1
|
Gao FT, Zhang M, Shimadate Y, Kato A, Li YX, Jia YM, Yu CY. Enantiomeric C-6 fluorinated swainsonine derivatives as highly selective and potent inhibitors of α-mannosidase and α-l-rhamnosidase: Design, synthesis and structure-activity relationship study. Eur J Med Chem 2025; 282:117031. [PMID: 39556895 DOI: 10.1016/j.ejmech.2024.117031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/03/2024] [Accepted: 11/03/2024] [Indexed: 11/20/2024]
Abstract
Six C-6 fluorinated d-swainsonine derivatives and their enantiomers have been designed based on initial docking calculations, and synthesized from enantiomeric ribose-derived aldehydes, respectively. Glycosidase inhibition assay of these derivatives with d-swainsonine (1) and l-swainsonine (ent-1) as contrasts found that the C-6 fluorinated d-swainsonine derivatives with C-8 configurations as R (α) showed specific and potent inhibitions of jack bean α-mannosidase (model enzyme of Golgi α-mannosidase II); whereas their enantiomers with C-8 configurations as S (β) were powerful and selective α-l-rhamnosidase inhibitors. Molecular docking calculations found the C-6 fluorinatedd-swainsonine derivatives 21, 24 and 25 with highly coincident binding conformations with d-swainsonine (1) in their interactions with the active site of α-mannosidase (PDB ID: 1HWW). Reliability of the docking results were confirmed by Molecular Dynamics (MD) simulation. Additionally, solid interactions with residues Gln-392 and Tyr-393 in the active site of α-l-rhamnosidase (PDB ID: 3W5N) were proved to be vital for potent α-l-rhamnosidase inhibitions of the l-swainsonine derivatives. The role of C-6 fluorines in swainsonine derivatives well demonstrated the "mimic effect" of fluorine to hydrogen by minimal influence on the binding conformations and effective compensation for any possible lost interactions. This work contributes to a comprehensive understanding of the structure-activity relationship (SAR) of the fluorinated swainsonines and ever reported branched swainsonines, and has laid good foundation for development of more potent α-mannosidase and α-l-rhamnosidase inhibitors.
Collapse
Affiliation(s)
- Feng-Teng Gao
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Zhang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuna Shimadate
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Atsushi Kato
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| | - Yi-Xian Li
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yue-Mei Jia
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chu-Yi Yu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Abstract
Fluorinated carbohydrates have found many applications in the glycosciences. Typically, these contain fluorination at a single position. There are not many applications involving polyfluorinated carbohydrates, here defined as monosaccharides in which more than one carbon has at least one fluorine substituent directly attached to it, with the notable exception of their use as mechanism-based inhibitors. The increasing attention to carbohydrate physical properties, especially around lipophilicity, has resulted in a surge of interest for this class of compounds. This review covers the considerable body of work toward the synthesis of polyfluorinated hexoses, pentoses, ketosugars, and aminosugars including sialic acids and nucleosides. An overview of the current state of the art of their glycosidation is also provided.
Collapse
Affiliation(s)
- Kler Huonnic
- School
of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K.
| | - Bruno Linclau
- School
of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K.
- Department
of Organic and Macromolecular Chemistry, Ghent University, Campus Sterre, Krijgslaan 281-S4, Ghent, 9000, Belgium
| |
Collapse
|
3
|
Lee ZY, Loo JSE, Wibowo A, Mohammat MF, Foo JB. Targeting cancer via Golgi α-mannosidase II inhibition: How far have we come in developing effective inhibitors? Carbohydr Res 2021; 508:108395. [PMID: 34280804 DOI: 10.1016/j.carres.2021.108395] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 11/22/2022]
Abstract
Dysregulation of glycosylation pathways has been well documented in several types of cancer, where it often participates in cancer development and progression, especially cancer metastasis. Hence, inhibition of glycosidases such as mannosidases can disrupt the biosynthesis of glycans on cell surface glycoproteins and modify their role in carcinogenesis and metastasis. Several reviews have delineated the role of N-glycosylation in cancer, but the data regarding effective inhibitors remains sparse. Golgi α-mannosidase has been an attractive therapeutic target for preventing the formation of ß1,6-branched complex type N-glycans. However, due to its high structural similarity to the broadly specific lysosomal α-mannosidase, undesired co-inhibition occurs and this leads to serious side effects that complicates its potential role as a therapeutic agent. Even though extensive efforts have been geared towards the discovery of effective inhibitors, no breakthrough has been achieved thus far which could allow for their use in clinical settings. Improving the specificity of current inhibitors towards Golgi α-mannosidase is requisite in progressing this class of compounds in cancer chemotherapy. In this review, we highlight a few potent and selective inhibitors discovered up to the present to guide researchers for rational design of further effective inhibitors to overcome the issue of specificity.
Collapse
Affiliation(s)
- Zheng Yang Lee
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia
| | - Jason Siau Ee Loo
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia; Centre for Drug Discovery and Molecular Pharmacology, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia
| | - Agustono Wibowo
- Faculty of Applied Science, Universiti Teknologi MARA (UiTM) Pahang, Jengka Campus, 26400, Bandar Tun Abdul Razak Jengka, Pahang, Malaysia
| | - Mohd Fazli Mohammat
- Organic Synthesis Laboratory, Institute of Science, Universiti Teknologi MARA (UiTM), 40450, Shah Alam, Selangor, Malaysia
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia; Centre for Drug Discovery and Molecular Pharmacology, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
4
|
Howard E, Cousido‐Siah A, Lepage ML, Schneider JP, Bodlenner A, Mitschler A, Meli A, Izzo I, Alvarez HA, Podjarny A, Compain P. Structural Basis of Outstanding Multivalent Effects in Jack Bean α‐Mannosidase Inhibition. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801202] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Eduardo Howard
- Department of Integrative BiologyInstitut de Génétique et de Biologie Moléculaire et CellulaireCNRSINSERM, UdS 1 rue Laurent Fries 67404 Illkirch CEDEX France
- Instituto de Física de Líquidos y Sistemas BiológicosCONICET, UNLP Calle 59 No. 789 La Plata Argentina
| | - Alexandra Cousido‐Siah
- Department of Integrative BiologyInstitut de Génétique et de Biologie Moléculaire et CellulaireCNRSINSERM, UdS 1 rue Laurent Fries 67404 Illkirch CEDEX France
| | - Mathieu L. Lepage
- Laboratoire d'Innovation Moléculaire et ApplicationsUniversité de Strasbourg
- Université de Haute-Alsace
- CNRS
- LIMA (UMR 7042)Equipe de Synthèse Organique et Molécules Bioactives (SYBIO)ECPM 25 rue Becquerel 67000 Strasbourg France
| | - Jérémy P. Schneider
- Laboratoire d'Innovation Moléculaire et ApplicationsUniversité de Strasbourg
- Université de Haute-Alsace
- CNRS
- LIMA (UMR 7042)Equipe de Synthèse Organique et Molécules Bioactives (SYBIO)ECPM 25 rue Becquerel 67000 Strasbourg France
| | - Anne Bodlenner
- Laboratoire d'Innovation Moléculaire et ApplicationsUniversité de Strasbourg
- Université de Haute-Alsace
- CNRS
- LIMA (UMR 7042)Equipe de Synthèse Organique et Molécules Bioactives (SYBIO)ECPM 25 rue Becquerel 67000 Strasbourg France
| | - André Mitschler
- Department of Integrative BiologyInstitut de Génétique et de Biologie Moléculaire et CellulaireCNRSINSERM, UdS 1 rue Laurent Fries 67404 Illkirch CEDEX France
| | - Alessandra Meli
- Department of Chemistry and Biology “A. Zambelli”University of Salerno Via Giovanni Paolo II, 132 84084 Fisciano, Salerno Italy
| | - Irene Izzo
- Department of Chemistry and Biology “A. Zambelli”University of Salerno Via Giovanni Paolo II, 132 84084 Fisciano, Salerno Italy
| | - H. Ariel Alvarez
- Instituto de Física de Líquidos y Sistemas BiológicosCONICET, UNLP Calle 59 No. 789 La Plata Argentina
| | - Alberto Podjarny
- Department of Integrative BiologyInstitut de Génétique et de Biologie Moléculaire et CellulaireCNRSINSERM, UdS 1 rue Laurent Fries 67404 Illkirch CEDEX France
| | - Philippe Compain
- Laboratoire d'Innovation Moléculaire et ApplicationsUniversité de Strasbourg
- Université de Haute-Alsace
- CNRS
- LIMA (UMR 7042)Equipe de Synthèse Organique et Molécules Bioactives (SYBIO)ECPM 25 rue Becquerel 67000 Strasbourg France
| |
Collapse
|
5
|
Howard E, Cousido-Siah A, Lepage ML, Schneider JP, Bodlenner A, Mitschler A, Meli A, Izzo I, Alvarez HA, Podjarny A, Compain P. Structural Basis of Outstanding Multivalent Effects in Jack Bean α-Mannosidase Inhibition. Angew Chem Int Ed Engl 2018; 57:8002-8006. [PMID: 29722924 DOI: 10.1002/anie.201801202] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Indexed: 12/28/2022]
Abstract
Multivalent design of glycosidase inhibitors is a promising strategy for the treatment of diseases involving enzymatic hydrolysis of glycosidic bonds in carbohydrates. An essential prerequisite for successful applications is the atomic-level understanding of how outstanding binding enhancement occurs with multivalent inhibitors. Herein we report the first high-resolution crystal structures of the Jack bean α-mannosidase (JBα-man) in apo and inhibited states. The three-dimensional structure of JBα-man in complex with the multimeric cyclopeptoid-based inhibitor displaying the largest binding enhancements reported so far provides decisive insight into the molecular mechanisms underlying multivalent effects in glycosidase inhibition.
