1
|
Plavša B, Rudman N, Pociot F, Gornik O. Altered IgG N-Glycosylation at Onset of Type 1 Diabetes in Children Is Predominantly Driven by Changes in the Fab N-Glycans. Biomedicines 2025; 13:1206. [PMID: 40427033 PMCID: PMC12108837 DOI: 10.3390/biomedicines13051206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2025] [Revised: 05/11/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025] Open
Abstract
Background: N-glycosylation is a post-translational modification involving the attachment of oligosaccharides to proteins and is known to influence immunoglobulin G (IgG) effector functions and even antigen binding. IgG contains an evolutionarily conserved N-glycosylation site in its fragment crystallizable (Fc) region, while during V-D-J recombination and somatic hypermutation processes it can also obtain N-glycosylation sites in its antigen binding fragment (Fab). Our previous study demonstrated altered IgG N-glycosylation in children at type 1 diabetes (T1D) onset, with the most prominent changes involving sialylated glycans, hypothesized to mainly come from the Fab region, however, the analytical method used could not distinguish between Fc and Fab. Methods: IgG was isolated from plasma from 118 children with T1D and 98 healthy controls from the Danish Registry of Childhood and Adolescent Diabetes. Isolated IgG was cleaved into Fc and Fab fragments using IdeS enzyme. N-glycans were enzymatically released from each fragment, fluorescently labelled with procainamide, and analyzed separately using the UPLC-MS method. Structural annotation of resulting chromatograms was performed using MS/MS. Results: T1D related N-glycosylation changes were more pronounced in the Fab glycans compared to Fc glycans, with five Fab glycans (Man5, Man7, FA2BG1S1, A2G2S2, FA2BG2S1) being significantly altered compared to only one in the Fc region (FA2[3]BG1). Comparing Fc and Fab glycosylation overall reveals stark differences in the types of glycans on each region, with a more diverse and complex repertoire being present in the Fab region. Conclusions: These findings suggest that N-glycosylation changes in early onset T1D predominantly originate from the Fab region, underscoring their potential role in modulating (auto)immunity and highlighting distinct glycosylation patterns between Fc and Fab.
Collapse
Affiliation(s)
- Branimir Plavša
- Department of Biochemistry and Molecular Biology, University of Zagreb Faculty of Pharmacy and Biochemistry, 10000 Zagreb, Croatia; (B.P.)
| | - Najda Rudman
- Department of Biochemistry and Molecular Biology, University of Zagreb Faculty of Pharmacy and Biochemistry, 10000 Zagreb, Croatia; (B.P.)
| | - Flemming Pociot
- Department of Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Olga Gornik
- Department of Biochemistry and Molecular Biology, University of Zagreb Faculty of Pharmacy and Biochemistry, 10000 Zagreb, Croatia; (B.P.)
| |
Collapse
|
2
|
Tian M, Li X, Yu L, Qian J, Bai X, Yang J, Deng R, Lu C, Zhao H, Liu Y. Glycosylation as an intricate post-translational modification process takes part in glycoproteins related immunity. Cell Commun Signal 2025; 23:214. [PMID: 40325416 PMCID: PMC12051319 DOI: 10.1186/s12964-025-02216-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 04/25/2025] [Indexed: 05/07/2025] Open
Abstract
Protein glycosylation, the most ubiquitous and diverse type of post-translational modification in eukaryotic cells, proteins are input into endoplasmic reticulum and Golgi apparatus for sorting and modification with intricate quality control, are then output for diverse functional glycoproteins that are utilized by cells to precisely regulate various biological processes. In order to maintain the precise spatial structure of glycoprotein, misfolded and unfolded glycoproteins are recognized, segregated and degraded to ensure the fidelity of protein folding and maturation. This review enumerates the role of five immune-related glycoproteins and reveals the relevance of glycosylation to their antigen presentation, immune effector function, immune recognition, receptor binding and activation, and cell adhesion and migration. With the knowledgement of glycoproteins in immune responses and etiologies, we propose several relevant therapeutic strategies on targeting glycosylation process for immunotherapy.
Collapse
Affiliation(s)
- Meng Tian
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaoyu Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Liuchunyang Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - JinXiu Qian
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - XiuYun Bai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jue Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - RongJun Deng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Hongyan Zhao
- Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
3
|
Hirayama M, Ohyama Y, Tsuji Y, Enomoto T, Hasegawa M, Tsuboi N, Novak J, Takahashi K. Longitudinal changes in the abundance of IgA1 O- and N-glycoforms in IgA nephropathy. Clin Exp Nephrol 2025:10.1007/s10157-025-02659-y. [PMID: 40195177 DOI: 10.1007/s10157-025-02659-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 03/07/2025] [Indexed: 04/09/2025]
Abstract
BACKGROUND IgA nephropathy (IgAN) is the most common type of primary glomerulonephritis. Elevation in the blood levels of aberrantly glycosylated IgA1 is a crucial initial step in IgAN pathogenesis. Here, we aimed to determine the longitudinal changes in the serum levels of IgA1 O- and N-glycoforms in patients with IgAN receiving different treatments. METHODS We enrolled Japanese patients diagnosed with primary IgAN: 10 patients who underwent tonsillectomy and corticosteroid therapy (T-CST), 7 who received corticosteroid therapy (CST), 8 who received conservative therapy (CO), and 5 with other renal diseases who received corticosteroid therapy (ORD) as disease controls. IgA was purified from patient sera collected at diagnosis and post-treatment. After sample preparation, O-glycoforms of the hinge region (HR) and N-glycoforms of the fragment crystallizable region were analyzed using high-resolution mass spectrometry (MS). RESULTS The MS analysis of O-glycoforms of IgA1 showed that the relative abundance of IgA1 with 3GalNAc3Gal, which we previously identified as a characteristic IgA1 O-glycoform in IgAN, decreased post-treatment only in the T-CST group (P = 0.0195). Regarding N-glycoforms, the relative abundance of fucosylated N-glycan at asparagine (Asn)340 increased in the IgAN group compared with that in the ORD group (P = 0.0189) and decreased post-treatment only in the T-CST group (P = 0.0195). CONCLUSION The MS analysis of O- and N-glycoforms of IgA1 revealed substantial changes in their abundance in the T-CST group but not in the CST, CO, and ORD groups. Our study provides new insights into how specific treatments alter the IgA1 glycoform abundance.
Collapse
Affiliation(s)
- Masaya Hirayama
- Department of Biomedical Molecular Sciences, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-Cho, Toyoake, Aichi, 470-1192, Japan
- Department of Pathology and Cytopathology, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-Cho, Toyoake, Aichi, 470-1192, Japan
| | - Yukako Ohyama
- Department of Biomedical Molecular Sciences, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-Cho, Toyoake, Aichi, 470-1192, Japan
- Department of Nephrology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-Cho, Toyoake, Aichi, 470-1192, Japan
| | - Yudai Tsuji
- Department of Biomedical Molecular Sciences, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-Cho, Toyoake, Aichi, 470-1192, Japan
| | - Tetsuro Enomoto
- Oriental Yeast Co., Ltd, 50 Kanou-Cho, Nagahama, Shiga, 526-0804, Japan
| | - Midori Hasegawa
- Department of Nephrology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-Cho, Toyoake, Aichi, 470-1192, Japan
| | - Naotake Tsuboi
- Department of Nephrology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-Cho, Toyoake, Aichi, 470-1192, Japan
| | - Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, 1720 2nd Ave South, Birmingham, AL, 35294, USA
| | - Kazuo Takahashi
- Department of Biomedical Molecular Sciences, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-Cho, Toyoake, Aichi, 470-1192, Japan.
- Department of Nephrology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-Cho, Toyoake, Aichi, 470-1192, Japan.
| |
Collapse
|
4
|
Wan J, Wang M, Chen S, Zhang X, Xu W, Wu D, Hu Q, Niu L. Biologically-driven RAFT polymerization-amplified platform for electrochemical detection of antibody drugs. Talanta 2025; 285:127431. [PMID: 39709831 DOI: 10.1016/j.talanta.2024.127431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
The individualized administration and pharmacokinetics profiling are integral to the safe use of antibody drugs in immunotherapy. Here, we propose an electrochemical platform for the highly sensitive and selective detection of antibody drugs, taking advantage of the affinity capture by the peptide mimotopes together with the signal amplification by the biologically-driven RAFT polymerization (BDRP). Briefly, the BDRP-based platform involves the capture of antibody drugs by peptide mimotopes, the labeling of multiple reversible addition-fragmentation chain-transfer (RAFT) agents to the glycan chains of antibody drugs, and the BDRP-enabled controlled recruitment of numerous redox labels. The BDRP-based signal amplification relies on the reduction of RAFT agents by NADH coenzymes into the carbon-centered radicals, which can propagate efficiently into long polymer chains by reacting with the ferrocene-derivated monomers, recruiting numerous redox labels to the glycan chains of antibody drugs. The BDRP is conducted at the physiological temperature (i.e., 37 °C) and in the absence of external stimuli or radical sources, holding the advantages of biological compatibility and desirable simplicity over conventional RAFT polymerization approaches. The developed platform is highly selective and the detection limit in the presence of rituximab as the target was determined to be 0.14 ng/mL. Moreover, the applicability of the BDRP-based platform in the sensitive assay of antibody drugs in serum samples has been validated. In view of the biocompatibility, desirable simplicity, and cost-effectiveness, the BDRP-based platform shows great promise in the quantitative assay of antibody drugs.
Collapse
Affiliation(s)
- Jianwen Wan
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Mengge Wang
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Songmin Chen
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Xiyao Zhang
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Wenhui Xu
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Di Wu
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Qiong Hu
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China.
| | - Li Niu
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China.
| |
Collapse
|
5
|
Janecki D, Kao‐Scharf C, Hoffmann A. Discovery and Characterization of Unusual O-Linked Glycosylation of IgG4 Antibody Using LC-MS. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2025; 39:e9969. [PMID: 39663547 PMCID: PMC11635057 DOI: 10.1002/rcm.9969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/27/2024] [Accepted: 12/01/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND Consensus is that immunoglobulin IgG4 contains only N-linked glycosylation. The analysis of several batches of commercial biopharmaceutical product Dupixent using top-down intact mass spectrometry revealed that this IgG4 features a small amount of O-linked glycosylation in the Fab region. This is the first report of an O-linked glycosylation in an IgG4 antibody. METHODS Monoclonal antibody solutions were subjected to cation exchange (CEX) and reverse phase (RP) chromatography and/or additional preconcentration/fractionation methods to prepare samples for subsequent analysis. Advanced MS analysis and fragmentation techniques (HCD, ETD, and EThcD) were employed to localize the O-linked glycosylation as well as elucidate the structure of the glycan(s). RESULTS O-linked glycosylation in the IgG4 dupilumab was discovered by intact-MS. The probable location was narrowed down to four sites in the CH1 domain, and the structure of the O-linked glycan was determined to be of Core 1 type. The relative quantities of the modifications were low, but the glycosylation was consistently detected in several batches of Dupixent. CONCLUSIONS We discovered a rare glycosylation modification on dupilumab, an IgG4 antibody. The O-linked glycosylation was characterized and localized in the Fab region.
Collapse
|
6
|
Falck D, Sokolova MV, Koeleman CAM, Irumva V, Kirchner P, Schulz SR, Schmidt KG, Harrer T, Ekici AB, Spriewald B, Schett G, Wuhrer M, Herrmann M, Steffen U. IgA displays site- and subclass-specific glycoform differences despite equal glycoenzyme expression. Cell Commun Signal 2025; 23:92. [PMID: 39962487 PMCID: PMC11834270 DOI: 10.1186/s12964-025-02088-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/05/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Glycosylation is an important posttranslational modification of proteins and in most cases indispensable for proper protein function. Like most soluble proteins, IgA, the second most prevalent antibody in human serum, contains several N- and O-glycosylation sites. While for IgG the impact of Fc glycosylation on effector functions and inflammatory potential has been studied intensively, only little is known for IgA. In addition, only glimpses exist regarding the regulation of IgA glycosylation. We have previously shown that IgA1 and IgA2 differ functionally and also show differences in their glycosylation pattern. The more pro-inflammatory IgA2 which is linked to autoimmune diseases displays decreased sialylation, galactosylation, fucosylation and bisection as compared to IgA1. In the present study, we aimed to investigate these differences in glycosylation in detail and to explore the mechanisms underlying them. METHODS IgA1 and IgA2 was isolated from serum of 12 healthy donors. Site specific glycosylation was analyzed by mass spectrometry. In addition, human bone marrow plasma cells were investigated using single cell mRNA sequencing, flow cytometry and ELISpot. RESULTS We found that certain glycoforms greatly differ in their abundance between IgA1 and IgA2 while others are equally abundant. Overall, the IgA2 glycans displayed a more immature phenotype with a higher prevalence of oligomannose and fewer fully processed glycans. Of note, these differences can't be explained by differences in the glycosylation enzyme machinery as mRNA sequencing and flow cytometry analysis showed equal enzyme expression in IgA1 and IgA2 producing plasma cells. ELISpot analysis suggested a slightly increased antibody production rate in IgA2 producing plasma cells which might contribute to its lower glycan processing rates. But this difference was only minor, suggesting that further factors such as steric accessibility determine glycan processing. This is supported by the fact that glycans at different positions on the same IgA chain differ dramatically in fucosylation, sialylation and bisection. CONCLUSION In summary, our detailed overview of IgA1 and IgA2 glycosylation shows a class, subclass, and site-specific glycosylation fingerprint, most likely due to structural differences of the protein backbones.
