1
|
Robinson C, Gradinati V, Hamid F, Baehr C, Crouse B, Averick S, Kovaliov M, Harris D, Runyon S, Baruffaldi F, LeSage M, Comer S, Pravetoni M. Therapeutic and Prophylactic Vaccines to Counteract Fentanyl Use Disorders and Toxicity. J Med Chem 2020; 63:14647-14667. [PMID: 33215913 DOI: 10.1021/acs.jmedchem.0c01042] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The incidence of fatal overdoses has increased worldwide due to the widespread access to illicit fentanyl and its potent analogues. Vaccines offer a promising strategy to reduce the prevalence of opioid use disorders (OUDs) and to prevent toxicity from accidental and deliberate exposure to fentanyl and its derivatives. This study describes the development and characterization of vaccine formulations consisting of novel fentanyl-based haptens conjugated to carrier proteins. Vaccine efficacy was tested against opioid-induced behavior and toxicity in mice and rats challenged with fentanyl and its analogues. Prophylactic vaccination reduced fentanyl- and sufentanil-induced antinociception, respiratory depression, and bradycardia in mice and rats. Therapeutic vaccination also reduced fentanyl intravenous self-administration in rats. Because of their selectivity, vaccines did not interfere with the pharmacological effects of commonly used anesthetics nor with methadone, naloxone, oxycodone, or heroin. These preclinical data support the translation of vaccines as a viable strategy to counteract fentanyl use disorders and toxicity.
Collapse
Affiliation(s)
- Christine Robinson
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, United States
| | - Valeria Gradinati
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, United States
| | - Fatima Hamid
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, United States
| | - Carly Baehr
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, United States.,Department of Veterinary Population Medicine, University of Minnesota Veterinary School, Minneapolis, Minnesota 55455, United States
| | - Bethany Crouse
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, United States.,Department of Veterinary Population Medicine, University of Minnesota Veterinary School, Minneapolis, Minnesota 55455, United States
| | - Saadyah Averick
- Allegheny Health Network, Neuroscience Research Institute, Pittsburgh, Pennsylvania 15212, United States
| | - Marina Kovaliov
- Allegheny Health Network, Neuroscience Research Institute, Pittsburgh, Pennsylvania 15212, United States
| | - Danni Harris
- RTI International, Raleigh, North Carolina 27616, United States
| | - Scott Runyon
- RTI International, Raleigh, North Carolina 27616, United States
| | - Federico Baruffaldi
- Department of Medicine, Hennepin Healthcare Research Institute, Minneapolis, Minnesota 55415, United States
| | - Mark LeSage
- Department of Medicine, Hennepin Healthcare Research Institute, Minneapolis, Minnesota 55415, United States
| | - Sandra Comer
- Department of Psychiatry, Columbia University Irving Medical Center, and the New York State Psychiatric Institute, New York, New York 10027-6902, United States
| | - Marco Pravetoni
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, United States.,Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
2
|
Peterson EC, Gentry WB, Owens SM. Customizing monoclonal antibodies for the treatment of methamphetamine abuse: current and future applications. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2014; 69:107-27. [PMID: 24484976 DOI: 10.1016/b978-0-12-420118-7.00003-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Monoclonal antibody-based medications designed to bind (+)-methamphetamine (METH) with high affinity are among the newest approaches to the treatment of METH abuse and the associated medical complications. The potential clinical indications for these medications include treatment of overdose, reduction of drug dependence, and protection of vulnerable populations from METH-related complications. Research designed to discover and conduct preclinical and clinical testing of these antibodies suggests a scientific vision for how intact monoclonal antibody (mAb) (singular and plural) or small antigen-binding fragments of mAb could be engineered to optimize the proteins for specific therapeutic applications. In this review, we discuss keys to success in this development process including choosing predictors of specificity, efficacy, duration of action, and safety of the medications in disease models of acute and chronic drug abuse. We consider important aspects of METH-like hapten design and how hapten structural features influence specificity and affinity, with an example of a high-resolution X-ray crystal structure of a high-affinity antibody to demonstrate this structural relationship. Additionally, several prototype anti-METH mAb forms such as antigen-binding fragments and single-chain variable fragments are under development. Unique, customizable aspects of these fragments are presented with specific possible clinical indications. Finally, we discuss clinical trial progress of the first in kind anti-METH mAb, for which METH is the disease target instead of vulnerable central nervous system networks of receptors, binding sites, and neuronal connections.