Collapse
Affiliation(s)
- Eduardo Howard
- Department of Integrative Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, UdS, 1 rue Laurent Fries, 67404, Illkirch CEDEX, France.,Instituto de Física de Líquidos y Sistemas Biológicos, CONICET, UNLP, Calle 59 No. 789, La Plata, Argentina
| | - Alexandra Cousido-Siah
- Department of Integrative Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, UdS, 1 rue Laurent Fries, 67404, Illkirch CEDEX, France
| | - Mathieu L Lepage
- Laboratoire d'Innovation Moléculaire et Applications, Université de Strasbourg
- , Université de Haute-Alsace
- , CNRS
- , LIMA (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 rue Becquerel, 67000, Strasbourg, France
| | - Jérémy P Schneider
- Laboratoire d'Innovation Moléculaire et Applications, Université de Strasbourg
- , Université de Haute-Alsace
- , CNRS
- , LIMA (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 rue Becquerel, 67000, Strasbourg, France
| | - Anne Bodlenner
- Laboratoire d'Innovation Moléculaire et Applications, Université de Strasbourg
- , Université de Haute-Alsace
- , CNRS
- , LIMA (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 rue Becquerel, 67000, Strasbourg, France
| | - André Mitschler
- Department of Integrative Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, UdS, 1 rue Laurent Fries, 67404, Illkirch CEDEX, France
| | - Alessandra Meli
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, Salerno, Italy
| | - Irene Izzo
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, Salerno, Italy
| | - H Ariel Alvarez
- Instituto de Física de Líquidos y Sistemas Biológicos, CONICET, UNLP, Calle 59 No. 789, La Plata, Argentina
| | - Alberto Podjarny
- Department of Integrative Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, UdS, 1 rue Laurent Fries, 67404, Illkirch CEDEX, France
| | - Philippe Compain
- Laboratoire d'Innovation Moléculaire et Applications, Université de Strasbourg
- , Université de Haute-Alsace
- , CNRS
- , LIMA (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 rue Becquerel, 67000, Strasbourg, France
| |
Collapse
|
6
|
Mirabella S, D'Adamio G, Matassini C, Goti A, Delgado S, Gimeno A, Robina I, Moreno-Vargas AJ, Šesták S, Jiménez-Barbero J, Cardona F. Mechanistic Insight into the Binding of Multivalent Pyrrolidines to α-Mannosidases. Chemistry 2017; 23:14585-14596. [DOI: 10.1002/chem.201703011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Stefania Mirabella
- Dipartimento di Chimica “Ugo Schiff”; Università degli Studi di Firenze; Via della Lastruccia 3-13 50019 Sesto Fiorentino (FI) Italy
- CIC bioGUNE; Bizkaia Science and Technology Park; Building 801A 48160 Derio Spain
| | - Giampiero D'Adamio
- Dipartimento di Chimica “Ugo Schiff”; Università degli Studi di Firenze; Via della Lastruccia 3-13 50019 Sesto Fiorentino (FI) Italy
| | - Camilla Matassini
- Dipartimento di Chimica “Ugo Schiff”; Università degli Studi di Firenze; Via della Lastruccia 3-13 50019 Sesto Fiorentino (FI) Italy
- CNR-INO; Via N. Carrara 1 Sesto Fiorentino (FI) Italy
| | - Andrea Goti
- Dipartimento di Chimica “Ugo Schiff”; Università degli Studi di Firenze; Via della Lastruccia 3-13 50019 Sesto Fiorentino (FI) Italy
- CNR-INO; Via N. Carrara 1 Sesto Fiorentino (FI) Italy
| | - Sandra Delgado
- CIC bioGUNE; Bizkaia Science and Technology Park; Building 801A 48160 Derio Spain
| | - Ana Gimeno
- CIC bioGUNE; Bizkaia Science and Technology Park; Building 801A 48160 Derio Spain
| | - Inmaculada Robina
- Departamento de Química Orgánica; Facultad de Química; Universidad de Sevilla; c/Prof. García González 1 41012 Sevilla Spain
| | - Antonio J. Moreno-Vargas
- Departamento de Química Orgánica; Facultad de Química; Universidad de Sevilla; c/Prof. García González 1 41012 Sevilla Spain
| | - Sergej Šesták
- Institute of Chemistry; Center for Glycomics; Slovak Academy of Sciences; Dúbravska cesta 9 84538 Bratislava Slovakia
| | - Jesús Jiménez-Barbero
- CIC bioGUNE; Bizkaia Science and Technology Park; Building 801A 48160 Derio Spain
- Ikerbasque; Basque Foundation for Science; Maria Diaz de Haro 5 48005 Bilbao Spain
- Departament Organic Chemistry II; EHU-UPV; 48040 Leioa Spain
| | - Francesca Cardona
- Dipartimento di Chimica “Ugo Schiff”; Università degli Studi di Firenze; Via della Lastruccia 3-13 50019 Sesto Fiorentino (FI) Italy
- CNR-INO; Via N. Carrara 1 Sesto Fiorentino (FI) Italy
| |
Collapse
|
7
|
Lepage ML, Schneider JP, Bodlenner A, Meli A, De Riccardis F, Schmitt M, Tarnus C, Nguyen-Huynh NT, Francois YN, Leize-Wagner E, Birck C, Cousido-Siah A, Podjarny A, Izzo I, Compain P. Iminosugar-Cyclopeptoid Conjugates Raise Multivalent Effect in Glycosidase Inhibition at Unprecedented High Levels. Chemistry 2016; 22:5151-5. [DOI: 10.1002/chem.201600338] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Mathieu L. Lepage
- Laboratoire de Synthèse Organique et Molécules Bioactives Université de Strasbourg et CNRS (UMR 7509); Ecole Européenne de Chimie, Polymères et Matériaux; 25 rue Becquerel 67087 Strasbourg France
| | - Jérémy P. Schneider
- Laboratoire de Synthèse Organique et Molécules Bioactives Université de Strasbourg et CNRS (UMR 7509); Ecole Européenne de Chimie, Polymères et Matériaux; 25 rue Becquerel 67087 Strasbourg France
| | - Anne Bodlenner
- Laboratoire de Synthèse Organique et Molécules Bioactives Université de Strasbourg et CNRS (UMR 7509); Ecole Européenne de Chimie, Polymères et Matériaux; 25 rue Becquerel 67087 Strasbourg France
| | - Alessandra Meli
- Department of Chemistry and Biology; University of Salerno; Via Giovanni Paolo II,132 84084 Fisciano, Salerno Italy
| | - Francesco De Riccardis
- Department of Chemistry and Biology; University of Salerno; Via Giovanni Paolo II,132 84084 Fisciano, Salerno Italy
| | - Marjorie Schmitt
- Université de Haute Alsace; Laboratoire de Chimie Organique et Bioorganique (EA4466), ENSCMu; 3, rue Alfred Werner 68093 Mulhouse Cedex France
| | - Céline Tarnus
- Université de Haute Alsace; Laboratoire de Chimie Organique et Bioorganique (EA4466), ENSCMu; 3, rue Alfred Werner 68093 Mulhouse Cedex France
| | - Nha-Thi Nguyen-Huynh
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes; UMR CNRS 7140; Université de Strasbourg; 67008 Strasbourg France
| | - Yannis-Nicolas Francois
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes; UMR CNRS 7140; Université de Strasbourg; 67008 Strasbourg France
| | - Emmanuelle Leize-Wagner
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes; UMR CNRS 7140; Université de Strasbourg; 67008 Strasbourg France
| | - Catherine Birck
- Structural Biology Platform, CBI-IGBMC; 1 rue Laurent Fries 67404 Illkirch France
| | - Alexandra Cousido-Siah
- Department of Integrative Biology; Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, UdS; 1 rue Laurent Fries 67404 Illkirch CEDEX France
| | - Alberto Podjarny
- Department of Integrative Biology; Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, UdS; 1 rue Laurent Fries 67404 Illkirch CEDEX France
| | - Irene Izzo
- Department of Chemistry and Biology; University of Salerno; Via Giovanni Paolo II,132 84084 Fisciano, Salerno Italy