Collapse
Affiliation(s)
- David Falck
- Center for Proteomics and Metabolomics, Glycomics and Clinical Proteomics Group, Leiden University Medical Center, Leiden, Netherlands
| | - Maria V Sokolova
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
- Department of Internal Medicine I, Subsection Rheumatology and Clinical Immunology, University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Carolien A M Koeleman
- Center for Proteomics and Metabolomics, Glycomics and Clinical Proteomics Group, Leiden University Medical Center, Leiden, Netherlands
| | - Vanessa Irumva
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
| | - Philipp Kirchner
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
| | - Sebastian R Schulz
- Division of Molecular Immunology, Internal Medicine 3, Nikolaus-Fiebiger Center, Friedrich-Alexander- Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
| | - Katja G Schmidt
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
| | - Thomas Harrer
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
| | - Arif B Ekici
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
| | - Bernd Spriewald
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
- Department of Internal Medicine 5 - Haematology and Clinical Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
- FAU Profile Center Immunomedicine (FAU I-MED), Friedrich-Alexander-Universität (FAU) Erlangen- Nürnberg, Erlangen, Germany
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Glycomics and Clinical Proteomics Group, Leiden University Medical Center, Leiden, Netherlands
| | - Martin Herrmann
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany.
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany.
| | - Ulrike Steffen
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany.
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany.
- FAU Profile Center Immunomedicine (FAU I-MED), Friedrich-Alexander-Universität (FAU) Erlangen- Nürnberg, Erlangen, Germany.
| |
Collapse
|
7
|
Xu X, Manabe N, Ohno S, Komatsu S, Fujimura T, Yamaguchi Y. 3D structural insights into the effect of N-glycosylation in human chitotriosidase variant G102S. Biochim Biophys Acta Gen Subj 2025; 1869:130730. [PMID: 39521151 DOI: 10.1016/j.bbagen.2024.130730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/01/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND N-glycosylation is a key post-translational modification critical for protein function and stability. Chitotriosidase-1 (CHIT1), belonging to glycoside hydrolase family 18, is clinically utilized as a biomarker of Gaucher disease. A G102S variant is common in some populations, but the implications of this missense mutation on CHIT1 function and in disease pathology are unknown. We have investigated the effects of the G102S mutation on the N-glycosylation, structure, and activity of CHIT1. METHODS Three recombinant CHIT1 proteins, wild-type (WT), G102S, and N100Q+G102S double mutants, were expressed, purified, and analyzed for glycosylation using SDS-PAGE, MALDI-MS, PNGase F treatment, and lectin blotting. NMR and LC-MS/MS were employed to characterize glycan structures. Enzymatic assays and molecular dynamics simulations were used to assess the effects of mutations on CHIT1 function and dynamics. RESULTS The G102S mutation introduced a new N-glycosylation site at N100, confirmed by SDS-PAGE and MALDI-MS, and the composition of the N-glycan structures was verified by lectin blotting, NMR, and MS. Both G102S and N100Q+G102S proteins exhibited reduced catalytic efficiency compared to WT. Molecular dynamics simulations suggested that G102S mutation induces significant structural changes and reduces stability, particularly without N-glycan, likely impairing substrate binding and enzymatic activity. CONCLUSION Our findings indicate that the common G102S mutation affects the structure and function of CHIT1, partially by introducing a new N-glycosylation site. They provide a foundation for further research on the impact of N-glycosylation on its hydrolase activity and structural dynamics, with potential implications for understanding the role of CHIT1 in Gaucher disease.
Collapse
Affiliation(s)
- Xiao Xu
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Miyagi, Japan
| | - Noriyoshi Manabe
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Miyagi, Japan
| | - Shiho Ohno
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Miyagi, Japan
| | - Sachiko Komatsu
- Division of Bioanalytical Chemistry, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Miyagi, Japan
| | - Tsutomu Fujimura
- Division of Bioanalytical Chemistry, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Miyagi, Japan
| | - Yoshiki Yamaguchi
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Miyagi, Japan.
| |
Collapse
|
8
|
Gleeson PJ, Camara NOS, Launay P, Lehuen A, Monteiro RC. Immunoglobulin A Antibodies: From Protection to Harmful Roles. Immunol Rev 2024; 328:171-191. [PMID: 39578936 PMCID: PMC11659943 DOI: 10.1111/imr.13424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/15/2024] [Accepted: 11/07/2024] [Indexed: 11/24/2024]
Abstract
Immunoglobulin A (IgA) is the most abundantly produced antibody in humans. IgA is a unique class of immunoglobulin due to its multiple molecular forms, and a defining difference between the two subclasses: IgA1 has a long hinge-region that is heavily O-glycosylated, whereas the IgA2 hinge-region is shorter but resistant to bacterial proteases prevalent at mucosal sites. IgA is essential for immune homeostasis and education. Mucosal IgA plays a crucial role in maintaining the integrity of the mucosal barrier by immune exclusion of pathobionts while facilitating colonization with certain commensals; a large part of the gut microbiota is coated with IgA. In the circulation, monomeric IgA that has not been engaged by antigen plays a discrete role in dampening inflammatory responses. Protective and harmful roles of IgA have been studied over several decades, but a new understanding of the complex role of this immunoglobulin in health and disease has been provided by recent studies. Here, we discuss the physiological and pathological roles of IgA with a special focus on the gut, kidneys, and autoimmunity. We also discuss new IgA-based therapeutic approaches.
Collapse
Affiliation(s)
- Patrick J. Gleeson
- Center for Research on InflammationParis Cité UniversityParisFrance
- INSERMParisFrance
- CNRSParisFrance
- Inflamex Laboratory of ExcellenceParisFrance
- Nephrology DepartmentBichat HospitalParisFrance
| | - Niels O. S. Camara
- Department of Immunology, Institute of Biomedical SciencesUniversity of Sao PauloSao PauloBrazil
| | - Pierre Launay
- Center for Research on InflammationParis Cité UniversityParisFrance
- INSERMParisFrance
- CNRSParisFrance
- Inflamex Laboratory of ExcellenceParisFrance
| | - Agnès Lehuen
- Inflamex Laboratory of ExcellenceParisFrance
- Cochin Institute, INSERM, CNRSParis Cité UniversityParisFrance
| | - Renato C. Monteiro
- Center for Research on InflammationParis Cité UniversityParisFrance
- INSERMParisFrance
- CNRSParisFrance
- Inflamex Laboratory of ExcellenceParisFrance
| |
Collapse
|
9
|
Novak J, King RG, Yother J, Renfrow MB, Green TJ. O-glycosylation of IgA1 and the pathogenesis of an autoimmune disease IgA nephropathy. Glycobiology 2024; 34:cwae060. [PMID: 39095059 PMCID: PMC11442006 DOI: 10.1093/glycob/cwae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/21/2024] [Accepted: 08/01/2024] [Indexed: 08/04/2024] Open
Abstract
IgA nephropathy is a kidney disease characterized by deposition of immune complexes containing abnormally O-glycosylated IgA1 in the glomeruli. Specifically, some O-glycans are missing galactose that is normally β1,3-linked to N-acetylgalactosamine of the core 1 glycans. These galactose-deficient IgA1 glycoforms are produced by IgA1-secreting cells due to a dysregulated expression and activity of several glycosyltransferases. Galactose-deficient IgA1 in the circulation of patients with IgA nephropathy is bound by IgG autoantibodies and the resultant immune complexes can contain additional proteins, such as complement C3. These complexes, if not removed from the circulation, can enter the glomerular mesangium, activate the resident mesangial cells, and induce glomerular injury. In this review, we briefly summarize clinical and pathological features of IgA nephropathy, review normal and aberrant IgA1 O-glycosylation pathways, and discuss the origins and potential significance of natural anti-glycan antibodies, namely those recognizing N-acetylgalactosamine. We also discuss the features of autoantibodies specific for galactose-deficient IgA1 and the characteristics of pathogenic immune complexes containing IgA1 and IgG. In IgA nephropathy, kidneys are injured by IgA1-containing immune complexes as innocent bystanders. Most patients with IgA nephropathy progress to kidney failure and require dialysis or transplantation. Moreover, most patients after transplantation experience a recurrent disease. Thus, a better understanding of the pathogenetic mechanisms is needed to develop new disease-specific treatments.
Collapse
Affiliation(s)
- Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL 35294, United States
| | - R Glenn King
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL 35294, United States
| | - Janet Yother
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL 35294, United States
| | - Matthew B Renfrow
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 720 20th Street South, Birmingham, AL 35294, United States
| | - Todd J Green
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL 35294, United States
| |
Collapse
|
10
|
Novak J, Reily C, Steers NJ, Schumann T, Rizk DV, Julian BA, Kiryluk K, Gharavi AG, Green TJ. Emerging Biochemical and Immunologic Mechanisms in the Pathogenesis of IgA Nephropathy. Semin Nephrol 2024; 44:151565. [PMID: 40087124 PMCID: PMC11972156 DOI: 10.1016/j.semnephrol.2025.151565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
IgA nephropathy is a mesangioproliferative glomerular disease with significant morbidity and mortality. Most patients with IgA nephropathy develop kidney failure in their lifetime, reducing their life expectancy by a decade. Since its first description in 1968, it has been established that kidneys of IgA nephropathy patients are injured as "innocent bystanders" by nephritogenic IgA1-containing immune complexes. Results from clinical, biochemical, immunologic, and genetic studies suggest a multistep pathogenetic mechanism. In genetically predisposed individuals, this process results in formation of circulating immune complexes due to the binding of IgG/IgA autoantibodies to the polymeric IgA1 molecules with incomplete O-glycosylation. This event is followed by the addition of other proteins, such as complement C3, resulting in the formation of nephritogenic immune complexes. These complexes are not effectively removed from the circulation, and some of them pass through the fenestration of glomerular endothelial cells to enter the mesangial space and activate mesangial cells. It is thought that the process is initiated by soluble immune complexes and that their accumulation results in the formation of immunodeposits that further amplify glomerular injury. Here we summarize current understanding of the pathogenesis of IgA nephropathy and discuss experimental model systems that can inform development of new therapeutic strategies and targets.
Collapse
Affiliation(s)
- Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL.
| | - Colin Reily
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL; Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Nicholas J Steers
- Division of Nephrology, Department of Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
| | | | - Dana V Rizk
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Bruce A Julian
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Krzysztof Kiryluk
- Division of Nephrology, Department of Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
| | - Ali G Gharavi
- Division of Nephrology, Department of Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
| | - Todd J Green
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
11
|
Wu Y, Zhang Z, Chen L, Sun S. Immunoglobulin G glycosylation and its alterations in aging-related diseases. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1221-1233. [PMID: 39126246 PMCID: PMC11399422 DOI: 10.3724/abbs.2024137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
Immunoglobulin G (IgG) is an important serum glycoprotein and a major component of antibodies. Glycans on IgG affect the binding of IgG to the Fc receptor or complement C1q, which in turn affects the biological activity and biological function of IgG. Altered glycosylation patterns on IgG emerge as important biomarkers in the aging process and age-related diseases. Key aging-related alterations observed in IgG glycosylation include reductions in galactosylation and sialylation, alongside increases in agalactosylation, and bisecting GlcNAc. Understanding the role of IgG glycosylation in aging-related diseases offers insights into disease mechanisms and provides opportunities for the development of diagnostic and therapeutic strategies. This review summarizes five aspects of IgG: an overview of IgG, IgG glycosylation, IgG glycosylation with inflammation mediation, IgG glycan changes with normal aging, as well as the relevance of IgG glycan changes to aging-related diseases. This review provides a reference for further investigation of the regulatory mechanisms of IgG glycosylation in aging-related diseases, as well as for evaluating the potential of IgG glycosylation changes as markers of aging and aging-related diseases.