Collapse
Affiliation(s)
- Eric C Peterson
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - W Brooks Gentry
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA; Department of Anesthesiology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - S Michael Owens
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
| |
Collapse
|
3
|
Petrie M, Lynch KL, Ekins S, Chang JS, Goetz RJ, Wu AHB, Krasowski MD. Cross-reactivity studies and predictive modeling of "Bath Salts" and other amphetamine-type stimulants with amphetamine screening immunoassays. Clin Toxicol (Phila) 2013; 51:83-91. [PMID: 23387345 DOI: 10.3109/15563650.2013.768344] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
INTRODUCTION The increasing abuse of amphetamine-like compounds presents a challenge for clinicians and clinical laboratories. Although these compounds may be identified by mass spectrometry-based assays, most clinical laboratories use amphetamine immunoassays that have unknown cross-reactivity with novel amphetamine-like drugs. To date, there has been a little systematic study of amphetamine immunoassay cross-reactivity with structurally diverse amphetamine-like drugs or of computational tools to predict cross-reactivity. METHODS Cross-reactivities of 42 amphetamines and amphetamine-like drugs with three amphetamines screening immunoassays (AxSYM(®) Amphetamine/Methamphetamine II, CEDIA(®) amphetamine/Ecstasy, and EMIT(®) II Plus Amphetamines) were determined. Two- and three-dimensional molecular similarity and modeling approaches were evaluated for the ability to predict cross-reactivity using receiver-operator characteristic curve analysis. RESULTS Overall, 34%-46% of the drugs tested positive on the immunoassay screens using a concentration of 20,000 ng/mL. The three immunoassays showed differential detection of the various classes of amphetamine-like drugs. Only the CEDIA assay detected piperazines well, while only the EMIT assay cross-reacted with the 2C class. All three immunoassays detected 4-substituted amphetamines. For the AxSYM and EMIT assays, two-dimensional molecular similarity methods that combined similarity to amphetamine/methamphetamine and 3,4-methylenedioxymethampetamine most accurately predicted cross-reactivity. For the CEDIA assay, three-dimensional pharmacophore methods performed best in predicting cross-reactivity. Using the best performing models, cross-reactivities of an additional 261 amphetamine-like compounds were predicted. CONCLUSIONS Existing amphetamines immunoassays unevenly detect amphetamine-like drugs, particularly in the 2C, piperazine, and β-keto classes. Computational similarity methods perform well in predicting cross-reactivity and can help prioritize testing of additional compounds in the future.
Collapse
Affiliation(s)
- M Petrie
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | | | | | | | | | | | | |
Collapse
|
4
|
Tars K, Kotelovica S, Lipowsky G, Bauer M, Beerli RR, Bachmann MF, Maurer P. Different binding modes of free and carrier-protein-coupled nicotine in a human monoclonal antibody. J Mol Biol 2011; 415:118-27. [PMID: 22079050 DOI: 10.1016/j.jmb.2011.10.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 10/20/2011] [Accepted: 10/25/2011] [Indexed: 01/02/2023]
Abstract
Nicotine is the principal addictive component of tobacco. Blocking its passage from the lung to the brain with nicotine-specific antibodies is a promising approach for the treatment of smoking addiction. We have determined the crystal structure of nicotine bound to the Fab fragment of a fully human monoclonal antibody (mAb) at 1.85 Å resolution. Nicotine is almost completely (>99%) buried in the interface between the variable domains of heavy and light chains. The high affinity of the mAb is the result of a charge-charge interaction, a hydrogen bond, and several hydrophobic contacts. Additionally, similarly to nicotinic acetylcholine receptors in the brain, two cation-π interactions are present between the pyrrolidine charge and nearby aromatic side chains. The selectivity of the mAb for nicotine versus cotinine, which is the major metabolite of nicotine and differs in only one oxygen atom, is caused by steric constraints in the binding site. The mAb was isolated from B cells of an individual immunized with a nicotine-carrier protein conjugate vaccine. Surprisingly, the nicotine was bound to the Fab fragment in an orientation that was not compatible with binding to the nicotine-carrier protein conjugate. The structure of the Fab fragment in complex with the nicotine-linker derivative that was used for the production of the conjugate vaccine revealed a similar position of the pyridine ring of the nicotine moiety, but the pyrrolidine ring was rotated by about 180°. This allowed the linker part to reach to the Fab surface while high-affinity interactions with the nicotine moiety were maintained.
