1
|
Jansen EJR, van Bakel NHM, Olde Loohuis NFM, Hafmans TGM, Arentsen T, Coenen AJM, Scheenen WJJM, Martens GJM. Identification of domains within the V-ATPase accessory subunit Ac45 involved in V-ATPase transport and Ca2+-dependent exocytosis. J Biol Chem 2012; 287:27537-46. [PMID: 22736765 DOI: 10.1074/jbc.m112.356105] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The vacuolar (H(+))-ATPase (V-ATPase) is crucial for maintenance of the acidic microenvironment in intracellular organelles, whereas its membrane-bound V(0)-sector is involved in Ca(2+)-dependent membrane fusion. In the secretory pathway, the V-ATPase is regulated by its type I transmembrane and V(0)-associated accessory subunit Ac45. To execute its function, the intact-Ac45 protein is proteolytically processed to cleaved-Ac45 thereby releasing its N-terminal domain. Here, we searched for the functional domains within Ac45 by analyzing a set of deletion mutants close to the in vivo situation, namely in transgenic Xenopus intermediate pituitary melanotrope cells. Intact-Ac45 was poorly processed and accumulated in the endoplasmic reticulum of the transgenic melanotrope cells. In contrast, cleaved-Ac45 was efficiently transported through the secretory pathway, caused an accumulation of the V-ATPase at the plasma membrane and reduced dopaminergic inhibition of Ca(2+)-dependent peptide secretion. Surprisingly, removal of the C-tail from intact-Ac45 caused cellular phenotypes also found for cleaved-Ac45, whereas C-tail removal from cleaved-Ac45 still allowed its transport to the plasma membrane, but abolished V-ATPase recruitment into the secretory pathway and left dopaminergic inhibition of the cells unaffected. We conclude that domains located in the N- and C-terminal portions of the Ac45 protein direct its trafficking, V-ATPase recruitment and Ca(2+)-dependent-regulated exocytosis.
Collapse
Affiliation(s)
- Eric J R Jansen
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition, and Behaviour and Nijmegen Centre for Molecular Life Sciences (NCMLS), Faculty of Science, Radboud University Nijmegen, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Molecular mechanisms of pituitary endocrine cell calcium handling. Cell Calcium 2011; 51:212-21. [PMID: 22138111 DOI: 10.1016/j.ceca.2011.11.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 10/30/2011] [Accepted: 11/07/2011] [Indexed: 11/23/2022]
Abstract
Endocrine pituitary cells express numerous voltage-gated Na(+), Ca(2+), K(+), and Cl(-) channels and several ligand-gated channels, and they fire action potentials spontaneously. Depending on the cell type, this electrical activity can generate localized or global Ca(2+) signals, the latter reaching the threshold for stimulus-secretion coupling. These cells also express numerous G-protein-coupled receptors, which can stimulate or silence electrical activity and Ca(2+) influx through voltage-gated Ca(2+) channels and hormone release. Receptors positively coupled to the adenylyl cyclase signaling pathway stimulate electrical activity with cAMP, which activates hyperpolarization-activated cyclic nucleotide-regulated channels directly, or by cAMP-dependent kinase-mediated phosphorylation of K(+), Na(+), Ca(2+), and/or non-selective cation-conducting channels. Receptors that are negatively coupled to adenylyl cyclase signaling pathways inhibit spontaneous electrical activity and accompanied Ca(2+) transients predominantly through the activation of inwardly rectifying K(+) channels and the inhibition of voltage-gated Ca(2+) channels. The Ca(2+)-mobilizing receptors activate inositol trisphosphate-gated Ca(2+) channels in the endoplasmic reticulum, leading to Ca(2+) release in an oscillatory or non-oscillatory manner, depending on the cell type. This Ca(2+) release causes a cell type-specific modulation of electrical activity and intracellular Ca(2+) handling.
Collapse
|
3
|
Jenks BG, Galas L, Kuribara M, Desrues L, Kidane AH, Vaudry H, Scheenen WJJM, Roubos EW, Tonon MC. Analysis of the melanotrope cell neuroendocrine interface in two amphibian species, Rana ridibunda and Xenopus laevis: a celebration of 35 years of collaborative research. Gen Comp Endocrinol 2011; 170:57-67. [PMID: 20888821 DOI: 10.1016/j.ygcen.2010.09.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 09/17/2010] [Accepted: 09/27/2010] [Indexed: 01/19/2023]
Abstract
This review gives an overview of the functioning of the hypothalamo-hypophyseal neuroendocrine interface in the pituitary neurointermediate lobe, as it relates to melanotrope cell function in two amphibian species, Rana ridibunda and Xenopus laevis. It primarily but not exclusively concerns the work of two collaborating laboratories, the Laboratory for Molecular and Cellular Neuroendocrinology (University of Rouen, France) and the Department of Cellular Animal Physiology (Radboud University Nijmegen, The Netherlands). In the course of this review it will become apparent that Rana and Xenopus have, for the most part, developed the same or similar strategies to regulate the release of α-melanophore-stimulating hormone (α-MSH). The review concludes by highlighting the molecular and cellular mechanisms utilized by thyrotropin-releasing hormone (TRH) to activate Rana melanotrope cells and the function of autocrine brain-derived neurotrophic factor (BDNF) in the regulation of Xenopus melanotrope cell function.
Collapse
Affiliation(s)
- Bruce G Jenks
- Department of Cellular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
Endocrine pituitary cells are neuronlike; they express numerous voltage-gated sodium, calcium, potassium, and chloride channels and fire action potentials spontaneously, accompanied by a rise in intracellular calcium. In some cells, spontaneous electrical activity is sufficient to drive the intracellular calcium concentration above the threshold for stimulus-secretion and stimulus-transcription coupling. In others, the function of these action potentials is to maintain the cells in a responsive state with cytosolic calcium near, but below, the threshold level. Some pituitary cells also express gap junction channels, which could be used for intercellular Ca(2+) signaling in these cells. Endocrine cells also express extracellular ligand-gated ion channels, and their activation by hypothalamic and intrapituitary hormones leads to amplification of the pacemaking activity and facilitation of calcium influx and hormone release. These cells also express numerous G protein-coupled receptors, which can stimulate or silence electrical activity and action potential-dependent calcium influx and hormone release. Other members of this receptor family can activate calcium channels in the endoplasmic reticulum, leading to a cell type-specific modulation of electrical activity. This review summarizes recent findings in this field and our current understanding of the complex relationship between voltage-gated ion channels, ligand-gated ion channels, gap junction channels, and G protein-coupled receptors in pituitary cells.