Collapse
Affiliation(s)
- Yongqi Wu
- />Laboratory for Disease GlycoproteomicsCollege of Life SciencesNorthwest UniversityXi’an710069China
| | - Zhida Zhang
- />Laboratory for Disease GlycoproteomicsCollege of Life SciencesNorthwest UniversityXi’an710069China
| | - Lin Chen
- />Laboratory for Disease GlycoproteomicsCollege of Life SciencesNorthwest UniversityXi’an710069China
| | - Shisheng Sun
- />Laboratory for Disease GlycoproteomicsCollege of Life SciencesNorthwest UniversityXi’an710069China
| |
Collapse
|
12
|
Göritzer K, Strasser R, Ma JKC. Stability Engineering of Recombinant Secretory IgA. Int J Mol Sci 2024; 25:6856. [PMID: 38999969 PMCID: PMC11240955 DOI: 10.3390/ijms25136856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Secretory IgA (SIgA) presents a promising avenue for mucosal immunotherapy yet faces challenges in expression, purification, and stability. IgA exists in two primary isotypes, IgA1 and IgA2, with IgA2 further subdivided into two common allotypes: IgA2m(1) and IgA2m(2). The major differences between IgA1 and IgA2 are located in the hinge region, with IgA1 featuring a 13-amino acid elongation that includes up to six O-glycosylation sites. Furthermore, the IgA2m(1) allotype lacks a covalent disulfide bond between heavy and light chains, which is present in IgA1 and IgA2m(2). While IgA1 demonstrates superior epitope binding and pathogen neutralization, IgA2 exhibits enhanced effector functions and stability against mucosal bacterial degradation. However, the noncovalent linkage in the IgA2m(1) allotype raises production and stability challenges. The introduction of distinct single mutations aims to facilitate an alternate disulfide bond formation to mitigate these challenges. We compare four different IgA2 versions with IgA1 to further develop secretory IgA antibodies against SARS-CoV-2 for topical delivery to mucosal surfaces. Our results indicate significantly improved expression levels and assembly efficacy of SIgA2 (P221R) in Nicotiana benthamiana. Moreover, engineered SIgA2 displays heightened thermal stability under physiological as well as acidic conditions and can be aerosolized using a mesh nebulizer. In summary, our study elucidates the benefits of stability-enhancing mutations in overcoming hurdles associated with SIgA expression and stability.
Collapse
Affiliation(s)
- Kathrin Göritzer
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria;
- Institute for Infection and Immunity, St. George’s University of London, London SW17 0RE, UK;
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria;
| | - Julian K.-C. Ma
- Institute for Infection and Immunity, St. George’s University of London, London SW17 0RE, UK;
| |
Collapse
|
13
|
Cindrić A, Pribić T, Lauc G. High-throughput N-glycan analysis in aging and inflammaging: State of the art and future directions. Semin Immunol 2024; 73:101890. [PMID: 39383621 DOI: 10.1016/j.smim.2024.101890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
As the global population ages at an unprecedented rate, the prevalence of age-related diseases is increasing, making inflammaging - a phenomenon characterized by a chronic, low-grade inflammatory state that follows aging - a significant concern. Understanding the mechanisms of inflammaging and its impact on health is critical for developing strategies to improve the quality of life and manage health in the aging population. Despite their crucial roles in various biological processes, including immune response modulation, N-glycans, oligosaccharides covalently attached to many proteins, are often overlooked in clinical and research studies. This repeated oversight is largely due to their inherent complexity and the complexity of the analysis methods. High-throughput N-glycan analysis has emerged as a transformative tool in N-glycosylation research, enabling cost- and time-effective, detailed, and large-scale examination of N-glycan profiles. This paper is the first to explore the application of high-throughput N-glycomics techniques to investigate the complex interplay between N-glycosylation and the immune system in aging. Technological advancements have significantly improved Nglycan detection and characterization, providing insights into age-related changes in Nglycosylation. Key findings highlight consistent shifts in immunoglobulin G (IgG) and plasma/serum glycoprotein glycosylation with age, with a pronounced rise in agalactosylated structures bound to IgG that also affect the composition of the total plasma N-glycome. These N-glycan modifications seem to be strongly associated with inflammaging and have been identified as valuable biomarkers for biological age, predictors of disease risk, and proxy biomarkers for monitoring intervention efficacy at the individual level. Despite current challenges related to data complexity and methodological limitations, ongoing technological innovations and interdisciplinary research are expected tofurther advance our knowledge of glycan biology, improve diagnostic and therapeutic strategies, and promote healthier aging. The integration of glycomics with other omics approaches holds promise for a more comprehensive understanding of the aging immune system, paving the way for personalized medicine and targeted interventions to mitigate inflammaging. In conclusion, this paper underscores the transformative impact of high-throughput Nglycan analysis in aging and inflammaging.
Collapse
Affiliation(s)
- A Cindrić
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - T Pribić
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - G Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia; Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
14
|
Ruocco V, Grünwald-Gruber C, Rad B, Tscheliessnig R, Hammel M, Strasser R. Effects of N-glycans on the structure of human IgA2. Front Mol Biosci 2024; 11:1390659. [PMID: 38645274 PMCID: PMC11026580 DOI: 10.3389/fmolb.2024.1390659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 03/22/2024] [Indexed: 04/23/2024] Open
Abstract
The transition of IgA antibodies into clinical development is crucial because they have the potential to create a new class of therapeutics with superior pathogen neutralization, cancer cell killing, and immunomodulation capacity compared to IgG. However, the biological role of IgA glycans in these processes needs to be better understood. This study provides a detailed biochemical, biophysical, and structural characterization of recombinant monomeric human IgA2, which varies in the amount/locations of attached glycans. Monomeric IgA2 antibodies were produced by removing the N-linked glycans in the CH1 and CH2 domains. The impact of glycans on oligomer formation, thermal stability, and receptor binding was evaluated. In addition, we performed a structural analysis of recombinant IgA2 in solution using Small Angle X-Ray Scattering (SAXS) to examine the effect of glycans on protein structure and flexibility. Our results indicate that the absence of glycans in the Fc tail region leads to higher-order aggregates. SAXS, combined with atomistic modeling, showed that the lack of glycans in the CH2 domain results in increased flexibility between the Fab and Fc domains and a different distribution of open and closed conformations in solution. When binding with the Fcα-receptor, the dissociation constant remains unaltered in the absence of glycans in the CH1 or CH2 domain, compared to the fully glycosylated protein. These results provide insights into N-glycans' function on IgA2, which could have important implications for developing more effective IgA-based therapeutics in the future.
Collapse
Affiliation(s)
- Valentina Ruocco
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Clemens Grünwald-Gruber
- Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Behzad Rad
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Rupert Tscheliessnig
- Division of Biophysics, Gottfried-Schatz-Research-Center, Medical University of Graz, Graz, Austria
| | - Michal Hammel
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
15
|
Altmann F, Helm J, Pabst M, Stadlmann J. Introduction of a human- and keyboard-friendly N-glycan nomenclature. Beilstein J Org Chem 2024; 20:607-620. [PMID: 38505241 PMCID: PMC10949011 DOI: 10.3762/bjoc.20.53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/27/2024] [Indexed: 03/21/2024] Open
Abstract
In the beginning was the word. But there were no words for N-glycans, at least, no simple words. Next to chemical formulas, the IUPAC code can be regarded as the best, most reliable and yet immediately comprehensible annotation of oligosaccharide structures of any type from any source. When it comes to N-glycans, the venerable IUPAC code has, however, been widely supplanted by highly simplified terms for N-glycans that count the number of antennae or certain components such as galactoses, sialic acids and fucoses and give only limited room for exact structure description. The highly illustrative - and fortunately now standardized - cartoon depictions gained much ground during the last years. By their very nature, cartoons can neither be written nor spoken. The underlying machine codes (e.g., GlycoCT, WURCS) are definitely not intended for direct use in human communication. So, one might feel the need for a simple, yet intelligible and precise system for alphanumeric descriptions of the hundreds and thousands of N-glycan structures. Here, we present a system that describes N-glycans by defining their terminal elements. To minimize redundancy and length of terms, the common elements of N-glycans are taken as granted. The preset reading order facilitates definition of positional isomers. The combination with elements of the condensed IUPAC code allows to describe even rather complex structural elements. Thus, this "proglycan" coding could be the missing link between drawn structures and software-oriented representations of N-glycan structures. On top, it may greatly facilitate keyboard-based mining for glycan substructures in glycan repositories.
Collapse
Affiliation(s)
| | - Johannes Helm
- Department of Chemistry, BOKU University, Vienna, Austria
| | - Martin Pabst
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | | |
Collapse
|
16
|
Pan S, Manabe N, Ohno S, Komatsu S, Fujimura T, Yamaguchi Y. Each N-glycan on human IgA and J-chain uniquely affects oligomericity and stability. Biochim Biophys Acta Gen Subj 2024; 1868:130536. [PMID: 38070292 DOI: 10.1016/j.bbagen.2023.130536] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/24/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Immunoglobulin A (IgA) plays a pivotal role in various immune responses, especially that of mucosal immunity. IgA is usually assembled into dimers with the contribution of J-chains. There are two N-glycosylation sites in human IgA1-Fc and one in the J-chain. There is no consensus as yet on the functional role of the N-glycosylation. METHODS To gain a better understanding of their role, we designed a series of IgA1-Fc mutants, which were expressed in the absence or presence of the J-chain. RESULTS IgA1-Fc without the J-chain, was predominantly expressed as a monomer, and in its presence dimers and some polymers appeared. N263 (Fc Cα2), N459 (Fc tailpiece) and N49 (J-chain) were shown to be site-specifically modified with N-glycans by mass spectrometry analysis. Mutant IgA1-Fc N459Q failed to form a proper dimer in the presence of the J-chain, instead higher-order aggregates appeared. Fluorescence experiments suggest that the N459-glycans cover a hydrophobic surface at the Fc tailpiece that prevents other Fc molecules from approaching the dimeric IgA. A thermofluor assay revealed that the N-glycans at N263 (Fc) and N49 (J-chain) both contribute in different ways to the thermal stability of the Fc-J-chain complex. NMR analysis of 13C-labeled Fc suggests that the N459-glycan is relatively flexible while the N263-glycan is more rigid. CONCLUSIONS We conclude that the N459-glycan of IgA1-Fc is essential for dimer formation and prevention of higher-order aggregates while those at N263 (Fc) and N49 (J-chain) stabilize the Fc-J-chain complex. GENERAL SIGNIFICANCE Site-specific role for N-glycan in molecular assembly is addressed.
Collapse
Affiliation(s)
- Shunli Pan
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Miyagi, Japan
| | - Noriyoshi Manabe
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Miyagi, Japan
| | - Shiho Ohno
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Miyagi, Japan
| | - Sachiko Komatsu
- Division of Bioanalytical Chemistry, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Miyagi, Japan
| | - Tsutomu Fujimura
- Division of Bioanalytical Chemistry, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Miyagi, Japan
| | - Yoshiki Yamaguchi
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Miyagi, Japan.
| |
Collapse
|
17
|
Dybiec J, Frąk W, Kućmierz J, Tokarek J, Wojtasińska A, Młynarska E, Rysz J, Franczyk B. Liquid Biopsy: A New Avenue for the Diagnosis of Kidney Disease: Diabetic Kidney Disease, Renal Cancer, and IgA Nephropathy. Genes (Basel) 2024; 15:78. [PMID: 38254967 PMCID: PMC10815875 DOI: 10.3390/genes15010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Kidney diseases are some of the most common healthcare problems. As the population of elderly individuals with concurrent health conditions continues to rise, there will be a heightened occurrence of these diseases. Due to the renal condition being one of the longevity predictors, early diagnosis of kidney dysfunction plays a crucial role. Currently, prevalent diagnostic tools include laboratory tests and kidney tissue biopsies. New technologies, particularly liquid biopsy and new detection biomarkers, hold promise for diagnosing kidney disorders. The aim of this review is to present modern diagnostic methods for kidney diseases. The paper focuses on the advances in diagnosing three common renal disorders: diabetic kidney disease, renal cancer, and immunoglobulin A nephropathy. We highlight the significance of liquid biopsy and epigenetic changes, such as DNA methylation, microRNA, piRNAs, and lncRNAs expression, or single-cell transcriptome sequencing in the assessment of kidney diseases. This review underscores the importance of early diagnosis for the effective management of kidney diseases and investigates liquid biopsy as a promising approach.