Collapse
Affiliation(s)
- Kaspars Tars
- Biomedical Research and Study Center, Ratsupites 1, Riga LV 1067, Latvia.
| | | | | | | | | | | | | |
Collapse
|
5
|
Sellers BD, Nilmeier JP, Jacobson MP. Antibodies as a model system for comparative model refinement. Proteins 2010; 78:2490-505. [PMID: 20602354 DOI: 10.1002/prot.22757] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Predicting the conformations of loops is a critical aspect of protein comparative (homology) modeling. Despite considerable advances in developing loop prediction algorithms, refining loops in homology models remains challenging. In this work, we use antibodies as a model system to investigate strategies for more robustly predicting loop conformations when the protein model contains errors in the conformations of side chains and protein backbone surrounding the loop in question. Specifically, our test system consists of partial models of antibodies in which the "scaffold" (i.e., the portion other than the complementarity determining region, CDR, loops) retains native backbone conformation, whereas the CDR loops are predicted using a combination of knowledge-based modeling (H1, H2, L1, L2, and L3) and ab initio loop prediction (H3). H3 is the most variable of the CDRs. Using a previously published method, a test set of 10 shorter H3 loops (5-7 residues) are predicted to an average backbone (N-C alpha-C-O) RMSD of 2.7 A while 11 longer loops (8-9 residues) are predicted to 5.1 A, thus recapitulating the difficulties in refining loops in models. By contrast, in control calculations predicting the same loops in crystal structures, the same method reconstructs the loops to an average of 0.5 and 1.4 A for the shorter and longer loops, respectively. We modify the loop prediction method to improve the ability to sample near-native loop conformations in the models, primarily by reducing the sensitivity of the sampling to the loop surroundings, and allowing the other CDR loops to optimize with the H3 loop. The new method improves the average accuracy significantly to 1.3 A RMSD and 3.1 A RMSD for the shorter and longer loops, respectively. Finally, we present results predicting 8-10 residue loops within complete comparative models of five nonantibody proteins. While anecdotal, these mixed, full-model results suggest our approach is a promising step toward more accurately predicting loops in homology models. Furthermore, while significant challenges remain, our method is a potentially useful tool for predicting antibody structures based on a known Fv scaffold.
Collapse
Affiliation(s)
- Benjamin D Sellers
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158-2517, USA
| | | | | |
Collapse
|
6
|
Celikel R, Peterson EC, Owens SM, Varughese KI. Crystal structures of a therapeutic single chain antibody in complex with two drugs of abuse-Methamphetamine and 3,4-methylenedioxymethamphetamine. Protein Sci 2010; 18:2336-45. [PMID: 19760665 DOI: 10.1002/pro.244] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Methamphetamine (METH) is a major drug threat in the United States and worldwide. Monoclonal antibody (mAb) therapy for treating METH abuse is showing exciting promise and the understanding of how mAb structure relates to function will be essential for future development of these important therapies. We have determined crystal structures of a high affinity anti-(+)-METH therapeutic single chain antibody fragment (scFv6H4, K(D)= 10 nM) derived from one of our candidate mAb in complex with METH and the (+) stereoisomer of another abused drug, 3,4-methylenedioxymethamphetamine (MDMA), known by the street name "ecstasy." The crystal structures revealed that scFv6H4 binds to METH and MDMA in a deep pocket that almost completely encases the drugs mostly through aromatic interactions. In addition, the cationic nitrogen of METH and MDMA forms a salt bridge with the carboxylate group of a glutamic acid residue and a hydrogen bond with a histidine side chain. Interestingly, there are two water molecules in the binding pocket and one of them is positioned for a C--H...O interaction with the aromatic ring of METH. These first crystal structures of a high affinity therapeutic antibody fragment against METH and MDMA (resolution = 1.9 A, and 2.4 A, respectively) provide a structural basis for designing the next generation of higher affinity antibodies and also for carrying out rational humanization.