Collapse
Affiliation(s)
- Stanko S Stojilkovic
- Program in Developmental Neuroscience, National Institute of Child Health and Human Development, National Institutes of Health, Building 49, Room 6A-36, 49 Convent Drive, Bethesda, Maryland 20892-4510, USA.
| | | | | |
Collapse
|
5
|
Kuribara M, Eijsink VD, Roubos EW, Jenks BG, Scheenen WJJM. BDNF stimulates Ca2+ oscillation frequency in melanotrope cells of Xenopus laevis: contribution of IP3-receptor-mediated release of intracellular Ca2+ to gene expression. Gen Comp Endocrinol 2010; 169:123-9. [PMID: 20736010 DOI: 10.1016/j.ygcen.2010.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 08/06/2010] [Accepted: 08/16/2010] [Indexed: 10/19/2022]
Abstract
Pituitary melanotrope cells of the amphibian Xenopus laevis are neuroendocrine cells regulating the animal's skin color adaptation through secretion of α-melanophore-stimulating hormone (α-MSH). To fulfill this function optimally, the melanotrope cell undergoes plastic changes in structure and secretory activity in response to changed background light conditions. Xenopus melanotrope cells display Ca(2+) oscillations that are thought to drive α-MSH secretion and gene expression. They also produce brain-derived neurotrophic factor (BDNF), which stimulates in an autocrine way the biosynthesis of the α-MSH precursor, pro-opiomelanocortin (POMC). We have used this physiological adaptation mechanism as a model to investigate the role of BDNF in the regulation of Ca(2+) kinetics and Ca(2+)-dependent gene expression. By dynamic video imaging of isolated cultured melanotropes we demonstrated that BDNF caused a dose-dependent increase in Ca(2+) oscillation frequency up to 64.7±2.3% of control level. BDNF also induced a transient Ca(2+) peak in Ca(2+)-free medium, which was absent when calcium stores were blocked by thapsigargin and 2-aminoethoxydiphenyl borate, indicating that BDNF stimulates acute release of Ca(2+) from IP(3)-sensitive intracellular Ca(2+) stores. Moreover, we show that thapsigargin inhibits the expression of BDNF transcript IV (by 61.1±28.8%) but does not affect POMC transcript. We conclude that BDNF mobilizes Ca(2+) from IP(3)-sensitive intracellular Ca(2+) stores and propose the possibility that the resulting Ca(2+) oscillations selectively stimulate expression of the BDNF gene.
Collapse
Affiliation(s)
- Miyuki Kuribara
- Department of Cellular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
6
|
Roubos EW, Jenks BG, Xu L, Kuribara M, Scheenen WJJM, Kozicz T. About a snail, a toad, and rodents: animal models for adaptation research. Front Endocrinol (Lausanne) 2010; 1:4. [PMID: 22649351 PMCID: PMC3355873 DOI: 10.3389/fendo.2010.00004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 09/29/2010] [Indexed: 12/28/2022] Open
Abstract
Neural adaptation mechanisms have many similarities throughout the animal kingdom, enabling to study fundamentals of human adaptation in selected animal models with experimental approaches that are impossible to apply in man. This will be illustrated by reviewing research on three of such animal models, viz. (1) the egg-laying behavior of a snail, Lymnaea stagnalis: how one neuron type controls behavior, (2) adaptation to the ambient light condition by a toad, Xenopus laevis: how a neuroendocrine cell integrates complex external and neural inputs, and (3) stress, feeding, and depression in rodents: how a neuronal network co-ordinates different but related complex behaviors. Special attention is being paid to the actions of neurochemical messengers, such as neuropeptide Y, urocortin 1, and brain-derived neurotrophic factor. While awaiting new technological developments to study the living human brain at the cellular and molecular levels, continuing progress in the insight in the functioning of human adaptation mechanisms may be expected from neuroendocrine research using invertebrate and vertebrate animal models.
Collapse
Affiliation(s)
- Eric W. Roubos
- Department of Cellular Animal Physiology, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University NijmegenNijmegen, Netherlands
| | - Bruce G. Jenks
- Department of Cellular Animal Physiology, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University NijmegenNijmegen, Netherlands
| | - Lu Xu
- Department of Cellular Animal Physiology, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University NijmegenNijmegen, Netherlands
| | - Miyuki Kuribara
- Department of Cellular Animal Physiology, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University NijmegenNijmegen, Netherlands
| | - Wim J. J. M. Scheenen
- Department of Cellular Animal Physiology, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University NijmegenNijmegen, Netherlands
| | - Tamás Kozicz
- Department of Cellular Animal Physiology, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University NijmegenNijmegen, Netherlands
| |
Collapse
|
7
|
Wu SN, Wu YH, Chen BS, Lo YC, Liu YC. Underlying mechanism of actions of tefluthrin, a pyrethroid insecticide, on voltage-gated ion currents and on action currents in pituitary tumor (GH3) cells and GnRH-secreting (GT1-7) neurons. Toxicology 2009; 258:70-7. [PMID: 19378468 DOI: 10.1016/j.tox.2009.01.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tefluthrin is a synthetic pyrethroid and involved in acute neurotoxic effects. How this compound affects ion currents in endocrine or neuroendocrine cells remains unclear. Its effects on membrane ion currents in pituitary tumor (GH3) cells and in hypothalamic (GT1-7) neurons were investigated. Application of Tef (10 microM) increased the amplitude of voltage-gated Na+ current (INa), along with a slowing in current inactivation and deactivation in GH3 cells. The current-voltage relationship of INa was shifted to more negative potentials in the presence of this compound. Tef increased INa with an EC50 value of 3.2 +/- 0.8 microM. It also increased the amplitude of persistent INa. Tef reduced the amplitude of L-type Ca2+ current. This agent slightly inhibited K+ outward current; however, it had no effect on the activity of large-conductance Ca2+-activated K+ channels. Under cell-attached voltage-clamp recordings, Tef (10 microM) increased amplitude and frequency of spontaneous action currents, along with appearance of oscillatory inward currents. Tef-induced inward currents were suppressed after further application of tetrodotoxin, riluzole or ranolazine. In GT1-7 cells, Tef also increased the amplitude and frequency of action currents. Taken together, the effects of Tef and its structural related pyrethroids on ion currents can contribute to the underlying mechanisms through which they affect endocrine or neuroendocrine function in vivo.
Collapse
Affiliation(s)
- Sheng-Nan Wu
- Department of Physiology, National Cheng Kung University Medical College, Tainan, Taiwan.