Collapse
Affiliation(s)
- Jill Dybiec
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Weronika Frąk
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Joanna Kućmierz
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Julita Tokarek
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Armanda Wojtasińska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| |
Collapse
|
18
|
Bauer-Smith H, Sudol ASL, Beers SA, Crispin M. Serum immunoglobulin and the threshold of Fc receptor-mediated immune activation. Biochim Biophys Acta Gen Subj 2023; 1867:130448. [PMID: 37652365 PMCID: PMC11032748 DOI: 10.1016/j.bbagen.2023.130448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
Antibodies can mediate immune recruitment or clearance of immune complexes through the interaction of their Fc domain with cellular Fc receptors. Clustering of antibodies is a key step in generating sufficient avidity for efficacious receptor recognition. However, Fc receptors may be saturated with prevailing, endogenous serum immunoglobulin and this raises the threshold by which cellular receptors can be productively engaged. Here, we review the factors controlling serum IgG levels in both healthy and disease states, and discuss how the presence of endogenous IgG is encoded into the functional activation thresholds for low- and high-affinity Fc receptors. We discuss the circumstances where antibody engineering can help overcome these physiological limitations of therapeutic antibodies. Finally, we discuss how the pharmacological control of Fc receptor saturation by endogenous IgG is emerging as a feasible mechanism for the enhancement of antibody therapeutics.
Collapse
Affiliation(s)
- Hannah Bauer-Smith
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK; Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK
| | - Abigail S L Sudol
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Stephen A Beers
- Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK.
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| |
Collapse
|
19
|
Shimazaki H, Nakamura K, Ono A, Segawa O, Sawakami K, Koizuka M, Hirayama M, Hori K, Tajima H, Kuno A. Auto-Lectin Dotcoding by Two Octopuses: Rapid Analysis of Fluorescence-Labeled Glycoproteins by an 8-channel Fully-Automatic Bead Array Scanner with a Rolling-Circle Detector. Anal Chem 2023; 95:11868-11873. [PMID: 37535807 DOI: 10.1021/acs.analchem.3c01395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Protein glycosylation is a crucial factor that must be evaluated in biological pharmaceuticals. The glycoform profile of a protein can vary depending on the conditions of the cultivation, purification process, and the selection of a host cell. Lectin microarrays are reliable bioanalytical methods used in the early phases of bioprocesses for the detection of glycosylation. The concept of a fully automated glycan detection with a bead array has been previously reported; however, no simple system has been constructed on fluorescence-based detection using a microarray. Here, we present a fully automated detection system equipped with a novel fluorescence detector for a 13-lectin bead array with a single tip. The lattice-like arrangement of a set of fibers proximate to the tip of the light emitting diode and photomultiplier tube detector minimized the noise caused by the reflection of incident light on the plastic capillary tip and bead. A unique rolling-circle fiber unit with quadruple lattices stacked in two layers realizes the 8-parallel automeasurement with a drastic reduction in scanning time and machine size. The 8-glycan profiles obtained automatically within 25 min were identical with those obtained with the conventional lectin microarray after overnight incubation. The signals obtained were represented as lectin dotcodes. Therefore, autolectin dotcoding assisted by the twin 8 legs named as "detection and irradiation octopuses" may be a rapid glyco-evaluation system during the production and development of biopharmaceuticals.
Collapse
Affiliation(s)
- Hiroko Shimazaki
- Molecular & Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science & Technology, Tsukuba, Ibaraki 305-8565, Japan
| | - Kazuhiro Nakamura
- Precision System Science, Kamihongou, Matsudo, Chiba 271-0064, Japan
| | - Ayaka Ono
- Molecular & Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science & Technology, Tsukuba, Ibaraki 305-8565, Japan
| | - Osamu Segawa
- Precision System Science, Kamihongou, Matsudo, Chiba 271-0064, Japan
| | - Kazumi Sawakami
- Precision System Science, Kamihongou, Matsudo, Chiba 271-0064, Japan
| | - Michinori Koizuka
- Precision System Science, Kamihongou, Matsudo, Chiba 271-0064, Japan
| | - Makoto Hirayama
- Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama 1-4-4, Higashi-Hiroshima 739-7528, Japan
| | - Kanji Hori
- Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama 1-4-4, Higashi-Hiroshima 739-7528, Japan
| | - Hideji Tajima
- Precision System Science, Kamihongou, Matsudo, Chiba 271-0064, Japan
| | - Atsushi Kuno
- Molecular & Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science & Technology, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
20
|
Stip MC, Evers M, Nederend M, Chan C, Reiding KR, Damen MJ, Heck AJR, Koustoulidou S, Ramakers R, Krijger GC, de Roos R, Souteyrand E, Cornel AM, Dierselhuis MP, Jansen M, de Boer M, Valerius T, van Tetering G, Leusen JHW, Meyer-Wentrup F. IgA antibody immunotherapy targeting GD2 is effective in preclinical neuroblastoma models. J Immunother Cancer 2023; 11:e006948. [PMID: 37479484 PMCID: PMC10364159 DOI: 10.1136/jitc-2023-006948] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND Immunotherapy targeting GD2 is very effective against high-risk neuroblastoma, though administration of anti-GD2 antibodies induces severe and dose-limiting neuropathic pain by binding GD2-expressing sensory neurons. Previously, the IgG1 ch14.18 (dinutuximab) antibody was reformatted into the IgA1 isotype, which abolishes neuropathic pain and induces efficient neutrophil-mediated antibody-dependent cellular cytotoxicity (ADCC) via activation of the Fc alpha receptor (FcαRI/CD89). METHODS To generate an antibody suitable for clinical application, we engineered an IgA molecule (named IgA3.0 ch14.18) with increased stability, mutated glycosylation sites and substituted free (reactive) cysteines. The following mutations were introduced: N45.2G and P124R (CH1 domain), C92S, N120T, I121L and T122S (CH2 domain) and a deletion of the tail piece P131-Y148 (CH3 domain). IgA3.0 ch14.18 was evaluated in binding assays and in ADCC and antibody-dependent cellular phagocytosis (ADCP) assays with human, neuroblastoma patient and non-human primate effector cells. We performed mass spectrometry analysis of N-glycans and evaluated the impact of altered glycosylation in IgA3.0 ch14.18 on antibody half-life by performing pharmacokinetic (PK) studies in mice injected intravenously with 5 mg/kg antibody solution. A dose escalation study was performed to determine in vivo efficacy of IgA3.0 ch14.18 in an intraperitoneal mouse model using 9464D-GD2 neuroblastoma cells as well as in a subcutaneous human xenograft model using IMR32 neuroblastoma cells. Binding assays and PK studies were compared with one-way analysis of variance (ANOVA), ADCC and ADCP assays and in vivo tumor outgrowth with two-way ANOVA followed by Tukey's post-hoc test. RESULTS ADCC and ADCP assays showed that particularly neutrophils and macrophages from healthy donors, non-human primates and patients with neuroblastoma are able to kill neuroblastoma tumor cells efficiently with IgA3.0 ch14.18. IgA3.0 ch14.18 contains a more favorable glycosylation pattern, corresponding to an increased antibody half-life in mice compared with IgA1 and IgA2. Furthermore, IgA3.0 ch14.18 penetrates neuroblastoma tumors in vivo and halts tumor outgrowth in both 9464D-GD2 and IMR32 long-term tumor models. CONCLUSIONS IgA3.0 ch14.18 is a promising new therapy for neuroblastoma, showing (1) increased half-life compared to natural IgA antibodies, (2) increased protein stability enabling effortless production and purification, (3) potent CD89-mediated tumor killing in vitro by healthy subjects and patients with neuroblastoma and (4) antitumor efficacy in long-term mouse neuroblastoma models.
Collapse
Affiliation(s)
- Marjolein C Stip
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Mitchell Evers
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Maaike Nederend
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Chilam Chan
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Karli R Reiding
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Biopharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
- Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Mirjam J Damen
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Biopharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Biopharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
- Netherlands Proteomics Center, Utrecht, The Netherlands
| | | | | | | | - Remmert de Roos
- Radionuclide Pharmacy, UMC Utrecht, Utrecht, The Netherlands
| | - Edouard Souteyrand
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Annelisa M Cornel
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - Marco Jansen
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Mark de Boer
- De Boer Biotech Consultancy B.V, Blaricum, The Netherlands
| | - Thomas Valerius
- Section for Stem Cell Transplantation and Immunotherapy, Department of Medicine II, University Hospital Schleswig Holstein, Kiel, Germany
| | - Geert van Tetering
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | | | | |
Collapse
|
21
|
Bernshtein B, Kelly M, Cizmeci D, Zhiteneva JA, Macvicar R, Kamruzzaman M, Bhuiyan TR, Chowdhury F, Khan AI, Qadri F, Charles RC, Xu P, Kováč P, Kaminski RW, Alter G, Ryan ET. Shigella O-specific polysaccharide functional IgA responses mediate protection against shigella infection in an endemic high-burden setting. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.04.539451. [PMID: 37205407 PMCID: PMC10187263 DOI: 10.1101/2023.05.04.539451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Shigella is the second leading cause of diarrheal disease-related death in young children in low and middle income countries. The mechanism of protection against shigella infection and disease in endemic areas is uncertain. While historically LPS-specific IgG titers have been associated with protection in endemic settings, emerging deeper immune approaches have recently elucidated a protective role for IpaB-specific antibody responses in a controlled human challenge model in North American volunteers. To deeply interrogate potential correlates of immunity in areas endemic for shigellosis, here we applied a systems approach to analyze the serological response to shigella across endemic and non-endemic populations. Additionally, we analyzed shigella-specific antibody responses over time in the context of endemic resistance or breakthrough infections in a high shigella burden location. Individuals with endemic exposure to shigella possessed broad and functional antibody responses across both glycolipid and protein antigens compared to individuals from non-endemic regions. In high shigella burden settings, elevated levels of OSP-specific FcαR binding antibodies were associated with resistance to shigellosis. OSP-specific FcαR binding IgA found in resistant individuals activated bactericidal neutrophil functions including phagocytosis, degranulation and reactive oxygen species production. Moreover, IgA depletion from resistant serum significantly reduced binding of OSP-specific antibodies to FcαR and antibody mediated activation of neutrophils and monocytes. Overall, our findings suggest that OSP-specific functional IgA responses contribute to protective immunity against shigella infection in high-burden settings. These findings will assist in the development and evaluation of shigella vaccines.
Collapse
|
22
|
The significance of galactose-deficient immunoglobulin A1 staining in kidney diseases with IgA deposition. Int Urol Nephrol 2023:10.1007/s11255-023-03512-5. [PMID: 36849627 DOI: 10.1007/s11255-023-03512-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 01/09/2023] [Indexed: 03/01/2023]
Abstract
BACKGROUND This study investigated the significance of galactose-deficient immunoglobulin A1 staining in kidney diseases with IgA deposition. METHODS A total of 120 patients with IgA-dominant deposition in kidney tissues were enrolled and divided into four groups: primary IgA nephropathy (PIgAN), secondary IgA nephropathy (SIgAN), monotypic IgA nephropathy (MIgAN), and IgA variant monoclonal gammopathy of renal significance (IgA-MGRS). KM55 (the antibody of galactose-deficient immunoglobulin A1), IgA subtypes, and complement pathway factors (properdin, C4d, and C1q) were detected through immunofluorescence or immunohistochemistry analysis. RESULTS KM55 and IgA double staining showed colocalization within glomeruli in all cases except for IgA-MGRS, which showed negative or weak staining of KM55 but strong staining of IgA. The PIgAN group showed the highest intensity of KM55 and KM55/IgA ratio, while these values in the IgA-MGRS group were the lowest (P < 0.01). A KM55/IgA quantified ratio of 0.78 was the optimal cut-off value to distinguish PIgAN from SIgAN, whereas a cut-off value of 0.21 was optimal to distinguish between MIgAN and IgA-MGRS. The clinicopathological characteristics showed significant differences as the groups were divided by diseases with optimal cut-off values, and these differences corresponded to the pathogenesis of each disease entity. CONCLUSIONS PIgAN, SIgAN, and MIgAN are caused by the deposition of abnormally glycosylated IgA1 whereas IgA-MGRS is not. The KM55/IgA quantified ratio is valuable in distinguishing PIgAN from SIgAN, as well as MIgAN from IgA-MGRS.
