1
|
Yang XH, Goldstein A, Sun Y, Wang Z, Wei M, Moskowitz I, Cunningham J. Detecting critical transition signals from single-cell transcriptomes to infer lineage-determining transcription factors. Nucleic Acids Res 2022; 50:e91. [PMID: 35640613 PMCID: PMC9458468 DOI: 10.1093/nar/gkac452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/02/2022] [Accepted: 05/13/2022] [Indexed: 12/29/2022] Open
Abstract
Analyzing single-cell transcriptomes promises to decipher the plasticity, heterogeneity, and rapid switches in developmental cellular state transitions. Such analyses require the identification of gene markers for semi-stable transition states. However, there are nontrivial challenges such as unexplainable stochasticity, variable population sizes, and alternative trajectory constructions. By advancing current tipping-point theory-based models with feature selection, network decomposition, accurate estimation of correlations, and optimization, we developed BioTIP to overcome these challenges. BioTIP identifies a small group of genes, called critical transition signal (CTS), to characterize regulated stochasticity during semi-stable transitions. Although methods rooted in different theories converged at the same transition events in two benchmark datasets, BioTIP is unique in inferring lineage-determining transcription factors governing critical transition. Applying BioTIP to mouse gastrulation data, we identify multiple CTSs from one dataset and validated their significance in another independent dataset. We detect the established regulator Etv2 whose expression change drives the haemato-endothelial bifurcation, and its targets together in CTS across three datasets. After comparing to three current methods using six datasets, we show that BioTIP is accurate, user-friendly, independent of pseudo-temporal trajectory, and captures significantly interconnected and reproducible CTSs. We expect BioTIP to provide great insight into dynamic regulations of lineage-determining factors.
Collapse
Affiliation(s)
- Xinan H Yang
- Department of Pediatrics, The University of Chicago, Chicago, IL, USA
| | - Andrew Goldstein
- Department of Statistics, The University of Chicago, Chicago IL, USA
| | - Yuxi Sun
- Department of Pediatrics, The University of Chicago, Chicago, IL, USA
| | - Zhezhen Wang
- Department of Pediatrics, The University of Chicago, Chicago, IL, USA
| | - Megan Wei
- Johns Hopkins University, Baltimore, MD, USA
| | - Ivan P Moskowitz
- Department of Pediatrics, The University of Chicago, Chicago, IL, USA
| | - John M Cunningham
- Department of Pediatrics, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
2
|
Paczkowska J, Soloch N, Bodnar M, Kiwerska K, Janiszewska J, Vogt J, Domanowska E, Martin-Subero JI, Ammerpohl O, Klapper W, Marszalek A, Siebert R, Giefing M. Expression of ELF1, a lymphoid ETS domain-containing transcription factor, is recurrently lost in classical Hodgkin lymphoma. Br J Haematol 2019; 185:79-88. [PMID: 30681722 DOI: 10.1111/bjh.15757] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/11/2018] [Indexed: 01/06/2023]
Abstract
Loss of B cell-specific transcription factors (TFs) and the resulting loss of B-cell phenotype of Hodgkin and Reed-Sternberg (HRS) cells is a hallmark of classical Hodgkin lymphoma (cHL). Here we have analysed two members of ETS domain containing TFs, ELF1 and ELF2, regarding (epi)genomic changes as well as gene and protein expression. We observed absence or lower levels of ELF1 protein in HRS cells of 31/35 (89%) cases compared to the bystander cells and significant (P < 0·01) downregulation of the gene on mRNA as well as protein level in cHL compared to non-cHL cell lines. However, no recurrent loss of ELF2 protein was observed. Moreover, ELF1 was targeted by heterozygous deletions combined with hypermethylation of the remaining allele(s) in 4/7 (57%) cell lines. Indeed, DNA hypermethylation (range 95-99%, mean 98%) detected in the vicinity of the ELF1 transcription start site was found in all 7/7 (100%) cHL cell lines. Similarly, 5/18 (28%) analysed primary biopsies carried heterozygous deletions of the gene. We demonstrate that expression of ELF1 is impaired in cHL through genetic and epigenetic alterations, and thus, it may represent an additional member of a TF network whose downregulation contributes to the loss of B-cell phenotype of HRS cells.