| | | | | | | | | |
Collapse
|
8
|
Jenks BG, Kidane AH, Scheenen WJJM, Roubos EW. Plasticity in the melanotrope neuroendocrine interface of Xenopus laevis. Neuroendocrinology 2007; 85:177-85. [PMID: 17389778 DOI: 10.1159/000101434] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Accepted: 02/22/2007] [Indexed: 11/19/2022]
Abstract
Melanotrope cells of the amphibian pituitary pars intermedia produce alpha-melanophore-stimulating hormone (alpha-MSH), a peptide which causes skin darkening during adaptation to a dark background. The secretory activity of the melanotrope of the South African clawed toad Xenopus laevis is regulated by multiple factors, both classical neurotransmitters and neuropeptides from the brain. This review concerns the plasticity displayed in this intermediate lobe neuroendocrine interface during physiological adaptation to the environment. The plasticity includes dramatic morphological plasticity in both pre- and post-synaptic elements of the interface. Inhibitory neurons in the suprachiasmatic nucleus, designated suprachiasmatic melanotrope-inhibiting neurons (SMINs), possess more and larger synapses on the melanotrope cells in white than in black-background adapted animals; in the latter animals the melanotropes are larger and produce more proopiomelanocortin (POMC), the precursor of alpha-MSH. On a white background, pre-synaptic SMIN plasticity is reflected by a higher expression of inhibitory neuropeptide Y (NPY) and is closely associated with postsynaptic melanotrope plasticity, namely a higher expression of the NPY Y1 receptor. Interestingly, melanotrope cells in such animals also display higher expression of the receptors for thyrotropin-releasing hormone (TRH) and urocortin 1, two neuropeptides that stimulate alpha-MSH secretion. Possibly, in white-adapted animals melanotropes are sensitized to neuropeptide stimulation so that, when the toad moves to a black background, they can immediately initiate alpha-MSH secretion to achieve rapid adaptation to the new background condition. The melanotrope cell also produces brain-derived neurotrophic factor (BDNF), which is co-sequestered with alpha-MSH in secretory granules within the cells. The neurotrophin seems to control melanotrope cell plasticity in an autocrine way and we speculate that it may also control presynaptic SMIN plasticity.
Collapse
Affiliation(s)
- Bruce G Jenks
- Department of Cellular Animal Physiology, Radboud University Nijmegen, Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
9
|
Zhang H, Roubos EW, Jenks BG, Scheenen WJJM. Receptors for neuropeptide Y, gamma-aminobutyric acid and dopamine differentially regulate Ca2+ currents in Xenopus melanotrope cells via the G(i) protein beta/gamma-subunit. Gen Comp Endocrinol 2006; 145:140-7. [PMID: 16214143 DOI: 10.1016/j.ygcen.2005.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Revised: 07/25/2005] [Accepted: 08/19/2005] [Indexed: 10/25/2022]
Abstract
Secretion of alpha-melanophore-stimulating hormone (alphaMSH) from pituitary melanotrope cells of the amphibian Xenopus laevis is under inhibitory synaptic control by three neurotransmitters produced by the suprachiasmatic nucleus: gamma-aminobutyric acid (GABA), neuropeptide Y (NPY) and dopamine (DA). These inhibitory effects occur through G(i)-protein-coupled receptors (G(i)PCR), and differ in strength: GABA(B)-receptor-induced inhibition is the weakest, whereas DA (via a D2-receptor) and NPY (via a Y1-receptor) strongly inhibit, with NPY having a long-lasting effect. Previously it was shown that DA inhibits two (R- and N-type channel) of the four voltage-operated Ca2+ channels in the melanotrope, and that only part of this inhibition is mediated by beta/gamma-subunits of the G(i) protein. We here demonstrate that also the Y1- and GABA(B)-receptor inhibit only part of the total Ca2+ current (I(Ca)), with fast activation and inactivation kinetics. However, GABA(B)-mediated inhibition is weaker than the inhibitions induced via Y1- and D2-receptors (-21 versus -27% and -30%, respectively). Using a depolarizing pre-pulse protocol it was demonstrated that GABA(B)-induced inhibition of I(Ca) most likely depends on Gbeta/gamma-subunit activation whereas Y1- and D2- induced inhibitions are only partially mediated by Gbeta/gamma-subunits. No differences were found between the Y1- and D2-induced inhibitions. These results imply that activation of different G(i)PCR inhibits the I(Ca) through different mechanisms, a phenomenon that may underlie the different potencies of the suprachiasmatic neurotransmitters to inhibit alphaMSH secretion.
Collapse
Affiliation(s)
- Hongyan Zhang
- Department of Cellular Animal Physiology, Institute for Neuroscience, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
10
|
Roubos EW, Scheenen WJJM, Jenks BG. Neuronal, Neurohormonal, and Autocrine Control ofXenopusMelanotrope Cell Activity. Ann N Y Acad Sci 2006; 1040:172-83. [PMID: 15891022 DOI: 10.1196/annals.1327.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Amphibian pituitary melanotropes are used to investigate principles of neuroendocrine translation of neural input into hormonal output. Here, the steps in this translation process are outlined for the melanotrope cell of Xenopus laevis, with attention to external stimuli, neurochemical messengers, receptor dynamics, second-messenger pathways, and control of the melanotrope secretory process. Emphasis is on the pathways that neurochemical messengers follow to reach the melanotrope. The inhibitory messengers, dopamine, gamma-aminobutyric acid, and neuropeptide Y, act on the cells by synaptic input from the suprachiasmatic nucleus, whereas the locus coeruleus and raphe nucleus synaptically stimulate the cells via noradrenaline and serotonin, respectively. Autoexcitatory actions are exerted by acetylcholine, brain-derived neurotrophic factor (BDNF), and the calcium-sensing receptor. At least six messengers released from the pituitary neural lobe stimulate melanotropes in a neurohormonal way: corticotropin-releasing hormone, thyrotropin-releasing hormone, BDNF, urocortin, mesotocin, and vasotocin. They all are produced by the magnocellular nucleus and coexist in various combinations in two types of neurohemal axon terminal. Most of the relevant receptors of the melanotropes have been elucidated. Apparently, the neural lobe has a dominant role in activating melanotrope secretory activity. The intracellular mechanisms translating the various inputs into cellular activities like biosynthesis and secretion constitute the adenylyl cyclase-cAMP pathway and Ca(2+) in the form of periodic changes of the intracellular Ca(2+) concentration, known as Ca(2+) oscillations. It is proposed that the pattern of these oscillations encodes specific regulatory information and that it is set by first messengers that control, for example, via G proteins and cAMP-related events, specific ion channel-mediated events in the membrane of the melanotrope cell.
Collapse
Affiliation(s)
- Eric W Roubos
- Department of Cellular Animal Physiology, Radboud University Nijmegen, the Netherlands.