Collapse
Affiliation(s)
- Reha Celikel
- Department of Physiology and Biophysics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | | | | |
Collapse
|
7
|
Molecular similarity methods for predicting cross-reactivity with therapeutic drug monitoring immunoassays. Ther Drug Monit 2009; 31:337-44. [PMID: 19333148 DOI: 10.1097/ftd.0b013e31819c1b83] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Immunoassays are used for therapeutic drug monitoring (TDM), yet may suffer from cross-reacting compounds able to bind the assay antibodies in a manner similar to the target molecule. To our knowledge, there has been no investigation using computational tools to predict cross-reactivity with TDM immunoassays. The authors used molecular similarity methods to enable calculation of structural similarity for a wide range of compounds (prescription and over-the-counter medications, illicit drugs, and clinically significant metabolites) to the target molecules of TDM immunoassays. Utilizing different molecular descriptors (MDL public keys, functional class fingerprints, and pharmacophore fingerprints) and the Tanimoto similarity coefficient, the authors compared cross-reactivity data in the package inserts of immunoassays marketed for in vitro diagnostic use. Using MDL public keys and the Tanimoto similarity coefficient showed a strong and statistically significant separation between cross-reactive and non-cross-reactive compounds. Thus, 2-dimensional shape similarity of cross-reacting molecules and the target molecules of TDM immunoassays provides a fast chemoinformatics methods for a priori prediction of potential of cross-reactivity that might be otherwise undetected. These methods could be used to reliably focus cross-reactivity testing on compounds with high similarity to the target molecule and limit testing of compounds with low similarity and ultimately with a very low probability of cross-reacting with the assay in vitro.
Collapse
|
8
|
Krasowski MD, Pizon AF, Siam MG, Giannoutsos S, Iyer M, Ekins S. Using molecular similarity to highlight the challenges of routine immunoassay-based drug of abuse/toxicology screening in emergency medicine. BMC Emerg Med 2009; 9:5. [PMID: 19400959 PMCID: PMC2688477 DOI: 10.1186/1471-227x-9-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2009] [Accepted: 04/28/2009] [Indexed: 11/10/2022] Open
Abstract
Background Laboratory tests for routine drug of abuse and toxicology (DOA/Tox) screening, often used in emergency medicine, generally utilize antibody-based tests (immunoassays) to detect classes of drugs such as amphetamines, barbiturates, benzodiazepines, opiates, and tricyclic antidepressants, or individual drugs such as cocaine, methadone, and phencyclidine. A key factor in assay sensitivity and specificity is the drugs or drug metabolites that were used as antigenic targets to generate the assay antibodies. All DOA/Tox screening immunoassays can be limited by false positives caused by cross-reactivity from structurally related compounds. For immunoassays targeted at a particular class of drugs, there can also be false negatives if there is failure to detect some drugs or their metabolites within that class. Methods Molecular similarity analysis, a computational method commonly used in drug discovery, was used to calculate structural similarity of a wide range of clinically relevant compounds (prescription and over-the-counter medications, illicit drugs, and clinically significant metabolites) to the target ('antigenic') molecules of DOA/Tox screening tests. These results were compared with cross-reactivity data in the package inserts of immunoassays marketed for clinical testing. The causes for false positives for phencyclidine and tricyclic antidepressant screening immunoassays were investigated at the authors' medical center using gas chromatography/mass spectrometry as a confirmatory method. Results The results illustrate three major challenges for routine DOA/Tox screening immunoassays used in emergency medicine. First, for some classes of drugs, the structural diversity of common drugs within each class has been increasing, thereby making it difficult for a single assay to detect all compounds without compromising specificity. Second, for some screening assays, common 'out-of-class' drugs may be structurally similar to the target compound so that they account for a high frequency of false positives. Illustrating this point, at the authors' medical center, the majority of positive screening results for phencyclidine and tricyclic antidepressants assays were explained by out-of-class drugs. Third, different manufacturers have adopted varying approaches to marketed immunoassays, leading to substantial inter-assay variability. Conclusion The expanding structural diversity of drugs presents a difficult challenge for routine DOA/Tox screening that limit the clinical utility of these tests in the emergency medicine setting.