Collapse
Affiliation(s)
- Julia Paczkowska
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Natalia Soloch
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Magdalena Bodnar
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland.,Department of Otolaryngology and Laryngological Oncology, Poznan University of Medical Science, Poznan, Poland
| | - Katarzyna Kiwerska
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland.,Department of Tumour Pathology, Greater Poland Cancer Centre, Poznan, Poland
| | | | - Julia Vogt
- Institute of Human Genetics, Ulm University & Ulm University Medical Centre, Ulm, Germany
| | - Ewa Domanowska
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - José I Martin-Subero
- Insitut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Ole Ammerpohl
- Institute of Human Genetics, Ulm University & Ulm University Medical Centre, Ulm, Germany.,Institute of Human Genetics, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Wolfram Klapper
- Department of Pathology, Hematopathology Section and Lymph Node Registry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Andrzej Marszalek
- Department of Tumour Pathology and Prophylaxis, Poznan University of Medical Sciences & Greater Poland Cancer Centre, Poznan, Poland
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University & Ulm University Medical Centre, Ulm, Germany.,Institute of Human Genetics, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Maciej Giefing
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland.,Institute of Human Genetics, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
3
|
Zou Z, Misasi J, Sullivan N, Sun PD. Overexpression of Ebola virus envelope GP1 protein. Protein Expr Purif 2017; 135:45-53. [PMID: 28458053 DOI: 10.1016/j.pep.2017.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 12/13/2022]
Abstract
Ebola virus uses its envelope GP1 and GP2 for viral attachment and entry into host cells. Due to technical difficulty expressing full-length envelope, many structural and functional studies of Ebola envelope protein have been carried out primarily using GP1 lacking its mucin-like domain. As a result, the viral invasion mechanisms involving the mucin-like domain are not fully understood. To elucidate the role of the mucin-like domain of GP1 in Ebola-host attachment and infection and to facilitate vaccine development, we constructed a GP1 expression vector containing the entire attachment region (1-496). Cysteine 53 of GP1, which forms a disulfide bond with GP2, was mutated to serine to avoid potential disulfide bond mispairing. Stable expression clones using codon optimized open reading frame were developed in human 293-H cells with yields reaching ∼25 mg of GP1 protein per liter of spent medium. Purified GP1 was functional and bound to Ebola attachment receptors, DC-SIGN and DC-SIGNR. The over-expression and easy purification characteristic of this system has implications in Ebola research and vaccine development. To further understand the differential expression yields between the codon optimized and native GP1, we analyzed the presence of RNA structural motifs in the first 100 nucleotides of translational initiation AUG site. RNA structural prediction showed the codon optimization removed two potential RNA pseudoknot structures. This methodology is also applicable to the expression of other difficult virus envelope proteins.
Collapse
Affiliation(s)
- Zhongcheng Zou
- Structural Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - John Misasi
- Biodefense Research Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nancy Sullivan
- Biodefense Research Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D Sun
- Structural Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA.
| |
Collapse
|
4
|
Guo Y, Gifford DK. Modular combinatorial binding among human trans-acting factors reveals direct and indirect factor binding. BMC Genomics 2017; 18:45. [PMID: 28061806 PMCID: PMC5219757 DOI: 10.1186/s12864-016-3434-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 12/19/2016] [Indexed: 11/25/2022] Open
Abstract
Background The combinatorial binding of trans-acting factors (TFs) to the DNA is critical to the spatial and temporal specificity of gene regulation. For certain regulatory regions, more than one regulatory module (set of TFs that bind together) are combined to achieve context-specific gene regulation. However, previous approaches are limited to either pairwise TF co-association analysis or assuming that only one module is used in each regulatory region. Results We present a new computational approach that models the modular organization of TF combinatorial binding. Our method learns compact and coherent regulatory modules from in vivo binding data using a topic model. We found that the binding of 115 TFs in K562 cells can be organized into 49 interpretable modules. Furthermore, we found that tens of thousands of regulatory regions use multiple modules, a structure that cannot be observed with previous hard clustering based methods. The modules discovered recapitulate many published protein-protein physical interactions, have consistent functional annotations of chromatin states, and uncover context specific co-binding such as gene proximal binding of NFY + FOS + SP and distal binding of NFY + FOS + USF. For certain TFs, the co-binding partners of direct binding (motif present) differs from those of indirect binding (motif absent); the distinct set of co-binding partners can predict whether the TF binds directly or indirectly with up to 95% accuracy. Joint analysis across two cell types reveals both cell-type-specific and shared regulatory modules. Conclusions Our results provide comprehensive cell-type-specific combinatorial binding maps and suggest a modular organization of combinatorial binding. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3434-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuchun Guo
- MIT, Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, 02139, USA
| | - David K Gifford
- MIT, Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, 02139, USA.
| |
Collapse
|
5
|
Abstract
Genome-wide transcription factor (TF) binding profiles differ dramatically between cell types. However, not much is known about the relationship between cell-type-specific binding patterns and gene expression. A recent study demonstrated how the same TFs can have functional roles when binding to largely non-overlapping genomic regions in hematopoietic progenitor and mast cells. Cell-type specific binding profiles of shared TFs are therefore not merely the consequence of opportunistic and functionally irrelevant binding to accessible chromatin, but instead have the potential to make meaningful contributions to cell-type specific transcriptional programs.