| | | | | |
Collapse
|
11
|
Koopman WJH, Willems PHGM, Oosterhof A, van Kuppevelt TH, Gielen SCAM. Amplitude modulation of nuclear Ca2+ signals in human skeletal myotubes: A possible role for nuclear Ca2+ buffering. Cell Calcium 2005; 38:141-52. [PMID: 16054687 DOI: 10.1016/j.ceca.2005.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Revised: 05/17/2005] [Accepted: 06/02/2005] [Indexed: 11/20/2022]
Abstract
Video-rate confocal microscopy of Indo-1-loaded human skeletal myotubes was used to assess the relationship between the changes in sarcoplasmic ([Ca(2+)](S)) and nuclear ([Ca(2+)](N)) Ca(2+) concentration during low- and high-frequency electrostimulation. A single stimulus of 10 ms duration transiently increased [Ca(2+)] in both compartments with the same time of onset. Rate and amplitude of the [Ca(2+)] rise were significantly lower in the nucleus (4.0- and 2.5-fold, respectively). Similarly, [Ca(2+)](N) decayed more slowly than [Ca(2+)](S) (mono-exponential time constants of 6.1 and 2.5 s, respectively). After return of [Ca(2+)] to the prestimulatory level, a train of 10 stimuli was applied at a frequency of 1 Hz. The amplitude of the first [Ca(2+)](S) transient was 25% lower than that of the preceding single transient. Thereafter, [Ca(2+)](S) increased stepwise to a maximum that equalled that of the single transient. Similarly, the amplitude of the first [Ca(2+)](N) transient was 20% lower than that of the preceding single transient. In contrast to [Ca(2+)](S), [Ca(2+)](N) then increased to a maximum that was 2.3-fold higher than that of the single transient and equalled that of [Ca(2+)](S). In the nucleus, and to a lesser extent in the sarcoplasm, [Ca(2+)] decreased faster at the end of the stimulus train than after the preceding single stimulus (time constants of 3.3 and 2.1 s, respectively). To gain insight into the molecular principles underlying the shaping of the nuclear Ca(2+) signal, a 3-D mathematical model was constructed. Intriguingly, quantitative modelling required the inclusion of a satiable nuclear Ca(2+) buffer. Alterations in the concentration of this putative buffer had dramatic effects on the kinetics of the nuclear Ca(2+) signal. This finding unveils a possible mechanism by which the skeletal muscle can adapt to changes in physiological demand.
Collapse
Affiliation(s)
- Werner J H Koopman
- Department of 160 Biochemistry NCMLS, Radboud University Nijmegen Medical Center, The Netherlands
| | | | | | | | | |
Collapse
|
12
|
van den Hurk MJJ, Jenks BG, Roubos EW, Scheenen WJJM. The extracellular calcium-sensing receptor increases the number of calcium steps and action currents in pituitary melanotrope cells. Neurosci Lett 2005; 377:125-9. [PMID: 15740850 DOI: 10.1016/j.neulet.2004.11.084] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Revised: 11/19/2004] [Accepted: 11/26/2004] [Indexed: 10/26/2022]
Abstract
Secretion of alpha-melanophore-stimulating hormone (alpha-MSH) from the neuroendocrine melanotrope cells in the intermediate lobe of the pituitary gland of the clawed frog Xenopus laevis is regulated by various inhibitory, stimulatory and autocrine factors. The neuropeptide sauvagine stimulates alpha-MSH secretion by changing the pattern of intracellular Ca2+ oscillations and the electrical properties of the cell membrane. In the present study we investigated whether another secreto-stimulator, the extracellular Ca2+-sensing receptor (CaR), also affects the Ca2+ oscillatory pattern and electrical membrane properties. Using high-speed dynamic video-imaging we show that activation of the CaR with the specific agonist l-phenylalanine (l-Phe) changes the Ca2+ oscillatory pattern by increasing the number of Ca2+ steps, which are the "building blocks" of the oscillations. Moreover, using patch-clamp electrophysiology it is demonstrated that l-Phe affects membrane properties by increasing frequency and duration of action currents. Compared to sauvagine, the CaR has different effects on the action current parameters, suggesting that multiple mechanisms regulate the electrical properties of the melanotrope cell membrane and, thereby, the Ca2+ oscillation-dependent level of alpha-MSH secretion.
Collapse
Affiliation(s)
- Maarten J J van den Hurk
- Department of Cellular Animal Physiology, Institute for Neuroscience, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
13
|
Zhang HY, Langeslag M, Voncken M, Roubos EW, Scheenen WJJM. Melanotrope cells of Xenopus laevis express multiple types of high-voltage-activated Ca2+ channels. J Neuroendocrinol 2005; 17:1-9. [PMID: 15720469 DOI: 10.1111/j.1365-2826.2005.01267.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pituitary melanotrope cells are neuroendocrine signal transducing cells that translate physiological stimuli into adaptive hormonal responses. In this translation process, Ca2+ channels play essential roles. We have characterised which types of Ca2+ current are present in melanotropes of the amphibian Xenopus laevis, using whole-cell, voltage-clamp, patch-clamp experiments and specific blockers of the various current types. Running an activation current-voltage relationship protocol from a holding potential (HP) of -80 mV/or -110 mV, shows that Xenopus melanotropes possess only high-voltage activated (HVA) Ca2+ currents. Steady-state inactivation protocols reveal that no inactivation occurs at -80 mV, whereas 30% of the current is inactivated at -30 mV. We determined the contribution of individual channel types to the total HVA Ca2+ current, examining the effect of each channel blocker at an HP of -80 mV and -30 mV. At -80 mV, omega-conotoxin GVIA, omega-agatoxin IVA, nifedipine and SNX-482 inhibit Ca2+ currents by 21.8 +/- 4.1%, 26.1 +/- 3.1%, 24.2 +/- 2.4% and 17.9 +/- 4.7%, respectively. At -30 mV, omega-conotoxin GVIA, nifedipine and omega-agatoxin IVA inhibit Ca2+ currents by 33.8 +/- 3.0, 24.2 +/- 2.6 and 16.0 +/- 2.8%, respectively, demonstrating that these blockers substantially inhibit part of the Ca2+ current, independently from the HP. We have previously demonstrated that omega-conotoxin GVIA can block Ca2+ oscillations and steps. We now show that nifedipine and omega-agatoxin IVA do not affect the intracellular Ca2+ dynamics, whereas SNX-482 reduces the Ca2+ step amplitude. We conclude that Xenopus melanotrope cells express all four major types of HVA Ca2+ channel, as well as the resulting currents, but no low-voltage activated channels. The results provide the basis for future studies on the complex regulation of channel-mediated Ca2+ influxes into this neuroendocrine cell type as a function of its role in the animal's adaptation to external challenges.
Collapse
Affiliation(s)
- H-Y Zhang
- Department of Cellular Animal Physiology, Radboud University, Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|
14
|
Kirkman-Brown JC, Barratt CLR, Publicover SJ. Slow calcium oscillations in human spermatozoa. Biochem J 2004; 378:827-32. [PMID: 14606954 PMCID: PMC1223996 DOI: 10.1042/bj20031368] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2003] [Revised: 10/16/2003] [Accepted: 11/07/2003] [Indexed: 11/17/2022]
Abstract
We have used single-cell imaging to investigate intracellular Ca2+ signalling in human spermatozoa stimulated with progesterone (3 microM). In approx. 9% of cells progesterone caused the activation of slow repetitive [Ca2+]i (intracellular Ca2+ concentration) oscillations, with a period of 1-4 min, which persisted for the duration of recording (20-30 min). Pretreatment with nifedipine, which blocks T- and L-type voltage-operated Ca2+ channels in spermatogenic cells, did not modify the characteristics of the oscillations, but reduced the proportion of cells in which they were observed. Stimulation with Bay K 8644 or FPL64176 induced [Ca2+]i oscillations in 5-10% of cells, but their frequency was low (period, 4-5 min). Application of valinomycin (1 microM) to clamp membrane potential at E(K) (equilibrium potential for potassium) did not modify activity in oscillating cells, showing that plasma membrane potential and activation of voltage-operated conductances are not involved in the mechanism by which sperm [Ca2+]i oscillations are generated.