Collapse
|
9
|
Krasowski MD, Siam MG, Iyer M, Pizon AF, Giannoutsos S, Ekins S. Chemoinformatic methods for predicting interference in drug of abuse/toxicology immunoassays. Clin Chem 2009; 55:1203-13. [PMID: 19342505 DOI: 10.1373/clinchem.2008.118638] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Immunoassays used for routine drug of abuse (DOA) and toxicology screening may be limited by cross-reacting compounds able to bind to the antibodies in a manner similar to the target molecule(s). To date, there has been little systematic investigation using computational tools to predict cross-reactive compounds. METHODS Commonly used molecular similarity methods enabled calculation of structural similarity for a wide range of compounds (prescription and over-the-counter medications, illicit drugs, and clinically significant metabolites) to the target molecules of DOA/toxicology screening assays. We used various molecular descriptors (MDL public keys, functional class fingerprints, and pharmacophore fingerprints) and the Tanimoto similarity coefficient. These data were then compared with cross-reactivity data in the package inserts of immunoassays marketed for in vitro diagnostic use. Previously untested compounds that were predicted to have a high probability of cross-reactivity were tested. RESULTS Molecular similarity calculated using MDL public keys and the Tanimoto similarity coefficient showed a strong and statistically significant separation between cross-reactive and non-cross-reactive compounds. This result was validated experimentally by discovery of additional cross-reactive compounds based on computational predictions. CONCLUSIONS The computational methods employed are amenable toward rapid screening of databases of drugs, metabolites, and endogenous molecules and may be useful for identifying cross-reactive molecules that would be otherwise unsuspected. These methods may also have value in focusing cross-reactivity testing on compounds with high similarity to the target molecule(s) and limiting testing of compounds with low similarity and very low probability of cross-reacting with the assay.
Collapse
Affiliation(s)
- Matthew D Krasowski
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Yusuf D, Davis AM, Kleywegt GJ, Schmitt S. An Alternative Method for the Evaluation of Docking Performance: RSR vs RMSD. J Chem Inf Model 2008; 48:1411-22. [DOI: 10.1021/ci800084x] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Tsumoto K, Yokota A, Tanaka Y, Ui M, Tsumuraya T, Fujii I, Kumagai I, Nagumo Y, Oguri H, Inoue M, Hirama M. Critical contribution of aromatic rings to specific recognition of polyether rings. The case of ciguatoxin CTX3C-ABC and its specific antibody 1C49. J Biol Chem 2008; 283:12259-66. [PMID: 18326040 DOI: 10.1074/jbc.m710553200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To address how proteins recognize polyether toxin compounds, we focused on the interaction between the ABC ring compound of ciguatoxin 3C and its specific antibody, 1C49. Surface plasmon resonance analyses indicated that Escherichia coli-expressed variable domain fragments (Fv) of 1C49 had the high affinity constants and slow dissociation constants typical of antigen-antibody interactions. Linear van't Hoff analyses suggested that the interaction is enthalpy-driven. We resolved the crystal structure of 1C49 Fv bound to ABC ring compound of ciguatoxin 3C at a resolution of 1.7A. The binding pocket of the antibody had many aromatic rings and bound the antigen by shape complementarity typical of hapten-antibody interactions. Three hydrogen bonds and many van der Waals interactions were present. We mutated several residues of the antibody to Ala, and we used surface plasmon resonance to analyze the interactions between the mutated antibodies and the antigen. This analysis identified Tyr-91 and Trp-96 in the light chain as hot spots for the interaction, and other residues made incremental contributions by conferring enthalpic advantages and reducing the dissociation rate constant. Systematic mutation of Tyr-91 indicated that CH-pi and pi-pi interactions between the aromatic ring at this site and the antigen made substantial contributions to the association, and van der Waals interactions inhibited dissociation, suggesting that aromaticity and bulkiness are critical for the specific recognition of polyether compounds by proteins.