Collapse
|
23
|
Cottignies-Calamarte A, Tudor D, Bomsel M. Antibody Fc-chimerism and effector functions: When IgG takes advantage of IgA. Front Immunol 2023; 14:1037033. [PMID: 36817447 PMCID: PMC9933243 DOI: 10.3389/fimmu.2023.1037033] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/06/2023] [Indexed: 02/05/2023] Open
Abstract
Recent advances in the development of therapeutic antibodies (Abs) have greatly improved the treatment of otherwise drug-resistant cancers and autoimmune diseases. Antibody activities are mediated by both their Fab and the Fc. However, therapeutic Abs base their protective mechanisms on Fc-mediated effector functions resulting in the activation of innate immune cells by FcRs. Therefore, Fc-bioengineering has been widely used to maximise the efficacy and convenience of therapeutic antibodies. Today, IgG remains the only commercially available therapeutic Abs, at the expense of other isotypes. Indeed, production, sampling, analysis and related in vivo studies are easier to perform with IgG than with IgA due to well-developed tools. However, interest in IgA is growing, despite a shorter serum half-life and a more difficult sampling and purification methods than IgG. Indeed, the paradigm that the effector functions of IgG surpass those of IgA has been experimentally challenged. Firstly, IgA has been shown to bind to its Fc receptor (FcR) on effector cells of innate immunity with greater efficiency than IgG, resulting in more robust IgA-mediated effector functions in vitro and better survival of treated animals. In addition, the two isotypes have been shown to act synergistically. From these results, new therapeutic formats of Abs are currently emerging, in particular chimeric Abs containing two tandemly expressed Fc, one from IgG (Fcγ) and one from IgA (Fcα). By binding both FcγR and FcαR on effector cells, these new chimeras showed improved effector functions in vitro that were translated in vivo. Furthermore, these chimeras retain an IgG-like half-life in the blood, which could improve Ab-based therapies, including in AIDS. This review provides the rationale, based on the biology of IgA and IgG, for the development of Fcγ and Fcα chimeras as therapeutic Abs, offering promising opportunities for HIV-1 infected patients. We will first describe the main features of the IgA- and IgG-specific Fc-mediated signalling pathways and their respective functional differences. We will then summarise the very promising results on Fcγ and Fcα containing chimeras in cancer treatment. Finally, we will discuss the impact of Fcα-Fcγ chimerism in prevention/treatment strategies against infectious diseases such as HIV-1.
Collapse
Affiliation(s)
- Andréa Cottignies-Calamarte
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, Paris, France.,Université Paris Cité, Institut Cochin, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Daniela Tudor
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, Paris, France.,Université Paris Cité, Institut Cochin, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Morgane Bomsel
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, Paris, France.,Université Paris Cité, Institut Cochin, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Paris, France
| |
Collapse
|
24
|
Habas E, Ali E, Farfar K, Errayes M, Alfitori J, Habas E, Ghazouani H, Akbar R, Khan F, Al Dab A, Elzouki AN. IgA nephropathy pathogenesis and therapy: Review & updates. Medicine (Baltimore) 2022; 101:e31219. [PMID: 36482575 PMCID: PMC9726424 DOI: 10.1097/md.0000000000031219] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND IgA nephropathy (IgAN) is the most frequent type of primary glomerulonephritis since the first type was described more than four decades ago. It is the prevalent cause of primary glomerular disease that causes end-stage renal disease. In most patients with IgAN, hematuria is the most common reported symptom, particularly in those with a preceding upper respiratory tract infection. Although the pathogenesis of IgAN is usually multifactorial, autoimmune complex formation and inflammatory processes are the most widely recognized pathogenic mechanisms. Multiple approaches have been trialed as a therapy for IgAN, including tonsillectomy, steroids, other immune-suppressive therapy in different regimens, and kidney transplantation. AIM AND METHOD PubMed, Google, Google Scholar, Scopus, and EMBASE were searched by the authors using different texts, keywords, and phrases. A non-systemic clinical review is intended to review the available data and clinical updates about the possible mechanism(s) of IgAN pathogenesis and treatments. CONCLUSION IgAN has a heterogeneous pattern worldwide, making it difficult to understand its pathogenesis and treatment. Proteinuria is the best guide to follow up on the IgAN progression and treatment response. Steroids are the cornerstone of IgAN therapy; however, other immune-suppressive and immune-modulative agents are used with a variable response rate. Kidney transplantation is highly advisable for IgAN patients, although the recurrence rate is high. Finally, IgAN management requires collaborative work between patients and their treating physicians for safe long-term outcomes.
Collapse
Affiliation(s)
- Elmukhtar Habas
- Hamad General Medicine, Doha, Qatar
- *Correspondence: Elmukhtar Habas, Internal Medicine, Hamad Medical Corporation, AL-Rayyan Road, PO Box 3050, Doha, Qatar (e-mail: )
| | - Elrazi Ali
- Hamad General Hospital, Medicine Department, Doha, Qatar
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Argentova V, Aliev T, Dolgikh D, Pakanová Z, Katrlík J, Kirpichnikov M. Features, modulation and analysis of glycosylation patterns of therapeutic recombinant immunoglobulin A. Biotechnol Genet Eng Rev 2022; 38:247-269. [PMID: 35377278 DOI: 10.1080/02648725.2022.2060594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Increasing the production of recombinant antibodies while ensuring high and stable protein quality remains a challenge in mammalian cell culture. This review is devoted to advances in the field of obtaining stable and optimal glycosylation of therapeutic antibodies based on IgA, as well as the subsequent issues of glycosylation control of glycoproteins during their production. Current studies also demonstrate a general need for a more fundamental understanding of the use of CHO cell-based producer cell lines, through which the glycoprofile of therapeutic IgA antibodies is produced and the dependence of glycosylation on culture conditions could be controlled. Optimization of glycosylation improves the therapeutic efficacy and can expand the possibilities for the creation of highly effective glycoprotein therapeutic drugs. Current status and trends in glycan analysis of therapeutic IgA, dominantly based on mass spectrometry and lectin microarrays are herein summarised as well.
Collapse
Affiliation(s)
- Victoria Argentova
- Department of Bioengineering, School of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Teimur Aliev
- Department of Chemical Enzymology, School of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Dmitry Dolgikh
- Department of Bioengineering, School of Biology, Lomonosov Moscow State University, Moscow, Russia.,Institute of Bioorganic Chemistry, Russian Academy of SciencesShemyakin-Ovchinnikov, Moscow, Russia
| | - Zuzana Pakanová
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jaroslav Katrlík
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Mikhail Kirpichnikov
- Department of Bioengineering, School of Biology, Lomonosov Moscow State University, Moscow, Russia.,Institute of Bioorganic Chemistry, Russian Academy of SciencesShemyakin-Ovchinnikov, Moscow, Russia
| |
Collapse
|
26
|
Krištić J, Lauc G, Pezer M. Immunoglobulin G glycans - Biomarkers and molecular effectors of aging. Clin Chim Acta 2022; 535:30-45. [PMID: 35970404 DOI: 10.1016/j.cca.2022.08.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 11/28/2022]
Abstract
Immunoglobulin G (IgG) antibodies are post-translationally modified by the addition of complex carbohydrate molecules - glycans, which have profound effects on the IgG function, most significantly as modulators of its inflammatory capacity. Therefore, it is not surprising that the changes in IgG glycosylation pattern are associated with various physiological states and diseases, including aging and age-related diseases. Importantly, within the inflammaging concept, IgG glycans are considered not only biomarkers but one of the molecular effectors of the aging process. The exact mechanism by which they exert their function, however, remains unknown. In this review, we list and comment on, to our knowledge, all studies that examined changes in IgG glycosylation during aging in humans. We focus on the information obtained from studies on general population, but we also cover the insights obtained from studies of long-lived individuals and people with age-related diseases. We summarize the current knowledge on how levels of different IgG glycans change with age (i.e., the extent and direction of the change with age) and discuss the potential mechanisms and possible functional roles of changes in IgG glycopattern that accompany aging.
Collapse
Affiliation(s)
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia; Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Marija Pezer
- Genos Glycoscience Research Laboratory, Zagreb, Croatia.
| |
Collapse
|
27
|
Ding L, Chen X, Cheng H, Zhang T, Li Z. Advances in IgA glycosylation and its correlation with diseases. Front Chem 2022; 10:974854. [PMID: 36238099 PMCID: PMC9552352 DOI: 10.3389/fchem.2022.974854] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/23/2022] [Indexed: 11/29/2022] Open
Abstract
Immunoglobulin A (IgA) is the most abundant immunoglobulin synthesized in the human body. It has the highest concentration in the mucosa and is second only to IgG in serum. IgA plays an important role in mucosal immunity, and is the predominant antibody used to protect the mucosal surface from pathogens invasion and to maintain the homeostasis of intestinal flora. Moreover, The binding IgA to the FcαRI (Fc alpha Receptor I) in soluble or aggregated form can mediate anti- or pro- inflammatory responses, respectively. IgA is also known as one of the most heavily glycosylated antibodies among human immunoglobulins. The glycosylation of IgA has been shown to have a significant effect on its immune function. Variation in the glycoform of IgA is often the main characteration of autoimmune diseases such as IgA nephropathy (IgAN), IgA vasculitis (IgAV), systemic lupus erythematosus (SLE), and rheumatoid arthritis (RA). However, compared with the confirmed glycosylation function of IgG, the pathogenic mechanism of IgA glycosylation involved in related diseases is still unclear. This paper mainly summarizes the recent reports on IgA's glycan structure, its function, its relationship with the occurrence and development of diseases, and the potential application of glycoengineered IgA in clinical antibody therapeutics, in order to provide a potential reference for future research in this field.
Collapse
Affiliation(s)
| | | | | | | | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi’an, China
| |
Collapse
|
28
|
Adolf LA, Heilbronner S. Nutritional Interactions between Bacterial Species Colonising the Human Nasal Cavity: Current Knowledge and Future Prospects. Metabolites 2022; 12:489. [PMID: 35736422 PMCID: PMC9229137 DOI: 10.3390/metabo12060489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/16/2022] [Accepted: 05/25/2022] [Indexed: 12/10/2022] Open
Abstract
The human nasal microbiome can be a reservoir for several pathogens, including Staphylococcus aureus. However, certain harmless nasal commensals can interfere with pathogen colonisation, an ability that could be exploited to prevent infection. Although attractive as a prophylactic strategy, manipulation of nasal microbiomes to prevent pathogen colonisation requires a better understanding of the molecular mechanisms of interaction that occur between nasal commensals as well as between commensals and pathogens. Our knowledge concerning the mechanisms of pathogen exclusion and how stable community structures are established is patchy and incomplete. Nutrients are scarce in nasal cavities, which makes competitive or mutualistic traits in nutrient acquisition very likely. In this review, we focus on nutritional interactions that have been shown to or might occur between nasal microbiome members. We summarise concepts of nutrient release from complex host molecules and host cells as well as of intracommunity exchange of energy-rich fermentation products and siderophores. Finally, we discuss the potential of genome-based metabolic models to predict complex nutritional interactions between members of the nasal microbiome.
Collapse
Affiliation(s)
- Lea A. Adolf
- Interfaculty Institute for Microbiology and Infection Medicine, Institute for Medical Microbiology and Hygiene, UKT Tübingen, 72076 Tübingen, Germany;
| | - Simon Heilbronner
- Interfaculty Institute for Microbiology and Infection Medicine, Institute for Medical Microbiology and Hygiene, UKT Tübingen, 72076 Tübingen, Germany;
- German Centre for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, 72076 Tübingen, Germany
| |
Collapse
|
29
|
Development and Evaluation of a Robust Sandwich Immunoassay System Detecting Serum WFA-Reactive IgA1 for Diagnosis of IgA Nephropathy. Int J Mol Sci 2022; 23:ijms23095165. [PMID: 35563555 PMCID: PMC9104065 DOI: 10.3390/ijms23095165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 02/04/2023] Open
Abstract
Aberrant glycosylation of IgA1 is involved in the development of IgA nephropathy (IgAN). There are many reports of IgAN markers focusing on the glycoform of IgA1. None have been clinically applied as a routine test. In this study, we established an automated sandwich immunoassay system for detecting aberrant glycosylated IgA1, using Wisteria floribunda agglutinin (WFA) and anti-IgA1 monoclonal antibody. The diagnostic performance as an IgAN marker was evaluated. The usefulness of WFA for immunoassays was investigated by lectin microarray. A reliable standard for quantitative immunoassay measurements was designed by modifying a purified IgA1 substrate. A validation study using multiple serum specimens was performed using the established WFA-antibody sandwich automated immunoassay. Lectin microarray results showed that WFA specifically recognized N-glycans of agglutinated IgA1 in IgAN patients. The constructed IgA1 standard exhibited a wide dynamic range and high reactivity. In the validation study, serum WFA-reactive IgA1 (WFA+-IgA1) differed significantly between healthy control subjects and IgAN patients. The findings indicate that WFA is a suitable lectin that specifically targets abnormal agglutinated IgA1 in serum. We also describe an automated immunoassay system for detecting WFA+-IgA1, focusing on N-glycans.