Collapse
|
15
|
Zhang H, Jenks BG, Ciccarelli A, Roubos EW, Scheenen WJJM. Dopamine D2-receptor activation differentially inhibits N- and R-type Ca2+ channels in Xenopus melanotrope cells. Neuroendocrinology 2004; 80:368-78. [PMID: 15731569 DOI: 10.1159/000084144] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2004] [Accepted: 11/23/2004] [Indexed: 11/19/2022]
Abstract
Dopamine inhibits pituitary melanotrope cells of the amphibian Xenopus laevis through activation of a dopamine (D2) receptor that couples to a Gi protein. Activated Gi protein subunits are known to affect voltage-operated Ca2+ currents (ICa). In the present study we investigated which Ca2+ currents are regulated by D2-receptor activation and which Gi protein subunits are involved. Whole-cell voltage-clamp patch-clamp experiments from holding potentials (HPs) of -80 and -30 mV show that 28.6 and 36.9%, respectively, of the total ICa was inhibited by apomorphin, a D2-receptor agonist. The inhibited current had fast activation and inactivation kinetics. From an HP of -80 mV, inhibition of N-type Ca2+ currents with omega-conotoxin GVIA and R-type current by SNX-482 reduced the efficacy of the apomorphin-induced inhibition. From an HP of -30 mV this reduction for omega-conotoxin GVIA was still observed. Blocking L-type current by nifedipine or P/Q-type current by omega-agatoxin IVA did not affect apomorphin-induced inhibition at either HP. Our results imply that D2-receptor activation inhibits both N- and R-type Ca2+ currents. Using a strong depolarizing pre-pulse partially reversed the inhibition of the total current by apomorphin. About 50% of this inhibition was achieved through interaction of Gbeta/gamma proteins, and this part of the inhibited ICa had fast activating and inactivating kinetics. However, the other part of the current inhibited by D2-receptor activation may proceed through Galpha-PKA phosphorylation.
Collapse
Affiliation(s)
- Hongyan Zhang
- Department of Cellular Animal Physiology, Nijmegen Institute for Neurosciences, Radboud University Nijmegen, Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|
16
|
Koopman WJH, Renders M, Oosterhof A, van Kuppevelt TH, van Engelen BGM, Willems PHGM. Upregulation of Ca2+ removal in human skeletal muscle: a possible role for Ca2+-dependent priming of mitochondrial ATP synthesis. Am J Physiol Cell Physiol 2003; 285:C1263-9. [PMID: 12839829 DOI: 10.1152/ajpcell.00097.2003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In muscle, ATP is required for the powerstroke of the myosin head, the detachment of actin and myosin filaments, and the reuptake of Ca2+ into the sarcoplasmic reticulum. During contraction-relaxation, large amounts of ATP are consumed at the sites of action of the myosin-ATPase and sarcoplasmic reticulum Ca2+-ATPase. The present study addresses the consequences of a reduction in mitochondrial ATP production capacity on sarcoplasmic Ca2+ handling. To this end, myotubes were cultured from patient quadriceps with a biochemically defined decrease in the maximal rate of mitochondrial ATP production and were loaded with indo 1 for imaging of sarcoplasmic Ca2+ changes in real time by confocal microscopy. Myotubes were field-stimulated with 10-ms pulses of 16 V to evoke transient rises in sarcoplasmic Ca2+ concentration ([Ca2+]S). Three single pulses, two pulse trains (1 Hz), and one single pulse were applied in succession to mimic changing workloads. Control myotubes displayed [Ca2+]S transients with an amplitude that was independent of the strength of the stimulus. Intriguingly, the rate of sarcoplasmic Ca2+ removal (CRR) was significantly upregulated during the second and subsequent transients. In myotubes with a reduced mitochondrial ATP production capacity, the amplitude of the [Ca2+]S transients was markedly increased at higher stimulus intensities. Moreover, upregulation of the CRR was significantly decreased compared with control. Taken together, these results are in good agreement with a tight coupling between mitochondrial ATP production and sarcoplasmic Ca2+ handling. Moreover, they support the existence of a relatively long-lasting mitochondrial memory for sarcoplasmic [Ca2+] rises. This memory, which manifested itself as an increase in CRR upon recurrent stimulation, was impaired in patient myotubes with a reduced mitochondrial ATP production capacity.
Collapse
Affiliation(s)
- Werner J H Koopman
- 160 Biochemistry NCMLS, University Medical Center Nijmegen, PO Box 9101, NL-6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
17
|
Bonnefont X, Mollard P. Electrical activity in endocrine pituitary cells in situ: a support for a multiple-function coding. FEBS Lett 2003; 548:49-52. [PMID: 12885406 DOI: 10.1016/s0014-5793(03)00727-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The anterior pituitary is an endocrine gland that controls basic body functions. Pituitary cell functioning depends on membrane excitability, which induces cytosolic calcium rises. Here, we reported the first identification of small-amplitude voltage fluctuations that controlled spike firing in endocrine cells recorded in situ. Three patterns of voltage fluctuations were distinguishable by their durations (1-100 s). These patterns could be ordered on top of each other, namely in response to secretagogues. Thus, pituitary endocrine cells express in situ a cell code in which small-amplitude voltage fluctuations lead to a multimodal arrangement of spike firing, which may finely tune calcium-dependent functions.
Collapse
Affiliation(s)
- Xavier Bonnefont
- INSERM U469, Centre CNRS-INSERM de Pharmacologie Endocrinologie, 34094 Montpellier Cedex 5, France
| | | |
Collapse
|
18
|
Jenniskens GJ, Ringvall M, Koopman WJH, Ledin J, Kjellén L, Willems PHGM, Forsberg E, Veerkamp JH, van Kuppevelt TH. Disturbed Ca2+ kinetics in N-deacetylase/N-sulfotransferase-1 defective myotubes. J Cell Sci 2003; 116:2187-93. [PMID: 12692154 DOI: 10.1242/jcs.00447] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The biosynthesis of heparan sulfate, present on the cell surface and in the basal lamina surrounding cells, is a multistep process in which each step is mediated by a specific enzyme. The initial modification of the precursor polysaccharide, N-deacetylation followed by N-sulfation of selected N-acetyl-D-glucosamine residues, is catalyzed by the enzyme glucosaminyl N-deacetylase/N-sulfotransferase (NDST). This event is a key step that regulates the overall sulfate content of the polysaccharide. Here, we report on the effects of NDST deficiency on Ca2+ kinetics in myotubes from NDST-1- and NDST-2-deficient mice, indicating a novel role for heparan sulfate in skeletal muscle physiology. Immunostaining for specific heparan sulfate epitopes showed major changes in the heparan sulfate composition in skeletal muscle tissue derived from NDST-1-/- mice and NDST-/- cultured myotubes. Biochemical analysis indicates a relative decrease in both N-sulfation and 2-O-sulfation of skeletal muscle heparan sulfate. The core protein of heparan sulfate proteoglycan perlecan was not affected, as judged by immunohistochemistry. Also, acetylcholine receptor clustering and the occurrence of other ion channels involved in excitation-contraction coupling were not altered. In NDST-2-/- mice and heterozygous mice no changes in heparan sulfate composition were observed. Using high-speed UV confocal laser scanning microscopy, aberrant Ca2+ kinetics were observed in NDST-1-/- myotubes, but not in NDST-2-/- or heterozygous myotubes. Electrically induced Ca2+ spikes had significantly lower amplitudes, and a reduced removal rate of cytosolic Ca2+, indicating the importance of heparan sulfate in muscle Ca2+ kinetics.