Collapse
Affiliation(s)
- Kouhei Tsumoto
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Lacy HM, Gunnell MG, Laurenzana EM, Owens SM. Engineering and characterization of a mouse/human chimeric anti-phencyclidine monoclonal antibody. Int Immunopharmacol 2007; 8:1-11. [PMID: 18068094 DOI: 10.1016/j.intimp.2007.09.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 09/27/2007] [Accepted: 09/27/2007] [Indexed: 11/18/2022]
Abstract
Previously, our laboratory produced a high affinity, anti-phencyclidine (PCP) murine monoclonal antibody (mAb6B5) that also binds other PCP-like arylcyclohexylamines. In this project, mAb6B5 is engineered into a mouse/human chimera (ch-mAb6B5) to assess the feasibility of developing it into a medication for PCP and PCP-like drug abuse. To create ch-mAb6B5, the light and heavy chain constant regions of mAb6B5 were replaced with human kappa and IgG(2) constant regions in order to decrease its potential immunogenicity in humans. To be an effective anti-PCP medication, ch-mAb6B5 must retain the critical immunochemical binding properties of mAb6B5. Expression vectors containing ch-mAb6B5 light chain and heavy chain cDNA were constructed and expressed in the murine myeloma cell line P3X63-Ag8.653. Immunoassays confirm that ch-mAb6B5 is indeed a chimera, composed of mAb6B5's PCP-binding variable domains and human kappa and IgG constant regions. Radioimmunoassays show that ch-mAb6B5 has the same drug-binding profile as mAb6B5. Ch-mAb6B5 and mAb6B5 bind PCP with a K(D) of 0.67 nM and 1.17 nM (respectively) and bind PCP-like arylcyclohexylamines 1-[1-(2-thienyl)cyclohexyl]piperidine and N-ethyl-1-phenylcyclohexylamine with similar specificity. Additionally, ch-mAb6B5 and mAb6B5 have the same calculated isoelectric points and molecular weights, critical properties in antigen-antibody interactions. These data demonstrate that mouse/human ch-mAb6B5, a "more human" version of murine mAb6B5, retains mAb6B5's unique drug-binding properties. This work supports our continued efforts to develop ch-mAb6B5 into a medication for PCP and PCP-like drug abuse - introducing the intriguing possibility of using a single therapeutic mAb for treating a class of abused drugs.
Collapse
Affiliation(s)
- H Marie Lacy
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States.
| | | | | | | |
Collapse
|
13
|
Roosild TP, Castronovo S, Choe S. Structure of anti-FLAG M2 Fab domain and its use in the stabilization of engineered membrane proteins. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:835-9. [PMID: 16946459 PMCID: PMC2242885 DOI: 10.1107/s1744309106029125] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Accepted: 07/27/2006] [Indexed: 11/10/2022]
Abstract
The inherent difficulties of stabilizing detergent-solubilized integral membrane proteins for biophysical or structural analysis demand the development of new methodologies to improve success rates. One proven strategy is the use of antibody fragments to increase the ;soluble' portion of any membrane protein, but this approach is limited by the difficulties and expense associated with producing monoclonal antibodies to an appropriate exposed epitope on the target protein. Here, the stabilization of a detergent-solubilized K(+) channel protein, KvPae, by engineering a FLAG-binding epitope into a known loop region of the protein and creating a complex with Fab fragments from commercially available anti-FLAG M2 monoclonal antibodies is reported. Although well diffracting crystals of the complex have not yet been obtained, during the course of crystallization trials the structure of the anti-FLAG M2 Fab domain was solved to 1.86 A resolution. This structure, which should aid future structure-determination efforts using this approach by facilitating molecular-replacement phasing, reveals that the binding pocket appears to be specific only for the first four amino acids of the traditional FLAG epitope, namely DYKD. Thus, the use of antibody fragments for improving the stability of target proteins can be rapidly applied to the study of membrane-protein structure by placing the short DKYD motif within a predicted peripheral loop of that protein and utilizing commercially available anti-FLAG M2 antibody fragments.
Collapse
Affiliation(s)
- Tarmo P. Roosild
- Structural Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Samantha Castronovo
- Structural Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Senyon Choe
- Structural Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| |
Collapse
|
14
|
Pozharski E, Moulin A, Hewagama A, Shanafelt AB, Petsko GA, Ringe D. Diversity in Hapten Recognition: Structural Study of an Anti-cocaine Antibody M82G2. J Mol Biol 2005; 349:570-82. [PMID: 15885702 DOI: 10.1016/j.jmb.2005.03.080] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Accepted: 03/17/2005] [Indexed: 11/30/2022]
Abstract
Antibodies against cocaine and other drugs of abuse are the basis for diagnostic tests for the presence of those drugs in human serum. The 1.7A resolution crystal structure of the anti-cocaine monoclonal antibody M82G2 in complex with cocaine is presented. This structure determination was undertaken to establish the stereochemical features in the antibody binding site that confer specificity for cocaine, and as part of an ongoing project to understand the rules that govern molecular recognition. The cocaine-binding site can be characterized topologically as a narrow groove on the protein surface. The antibody utilizes water-mediated hydrogen bonding, and cation-pi and stacking (pi-pi) interactions to provide specificity. Comparison with the previously published structure of the anti-cocaine antibody GNC92H2 shows that binding of a small ligand can be achieved in diverse ways, both in terms of a binding site structure/topology and protein-ligand interactions.