Collapse
|
30
|
Vattepu R, Sneed SL, Anthony RM. Sialylation as an Important Regulator of Antibody Function. Front Immunol 2022; 13:818736. [PMID: 35464485 PMCID: PMC9021442 DOI: 10.3389/fimmu.2022.818736] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/17/2022] [Indexed: 12/14/2022] Open
Abstract
Antibodies play a critical role in linking the adaptive immune response to the innate immune system. In humans, antibodies are categorized into five classes, IgG, IgM, IgA, IgE, and IgD, based on constant region sequence, structure, and tropism. In serum, IgG is the most abundant antibody, comprising 75% of antibodies in circulation, followed by IgA at 15%, IgM at 10%, and IgD and IgE are the least abundant. All human antibody classes are post-translationally modified by sugars. The resulting glycans take on many divergent structures and can be attached in an N-linked or O-linked manner, and are distinct by antibody class, and by position on each antibody. Many of these glycan structures on antibodies are capped by sialic acid. It is well established that the composition of the N-linked glycans on IgG exert a profound influence on its effector functions. However, recent studies have described the influence of glycans, particularly sialic acid for other antibody classes. Here, we discuss the role of glycosylation, with a focus on terminal sialylation, in the biology and function across all antibody classes. Sialylation has been shown to influence not only IgG, but IgE, IgM, and IgA biology, making it an important and unappreciated regulator of antibody function.
Collapse
Affiliation(s)
- Ravi Vattepu
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Sunny Lyn Sneed
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Robert M Anthony
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
31
|
Ling WL, Su CTT, Lua WH, Yeo JY, Poh JJ, Ng YL, Wipat A, Gan SKE. Variable-heavy (VH) families influencing IgA1&2 engagement to the antigen, FcαRI and superantigen proteins G, A, and L. Sci Rep 2022; 12:6510. [PMID: 35444201 PMCID: PMC9020155 DOI: 10.1038/s41598-022-10388-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/07/2022] [Indexed: 12/18/2022] Open
Abstract
Interest in IgA as an alternative antibody format has increased over the years with much remaining to be investigated in relation to interactions with immune cells. Considering the recent whole antibody investigations showing significant distal effects between the variable (V) and constant (C)- regions that can be mitigated by the hinge regions of both human IgA subtypes A1 and A2, we performed an in-depth mechanistic investigation using a panel of 28 IgA1s and A2s of both Trastuzumab and Pertuzumab models. FcαRI binding were found to be mitigated by the differing glycosylation patterns in IgA1 and 2 with contributions from the CDRs. On their interactions with antigen-Her2 and superantigens PpL, SpG and SpA, PpL was found to sterically hinder Her2 antigen binding with unexpected findings of IgAs binding SpG at the CH2-3 region alongside SpA interacting with IgAs at the CH1. Although the VH3 framework (FWR) is commonly used in CDR grafting, we found the VH1 framework (FWR) to be a possible alternative when grafting IgA1 and 2 owing to its stronger binding to antigen Her2 and weaker interactions to superantigen Protein L and A. These findings lay the foundation to understanding the interactions between IgAs and microbial superantigens, and also guide the engineering of IgAs for future antibody applications and targeting of superantigen-producing microbes.
Collapse
Affiliation(s)
- Wei-Li Ling
- Antibody & Product Development Lab, Experimental Drug Development Centre, Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Newcastle University Singapore, Singapore, Singapore
| | - Chinh Tran-To Su
- Antibody & Product Development Lab, Experimental Drug Development Centre, Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Wai-Heng Lua
- Antibody & Product Development Lab, Experimental Drug Development Centre, Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Joshua Yi Yeo
- Antibody & Product Development Lab, Experimental Drug Development Centre, Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jun-Jie Poh
- Antibody & Product Development Lab, Experimental Drug Development Centre, Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yuen-Ling Ng
- Newcastle University Singapore, Singapore, Singapore
| | - Anil Wipat
- School of Computing, Newcastle University, Newcastle upon Tyne, UK
| | - Samuel Ken-En Gan
- Antibody & Product Development Lab, Experimental Drug Development Centre, Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore. .,James Cook University, Singapore, Singapore. .,Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China. .,Wenzhou Municipal Key Lab of Applied Biomedical and Biopharmaceutical Informatics, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
32
|
Lin DW, Chang CC, Hsu YC, Lin CL. New Insights into the Treatment of Glomerular Diseases: When Mechanisms Become Vivid. Int J Mol Sci 2022; 23:3525. [PMID: 35408886 PMCID: PMC8998908 DOI: 10.3390/ijms23073525] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 12/23/2022] Open
Abstract
Treatment for glomerular diseases has been extrapolated from the experience of other autoimmune disorders while the underlying pathogenic mechanisms were still not well understood. As the classification of glomerular diseases was based on patterns of juries instead of mechanisms, treatments were typically the art of try and error. With the advancement of molecular biology, the role of the immune agent in glomerular diseases is becoming more evident. The four-hit theory based on the discovery of gd-IgA1 gives a more transparent outline of the pathogenesis of IgA nephropathy (IgAN), and dysregulation of Treg plays a crucial role in the pathogenesis of minimal change disease (MCD). An epoch-making breakthrough is the discovery of PLA2R antibodies in the primary membranous nephropathy (pMN). This is the first biomarker applied for precision medicine in kidney disease. Understanding the immune system's role in glomerular diseases allows the use of various immunosuppressants or other novel treatments, such as complement inhibitors, to treat glomerular diseases more reasonable. In this era of advocating personalized medicine, it is inevitable to develop precision medicine with mechanism-based novel biomarkers and novel therapies in kidney disease.
Collapse
Affiliation(s)
- Da-Wei Lin
- Department of Internal Medicine, St. Martin De Porres Hospital, Chiayi 60069, Taiwan;
| | - Cheng-Chih Chang
- Department of Surgery, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan;
| | - Yung-Chien Hsu
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613016, Taiwan
| | - Chun-Liang Lin
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613016, Taiwan
- Division of Chinese Materia Medica Development, National Research Institute of Chinese Medicine, Taipei 613016, Taiwan
- Kidney Research Center, Chang Gung Memorial Hospital, Taipei 613016, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Chang Gung Memorial Hospital, Kaohsiung 833253, Taiwan
| |
Collapse
|
33
|
Wang T, Liu L, Voglmeir J. mAbs N-glycosylation: Implications for biotechnology and analytics. Carbohydr Res 2022; 514:108541. [DOI: 10.1016/j.carres.2022.108541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 12/29/2022]
|
34
|
Treger RS, Fink SL. Beyond Titer: Expanding the Scope of Clinical Autoantibody Testing. J Appl Lab Med 2022; 7:99-113. [DOI: 10.1093/jalm/jfab123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/17/2021] [Indexed: 11/14/2022]
Abstract
Abstract
Background
Autoantibodies that bind self-antigens are a hallmark of autoimmune diseases, but can also be present in healthy individuals. Clinical assays that detect and titer antigen-specific autoantibodies are an important component of the diagnosis and monitoring of autoimmune diseases. Autoantibodies may contribute to disease pathogenesis via effector functions that are dictated by both the antigen-binding site and constant domain.
Content
In this review, we discuss features of antibodies, in addition to antigen-binding specificity, which determine effector function. These features include class, subclass, allotype, and glycosylation. We discuss emerging data indicating that analysis of these antibody features may be informative for diagnosis and monitoring of autoimmune diseases. We also consider methodologies to interrogate these features and consider how they could be implemented in the clinical laboratory.
Summary
Future autoantibody assays may incorporate assessment of additional antibody features that contribute to autoimmune disease pathogenesis and provide added clinical value.
Collapse
Affiliation(s)
- Rebecca S Treger
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Susan L Fink
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| |
Collapse
|
35
|
3D Structures of IgA, IgM, and Components. Int J Mol Sci 2021; 22:ijms222312776. [PMID: 34884580 PMCID: PMC8657937 DOI: 10.3390/ijms222312776] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 12/02/2022] Open
Abstract
Immunoglobulin G (IgG) is currently the most studied immunoglobin class and is frequently used in antibody therapeutics in which its beneficial effector functions are exploited. IgG is composed of two heavy chains and two light chains, forming the basic antibody monomeric unit. In contrast, immunoglobulin A (IgA) and immunoglobulin M (IgM) are usually assembled into dimers or pentamers with the contribution of joining (J)-chains, which bind to the secretory component (SC) of the polymeric Ig receptor (pIgR) and are transported to the mucosal surface. IgA and IgM play a pivotal role in various immune responses, especially in mucosal immunity. Due to their structural complexity, 3D structural study of these molecules at atomic scale has been slow. With the emergence of cryo-EM and X-ray crystallographic techniques and the growing interest in the structure-function relationships of IgA and IgM, atomic-scale structural information on IgA-Fc and IgM-Fc has been accumulating. Here, we examine the 3D structures of IgA and IgM, including the J-chain and SC. Disulfide bridging and N-glycosylation on these molecules are also summarized. With the increasing information of structure–function relationships, IgA- and IgM-based monoclonal antibodies will be an effective option in the therapeutic field.
Collapse
|
36
|
Han Q, Hu Y, Lu Z, Wang J, Chen H, Mo Z, Luo X, Li A, Dan X, Li Y. Study on the characterization of grouper (Epinephelus coioides) immunoglobulin T and its positive cells. FISH & SHELLFISH IMMUNOLOGY 2021; 118:102-110. [PMID: 34481975 DOI: 10.1016/j.fsi.2021.08.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 08/10/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Immunoglobulins (Igs) play a vital role in the adaptive immunity of gnathostomes. IgT, a particular Ig class in teleost fishes, receives much attention concerning the mucosal immunity. While, the characteristic and function of Epinephelus coioides IgT is still unknown. In our study, a polyclonal antibody was first prepared with grouper IgT heavy chain recombinant protein. IgT was revealed to be polymeric in serum and mucus. In normal groupers, IgT had high expression level in head kidney and spleen, while little amount in gills, thymus, gut and liver. The number of IgT-positive cells in different tissues was in line with their IgT expression. Furthermore, IgT could coat fractional bacteria in the mucus. In conclusion, this research revealed the protein characteristic, basal expression and bacterial coverage of grouper IgT. This is the first study to identify the characteristic of grouper IgT and demonstrate the capacity of coating microbes.
Collapse
Affiliation(s)
- Qing Han
- College of Marine Science, South China Agricultural University, Guangzhou, 510640, China
| | - Yingtong Hu
- College of Marine Science, South China Agricultural University, Guangzhou, 510640, China
| | - Zijun Lu
- College of Marine Science, South China Agricultural University, Guangzhou, 510640, China
| | - Jiule Wang
- College of Marine Science, South China Agricultural University, Guangzhou, 510640, China
| | - Hongping Chen
- College of Marine Science, South China Agricultural University, Guangzhou, 510640, China
| | - Zequan Mo
- College of Marine Science, South China Agricultural University, Guangzhou, 510640, China
| | - Xiaochun Luo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Anxing Li
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Lab for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong Province, China
| | - Xueming Dan
- College of Marine Science, South China Agricultural University, Guangzhou, 510640, China.
| | - Yanwei Li
- College of Marine Science, South China Agricultural University, Guangzhou, 510640, China.
| |
Collapse
|
37
|
Dotz V, Visconti A, Lomax-Browne HJ, Clerc F, Hipgrave Ederveen AL, Medjeral-Thomas NR, Cook HT, Pickering MC, Wuhrer M, Falchi M. O- and N-Glycosylation of Serum Immunoglobulin A is Associated with IgA Nephropathy and Glomerular Function. J Am Soc Nephrol 2021; 32:2455-2465. [PMID: 34127537 PMCID: PMC8722783 DOI: 10.1681/asn.2020081208] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 05/05/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND IgA nephropathy (IgAN) is the most common primary glomerular disease worldwide and is a leading cause of renal failure. The disease mechanisms are not completely understood, but a higher abundance of galactose-deficient IgA is recognized to play a crucial role in IgAN pathogenesis. Although both types of human IgA (IgA1 and IgA2) have several N-glycans as post-translational modification, only IgA1 features extensive hinge-region O-glycosylation. IgA1 galactose deficiency on the O-glycans is commonly detected by a lectin-based method. To date, limited detail is known about IgA O- and N-glycosylation in IgAN. METHODS To gain insights into the complex O- and N-glycosylation of serum IgA1 and IgA2 in IgAN, we used liquid chromatography-mass spectrometry (LC-MS) for the analysis of tryptic glycopeptides of serum IgA from 83 patients with IgAN and 244 age- and sex-matched healthy controls. RESULTS Multiple structural features of N-glycosylation of IgA1 and IgA2 were associated with IgAN and glomerular function in our cross-sectional study. These features included differences in galactosylation, sialylation, bisection, fucosylation, and N-glycan complexity. Moreover, IgA1 O-glycan sialylation was associated with both the disease and glomerular function. Finally, glycopeptides were a better predictor of IgAN and glomerular function than galactose-deficient IgA1 levels measured by lectin-based ELISA. CONCLUSIONS Our high-resolution data suggest that IgA O- and N-glycopeptides are promising targets for future investigations on the pathophysiology of IgAN and as potential noninvasive biomarkers for disease prediction and deteriorating kidney function.