Collapse
Affiliation(s)
- Guido J Jenniskens
- Department of Biochemistry 194, University Medical Center, NCMLS, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Jenks BG, Roubos EW, Scheenen WJJM. Ca2+ oscillations in melanotropes of Xenopus laevis: their generation, propagation, and function. Gen Comp Endocrinol 2003; 131:209-19. [PMID: 12714002 DOI: 10.1016/s0016-6480(03)00120-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The melanotrope cell of the amphibian Xenopus laevis is a neuroendocrine transducer that converts neuronal input concerning the color of background into an endocrine output, the release of alpha-melanophore-stimulating hormone (alpha-MSH). The cell displays intracellular Ca(2+) oscillations that are thought to be the driving force for secretion as well as for the expression of genes important to the process of background adaptation. Here we review the functioning of the Xenopus melanotrope cell, with emphasis on the role of Ca(2+) oscillations in signal transduction in this cell. We start by giving a general overview of the evolution of Ca(2+) as an intracellular messenger molecule. This is followed by an examination of the melanotrope as a neuroendocrine integrator cell. Then, the evidence that Ca(2+) oscillations drive the secretion of alpha-MSH is reviewed, followed by a similar analysis of the evidence that the same oscillations regulate the expression of proopiomelanocortin (POMC), the precursor protein for alpha-MSH. Finally, the possible importance of the pattern of Ca(2+) signaling to melanotrope cell function is considered.
Collapse
Affiliation(s)
- Bruce G Jenks
- Department of Cellular Animal Physiology, Nijmegen Institute for Neurosciences and Institute of Cellular Signaling, University of Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands.
| | | | | |
Collapse
|
20
|
Scheenen WJJM, Dernison MM, Lieste JR, Jenks BG, Roubos EW. Electrical membrane activity and intracellular calcium buffering control exocytosis efficiency in Xenopus melanotrope cells. Neuroendocrinology 2003; 77:153-61. [PMID: 12673049 DOI: 10.1159/000069506] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2002] [Accepted: 11/19/2002] [Indexed: 11/19/2022]
Abstract
In neural and neuroendocrine cells, Ca(2+) influx is essential for exocytosis. Ca(2+) influx takes place through electrical membrane activity, which often occurs in bursts of action potentials that lead to intracellular Ca(2+) oscillations. Cytoplasmic Ca(2+) buffers and intracellular Ca(2+) stores are involved in the propagation of the oscillations through the cell. Studies focused on action potential bursts with a high frequency up to 20 Hz indicate that, depending on the cell type under investigation, bursts either enhance or reduce exocytosis efficiency. In many cell types, the bursting frequency can be as low as 1 Hz, although no information is present on whether this influences exocytosis efficiency. The present study addresses the role of low-frequency bursts around 1 Hz and cytoplasmic Ca(2+) buffering in the regulation of exocytosis efficiency, using neuroendocrine melanotrope cells of the amphibian Xenopus laevis. Exocytosis efficiency was determined by membrane capacitance measurements. Mimicking the bursting activity of 1 Hz (typical for this cell type) by repetitive depolarizing pulses enhanced exocytosis efficiency by 58% compared to application of only one single depolarizing pulse. This increase appears to be particularly due to a small number of distinct depolarizing pulses within a burst. Including the fast Ca(2+) buffer BAPTA in the intracellular solution reduced exocytosis efficiency by 60% in the first part of a burst, whereas during the later part of the burst, stimulation (+50%) took place. We conclude that low-frequency bursting in the Xenopus melanotrope cell strongly promotes exocytosis efficiency and that this efficiency also depends on the capacity of the cytoplasm to buffer the intracellular Ca(2+) signal; strong Ca(2+) buffering during a short burst will decrease exocytosis efficiency, whereas with prolonged bursts, buffering capacity will be overcome, leading to Ca(2+) accumulation and thus enhanced exocytosis efficiency.
Collapse
Affiliation(s)
- Wim J J M Scheenen
- Department of Cellular Animal Physiology, Institute of Cellular Signalling and Nijmegen Institute for Neurosciences, University of Nijmegen, Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|
21
|
Cornelisse LN, Deumens R, Coenen JJA, Roubos EW, Gielen CCAM, Ypey DL, Jenks BG, Scheenen WJJM. Sauvagine regulates Ca2+ oscillations and electrical membrane activity of melanotrope cells of Xenopus laevis. J Neuroendocrinol 2002; 14:778-87. [PMID: 12372002 DOI: 10.1046/j.1365-2826.2002.00838.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ca2+ oscillations regulate secretion of the hormone alpha-melanphore-stimulating hormone (alpha-MSH) by the neuroendocrine pituitary melanotrope cells of the amphibian Xenopus laevis. These Ca2+ oscillations are built up by discrete increments in the intracellular Ca2+ concentration, the Ca2+ steps, which are generated by electrical membrane bursting firing activity. It has been demonstrated that the patterns of Ca2+ oscillations and kinetics of the Ca2+ steps can be modulated by changing the degree of intracellular Ca2+ buffering. We hypothesized that neurotransmitters known to regulate alpha-MSH secretion also modulate the pattern of Ca2+ oscillations and related electrical membrane activity. In this study, we tested this hypothesis for the secretagogue sauvagine. Using high temporal-resolution Ca2+ imaging, we show that sauvagine modulated the pattern of Ca2+ signalling by increasing the frequency of Ca2+ oscillations and inducing a broadening of the oscillations through its effect on various Ca2+ step parameters. Second, we demonstrate that sauvagine caused a small but significant decrease in K+ currents measured in the whole-cell voltage-clamp, whereas Ca2+ currents remained unchanged. Third, in the cell-attached patch-clamp mode, a stimulatory effect of sauvagine on action current firing was observed. Moreover, sauvagine changed the shape of individual action currents. These results support the hypothesis that the secretagogue sauvagine stimulates the frequency of Ca2+ oscillations in Xenopus melanotropes by altering Ca2+ step parameters, an action that likely is evoked by an inhibition of K+ currents.