Collapse
Affiliation(s)
- Edwin Pozharski
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | | | | | | | | | | |
Collapse
|
15
|
Pozharski E, Wilson MA, Hewagama A, Shanafelt AB, Petsko G, Ringe D. Anchoring a cationic ligand: the structure of the Fab fragment of the anti-morphine antibody 9B1 and its complex with morphine. J Mol Biol 2004; 337:691-7. [PMID: 15019787 DOI: 10.1016/j.jmb.2003.12.084] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2003] [Revised: 12/01/2003] [Accepted: 12/04/2003] [Indexed: 11/16/2022]
Abstract
The crystal structures of an anti-morphine antibody 9B1 (to 1.6A resolution) and its complex with morphine (to 2.0 A resolution) are reported. The morphine-binding site is described as a shallow depression on the protein surface, an unusual topology for a high-affinity ( Ka approximately 10(9) M(-1)) antibody against a small antigen. The polar part of the ligand is exposed to solvent, and the cationic nitrogen atom of the morphine molecule is anchored at the bottom of the binding site by a salt-bridge to a glutamate side-chain. Additional affinity is provided by a double cation-pi interaction with two tryptophan residues. Comparison of the morphine complex with the structure of the free Fab shows that a domain closure occurs upon binding of the ligand.
Collapse
Affiliation(s)
- Edwin Pozharski
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | | | | | | | | | | |
Collapse
|
16
|
Paula S, Tabet MR, Keenan SM, Welsh WJ, Ball WJ. Three-dimensional structure-activity relationship modeling of cocaine binding to two monoclonal antibodies by comparative molecular field analysis. J Mol Biol 2003; 325:515-30. [PMID: 12498800 DOI: 10.1016/s0022-2836(02)01235-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Successful immunotherapy of cocaine addiction and overdoses requires cocaine-binding antibodies with specific properties, such as high affinity and selectivity for cocaine. We have determined the affinities of two cocaine-binding murine monoclonal antibodies (mAb: clones 3P1A6 and MM0240PA) for cocaine and its metabolites by [3H]-radioligand binding assays. mAb 3P1A6 (K(d) = 0.22 nM) displayed a 50-fold higher affinity for cocaine than mAb MM0240PA (K(d) = 11 nM) and also had a greater specificity for cocaine. For the systematic exploration of both antibodies' binding specificities, we used a set of approximately 35 cocaine analogues as structural probes by determining their relative binding affinities (RBAs) using an enzyme-linked immunosorbent competition assay. Three-dimensional quantitative structure-activity relationship (3D-QSAR) models on the basis of comparative molecular field analysis (CoMFA) techniques correlated the binding data with structural features of the ligands. The analysis indicated that despite the mAbs' differing specificities for cocaine, the relative contributions of the steric (approximately 80%) and electrostatic (approximately 20%) field interactions to ligand-binding were similar. Generated three-dimensional CoMFA contour plots then located the specific regions about cocaine where the ligand/receptor interactions occurred. While the overall binding patterns of the two mAbs had many features in common, distinct differences were observed about the phenyl ring and the methylester group of cocaine. Furthermore, using previously published data, a 3D-QSAR model was developed for cocaine binding to the dopamine reuptake transporter (DAT) that was compared to the mAb models. Although the relative steric and electrostatic field contributions were similar to those of the mAbs, the DAT cocaine-binding site showed a preference for negatively charged ligands. Besides establishing molecular level insight into the interactions that govern cocaine binding specificity by biopolymers, the three-dimensional images obtained reflect the properties of the mAbs binding pockets and provide the initial information needed for the possible design of novel antibodies with properties optimized for immunotherapy.