Collapse
Affiliation(s)
- Felicia S L Ng
- a Department of Haematology; Wellcome Trust and MRC Cambridge Stem Cell Institute & Cambridge Institute for Medical Research ; Cambridge University ; Cambridge , UK
| | | | | |
Collapse
|
6
|
Li X, Romain RD, Park D, Scadden DT, Merchant JL, Arnaout MA. Stress hematopoiesis is regulated by the Krüppel-like transcription factor ZBP-89. Stem Cells 2014; 32:791-801. [PMID: 24549639 DOI: 10.1002/stem.1598] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 09/18/2013] [Accepted: 10/07/2013] [Indexed: 11/09/2022]
Abstract
Previous studies have shown that ZBP-89 (Zfp148) plays a critical role in erythroid lineage development, with its loss at the embryonic stage causing lethal anemia and thrombocytopenia. Its role in adult hematopoiesis has not been described. We now show that conditional deletion of ZBP-89 in adult mouse hematopoietic stem/progenitor cells (HSPC) causes anemia and thrombocytopenia that are transient in the steady state, but readily uncovered following chemically induced erythro/megakaryopoietic stress. Unexpectedly, stress induced by bone marrow transplantation of ZBP89(-/-) HSPC also resulted in a myeloid-to-B lymphoid lineage switch in bone marrow recipients. The erythroid and myeloid/B lymphoid lineage anomalies in ZBP89(-/-) HSPC are reproduced in vitro in the ZBP-89-silenced multipotent hematopoietic cell line FDCP-Mix A4, and are associated with the upregulation of PU.1 and downregulation of SCL/Tal1 and GATA-1 in ZBP89-deficient cells. Chromatin immunoprecipitation and luciferase reporter assays show that ZBP-89 is a direct repressor of PU.1 and activator of SCL/Tal1 and GATA-1. These data identify an important role for ZBP-89 in regulating stress hematopoiesis in adult mouse bone marrow.
Collapse
Affiliation(s)
- Xiangen Li
- Leukocyte Biology & Inflammation Program, Division of Nephrology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
7
|
Sive JI, Göttgens B. Transcriptional network control of normal and leukaemic haematopoiesis. Exp Cell Res 2014; 329:255-64. [PMID: 25014893 PMCID: PMC4261078 DOI: 10.1016/j.yexcr.2014.06.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 06/26/2014] [Accepted: 06/28/2014] [Indexed: 12/23/2022]
Abstract
Transcription factors (TFs) play a key role in determining the gene expression profiles of stem/progenitor cells, and defining their potential to differentiate into mature cell lineages. TF interactions within gene-regulatory networks are vital to these processes, and dysregulation of these networks by TF overexpression, deletion or abnormal gene fusions have been shown to cause malignancy. While investigation of these processes remains a challenge, advances in genome-wide technologies and growing interactions between laboratory and computational science are starting to produce increasingly accurate network models. The haematopoietic system provides an attractive experimental system to elucidate gene regulatory mechanisms, and allows experimental investigation of both normal and dysregulated networks. In this review we examine the principles of TF-controlled gene regulatory networks and the key experimental techniques used to investigate them. We look in detail at examples of how these approaches can be used to dissect out the regulatory mechanisms controlling normal haematopoiesis, as well as the dysregulated networks associated with haematological malignancies.
Collapse
Affiliation(s)
- Jonathan I Sive
- Department of Haematology, Cambridge Institute for Medical Research and Wellcome Trust and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
| | - Berthold Göttgens
- Department of Haematology, Cambridge Institute for Medical Research and Wellcome Trust and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
8
|
Calero-Nieto FJ, Ng FS, Wilson NK, Hannah R, Moignard V, Leal-Cervantes AI, Jimenez-Madrid I, Diamanti E, Wernisch L, Göttgens B. Key regulators control distinct transcriptional programmes in blood progenitor and mast cells. EMBO J 2014; 33:1212-26. [PMID: 24760698 PMCID: PMC4168288 DOI: 10.1002/embj.201386825] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 02/27/2014] [Accepted: 03/20/2014] [Indexed: 12/21/2022] Open
Abstract
Despite major advances in the generation of genome-wide binding maps, the mechanisms by which transcription factors (TFs) regulate cell type identity have remained largely obscure. Through comparative analysis of 10 key haematopoietic TFs in both mast cells and blood progenitors, we demonstrate that the largely cell type-specific binding profiles are not opportunistic, but instead contribute to cell type-specific transcriptional control, because (i) mathematical modelling of differential binding of shared TFs can explain differential gene expression, (ii) consensus binding sites are important for cell type-specific binding and (iii) knock-down of blood stem cell regulators in mast cells reveals mast cell-specific genes as direct targets. Finally, we show that the known mast cell regulators Mitf and c-fos likely contribute to the global reorganisation of TF binding profiles. Taken together therefore, our study elucidates how key regulatory TFs contribute to transcriptional programmes in several distinct mammalian cell types.