Collapse
Affiliation(s)
- L N Cornelisse
- Department of Cellular Animal Physiology and Department of Biophysics, Nijmegen Institute for Neurosciences, University of Nijmegen, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Kolk SM, Kramer BMR, Cornelisse LN, Scheenen WJJM, Jenks BG, Roubos EW. Multiple control and dynamic response of the Xenopus melanotrope cell. Comp Biochem Physiol B Biochem Mol Biol 2002; 132:257-68. [PMID: 11997227 DOI: 10.1016/s1096-4959(01)00533-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Some amphibian brain-melanotrope cell systems are used to study how neuronal and (neuro)endocrine mechanisms convert environmental signals into physiological responses. Pituitary melanotropes release alpha-melanophore-stimulating hormone (alpha-MSH), which controls skin color in response to background light stimuli. Xenopus laevis suprachiasmatic neurons receive optic input and inhibit melanotrope activity by releasing neuropeptide Y (NPY), dopamine (DA) and gamma-aminobutyric acid (GABA) when animals are placed on a light background. Under this condition, they strengthen their synaptic contacts with the melanotropes and enhance their secretory machinery by upregulating exocytosis-related proteins (e.g. SNAP-25). The inhibitory transmitters converge on the adenylyl cyclase system, regulating Ca(2+) channel activity. Other messengers like thyrotropin-releasing hormone (TRH) and corticotropin-releasing hormone (CRH, from the magnocellular nucleus), noradrenalin (from the locus coeruleus), serotonin (from the raphe nucleus) and acetylcholine (from the melanotropes themselves) stimulate melanotrope activity. Ca(2+) enters the cell and the resulting Ca(2+) oscillations trigger alpha-MSH secretion. These intracellular Ca(2+) dynamics can be described by a mathematical model. The oscillations travel as a wave through the cytoplasm and enter the nucleus where they may induce the expression of genes involved in biosynthesis and processing (7B2, PC2) of pro-opiomelanocortin (POMC) and release (SNAP-25, munc18) of its end-products. We propose that various environmental factors (e.g. light and temperature) act via distinct brain centers in order to release various neuronal messengers that act on the melanotrope to control distinct subcellular events (e.g. hormone biosynthesis, processing and release) by specifically shaping the pattern of melanotrope Ca(2+) oscillations.
Collapse
Affiliation(s)
- S M Kolk
- University of Nijmegen, Nijmegen Institute for Neurosciences and Institute of Cellular Signaling, Department of Cellular Animal Physiology, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
23
|
Roubos EW, Scheenen WJJM, Cruijsen PMJM, Cornelisse LN, Leenders HJ, Jenks BG. New aspects of signal transduction in the Xenopus laevis melanotrope cell. Gen Comp Endocrinol 2002; 126:255-60. [PMID: 12093112 DOI: 10.1016/s0016-6480(02)00013-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Light and temperature stimuli act via various brain centers and neurochemical messengers on the pituitary melanotrope cells of Xenopus laevis to control distinct subcellular activities such as the biosynthesis, processing, and release of alpha-melanophore-stimulating hormone (alphaMSH). The melanotrope signal transduction involves the action of a large repertoire of neurotransmitter and neuropeptide receptors and the second messengers cAMP and Ca(2+). Here we briefly review this signaling mechanism and then present new data on two aspects of this process, viz. the presence of a stimulatory beta-adrenergic receptor acting via cAMP and the egress of cAMP from the melanotrope upon a change of alphaMSH release activity.
Collapse
Affiliation(s)
- E W Roubos
- Department of Cellular Animal Physiology, Nijmegen Institute for Neurosciences and Institute of Cellular Signalling, University of Nijmegen, 6525 ED Nijmegen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
24
|
de Groof AJC, Fransen JAM, Errington RJ, Willems PHGM, Wieringa B, Koopman WJH. The creatine kinase system is essential for optimal refill of the sarcoplasmic reticulum Ca2+ store in skeletal muscle. J Biol Chem 2002; 277:5275-84. [PMID: 11734556 DOI: 10.1074/jbc.m108157200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Muscle function depends on an adequate ATP supply to sustain the energy consumption associated with Ca(2+) cycling and actomyosin sliding during contraction. In this regulation of energy homeostasis, the creatine kinase (CK) circuit for high energy phosphoryl transfer between ATP and phosphocreatine plays an important role. We earlier established a functional connection between the activity of the CK system and Ca(2+) homeostasis during depolarization and contractile activity of muscle. Here, we show how CK activity is coupled to the kinetics of spontaneous and electrically induced Ca(2+) transients in the sarcoplasm of myotubes. Using the UV ratiometric Ca(2+) probe Indo-1 and video-rate confocal microscopy in CK-proficient and -deficient cultured cells, we found that spontaneous and electrically induced transients were dependent on ryanodine-sensitive Ca(2+) release channels, sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase pumps, extracellular calcium, and functional mitochondria in both cell types. However, at increasing sarcoplasmic Ca(2+) load (induced by electrical stimulation at 0.1, 1, and 10 Hz), the Ca(2+) removal rate and the amount of Ca(2+) released per transient were gradually reduced in CK-deficient (but not wild-type) myotubes. We conclude that the CK/phosphocreatine circuit is essential for efficient delivery of ATP to the sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase pumps and thereby directly influences sarcoplasmic reticulum refilling and the kinetics of the sarcoplasmic Ca(2+) signals.
Collapse
Affiliation(s)
- Ad J C de Groof
- Department of Cell Biology, Nijmegen Center for Molecular Life Sciences, University Medical Center St. Radboud, University of Nijmegen, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
25
|
Giráldez T, de la Peña P, Gómez-Varela D, Barros F. Correlation between electrical activity and intracellular Ca2+ oscillations in GH3 rat anterior pituitary cells. Cell Calcium 2002; 31:65-78. [PMID: 11969247 DOI: 10.1054/ceca.2001.0260] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Simultaneous measurements of electrical activity and intracellular Ca(2+) levels were performed in perforated-patch current-clamped individual GH3 cells. Both in cells showing brief (<100 ms) and long action potentials (APs), we found a good correlation between the averaged intracellular Ca2+ concentration ([Ca2+]i) and AP frequency, but not between the mean [Ca2+]i and AP duration. Nevertheless, the magnitude of spontaneous Ca2+ oscillations was highly dependent on the size and duration of the APs. The decay of the Ca2+ transients was not slowed when the size of the oscillations was varied either spontaneously or after elongation of the AP with the K+ channel blocker tetraethyl ammonium. Furthermore, the recovery from Ca2+ loads similar to those induced by the APs was slightly retarded after treatment of the cells with intracellular store Ca2+-ATPase inhibitors. Among previous results showing that caffeine-induced [Ca2+]i increases are secondary to electrical activity enhancements in GH3 cells, these data indicate that the Ca2+ entry triggered via APs is the primary determinant of the [Ca2+]i variations, and that Ca2+-induced Ca2+ release has a minor contribution to Ca2+ oscillations recorded during spontaneous activity. They also point to modulation of electrical activity patterns as a crucial factor regulating spontaneous [Ca2+]i signalling, and hence pituitary cell functions in response to physiological secretagogues.
