PMID: 10506178 DOI: 10.1074/jbc.274.41.29211] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Mac1 protein in Saccharomyces cerevisiae is essential for the expression of yeast high affinity copper uptake. A positive transcription factor, Mac1p binds via its N-terminal domain to GCTC elements in the promoters of CTR1 and FRE1, encoding a copper permease and metal reductase, respectively. Mac1p-dependent transcriptional activation is negatively regulated by copper. We have mapped the domains in Mac1p responsible for its nuclear localization and for the protein-protein interactions that underlie its transcriptional activity. Immunofluorescence studies indicate that Mac1p contains two nuclear localization signals, one each in the N- and C-terminal halves of the protein. Yeast one-hybrid analysis demonstrates that the copper-dependent transcriptional activity in Mac1p resides primarily in a cysteine-rich element encompassing residues 264-279. Two-hybrid analysis indicates that a copper-independent Mac1p-Mac1p interaction linked to DNA binding is due primarily to a predicted helix in the C-terminal region of the protein encompassing residues 388-406. Point mutations within this putative helix abrogate the Mac1-Mac1 interaction in vivo and formation of a ternary (Mac1p)(2).DNA complex in vitro. When produced in normal abundance, Mac1pI396D and Mac1pF400D helix mutants do not support transcriptional activation in vivo consistent with an essential Mac1p dimerization in transcriptional activation. Lastly, the one- and two-hybrid data indicate that an intramolecular interaction between the DNA-binding and transactivation domains negatively modulates Mac1p activity.
Collapse
Affiliation(s)
- M Serpe
- Department of Biochemistry, School of Medicine, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | | | | |
Collapse
|
45
|
Jamison McDaniels CP, Jensen LT, Srinivasan C, Winge DR, Tullius TD. The yeast transcription factor Mac1 binds to DNA in a modular fashion. J Biol Chem 1999; 274:26962-7. [PMID: 10480908 DOI: 10.1074/jbc.274.38.26962] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mac1 is a metalloregulatory protein that regulates expression of the high affinity copper transport system in the yeast Saccharomyces cerevisiae. Under conditions of high copper concentration, Mac1 represses transcription of genes coding for copper transport proteins. Mac1 binds to DNA sequences called copper response elements (CuREs), which have the consensus sequence 5'-TTTGC(T/G)C(A/G)-3'. Mac1 contains two zinc binding sites, a copper binding site, and the sequence motif RGRP, which has been found in other proteins to mediate binding to the minor groove of A/T-rich sequences in DNA. We have used hydroxyl radical footprinting, missing nucleoside, and methylation interference experiments to investigate the structure of the complex of the DNA binding domain of Mac1 (called here Mac1(t)) with the two CuRE sites found in the yeast CTR1 promoter. We conclude from these experiments that Mac1(t) binds in a modular fashion to DNA, with its RGRP AT-hook motif interacting with the TTT sequence at the 5' end of the CTR1 CuRE site, and with another DNA-binding module(s) binding in the adjacent major groove in the GCTCA sequence.
Collapse
Affiliation(s)
- C P Jamison McDaniels
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | | | |
Collapse
|