| | - Philippe Compain
- Laboratoire de Synthèse Organique et Molécules Bioactives Université de Strasbourg et CNRS (UMR 7509); Ecole Européenne de Chimie, Polymères et Matériaux; 25 rue Becquerel 67087 Strasbourg France
| |
Collapse
|
8
|
Tejavath KK, Nadimpalli SK. Purification and characterization of a class II α-Mannosidase from Moringa oleifera seed kernels. Glycoconj J 2014; 31:485-96. [DOI: 10.1007/s10719-014-9540-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Brissonnet Y, Ortiz Mellet C, Morandat S, Garcia Moreno MI, Deniaud D, Matthews SE, Vidal S, Šesták S, El Kirat K, Gouin SG. Correction to “Topological Effects and Binding Modes Operating with Multivalent Iminosugar-Based Glycoclusters and Mannosidases”. J Am Chem Soc 2014. [DOI: 10.1021/ja502399b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Rempel BP, Withers SG. Phosphodiesters serve as potentially tunable aglycones for fluoro sugar inactivators of retaining β-glycosidases. Org Biomol Chem 2014; 12:2592-5. [DOI: 10.1039/c4ob00235k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
2-Deoxy-2-fluoroglycosides were synthesised and tested as covalent glycosidase inactivators. β-d-Gluco-, -manno- and -galacto-configured benzyl-benzylphosphonate derivatives efficiently inactivate β-gluco-, β-manno- and β-galactosidases, while α-gluco- and α-manno-configured phosphate and phosphonate derivatives instead served as slow substrates for their cognate α-glycosidases.
Collapse
Affiliation(s)
- B. P. Rempel
- Department of Chemistry
- University of British Columbia
- Vancouver, Canada
| | - S. G. Withers
- Department of Chemistry
- University of British Columbia
- Vancouver, Canada
| |
Collapse
|
11
|
Gnanesh Kumar BS, Pohlentz G, Schulte M, Mormann M, Siva Kumar N. Jack bean α-mannosidase: amino acid sequencing and N-glycosylation analysis of a valuable glycomics tool. Glycobiology 2013; 24:252-61. [PMID: 24295789 DOI: 10.1093/glycob/cwt106] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Jack bean (Canavalia ensiformis) seeds contain several biologically important proteins among which α-mannosidase (EC 3.2.1.24) has been purified, its biochemical properties studied and widely used in glycan analysis. In the present study, we have used the purified enzyme and derived its amino acid sequence covering both the known subunits (molecular mass of ∼66,000 and ∼44,000 Da) hitherto not known in its entirety. Peptide de novo sequencing and structural elucidation of N-glycopeptides obtained either directly from proteolytic digestion or after zwitterionic hydrophilic interaction liquid chromatography solid phase extraction-based separation were performed by use of nanoelectrospray ionization quadrupole time-of-flight mass spectrometry and low-energy collision-induced dissociation experiments. De novo sequencing provided new insights into the disulfide linkage organization, intersection of subunits and complete N-glycan structures along with site specificities. The primary sequence suggests that the enzyme belongs to glycosyl hydrolase family 38 and the N-glycan sequence analysis revealed high-mannose oligosaccharides, which were found to be heterogeneous with varying number of hexoses viz, Man8-9GlcNAc2 and Glc1Man9GlcNAc2 in an evolutionarily conserved N-glycosylation site. This site with two proximal cysteines is present in all the acidic α-mannosidases reported so far in eukaryotes. Further, a truncated paucimannose type was identified to be lacking terminal two mannose, Man1(Xyl)GlcNAc2 (Fuc).
Collapse
Affiliation(s)
- B S Gnanesh Kumar
- Protein Biochemistry and Glycobiology Laboratory, Department of Biochemistry, University of Hyderabad, Hyderabad 500046, India
| | | | | | | | | |
Collapse
|
12
|
Schuman B, Evans SV, Fyles TM. Geometric attributes of retaining glycosyltransferase enzymes favor an orthogonal mechanism. PLoS One 2013; 8:e71077. [PMID: 23936487 PMCID: PMC3731257 DOI: 10.1371/journal.pone.0071077] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 07/02/2013] [Indexed: 01/20/2023] Open
Abstract
Retaining glycosyltransferase enzymes retain the stereochemistry of the donor glycosidic linkage after transfer to an acceptor molecule. The mechanism these enzymes utilize to achieve retention of the anomeric stereochemistry has been a matter of much debate. Re-analysis of previously released structural data from retaining and inverting glycosyltransferases allows competing mechanistic proposals to be evaluated. The binding of metal-nucleotide-sugars between inverting and retaining enzymes is conformationally unique and requires the donor substrate to occupy two different orientations in the two types of glycosyltransferases. The available structures of retaining glycosyltransferases lack appropriately positioned enzymatic dipolar residues to initiate or stabilize the intermediates of a dissociative mechanism. Further, available structures show that the acceptor nucleophile and anomeric carbon of the donor sugar are in close proximity. Structural features support orthogonal (front-side) attack from a position lying ≤90° from the C1-O phosphate bond for retaining enzymes. These structural conclusions are consistent with the geometric conclusions of recent kinetic and computational studies.
Collapse
Affiliation(s)
- Brock Schuman
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Stephen V. Evans
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Thomas M. Fyles
- Department of Chemistry, University of Victoria, Victoria, British Columbia, Canada
- * E-mail:
| |
Collapse
|
13
|
Characterization of α-mannosidase from Dolichos lablab seeds: Partial amino acid sequencing and N-glycan analysis. Protein Expr Purif 2013; 89:7-15. [DOI: 10.1016/j.pep.2013.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 02/04/2013] [Accepted: 02/08/2013] [Indexed: 11/20/2022]
|
14
|
Wang L, Suzuki T. Dual functions for cytosolic α-mannosidase (Man2C1): its down-regulation causes mitochondria-dependent apoptosis independently of its α-mannosidase activity. J Biol Chem 2013; 288:11887-96. [PMID: 23486476 DOI: 10.1074/jbc.m112.425702] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Cytosolic α-mannosidase (Man2C1) trims free oligosaccharides in mammalian cells, and its down-regulation reportedly delays cancer growth by inducing mitotic arrest or apoptosis. However, the mechanism by which Man2C1 down-regulation induces apoptosis is unknown. Here, we demonstrated that silencing of Man2C1 via small hairpin RNAs induced mitochondria-dependent apoptosis in HeLa cells. Expression of CHOP (C/EBP homologous protein), a transcription factor critical to endoplasmic reticulum stress-induced apoptosis, was significantly up-regulated in Man2C1 knockdown cells. However, this enhanced CHOP expression was not caused by endoplasmic reticulum stress. Interestingly, Man2C1 catalytic activity was not required for this regulation of apoptosis; introduction of mutant, enzymatically inactive Man2C1 rescued apoptotic phenotypes of Man2C1 knockdown cells. These results show that Man2C1 has dual functions: one in glycan catabolism and another in apoptotic signaling.