Collapse
Affiliation(s)
- Viktoria Dotz
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Alessia Visconti
- Department of Twin Research & Genetic Epidemiology, King’s College London, London, United Kingdom
| | - Hannah J. Lomax-Browne
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Florent Clerc
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Nicholas R. Medjeral-Thomas
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - H. Terence Cook
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Matthew C. Pickering
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Mario Falchi
- Department of Twin Research & Genetic Epidemiology, King’s College London, London, United Kingdom
| |
Collapse
|
38
|
Seikrit C, Pabst O. The immune landscape of IgA induction in the gut. Semin Immunopathol 2021; 43:627-637. [PMID: 34379174 PMCID: PMC8551147 DOI: 10.1007/s00281-021-00879-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/09/2021] [Indexed: 12/14/2022]
Abstract
Antibodies are key elements of protective immunity. In the mucosal immune system in particular, secretory immunoglobulin A (SIgA), the most abundantly produced antibody isotype, protects against infections, shields the mucosal surface from toxins and environmental factors, and regulates immune homeostasis and a peaceful coexistence with our microbiota. However, the dark side of IgA biology promotes the formation of immune complexes and provokes pathologies, e.g., IgA nephropathy (IgAN). The precise mechanisms of how IgA responses become deregulated and pathogenic in IgAN remain unresolved. Yet, as the field of microbiota research moved into the limelight, our basic understanding of IgA biology has been taking a leap forward. Here, we discuss the structure of IgA, the anatomical and cellular foundation of mucosal antibody responses, and current concepts of how we envision the interaction of SIgA and the microbiota. We center on key concepts in the field while taking account of both historic findings and exciting new observations to provide a comprehensive groundwork for the understanding of IgA biology from the perspective of a mucosal immunologist.
Collapse
Affiliation(s)
- Claudia Seikrit
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | - Oliver Pabst
- Institute of Molecular Medicine, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany.
| |
Collapse
|
39
|
Ohyama Y, Renfrow MB, Novak J, Takahashi K. Aberrantly Glycosylated IgA1 in IgA Nephropathy: What We Know and What We Don't Know. J Clin Med 2021; 10:jcm10163467. [PMID: 34441764 PMCID: PMC8396900 DOI: 10.3390/jcm10163467] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 12/17/2022] Open
Abstract
IgA nephropathy (IgAN), the most common primary glomerular disease worldwide, is characterized by glomerular deposition of IgA1-containing immune complexes. The IgA1 hinge region (HR) has up to six clustered O-glycans consisting of Ser/Thr-linked N-acetylgalactosamine usually with β1,3-linked galactose and variable sialylation. Circulating levels of IgA1 with abnormally O-glycosylated HR, termed galactose-deficient IgA1 (Gd-IgA1), are increased in patients with IgAN. Current evidence suggests that IgAN is induced by multiple sequential pathogenic steps, and production of aberrantly glycosylated IgA1 is considered the initial step. Thus, the mechanisms of biosynthesis of aberrantly glycosylated IgA1 and the involvement of aberrant glycoforms of IgA1 in disease development have been studied. Furthermore, Gd-IgA1 represents an attractive biomarker for IgAN, and its clinical significance is still being evaluated. To elucidate the pathogenesis of IgAN, it is important to deconvolute the biosynthetic origins of Gd-IgA1 and characterize the pathogenic IgA1 HR O-glycoform(s), including the glycan structures and their sites of attachment. These efforts will likely lead to development of new biomarkers. Here, we review the IgA1 HR O-glycosylation in general and the role of aberrantly glycosylated IgA1 in the pathogenesis of IgAN in particular.
Collapse
Affiliation(s)
- Yukako Ohyama
- Department of Biomedical Molecular Sciences, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan;
| | - Matthew B. Renfrow
- Departments of Biochemistry and Molecular Genetics and Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.B.R.); (J.N.)
| | - Jan Novak
- Departments of Biochemistry and Molecular Genetics and Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.B.R.); (J.N.)
| | - Kazuo Takahashi
- Department of Biomedical Molecular Sciences, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan;
- Correspondence: ; Tel.: +81-(562)-93-2430; Fax: +81-(562)-93-1830
| |
Collapse
|
40
|
Stewart TJ, Takahashi K, Xu N, Prakash A, Brown R, Raska M, Renfrow MB, Novak J. Quantitative assessment of successive carbohydrate additions to the clustered O-glycosylation sites of IgA1 by glycosyltransferases. Glycobiology 2021; 31:540-556. [PMID: 33295603 PMCID: PMC8176776 DOI: 10.1093/glycob/cwaa111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 11/12/2022] Open
Abstract
Mucin-type O-glycosylation occurs on many proteins that transit the Golgi apparatus. These glycans impact structure and function of many proteins and have important roles in cellular biosynthetic processes, signaling and differentiation. Although recent technological advances have enhanced our ability to profile glycosylation of glycoproteins, limitations in the understanding of the biosynthesis of these glycan structures remain. Some of these limitations stem from the difficulty to track the biosynthetic process of mucin-type O-glycosylation, especially when glycans occur in dense clusters in repeat regions of proteins, such as the mucins or immunoglobulin A1 (IgA1). Here, we describe a series of nano-liquid chromatography (LC)-mass spectrometry (MS) analyses that demonstrate the range of glycosyltransferase enzymatic activities involved in the biosynthesis of clustered O-glycans on IgA1. By utilizing nano-LC-MS relative quantitation of in vitro reaction products, our results provide unique insights into the biosynthesis of clustered IgA1 O-glycans. We have developed a workflow to determine glycoform-specific apparent rates of a human UDP-N-acetylgalactosamine:polypeptide N-acetylgalactosaminyltrasnfersase (GalNAc-T EC 2.4.1.41) and demonstrated how pre-existing glycans affect subsequent activity of glycosyltransferases, such as core 1 galactosyltransferase and α2,3- and α2,6-specific sialyltransferases, in successive additions in the biosynthesis of clustered O-glycans. In the context of IgA1, these results have potential to provide insight into the molecular mechanisms implicated in the pathogenesis of IgA nephropathy, an autoimmune renal disease involving aberrant IgA1 O-glycosylation. In a broader sense, these methods and workflows are applicable to the studies of the concerted and competing functions of other glycosyltransferases that initiate and extend mucin-type core 1 clustered O-glycosylation.
Collapse
Affiliation(s)
- Tyler J Stewart
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, BBRB 761A, Birmingham, AL 35294, USA
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 720 20th Street South, KAUL 524, Birmingham, AL 35294, USA
| | - Kazuo Takahashi
- Department of Biomedical Molecular Sciences, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake, Aichi, Toyoake 470-1192, Japan
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, BBRB 761A, Birmingham, AL 35294, USA
| | - Nuo Xu
- Department of Management, Information Systems & Quantitative Methods, 710 13th Street South, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Amol Prakash
- Optys Tech Corporation, Shrewsbury, MA 01545, USA
| | - Rhubell Brown
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, BBRB 761A, Birmingham, AL 35294, USA
| | - Milan Raska
- Department of Immunology, Palacky University and University Hospital, Hnevotinska 3, Olomouc 775 15, Czech Republic
| | - Matthew B Renfrow
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 720 20th Street South, KAUL 524, Birmingham, AL 35294, USA
| | - Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, BBRB 761A, Birmingham, AL 35294, USA
| |
Collapse
|
41
|
Greisch JF, den Boer MA, Beurskens F, Schuurman J, Tamara S, Bondt A, Heck AJR. Generating Informative Sequence Tags from Antigen-Binding Regions of Heavily Glycosylated IgA1 Antibodies by Native Top-Down Electron Capture Dissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1326-1335. [PMID: 33570406 PMCID: PMC8176452 DOI: 10.1021/jasms.0c00461] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Immunoglobulins A (IgA) include some of the most abundant human antibodies and play an important role in defending mucosal surfaces against pathogens. The unique structural features of the heavy chain of IgA subclasses (called IgA1 and IgA2) enable them to polymerize via the joining J-chain, resulting in IgA dimers but also higher oligomers. While secretory sIgA oligomers are dominant in milk and saliva, IgAs exist primarily as monomers in serum. No method currently allows disentangling the millions of unique IgAs potentially present in the human antibody repertoire. Obtaining unambiguous sequence reads of their hypervariable antigen-binding regions is a prerequisite for IgA identification. We here report a mass spectrometric method that uses electron capture dissociation (ECD) to produce straightforward-to-read sequence ladders of the variable parts of both the light and heavy chains of IgA1s, in particular, of the functionally critical CDR3 regions. We directly compare the native top-down ECD spectra of a heavily and heterogeneously N- and O-glycosylated anti-CD20 IgA1, the corresponding N-glycosylated anti-CD20 IgG1, and their Fab parts. We show that while featuring very different MS1 spectra, the native top-down ECD MS2 spectra of all four species are nearly identical, with cleavages occurring specifically within the CDR3 and FR4 regions of both the heavy and light chain. From the sequence-informative ECD data of an intact glycosylated IgA1, we foresee that native top-down ECD will become a valuable complementary tool for the de novo sequencing of IgA1s from milk, saliva, or serum.
Collapse
Affiliation(s)
- Jean-Francois Greisch
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Maurits A. den Boer
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Frank Beurskens
- Genmab,
Utrecht, Uppsalalaan
15, 3584 CT Utrecht, The Netherlands
| | - Janine Schuurman
- Genmab,
Utrecht, Uppsalalaan
15, 3584 CT Utrecht, The Netherlands
| | - Sem Tamara
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Albert Bondt
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
42
|
Knopf J, Biermann MHC, Muñoz LE, Herrmann M. Antibody glycosylation as a potential biomarker for chronic inflammatory autoimmune diseases. AIMS GENETICS 2021. [DOI: 10.3934/genet.2016.4.280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
AbstractGlycosylation of immunoglobulins (Ig) is known to influence their effector functions in physiological and pathological conditions. Changes in the glycosylation pattern of immunoglobulin G and autoantibodies in various inflammatory autoimmune diseases have been studied for many years. However, despite extensive research, many questions are still elusive regarding the formation of such differentially glycosylated antibodies and alterations of glycosylation patterns in other immunoglobulin classes for example. Nevertheless, knowledge has been deepened greatly, especially in the field of rheumatoid arthritis. Changes of Ig glycosylation patterns have been shown to appear before onset of the disease and moreover can subject to treatment. In this review, we discuss the potential of detecting Ig glycosylation changes as biomarkers for disease activity or monitoring of patients with chronic inflammatory autoimmune diseases such as antiphospholipid syndrome, rheumatoid arthritis, systemic lupus erythematosus, ANCA-associated vasculitis and Henoch-Schönlein purpura.
Collapse
Affiliation(s)
- Jasmin Knopf
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3–Rheumatology and Immunology, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Mona HC Biermann
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3–Rheumatology and Immunology, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Luis E Muñoz
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3–Rheumatology and Immunology, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Martin Herrmann
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3–Rheumatology and Immunology, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| |
Collapse
|
43
|
Dutta D, Rahman S, Bhattacharje G, Bag S, Sing BC, Chatterjee J, Basak A, Das AK. Label-Free Method Development for Hydroxyproline PTM Mapping in Human Plasma Proteome. Protein J 2021; 40:741-755. [PMID: 33840009 DOI: 10.1007/s10930-021-09984-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2021] [Indexed: 11/29/2022]
Abstract
Post-translational modifications (PTMs) impart structural heterogeneities that can alter plasma proteins' functions in various pathophysiological processes. However, the identification and mapping of PTMs in untargeted plasma proteomics is still a challenge due to the presence of diverse components in blood. Here, we report a label-free method for identifying and mapping hydroxylated proteins using tandem mass spectrometry (MS/MS) in the human plasma sample. Our untargeted proteomics approach led us to identify 676 de novo sequenced peptides in human plasma that correspond to 201 proteins, out of which 11 plasma proteins were found to be hydroxylated. Among these hydroxylated proteins, Immunoglobulin A1 (IgA1) heavy chain was found to be modified at residue 285 (Pro285 to Hyp285), which was further validated by MS/MS study. Molecular dynamics (MD) simulation analysis demonstrated that this proline hydroxylation in IgA1 caused both local and global structural changes. Overall, this study provides a comprehensive understanding of the protein profile containing Hyp PTMs in human plasma and shows the future perspective of identifying and discriminating Hyp PTM in the normal and the diseased proteomes.