Collapse
Affiliation(s)
- T Giráldez
- Departamento de Bioquímica y Biología Molecular. Edificio Santiago Gascón, Campus del Cristo, Universidad de Oviedo, Oviedo, Spain
| | | | | | | |
Collapse
|
26
|
Kramer BM, Kolk SM, Berghs CA, Tuinhof R, Ubink R, Jenks BG, Roubos EW. Dynamics and plasticity of peptidergic control centres in the retino-brain-pituitary system of Xenopus laevis. Microsc Res Tech 2001; 54:188-99. [PMID: 11458401 DOI: 10.1002/jemt.1132] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review deals particularly with the recent literature on the structural and functional aspects of the retino-brain-pituitary system that controls the physiological process of background adaptation in the aquatic toad Xenopus laevis. Taking together the large amount of multidisciplinary data, a consistent picture emerges of a highly plastic system that efficiently responds to changes in the environmental light condition by releasing POMC-derived peptides, such as the peptide alpha-melanophore-stimulating hormone (alpha-MSH), into the circulation. This plasticity is exhibited by both the central nervous system and the pituitary pars intermedia, at the level of molecules, subcellular structures, synapses, and cells. Signal transduction in the pars intermedia of the pituitary gland of Xenopus laevis appears to be a complex event, involving various environmental factors (e.g., light and temperature) that act via distinct brain centres and neuronal messengers converging on the melanotrope cells. In the melanotropes, these messages are translated by specific receptors and second messenger systems, in particular via Ca(2+) oscillations, controlling main secretory events such as gene transcription, POMC-precursor translation and processing, posttranslational peptide modifications, and release of a bouquet of POMC-derived peptides. In conclusion, the Xenopus hypothalamo-hypophyseal system involved in background adaptation reveals how neuronal plasticity at the molecular, cellular and organismal levels, enable an organism to respond adequately to the continuously changing environmental factors demanding physiological adaptation.
Collapse
Affiliation(s)
- B M Kramer
- Department of Cellular Animal Physiology, Nijmegen Institute for Neurosciences, Institute for Cellular Signalling, University of Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
27
|
Koopman WJ, Scheenen WJ, Errington RJ, Willems PH, Bindels RJ, Roubos EW, Jenks BG. Membrane-initiated Ca(2+) signals are reshaped during propagation to subcellular regions. Biophys J 2001; 81:57-65. [PMID: 11423394 PMCID: PMC1301491 DOI: 10.1016/s0006-3495(01)75679-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
An important aspect of Ca(2+) signaling is the ability of cells to generate intracellular Ca(2+) waves. In this study we have analyzed the cellular and subcellular kinetics of Ca(2+) waves in a neuroendocrine transducer cell, the melanotrope of Xenopus laevis, using the ratiometric Ca(2+) probe indo-1 and video-rate UV confocal laser-scanning microscopy. The purpose of the present study was to investigate how local Ca(2+) changes contribute to a global Ca(2+) signal; subsequently we quantified how a Ca(2+) wave is kinetically reshaped as it is propagated through the cell. The combined kinetics of all subcellular Ca(2+) signals determined the shape of the total cellular Ca(2+) signal, but each subcellular contribution to the cellular signal was not constant in time. Near the plasma membrane, [Ca(2+)](i) increased and decreased rapidly, processes that can be described by a linear and exponential function, respectively. In more central parts of the cell slower kinetics were observed that were best described by a Hill equation. This reshaping of the Ca(2+) wave was modeled with an equation derived from a low-pass RC filter. We propose that the differences in spatial kinetics of the Ca(2+) signal serves as a mechanism by which the same cellular Ca(2+) signal carries different regulatory information to different subcellular regions of the cell, thus evoking differential cellular responses.
Collapse
Affiliation(s)
- W J Koopman
- Department of Cellular Animal Physiology, University of Nijmegen, Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
28
|
Cornelisse LN, Scheenen WJ, Koopman WJ, Roubos EW, Gielen SC. Minimal model for intracellular calcium oscillations and electrical bursting in melanotrope cells of Xenopus laevis. Neural Comput 2001; 13:113-37. [PMID: 11177430 DOI: 10.1162/089976601300014655] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
A minimal model is presented to explain changes in frequency, shape, and amplitude of Ca2+ oscillations in the neuroendocrine melanotrope cell of Xenopus Laevis. It describes the cell as a plasma membrane oscillator with influx of extracellular Ca2+ via voltage-gated Ca2+ channels in the plasma membrane. The Ca2+ oscillations in the Xenopus melanotrope show specific features that cannot be explained by previous models for electrically bursting cells using one set of parameters. The model assumes a KCa-channel with slow Ca2+-dependent gating kinetics that initiates and terminates the bursts. The slow kinetics of this channel cause an activation of the Kca-channel with a phase shift relative to the intracellular Ca2+ concentration. The phase shift, together with the presence of a Na+ channel that has a lower threshold than the Ca2+ channel, generate the characteristic features of the Ca2+ oscillations in the Xenopus melanotrope cell.
Collapse
Affiliation(s)
- L N Cornelisse
- Department of Cellular Animal Physiology, Nijmegen Institute for Neurosciences, University of Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
29
|
Koopman WJ, Hink MA, Visser AJ, Roubos EW, Jenks BG. Evidence that Ca2+-waves in Xenopus melanotropes depend on calcium-induced calcium release: a fluorescence correlation microscopy and linescanning study. Cell Calcium 1999; 26:59-67. [PMID: 10892571 DOI: 10.1054/ceca.1999.0051] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The neuroendocrine melanotrope cell displays Ca2+ oscillations that are build up by several discrete Ca2+ rises ('steps'). Each step is linked to Ca2+-entry across the plasma membrane via voltage-operated calcium channels and associated with a fast Ca2+-wave travelling from the plasma membrane to the central parts of the cell. Previously, linescanning with confocal laser scanning microscopy (CLSM) supported that these waves have high speeds (between 30 and 80 microm/s), which is considered indicative of the involvement of a calcium-induced calcium release (CICR) mechanism in fast-wave propagation. However, to firmly establish the presence of a CICR mechanism one must rule out the possibility that the Ca2+ signal is artifactually accelerated by the presence of a highly mobile Ca2+ probe and also eliminate imaging artifacts inherent to single wavelength imaging. In the present study both problems are addressed. Mobility and intracellular distribution of a generally used Ca2+ probe, Oregon-green 488 BAPTA-1 (O-green-1), were established using fluorescence correlation microscopy. We then used the ratio signal of co-loaded O-green-1 and Fura-Red to quantify the relative [Ca2+]i during linescanning. It was found that O-green-1 displays different diffusion times when regions near the plasma membrane and in the center of the cell are compared. However, the calculated diffusion constant of the probe was too low to account for the observed high speed of the Ca2+ wave. In conclusion, we established the authenticity of the high speed of Ca2+-waves in Xenopus melanotropes, providing evidence for the involvement of a CICR mechanism in wave propagation.
Collapse
Affiliation(s)
- W J Koopman
- Department of Cellular Animal Physiology, Nijmegen Institutes of Cellular Signalling and Neurosciences, University of Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|