Collapse
Affiliation(s)
- Li Wang
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN Max Planck Joint Research Center, RIKEN Global Research Cluster, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | |
Collapse
|
15
|
Concia AL, Gómez L, Bujons J, Parella T, Vilaplana C, Cardona PJ, Joglar J, Clapés P. Chemo-enzymatic synthesis and glycosidase inhibitory properties of DAB and LAB derivatives. Org Biomol Chem 2013; 11:2005-21. [PMID: 23381224 DOI: 10.1039/c3ob27343a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A chemo-enzymatic strategy for the preparation of 2-aminomethyl derivatives of (2R,3R,4R)-2-(hydroxymethyl)pyrrolidine-3,4-diol (also called 1,4-dideoxy-1,4-imino-D-arabinitol, DAB) and its enantiomer LAB is presented. The synthesis is based on the enzymatic preparation of DAB and LAB followed by the chemical modification of their hydroxymethyl functionality to afford diverse 2-aminomethyl derivatives. This strategy leads to novel aromatic, aminoalcohol and 2-oxopiperazine DAB and LAB derivatives. The compounds were preliminarily explored as inhibitors of a panel of commercial glycosidases, rat intestinal disaccharidases and against Mycobacterium tuberculosis, the causative agent of tuberculosis. It was found that the inhibitory profile of the new products differed considerably from the parent DAB and LAB. Furthermore, some of them were active inhibiting the growth of M. tuberculosis.
Collapse
Affiliation(s)
- Alda Lisa Concia
- Dept Química Biológica y Modelización Molecular, Instituto de Química Avanzada de Cataluña, IQAC-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Walvoort MTC, van der Marel GA, Overkleeft HS, Codée JDC. On the reactivity and selectivity of donor glycosides in glycochemistry and glycobiology: trapped covalent intermediates. Chem Sci 2013. [DOI: 10.1039/c2sc21610h] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
17
|
Nielsen JW, Poulsen NR, Johnsson A, Winther JR, Stipp SLS, Willemoës M. Metal-Ion Dependent Catalytic Properties of Sulfolobus solfataricus Class II α-Mannosidase. Biochemistry 2012; 51:8039-46. [DOI: 10.1021/bi301096a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jonas Willum Nielsen
- Nano-Science Center, Department
of Chemistry, University of Copenhagen,
Universitetsparken 5, DK-2300 Copenhagen Ø, Denmark
- Department of Biology, University of Copenhagen, Ole Maaløes vej 5, DK-2200
Copenhagen N, Denmark
| | - Nina Rødtness Poulsen
- Department of Biology, University of Copenhagen, Ole Maaløes vej 5, DK-2200
Copenhagen N, Denmark
| | - Anna Johnsson
- Nano-Science Center, Department
of Chemistry, University of Copenhagen,
Universitetsparken 5, DK-2300 Copenhagen Ø, Denmark
| | - Jakob Rahr Winther
- Department of Biology, University of Copenhagen, Ole Maaløes vej 5, DK-2200
Copenhagen N, Denmark
| | - S. L. S. Stipp
- Nano-Science Center, Department
of Chemistry, University of Copenhagen,
Universitetsparken 5, DK-2300 Copenhagen Ø, Denmark
| | - Martin Willemoës
- Department of Biology, University of Copenhagen, Ole Maaløes vej 5, DK-2200
Copenhagen N, Denmark
| |
Collapse
|
18
|
Kumar A, Gaikwad SM. Jack bean α-mannosidase (Jbα-man): Tolerance to alkali, chelating and reducing agents and energetics of catalysis and inhibition. Int J Biol Macromol 2011; 49:1066-71. [DOI: 10.1016/j.ijbiomac.2011.08.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 08/01/2011] [Accepted: 08/31/2011] [Indexed: 10/17/2022]
|
19
|
Gandy MN, Debowski AW, Stubbs KA. A general method for affinity-based proteomic profiling of exo-α-glycosidases. Chem Commun (Camb) 2011; 47:5037-9. [PMID: 21431156 DOI: 10.1039/c1cc10308c] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesis of iminosugar-based affinity-based proteomics probes for use in probing exo-α-glycosidase activity.
Collapse
Affiliation(s)
- Michael N Gandy
- Chemistry M313, School of Biomedical, Biomolecular and Chemical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA Australia6009
| | | | | |
Collapse
|
20
|
Kumar A, Gaikwad SM. Multistate unfolding of α-mannosidase from Canavalia ensiformis (Jack Bean): Evidence for the thermostable molten globule. Biochem Biophys Res Commun 2010; 403:391-7. [DOI: 10.1016/j.bbrc.2010.11.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 11/12/2010] [Indexed: 11/28/2022]
|
21
|
Petersen L, Ardèvol A, Rovira C, Reilly PJ. Molecular Mechanism of the Glycosylation Step Catalyzed by Golgi α-Mannosidase II: A QM/MM Metadynamics Investigation. J Am Chem Soc 2010; 132:8291-300. [DOI: 10.1021/ja909249u] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Luis Petersen
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, Computer Simulation and Modeling Laboratory (CoSMoLab), Parc Científic de Barcelona, 08028 Barcelona, Spain, Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, 08028 Barcelona, Spain, and Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Albert Ardèvol
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, Computer Simulation and Modeling Laboratory (CoSMoLab), Parc Científic de Barcelona, 08028 Barcelona, Spain, Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, 08028 Barcelona, Spain, and Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Carme Rovira
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, Computer Simulation and Modeling Laboratory (CoSMoLab), Parc Científic de Barcelona, 08028 Barcelona, Spain, Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, 08028 Barcelona, Spain, and Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Peter J. Reilly
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, Computer Simulation and Modeling Laboratory (CoSMoLab), Parc Científic de Barcelona, 08028 Barcelona, Spain, Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, 08028 Barcelona, Spain, and Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
22
|
Bello C, Cea M, Dal Bello G, Garuti A, Rocco I, Cirmena G, Moran E, Nahimana A, Duchosal MA, Fruscione F, Pronzato P, Grossi F, Patrone F, Ballestrero A, Dupuis M, Sordat B, Nencioni A, Vogel P. Novel 2-[(benzylamino)methyl]pyrrolidine-3,4-diol derivatives as α-mannosidase inhibitors and with antitumor activities against hematological and solid malignancies. Bioorg Med Chem 2010; 18:3320-34. [PMID: 20346684 DOI: 10.1016/j.bmc.2010.03.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 03/01/2010] [Accepted: 03/04/2010] [Indexed: 11/28/2022]
Affiliation(s)
- Claudia Bello
- Laboratory of Glycochemistry and Asymmetric Synthesis (LGSA), Ecole Polytechnique Fédérale de Lausanne (EPFL), Batochime, CH-1015 Lausanne, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Calveras J, Egido-Gabás M, Gómez L, Casas J, Parella T, Joglar J, Bujons J, Clapés P. Dihydroxyacetone Phosphate Aldolase Catalyzed Synthesis of Structurally Diverse Polyhydroxylated Pyrrolidine Derivatives and Evaluation of their Glycosidase Inhibitory Properties. Chemistry 2009; 15:7310-28. [DOI: 10.1002/chem.200900838] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
24
|
van Lieshout JF, Verhees CH, Ettema TJ, van der Sar S, Imamura H, Matsuzawa H, van der Oost J, de Vos WM. Identification and Molecular Characterization of a Novel Type of α-galactosidase fromPyrococcus furiosus. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.1080/10242420310001614342] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
25
|
Berkowitz DB, Karukurichi KR, de la Salud-Bea R, Nelson DL, McCune CD. Use of Fluorinated Functionality in Enzyme Inhibitor Development: Mechanistic and Analytical Advantages. J Fluor Chem 2008; 129:731-742. [PMID: 19727327 PMCID: PMC2598403 DOI: 10.1016/j.jfluchem.2008.05.016] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
On the one hand, owing to its electronegativity, relatively small size, and notable leaving group ability from anionic intermediates, fluorine offers unique opportunities for mechanism-based enzyme inhibitor design. On the other, the "bio-orthogonal" and NMR-active 19-fluorine nucleus allows the bioorganic chemist to follow the mechanistic fate of fluorinated substrate analogues or inhibitors as they are enzymatically processed. This article takes an overview of the field, highlighting key developments along these lines. It begins by highlighting new screening methodologies for drug discovery that involve appropriate tagging of either substrate or the target protein itself with (19)F-markers, that then report back on turnover and binding, respectively, via an the NMR screen. Taking this one step further, substrate-tagging with fluorine can be done is such a manner as to provide stereochemical information on enzyme mechanism. For example, substitution of one of the terminal hydrogens in phosphoenolpyruvate, provides insight into the, otherwise latent, facial selectivity of C-C bond formation in KDO synthase. Perhaps, most importantly, from the point of view of this discussion, appropriately tailored fluorinated functionality can be used to form to stabilized "transition state analogue" complexes with a target enzymes. Thus, 5-fluorinated pyrimidines, alpha-fluorinated ketones, and 2-fluoro-2-deoxysugars each lead to covalent adduction of catalytic active site residues in thymidylate synthase, serine protease and glycosidase enzymes, respectively. In all such cases, (19)F NMR allows the bioorganic chemist to spectrally follow "transition state analogue" formation. Finally, the use of specific fluorinated functionality to engineer "suicide substrates" is highlighted in a discussion of the development of the alpha-(2'Z-fluoro)vinyl trigger for amino acid decarboxylase inactivation. Here (19)F NMR allows the bioorganic chemist to glean useful partition ratio data directly out of the NMR tube.