Collapse
Affiliation(s)
- Debabrata Dutta
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.,Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Shakilur Rahman
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Gourab Bhattacharje
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Swarnendu Bag
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Bidhan Chandra Sing
- Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Jyotirmoy Chatterjee
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Amit Basak
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.,School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Amit Kumar Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India. .,School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
44
|
Chen S, Qin R, Mahal LK. Sweet systems: technologies for glycomic analysis and their integration into systems biology. Crit Rev Biochem Mol Biol 2021; 56:301-320. [PMID: 33820453 DOI: 10.1080/10409238.2021.1908953] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Found in virtually every organism, glycans are essential molecules that play important roles in almost every aspect of biology. The composition of glycome, the repertoire of glycans in an organism or a biological sample, is often found altered in many diseases, including cancer, infectious diseases, metabolic and developmental disorders. Understanding how glycosylation and glycomic changes enriches our knowledge of the mechanisms of disease progression and sheds light on the development of novel therapeutics. However, the inherent diversity of glycan structures imposes challenges on the experimental characterization of glycomes. Advances in high-throughput glycomic technologies enable glycomic analysis in a rapid and comprehensive manner. In this review, we discuss the analytical methods currently used in high-throughput glycomics, including mass spectrometry, liquid chromatography and lectin microarray. Concomitant with the technical advances is the integration of glycomics into systems biology in the recent years. Herein we elaborate on some representative works from this recent trend to underline the important role of glycomics in such integrated approaches to disease.
Collapse
Affiliation(s)
- Shuhui Chen
- Department of Chemistry, New York University, New York City, NY, USA
| | - Rui Qin
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Lara K Mahal
- Department of Chemistry, New York University, New York City, NY, USA.,Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
45
|
Sialic acid-bearing paraproteins are implicated in heparin-like coagulopathy in patients with myeloma. Blood 2021; 136:1988-1992. [PMID: 32589705 DOI: 10.1182/blood.2020005604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/02/2020] [Indexed: 11/20/2022] Open
|
46
|
Verathamjamras C, Sriwitool TE, Netsirisawan P, Chaiyawat P, Chokchaichamnankit D, Prasongsook N, Srisomsap C, Svasti J, Champattanachai V. Aberrant RL2 O-GlcNAc antibody reactivity against serum-IgA1 of patients with colorectal cancer. Glycoconj J 2021; 38:55-65. [PMID: 33608772 DOI: 10.1007/s10719-021-09978-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 02/06/2023]
Abstract
O-GlcNAcylation, a single attachment of N-acetylglucosamine (GlcNAc) on serine and threonine residues, plays important roles in normal and pathobiological states of many diseases. Aberrant expression of O-GlcNAc modification was found in many types of cancer including colorectal cancer (CRC). This modification mainly occurs in nuclear-cytoplasmic proteins; however, it can exist in some extracellular and secretory proteins. In this study, we investigated whether O-GlcNAc-modified proteins are present in serum of patients with CRC. Serum glycoproteins of CRC patients and healthy controls were enriched by wheat germ agglutinin, a glycan binding protein specifically binds to terminal GlcNAc and sialic acid. Two-dimensional gel electrophoresis, RL2 O-GlcNAc immunoblotting, affinity purification, and mass spectrometry were performed. The results showed that RL2 O-GlcNAc antibody predominantly reacted against serum immunoglobulin A1 (IgA1). The levels of RL2-reacted IgA were significantly increased while total IgA were not different in patients with CRC compared to those of healthy controls. Analyses by ion trap mass spectrometry using collision-induced dissociation and electron-transfer dissociation modes revealed one O-linked N-acetylhexosamine modification site at Ser268 located in the heavy constant region of IgA1; unfortunately, it cannot be discriminated whether it was N-acetylglucosamine or N-acetylgalactosamine because of their identical molecular mass. Although failed to demonstrate unequivocally it was O-GlcNAc, these data indicated that serum-IgA had an aberrantly increased reactivity against RL2 O-GlcNAc antibody in CRC patients. This specific glycosylated form of serum-IgA1 will expand the spectrum of aberrant glycosylation which provides valuable information to cancer glycobiology.
Collapse
Affiliation(s)
- Chris Verathamjamras
- Laboratory of Biochemistry, Chulabhorn Research Institute, Laksi, Bangkok 10210, Thailand
| | - Tanin-Ek Sriwitool
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Laksi, Bangkok, 10210, Thailand
| | | | - Parunya Chaiyawat
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Laksi, Bangkok, 10210, Thailand.,Muscoloskeletal Science and Translational Research (MSTR) Center, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | | | - Naiyarat Prasongsook
- Divison of Medical Oncology, Department of Medicine, Faculty of Medicine, Phramongkutklao Hospital, Ratchathewi, Bangkok, 10400, Thailand
| | - Chantragan Srisomsap
- Laboratory of Biochemistry, Chulabhorn Research Institute, Laksi, Bangkok 10210, Thailand
| | - Jisnuson Svasti
- Laboratory of Biochemistry, Chulabhorn Research Institute, Laksi, Bangkok 10210, Thailand.,Applied Biological Sciences Program, Chulabhorn Graduate Institute, Laksi, Bangkok, 10210, Thailand
| | - Voraratt Champattanachai
- Laboratory of Biochemistry, Chulabhorn Research Institute, Laksi, Bangkok 10210, Thailand. .,Applied Biological Sciences Program, Chulabhorn Graduate Institute, Laksi, Bangkok, 10210, Thailand.
| |
Collapse
|
47
|
Rajasekaran A, Julian BA, Rizk DV. IgA Nephropathy: An Interesting Autoimmune Kidney Disease. Am J Med Sci 2021; 361:176-194. [PMID: 33309134 PMCID: PMC8577278 DOI: 10.1016/j.amjms.2020.10.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/19/2020] [Accepted: 10/05/2020] [Indexed: 12/27/2022]
Abstract
Immunoglobulin A nephropathy (IgAN) is the most common primary glomerulonephritis worldwide. It is a leading cause of chronic kidney disease and progresses to end-stage kidney disease in up to 40% of patients about 20 years after diagnosis. Additionally, IgAN is associated with significant mortality. The diagnosis currently necessitates a kidney biopsy, as no biomarker sufficiently specific and sensitive is available to supplant the procedure. Patients display significant heterogeneity in the epidemiology, clinical manifestations, renal progression, and long-term outcomes across diverse racial and ethnic populations. Recent advances in understanding the underlying pathophysiology of the disease have led to the proposal of a four-hit hypothesis supporting an autoimmune process. To date, there is no disease-specific treatment but, with a better understanding of the disease pathogenesis, new therapeutic approaches are currently being tested in clinical trials. In this review, we examine the multiple facets and most recent advances of this interesting disease.
Collapse
Affiliation(s)
- Arun Rajasekaran
- Division of Nephrology, Department of Internal Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Bruce A Julian
- Division of Nephrology, Department of Internal Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Dana V Rizk
- Division of Nephrology, Department of Internal Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
48
|
Hansen AL, Reily C, Novak J, Renfrow MB. Immunoglobulin A Glycosylation and Its Role in Disease. EXPERIENTIA SUPPLEMENTUM (2012) 2021; 112:433-477. [PMID: 34687019 DOI: 10.1007/978-3-030-76912-3_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Human IgA is comprised of two subclasses, IgA1 and IgA2. Monomeric IgA (mIgA), polymeric IgA (pIgA), and secretory IgA (SIgA) are the main molecular forms of IgA. The production of IgA rivals all other immunoglobulin isotypes. The large quantities of IgA reflect the fundamental roles it plays in immune defense, protecting vulnerable mucosal surfaces against invading pathogens. SIgA dominates mucosal surfaces, whereas IgA in circulation is predominately monomeric. All forms of IgA are glycosylated, and the glycans significantly influence its various roles, including antigen binding and the antibody effector functions, mediated by the Fab and Fc portions, respectively. In contrast to its protective role, the aberrant glycosylation of IgA1 has been implicated in the pathogenesis of autoimmune diseases, such as IgA nephropathy (IgAN) and IgA vasculitis with nephritis (IgAVN). Furthermore, detailed characterization of IgA glycosylation, including its diverse range of heterogeneity, is of emerging interest. We provide an overview of the glycosylation observed for each subclass and molecular form of IgA as well as the range of heterogeneity for each site of glycosylation. In many ways, the role of IgA glycosylation is in its early stages of being elucidated. This chapter provides an overview of the current knowledge and research directions.
Collapse
Affiliation(s)
- Alyssa L Hansen
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Colin Reily
- Departments of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Matthew B Renfrow
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
49
|
Chu TH, Patz EF, Ackerman ME. Coming together at the hinges: Therapeutic prospects of IgG3. MAbs 2021; 13:1882028. [PMID: 33602056 PMCID: PMC7899677 DOI: 10.1080/19420862.2021.1882028] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/08/2021] [Accepted: 01/22/2021] [Indexed: 01/22/2023] Open
Abstract
The human IgG3 subclass is conspicuously absent among the formats for approved monoclonal antibody therapies and Fc fusion protein biologics. Concern about the potential for rapid degradation, reduced plasma half-life, and increased immunogenicity due to marked variation in allotypes has apparently outweighed the potential advantages of IgG3, which include high affinity for activating Fcγ receptors, effective complement fixation, and a long hinge that appears better suited for low abundance targets. This review aims to highlight distinguishing features of IgG3 and to explore its functional role in the immune response. We present studies of natural immunity and recombinant antibody therapies that elucidate key contributions of IgG3 and discuss historical roadblocks that no longer remain clearly relevant. Collectively, this body of evidence motivates thoughtful reconsideration of the clinical advancement of this distinctive antibody subclass for treatment of human diseases. Abbreviations: ADCC - Antibody-Dependent Cell-mediated CytotoxicityADE - Antibody-dependent enhancementAID - Activation-Induced Cytidine DeaminaseCH - Constant HeavyCHF - Complement factor HCSR - Class Switch RecombinationEM - Electron MicroscopyFab - Fragment, antigen bindingFc - Fragment, crystallizableFcRn - Neonatal Fc ReceptorFcγR - Fc gamma ReceptorHIV - Human Immunodeficiency VirusIg - ImmunoglobulinIgH - Immunoglobulin Heavy chain geneNHP - Non-Human Primate.
Collapse
Affiliation(s)
- Thach H. Chu
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Edward F. Patz
- Department of Radiology and Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | | |
Collapse
|
50
|
Göritzer K, Strasser R. Glycosylation of Plant-Produced Immunoglobulins. EXPERIENTIA SUPPLEMENTUM (2012) 2021; 112:519-543. [PMID: 34687021 DOI: 10.1007/978-3-030-76912-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Many economically important protein-based therapeutics like monoclonal antibodies are glycosylated. Due to the recognized importance of this type of posttranslational modification, glycoengineering of expression systems to obtain highly active and homogenous therapeutics is an emerging field. Although most of the monoclonal antibodies on the market are still produced in mammalian expression platforms, plants are emerging as an alternative cost-effective and scalable production platform that allows precise engineering of glycosylation to produce targeted human glycoforms at large homogeneity. Apart from producing more effective antibodies, pure glycoforms are required in efforts to link biological functions to specific glycan structures. Much is already known about the role of IgG1 glycosylation and this antibody class is the dominant recombinant format that has been expressed in plants. By contrast, little attention has been paid to the glycoengineering of recombinant IgG subtypes and the other four classes of human immunoglobulins (IgA, IgD, IgE, and IgM). Except for IgD, all these antibody classes have been expressed in plants and the glycosylation has been analyzed in a site-specific manner. Here, we summarize the current data on glycosylation of plant-produced monoclonal antibodies and discuss the findings in the light of known functions for these glycans.
Collapse
Affiliation(s)
| | - Richard Strasser
- University of Natural Resources and Life Sciences Vienna, Vienna, Austria.
| |
Collapse
|