Collapse
Affiliation(s)
- Stefan Paula
- Department of Pharmacology and Cell Biophysics, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | | | | | | | | |
Collapse
|
17
|
Berger M, Shankar V, Vafai A. Therapeutic applications of monoclonal antibodies. Am J Med Sci 2002; 324:14-30. [PMID: 12120821 PMCID: PMC7093874 DOI: 10.1097/00000441-200207000-00004] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2001] [Revised: 12/21/2001] [Indexed: 12/31/2022]
Abstract
Researchers have sought therapeutic applications for monoclonal antibodies since their development in 1975. However, murine-derived monoclonal antibodies may cause an immunogenic response in human patients, reducing their therapeutic efficacy. Chimeric and humanized antibodies have been developed that are less likely to provoke an immune reaction in human patients than are murine-derived antibodies. Antibody fragments, bispecific antibodies, and antibodies produced through the use of phage display systems and genetically modified plants and animals may aid researchers in developing new uses for monoclonal antibodies in the treatment of disease. Monoclonal antibodies may have a number of promising potential therapeutic applications in the treatment of asthma, autoimmune diseases, cancer, poisoning, septicemia, substance abuse, viral infections, and other diseases.
Collapse
Affiliation(s)
- Mitchell Berger
- Emory University School of Public Health, Atlanta, Georgia, USA
| | | | | |
Collapse
|
18
|
Ramsland PA, Kaushik A, Marchalonis JJ, Edmundson AB. Incorporation of long CDR3s into V domains: implications for the structural evolution of the antibody-combining site. EXPERIMENTAL AND CLINICAL IMMUNOGENETICS 2002; 18:176-98. [PMID: 11872949 DOI: 10.1159/000049197] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Available data suggest that 'primitive' antibody-combining sites often include longer than average HCDR3s. Long HCDR3 sequences have been reported in diverse vertebrates, including humans, cattle, camels and sharks. These long HCDR3 segments contain unusual sequence features such as stretches of Gly or Pro residues and multiple Cys residues. We examined how longer than average HCDR3s were accommodated in the V domains of human, murine and camel antibodies with known three-dimensional structures. The main conclusions were that (1) HCDR3s longer than 12 residues should protrude outward from the V domains; (2) descending HCDR3 polypeptides may utilize VL (including LCDR3) constituents as a platform, supporting the protruding segments; (3) intra- and inter-HCDR disulfides are frequently formed to rigidify the structure of HCDR3 or the combining site, and (4) V and C domains were possibly more similar in primordial antibodies than they are in their present day counterparts.
Collapse
Affiliation(s)
- P A Ramsland
- Crystallography Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | | | | | | |
Collapse
|
19
|
Lamminmäki U, Kankare JA. Crystal structure of a recombinant anti-estradiol Fab fragment in complex with 17beta -estradiol. J Biol Chem 2001; 276:36687-94. [PMID: 11451948 DOI: 10.1074/jbc.m102367200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The crystal structure of a Fab fragment of an anti-17beta-estradiol antibody 57-2 was determined in the absence and presence of the steroid ligand, 17beta-estradiol (E2), at 2.5 and 2.15-A resolutions, respectively. The antibody binds the steroid in a deep hydrophobic pocket formed at the interface between the variable domains. No major structural rearrangements take place upon ligand binding; however, a large part of the heavy chain variable domain near the binding pocket is unusually flexible and is partly stabilized when the steroid is bound. The nonpolar steroid skeleton of E2 is recognized by a number of hydrophobic interactions, whereas the two hydroxyl groups of E2 are hydrogen-bonded to the protein. Especially, the 17-hydroxyl group of E2 is recognized by an intricate hydrogen bonding network in which the 17-hydroxyl itself forms a rare four-center hydrogen bond with three polar amino acids; this hydrogen bonding arrangement accounts for the low cross-reactivity of the antibody with other estrogens such as estrone. The CDRH3 loop plays a prominent role in ligand binding. All the complementarity-determining regions of the light chain make direct contacts with the steroid, even CDRL2, which is rarely directly involved in the binding of haptens.
Collapse
Affiliation(s)
- U Lamminmäki
- Department of Biotechnology, University of Turku, Tykistökatu 6, 6th floor, 20520 Turku, Finland.
| | | |
Collapse
|
20
|
Metzler DE, Metzler CM, Sauke DJ. Biochemical Defense Mechanisms. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50034-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|