Collapse
Affiliation(s)
- David B Berkowitz
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588-0304
| | | | | | | | | |
Collapse
|
26
|
Garscha U, Oliw E. Pichia expression and mutagenesis of 7,8-linoleate diol synthase change the dioxygenase and hydroperoxide isomerase. Biochem Biophys Res Commun 2008; 373:579-83. [DOI: 10.1016/j.bbrc.2008.06.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Accepted: 06/19/2008] [Indexed: 10/21/2022]
|
27
|
Steiner AJ, Stütz AE, Tarling CA, Withers SG, Wrodnigg TM. Iminoalditol-amino acid hybrids: synthesis and evaluation as glycosidase inhibitors. Carbohydr Res 2007; 342:1850-8. [PMID: 17442281 DOI: 10.1016/j.carres.2007.03.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Revised: 03/19/2007] [Accepted: 03/22/2007] [Indexed: 11/29/2022]
Abstract
Cyclization by double reductive amination of D-xylo-hexos-5-ulose with the terminal amino group of alpha-N-Boc-lysine methyl ester gave a 4:1-mixture of (1'R)-N-methoxycarbonyl-(1-N-Boc-amino)pentyl-1-deoxynojirimycin and the corresponding L-ido epimer whereas D-lyxo-hexos-5-ulose furnished the desired N-alkylated 1-deoxymannojirimycin derivative without any observable epimer formation at C-5. By subsequent modification of the lysine moiety, additional chain-extended derivatives as well as fluorescent compounds were obtained. All fluorescent iminoalditol-amino acid hybrids prepared in this study exhibited glycosidase inhibitory activities better than or comparable to the parent compounds'.
Collapse
Affiliation(s)
- Andreas J Steiner
- Glycogroup, Institut für Organische Chemie, Technische Universität Graz, Stremayrgasse 16, A-8010 Graz, Austria
| | | | | | | | | |
Collapse
|
28
|
Chevrier C, Defoin A, Tarnus C. Synthesis and evaluation of amino-threoses in d- and l-series: Are five membered ring amino-sugars more potent glycosidase inhibitors than the six membered ones? Bioorg Med Chem 2007; 15:4125-35. [PMID: 17434740 DOI: 10.1016/j.bmc.2007.03.073] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 03/18/2007] [Accepted: 03/23/2007] [Indexed: 11/18/2022]
Abstract
Cyclic D- and L-4-aminothreose were synthesised from ethyl D- and L-tartrate, respectively. D-aminothreose was a potent inhibitor of alpha-glucosidase and of alpha-mannosidase. From the glycosidase inhibition potencies of the four 4-amino-4-deoxy-tetroses, the contribution of binding of each functionality of the 5 and 6 membered ring amino-sugars towards the various glycosidases is discussed.
Collapse
Affiliation(s)
- Carine Chevrier
- Laboratoire de Chimie Organique et Bioorganique, UMR 7015, Ecole Nationale Supérieure de Chimie de Mulhouse, Université de Haute-Alsace, 3, rue Alfred Werner, F-68093 Mulhouse Cédex, France
| | | | | |
Collapse
|
29
|
Kestwal RM, Konozy EHE, Hsiao CD, Roque-Barreira MC, Bhide SV. Characterization of α-mannosidase from Erythrina indica seeds and influence of endogenous lectin on its activity. Biochim Biophys Acta Gen Subj 2007; 1770:24-8. [PMID: 16935428 DOI: 10.1016/j.bbagen.2006.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Revised: 06/29/2006] [Accepted: 07/14/2006] [Indexed: 11/16/2022]
Abstract
alpha-mannosidase from Erythrina indica seeds is a Zn(2+) dependent glycoprotein with 8.6% carbohydrate. The enzyme has a temperature optimum of 50 degrees C and energy of activation calculated from Arrhenius plot was found to be 23 kJ mol(-1). N-terminal sequence up to five amino acid residues was found to be DTQEN (Asp, Thr, Gln, Glu, and Asn). In chemical modification studies treatment of the enzyme with NBS led to total loss of enzyme activity and modification of a single tryptophan residue led to inactivation. Fluorescence studies over a pH range of 3-8 have shown tryptophan residue to be in highly hydrophobic environment and pH change did not bring about any appreciable change in its environment. Far-UV CD spectrum indicated predominance of alpha-helical structure in the enzyme. alpha-Mannosidase from E indica exhibits immunological identity with alpha-mannosidase from Canavalia ensiformis but not with the same enzyme from Glycine max and Cicer arietinum. Incubation of E. indica seed lectin with alpha-mannosidase resulted in 35% increase in its activity, while no such activation was observed for acid phosphatase from E. indica. Lectin induced activation of alpha-mannosidase could be completely abolished in presence of lactose, a sugar specific for lectin.
Collapse
Affiliation(s)
- Rakesh Mohan Kestwal
- Division of Biochemistry, Department of Chemistry, University of Pune, Pune, India
| | | | | | | | | |
Collapse
|
30
|
|
31
|
Paschinger K, Hackl M, Gutternigg M, Kretschmer-Lubich D, Stemmer U, Jantsch V, Lochnit G, Wilson IBH. A deletion in the golgi alpha-mannosidase II gene of Caenorhabditis elegans results in unexpected non-wild-type N-glycan structures. J Biol Chem 2006; 281:28265-77. [PMID: 16864579 PMCID: PMC2848328 DOI: 10.1074/jbc.m602878200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The processing of N-linked oligosaccharides by alpha-mannosidases in the endoplasmic reticulum and Golgi is a process conserved in plants and animals. After the transfer of a GlcNAc residue to Asn-bound Man(5)GlcNAc(2) by N-acetylglucosaminyltransferase I, an alpha-mannosidase (EC 3.2.1.114) removes one alpha1,3-linked and one alpha1,6-linked mannose residue. In this study, we have identified the relevant alpha-mannosidase II gene (aman-2; F58H1.1) from Caenorhabditis elegans and have detected its activity in both native and recombinant forms. For comparative studies, the two other cDNAs encoding class II mannosidases aman-1 (F55D10.1) and aman-3 (F48C1.1) were cloned; the corresponding enzymes are, respectively, a putative lysosomal alpha-mannosidase and a Co(II)-activated alpha-mannosidase. The analysis of the N-glycan structures of an aman-2 mutant strain demonstrates that the absence of alpha-mannosidase II activity results in a shift to structures not seen in wild-type worms (e.g. N-glycans with the composition Hex(5-7)HexNAc(2-3)Fuc(2)Me) and an accumulation of hybrid oligosaccharides. Paucimannosidic glycans are almost absent from aman-2 worms, indicative also of a general lack of alpha-mannosidase III activity. We hypothesize that there is a tremendous flexibility in the glycosylation pathway of C. elegans that does not impinge, under standard laboratory conditions, on the viability of worms with glycotypes very unlike the wild-type pattern.
Collapse
Affiliation(s)
| | - Matthias Hackl
- Department für Chemie, Universität für Bodenkultur, A-1190 Wien, Austria
| | - Martin Gutternigg
- Department für Chemie, Universität für Bodenkultur, A-1190 Wien, Austria
| | | | - Ute Stemmer
- Department für Chemie, Universität für Bodenkultur, A-1190 Wien, Austria
| | - Verena Jantsch
- Abteilung für Chromosomenbiologie, Vienna Biocenter II, A-1030 Wien
| | - Günter Lochnit
- Institut für Biochemie, Justus-Liebig Universität, D-35292 Giessen, Germany
| | - Iain B. H. Wilson
- Department für Chemie, Universität für Bodenkultur, A-1190 Wien, Austria
| |
Collapse
|
32
|
Watts AG, Oppezzo P, Withers SG, Alzari PM, Buschiazzo A. Structural and Kinetic Analysis of Two Covalent Sialosyl-Enzyme Intermediates on Trypanosoma rangeli Sialidase. J Biol Chem 2006; 281:4149-55. [PMID: 16298994 DOI: 10.1074/jbc.m510677200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Trypanosoma rangeli sialidase is a glycoside hydrolase (family GH33) that catalyzes the cleavage of alpha-2-->3-linked sialic acid residues from sialoglycoconjugates with overall retention of anomeric configuration. Retaining glycosidases usually operate through a ping-pong mechanism, wherein a covalent intermediate is formed between the carbohydrate and an active site carboxylic acid of the enzyme. Sialidases, instead, appear to use a tyrosine as the catalytic nucleophile, leaving the possibility of an essentially different catalytic mechanism. Indeed, a direct nucleophilic role for a tyrosine was shown for the homologous trans-sialidase from Trypanosoma cruzi, although itself not a typical sialidase. Here we present the three-dimensional structures of the covalent glycosyl-enzyme complexes formed by the T. rangeli sialidase with two different mechanism-based inactivators at 1.9 and 1.7 Angstroms resolution. To our knowledge, these are the first reported structures of enzymatically competent covalent intermediates for a strictly hydrolytic sialidase. Kinetic analyses have been carried out on the formation and turnover of both intermediates, showing that structural modifications to these inactivators can be used to modify the lifetimes of covalent intermediates. These results provide further evidence that all sialidases likely operate through a similar mechanism involving the transient formation of a covalently sialylated enzyme. Furthermore, we believe that the ability to "tune" the inactivation and reactivation rates of mechanism-based inactivators toward specific enzymes represents an important step toward developing this class of inactivators into therapeutically useful compounds.
Collapse
Affiliation(s)
- Andrew G Watts
- Department of Chemistry, University of British Columbia, Vancouver, Canada
| | | | | | | | | |
Collapse
|
33
|
Łysek R, Schütz C, Vogel P. (1S,2S,3R,6R)-6-Aminocyclohex-4-ene-1,2,3-triol (= (−)-Conduramine B-1) Is a Selective Inhibitor ofα-Mannosidases. Its Inhibitory Activity Is Enhanced byN-Benzylation. Helv Chim Acta 2005. [DOI: 10.1002/hlca.200590220] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
34
|
Terinek M, Vasella A. Synthesis and evaluation of two mannosamine-derived lactone-type inhibitors of snail β-mannosidase. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.tetasy.2004.11.068] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Gonzalez-Outeiriño J, Glushka J, Siriwardena A, Woods RJ. The structure and conformational behavior of sulfonium salt glycosidase inhibitors in solution: a combined quantum mechanical NMR approach. J Am Chem Soc 2004; 126:6866-7. [PMID: 15174846 PMCID: PMC1386731 DOI: 10.1021/ja049700k] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present the conformational analysis of an inhibitor of alpha-mannosidase, based on a novel sulfonium salt structure (1) that mimics the mannosyl cation intermediate. Because of the number of possible isomeric structures for 1, as well as its complex molecular structure, traditional conformational analysis by NMR was not applicable. Instead, a single experimentally consistent structure was obtained from finite perturbation quantum mechanical calculations of the NMR J-couplings at the B3LYP/6-311G** level. Using a full relaxation matrix analysis, we showed that the quantum-predicted NMR structure was the only isomer that was consistent with the experimental NOE intensities. The results illustrate the potential for finite perturbation calculations to be useful in the analysis of complex charged molecules.
Collapse
Affiliation(s)
- Jorge Gonzalez-Outeiriño
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602
| | - John Glushka
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602
| | | | - Robert J. Woods
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602
| |
Collapse
|
36
|
Jensen MH, Mirza O, Albenne C, Remaud-Simeon M, Monsan P, Gajhede M, Skov LK. Crystal Structure of the Covalent Intermediate of Amylosucrase fromNeisseria polysaccharea†. Biochemistry 2004; 43:3104-10. [PMID: 15023061 DOI: 10.1021/bi0357762] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The alpha-retaining amylosucrase from the glycoside hydrolase family 13 performs a transfer reaction of a glucosyl moiety from sucrose to an acceptor molecule. Amylosucrase has previously been shown to be able to use alpha-D-glucopyranosyl fluoride as a substrate, which suggested that it could also be used for trapping the reaction intermediate for crystallographic studies. In this paper, the crystal structure of the acid/base catalyst mutant, E328Q, with a covalently bound glucopyranosyl moiety is presented. Sucrose cocrystallized crystals were soaked with alpha-D-glucopyranosyl fluoride, which resulted in the trapping of a covalent intermediate in the active site of the enzyme. The structure is refined to a resolution of 2.2 A and showed that binding of the covalent intermediate resulted in a backbone movement of 1 A around the location of the nucleophile, Asp286. This structure reveals the first covalent intermediate of an alpha-retaining glycoside hydrolase where the glucosyl moiety is identical to the expected biologically relevant entity. Comparison to other enzymes with anticipated glucosylic covalent intermediates suggests that this structure is a representative model for such intermediates. Analysis of the active site shows how oligosaccharide binding disrupts the putative nucleophilic water binding site found in the hydrolases of the GH family 13. This reveals important parts of the structural background for the shift in function from hydrolase to transglycosidase seen in amylosucrase.
Collapse
Affiliation(s)
- Malene H Jensen
- Structural Biology Group, Department of Medicinal Chemistry, The Danish University of Pharmaceutical Sciences, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
37
|
Huard RC, Chitale S, Leung M, Lazzarini LCO, Zhu H, Shashkina E, Laal S, Conde MB, Kritski AL, Belisle JT, Kreiswirth BN, Lapa e Silva JR, Ho JL. The Mycobacterium tuberculosis complex-restricted gene cfp32 encodes an expressed protein that is detectable in tuberculosis patients and is positively correlated with pulmonary interleukin-10. Infect Immun 2004; 71:6871-83. [PMID: 14638775 PMCID: PMC308900 DOI: 10.1128/iai.71.12.6871-6883.2003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human tuberculosis (TB) is caused by the bacillus Mycobacterium tuberculosis, a subspecies of the M. tuberculosis complex (MTC) of mycobacteria. Postgenomic dissection of the M. tuberculosis proteome is ongoing and critical to furthering our understanding of factors mediating M. tuberculosis pathobiology. Towards this end, a 32-kDa putative glyoxalase in the culture filtrate (CF) of growing M. tuberculosis (originally annotated as Rv0577 and hereafter designated CFP32) was identified, cloned, and characterized. The cfp32 gene is MTC restricted, and the gene product is expressed ex vivo as determined by the respective Southern and Western blot testing of an assortment of mycobacteria. Moreover, the cfp32 gene sequence is conserved within the MTC, as no polymorphisms were found in the tested cfp32 PCR products upon sequence analysis. Western blotting of M. tuberculosis subcellular fractions localized CFP32 predominantly to the CF and cytosolic compartments. Data to support the in vivo expression of CFP32 were provided by the serum recognition of recombinant CFP32 in 32% of TB patients by enzyme-linked immunosorbent assay (ELISA) as well as the direct detection of CFP32 by ELISA in the induced sputum samples from 56% of pulmonary TB patients. Of greatest interest was the observation that, per sample, sputum CFP32 levels (a potential indicator of increasing bacterial burden) correlated with levels of expression in sputum of interleukin-10 (an immunosuppressive cytokine and a putative contributing factor to disease progression) but not levels of gamma interferon (a key cytokine in the protective immune response in TB), as measured by ELISA. Combined, these data suggest that CFP32 serves a necessary biological function(s) in tubercle bacilli and may contribute to the M. tuberculosis pathogenic mechanism. Overall, CFP32 is an attractive target for drug and vaccine design as well as new diagnostic strategies.
Collapse
Affiliation(s)
- Richard C Huard
- Division of International Medicine and Infectious Diseases, Department of Medicine, Joan and Sanford I. Weill Medical College, Cornell University, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Numao S, Kuntz DA, Withers SG, Rose DR. Insights into the mechanism of Drosophila melanogaster Golgi alpha-mannosidase II through the structural analysis of covalent reaction intermediates. J Biol Chem 2003; 278:48074-83. [PMID: 12960159 DOI: 10.1074/jbc.m309249200] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The family 38 golgi alpha-mannosidase II, thought to cleave mannosidic bonds through a double displacement mechanism involving a reaction intermediate, is a clinically important enzyme involved in glycoprotein processing. The structure of three different covalent glycosyl-enzyme intermediates have been determined to 1.2-A resolution for the Golgi alpha-mannosidase II from Drosophila melanogaster by use of fluorinated sugar analogues, both with the wild-type enzyme and a mutant enzyme in which the acid/base catalyst has been removed. All these structures reveal sugar intermediates bound in a distorted 1S5 skew boat conformation. The similarity of this conformation with that of the substrate in the recently determined structure of the Michaelis complex of a beta-mannanase (Ducros, V. M. A., Zechel, D. L., Murshudov, G. N., Gilbert, H. J., Szabo, L., Stoll, D., Withers, S. G., and Davies, G. J. (2002) Angew. Chem. Int. Ed. Engl. 41, 2824-2827) suggests that these disparate enzymes have recruited common stereoelectronic features in evolving their catalytic mechanisms.
Collapse
Affiliation(s)
- Shin Numao
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | | | | | | |
Collapse
|
39
|
Kroutil J, Karban J, Budesínský M. Utilization of nosylepimines of 1,6-anhydro-β-d-hexopyranoses for the preparation of halogenated aminosaccharides. Carbohydr Res 2003; 338:2825-33. [PMID: 14667703 DOI: 10.1016/j.carres.2003.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The aziridine ring cleavage of N-nosylepimines 3 and 7 having D-allo and D-manno configurations with halides led regioselectively to N-o-nitrobenzenesulfonylated 2-halo-3-amino- and 3-halo-2-amino-2,3-dideoxy derivatives of 1,6-anhydro-beta-D-glucopyranose 8-14 in 59-81% yields. Removal of o-nitrobenzenesulfonyl protecting group with benzenethiol afforded aminosaccharides, which were converted into more stable hydrochlorides 15-18.
Collapse
Affiliation(s)
- Jirí Kroutil
- Department of Organic Chemistry, Charles University, 128 43 Prague 2, Czech Republic.
| | | | | |
Collapse
|
40
|
Cobucci-Ponzano B, Trincone A, Giordano A, Rossi M, Moracci M. Identification of the catalytic nucleophile of the family 29 alpha-L-fucosidase from Sulfolobus solfataricus via chemical rescue of an inactive mutant. Biochemistry 2003; 42:9525-31. [PMID: 12911294 DOI: 10.1021/bi035036t] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have recently reported that a functional alpha-L-fucosidase could be expressed by a single insertional mutation in the region of overlap between the ORFs SSO11867 and SSO3060 of the hyperthermophilic Archaeon Sulfolobus solfataricus [Cobucci-Ponzano et al. J. Biol. Chem. (2003) 278, 14622-14631]. This enzyme, belonging to glycoside hydrolase family 29 (GH29), showed micromolar specificity for p-nitrophenyl-alpha-L-fucoside (pNp-Fuc) and promoted transfucosylation reactions by following a reaction mechanism in which the products retained the anomeric configuration of the substrate. The active site residues in GH29 enzymes are still unknown. We describe here the identification of the catalytic nucleophile of the reaction in the alpha-L-fucosidase from S. solfataricus by reactivation with sodium azide of the mutant Asp242Gly that shows a 10(3)-fold activity reduction on pNp-Fuc. The detailed stereochemical analysis of the fucosyl-azide produced by the mutant reactivated on pNp-Fuc revealed its inverted (beta-fucosyl azide) configuration compared with the substrate. This allows for the first time the unambiguous assignment of Asp242, and its homologous residues, as the nucleophilic catalytic residues of GH29 alpha-L-fucosidases. This is the first time that this approach is used for alpha-L-glycosidases, widening the applicability of this method.
Collapse
Affiliation(s)
- Beatrice Cobucci-Ponzano
- Institute of Protein Biochemistry, Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131, Naples, Italy
| | | | | | | | | |
Collapse
|
41
|
Affiliation(s)
- Renée M Mosi
- AnorMED, Inc., Langley, British Columbia, Canada V2Y 1N5
| | | |
Collapse
|
42
|
Abstract
The mechanism-based inactivation and subsequent identification of the nucleophilic residue using mass spectrometry have been successfully applied and used to identify the active-site nucleophile in numerous beta-glycosidases, as illustrated using C. fimi exoglycanase. Evidence for a covalent glycosyl-enzyme intermediate has come from X-ray crystallographic analysis of trapped complexes, the first being that of the trapped fluoroglycosyl-enzyme intermediate of Cex. The crystal structure of the trapped fluorocellobiosyl-enzyme complex for Cex has provided useful insights into catalysis and the roles of specific residues at the active site. In addition, information about the conformation of the natural sugar in the covalently bound state and the interactions at the active site was obtained using a mutant form of Cex.
Collapse
Affiliation(s)
- Jacqueline Wicki
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
| | | | | |
Collapse
|
43
|
Vocadlo DJ, Wicki J, Rupitz K, Withers SG. A case for reverse protonation: identification of Glu160 as an acid/base catalyst in Thermoanaerobacterium saccharolyticum beta-xylosidase and detailed kinetic analysis of a site-directed mutant. Biochemistry 2002; 41:9736-46. [PMID: 12146939 DOI: 10.1021/bi020078n] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The catalytic mechanism of the family 39 Thermoanaerobacterium saccharolyticum beta-xylosidase (XynB) involves a two-step double-displacement mechanism in which a covalent alpha-xylosyl-enzyme intermediate is formed with assistance from a general acid and then hydrolyzed with assistance from a general base. Incubation of recombinant XynB with the newly synthesized active site-directed inhibitor, N-bromoacetyl-beta-D-xylopyranosylamine, resulted in rapid, time-dependent inactivation of the enzyme (k(i)/K(i) = 4.3 x 10(-4) s(-1)mM(- 1)). Protection from inactivation using xylose or benzyl 1-thio-beta-xyloside suggested that the inactivation was active site-directed. Mass spectrometric analysis indicated that incubation of the enzyme with the inactivator resulted in the stoichiometric formation of a new enzyme species bearing the label. Comparative mapping of peptic digests of both the labeled and unlabeled enzyme by HPLC coupled to an electrospray ionization mass spectrometer permitted the identification of a labeled peptide. Sequencing of this peptide by tandem mass spectrometry identified Glu160 within the sequence (157)IWNEPNL(164) as the site of attachment of the N-acetyl-beta-D-xylopyranosylamine moiety. Kinetic analysis of the Glu160Ala mutant strongly suggests that this residue is involved in acid/base catalysis as follows. First, a significant difference in the dependence of k(cat)/K(m) on pH as compared to that seen for the wild-type enzyme was found, as expected for a residue that is involved in acid/base catalysis. The changes, however, were not as simple as those seen in other cases. Second, a dramatic decrease (up to 10(5)-fold) in the catalytic efficiency (k(cat)/K(m)) of the enzyme with a substrate requiring protonic assistance is observed upon such mutation. In contrast, the catalytic efficiency of the enzyme with substrates bearing a good leaving group, not requiring acid catalysis, is only moderately impaired relative to that of the wild-type enzyme (8-fold). Surprisingly, however, the glycosylation step was rate-limiting for all but the most reactive substrates. Last, the addition of azide as a competitive nucleophile resulted in the formation of a beta-xylosyl azide product and increased the k(cat) and K(m) values up to 8-fold while k(cat)/K(m) remained relatively unchanged. Such kinetic behavior is consistent with azide acting competitively with water as a nucleophile in the second step of the enzyme catalyzed reaction involving breakdown of the xylosyl-enzyme intermediate. Together, these results provide strong evidence for a role of Glu160 in acid/base catalysis but suggest that it may be partnered by a second carboxylic acid residue and that the enzyme may function through using acid catalysis involving reverse protonation of active site residues.
Collapse
Affiliation(s)
- David J Vocadlo
- Protein Engineering Network of Centres of Excellence of Canada, Vancouver, British Columbia, Canada V6T 1Z1
| | | | | | | |
Collapse
|
44
|
Nankai H, Hashimoto W, Murata K. Molecular identification of family 38 alpha-mannosidase of Bacillus sp. strain GL1, responsible for complete depolymerization of xanthan. Appl Environ Microbiol 2002; 68:2731-6. [PMID: 12039727 PMCID: PMC123948 DOI: 10.1128/aem.68.6.2731-2736.2002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
When cells of Bacillus sp. strain GL1 were grown in a medium containing xanthan as a carbon source, alpha-mannosidase exhibiting activity toward p-nitrophenyl-alpha-D-mannopyranoside (pNP-alpha-D-Man) was produced intracellularly. The 350-kDa alpha-mannosidase purified from a cell extract of the bacterium was a trimer comprising three identical subunits, each with a molecular mass of 110 kDa. The enzyme hydrolyzed pNP-alpha-D-Man (Km = 0.49 mM) and D-mannosyl-(alpha-1,3)-D-glucose most efficiently at pH 7.5 to 9.0, indicating that the enzyme catalyzes the last step of the xanthan depolymerization pathway of Bacillus sp. strain GL1. The gene for alpha-mannosidase cloned most by using N-terminal amino acid sequence information contained an open reading frame (3,144 bp) capable of coding for a polypeptide with a molecular weight of 119,239. The deduced amino acid sequence showed homology with the amino acid sequences of alpha-mannosidases belonging to glycoside hydrolase family 38.
Collapse
Affiliation(s)
- Hirokazu Nankai
- Department of Basic and Applied Molecular Biotechnology, Division of Food and Biological Science, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | |
Collapse
|
45
|
Ly HD, Lougheed B, Wakarchuk WW, Withers SG. Mechanistic studies of a retaining alpha-galactosyltransferase from Neisseria meningitidis. Biochemistry 2002; 41:5075-85. [PMID: 11955055 DOI: 10.1021/bi012031s] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lipopolysaccharyl alpha-galactosyltransferase from Neisseria meningitidis catalyzes the transfer of a galactosyl moiety from the activated donor UDP-Gal to glycoconjugates to yield an elongated saccharide product with net retention of anomeric configuration relative to the donor substrate. Through kinetic analyses in which the concentrations of both substrates are independently varied and through inhibition studies with dead-end analogues of both substrates and with the oligosaccharide product, we have demonstrated that this enzyme follows an ordered bi-bi kinetic mechanism. Various aspects of the chemical mechanism including the possible formation of a covalent glycosyl-enzyme intermediate were also probed using an assortment of strategies. While the results of these investigations were unable to clearly delineate the chemical mechanism of this enzyme, they provide important insights into the catalytic machinery surrounding the events involved in catalysis.
Collapse
Affiliation(s)
- Hoa D Ly
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1 Canada
| | | | | | | |
Collapse
|
46
|
|
47
|
Synthesis and mannosidase inhibitory activity of 6- and 7-substituted analogs of swainsonine. Tetrahedron Lett 2001. [DOI: 10.1016/s0040-4039(01)01778-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
48
|
|
49
|
Imamura H, Fushinobu S, Jeon BS, Wakagi T, Matsuzawa H. Identification of the catalytic residue of Thermococcus litoralis 4-alpha-glucanotransferase through mechanism-based labeling. Biochemistry 2001; 40:12400-6. [PMID: 11591160 DOI: 10.1021/bi011017c] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Thermococcus litoralis 4-alpha-glucanotransferase (TLGT) belongs to family 57 of glycoside hydrolases and catalyzes the disproportionation and cycloamylose synthesis reactions. Family 57 glycoside hydrolases have not been well investigated, and even the catalytic mechanism involving the active site residues has not been studied. Using 3-ketobutylidene-beta-2-chloro-4-nitrophenyl maltopentaoside (3KBG5CNP) as a donor and glucose as an acceptor, we showed that the disproportionation reaction of TLGT involves a ping-pong bi-bi mechanism. On the basis of this reaction mechanism, the glycosyl-enzyme intermediate, in which a donor substrate was covalently bound to the catalytic nucleophile, was trapped by treating the enzyme with 3KBG5CNP in the absence of an acceptor and was detected by matrix-assisted laser desorption ionization time-of-flight mass spectrometry after peptic digestion. Postsource decay analysis suggested that either Glu-123 or Glu-129 was the catalytic nucleophile of TLGT. Glu-123 was completely conserved between family 57 enzymes, and the catalytic activity of the E123Q mutant enzyme was greatly decreased. On the other hand, Glu-129 was a variable residue, and the catalytic activity of the E129Q mutant enzyme was not decreased. These results indicate that Glu-123 is the catalytic nucleophile of TLGT. Sequence alignment of TLGT and family 38 enzymes (class II alpha-mannosidases) revealed that Glu-123 of TLGT corresponds to the nucleophilic aspartic acid residue of family 38 glycoside hydrolases, suggesting that family 57 and 38 glycoside hydrolases may have had a common ancestor.
Collapse
Affiliation(s)
- H Imamura
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | |
Collapse
|
50
|
Lee SS, He S, Withers SG. Identification of the catalytic nucleophile of the Family 31 alpha-glucosidase from Aspergillus niger via trapping of a 5-fluoroglycosyl-enzyme intermediate. Biochem J 2001; 359:381-6. [PMID: 11583585 PMCID: PMC1222157 DOI: 10.1042/0264-6021:3590381] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The mechanism-based reagent 5-fluoro-alpha-d-glucopyranosyl fluoride (5F alpha GlcF) was used to trap a glycosyl-enzyme intermediate and identify the catalytic nucleophile at the active site of Aspergillus niger alpha-glucosidase (Family 31). Incubation of the enzyme with 5F alpha GlcF, followed by peptic proteolysis and comparative liquid chromatography/MS mapping allowed the isolation of a labelled peptide. Fragmentation analysis of this peptide by tandem MS yielded the sequence WYDMSE, with the label located on the aspartic acid residue (D). Comparison with the known protein sequence identified the labelled amino acid as Asp-224 of the P2 subunit.
Collapse
Affiliation(s)
- S S Lee
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada V6T 1Z1
| | | | | |
Collapse
|