Collapse
Affiliation(s)
- Fernando J Calero-Nieto
- Department of Haematology, Wellcome Trust and MRC Cambridge Stem Cell Institute, Cambridge Institute for Medical Research, Cambridge University, Cambridge, UK
| | - Felicia S Ng
- Department of Haematology, Wellcome Trust and MRC Cambridge Stem Cell Institute, Cambridge Institute for Medical Research, Cambridge University, Cambridge, UK
| | - Nicola K Wilson
- Department of Haematology, Wellcome Trust and MRC Cambridge Stem Cell Institute, Cambridge Institute for Medical Research, Cambridge University, Cambridge, UK
| | - Rebecca Hannah
- Department of Haematology, Wellcome Trust and MRC Cambridge Stem Cell Institute, Cambridge Institute for Medical Research, Cambridge University, Cambridge, UK
| | - Victoria Moignard
- Department of Haematology, Wellcome Trust and MRC Cambridge Stem Cell Institute, Cambridge Institute for Medical Research, Cambridge University, Cambridge, UK
| | - Ana I Leal-Cervantes
- Department of Haematology, Wellcome Trust and MRC Cambridge Stem Cell Institute, Cambridge Institute for Medical Research, Cambridge University, Cambridge, UK
| | - Isabel Jimenez-Madrid
- Department of Haematology, Wellcome Trust and MRC Cambridge Stem Cell Institute, Cambridge Institute for Medical Research, Cambridge University, Cambridge, UK
| | - Evangelia Diamanti
- Department of Haematology, Wellcome Trust and MRC Cambridge Stem Cell Institute, Cambridge Institute for Medical Research, Cambridge University, Cambridge, UK
| | - Lorenz Wernisch
- MRC Biostatistics Unit, Institute of Public Health, Cambridge, UK
| | - Berthold Göttgens
- Department of Haematology, Wellcome Trust and MRC Cambridge Stem Cell Institute, Cambridge Institute for Medical Research, Cambridge University, Cambridge, UK
| |
Collapse
|
9
|
Bonzanni N, Garg A, Feenstra KA, Schütte J, Kinston S, Miranda-Saavedra D, Heringa J, Xenarios I, Göttgens B. Hard-wired heterogeneity in blood stem cells revealed using a dynamic regulatory network model. Bioinformatics 2013; 29:i80-8. [PMID: 23813012 PMCID: PMC3694641 DOI: 10.1093/bioinformatics/btt243] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Motivation: Combinatorial interactions of transcription factors with cis-regulatory elements control the dynamic progression through successive cellular states and thus underpin all metazoan development. The construction of network models of cis-regulatory elements, therefore, has the potential to generate fundamental insights into cellular fate and differentiation. Haematopoiesis has long served as a model system to study mammalian differentiation, yet modelling based on experimentally informed cis-regulatory interactions has so far been restricted to pairs of interacting factors. Here, we have generated a Boolean network model based on detailed cis-regulatory functional data connecting 11 haematopoietic stem/progenitor cell (HSPC) regulator genes. Results: Despite its apparent simplicity, the model exhibits surprisingly complex behaviour that we charted using strongly connected components and shortest-path analysis in its Boolean state space. This analysis of our model predicts that HSPCs display heterogeneous expression patterns and possess many intermediate states that can act as ‘stepping stones’ for the HSPC to achieve a final differentiated state. Importantly, an external perturbation or ‘trigger’ is required to exit the stem cell state, with distinct triggers characterizing maturation into the various different lineages. By focusing on intermediate states occurring during erythrocyte differentiation, from our model we predicted a novel negative regulation of Fli1 by Gata1, which we confirmed experimentally thus validating our model. In conclusion, we demonstrate that an advanced mammalian regulatory network model based on experimentally validated cis-regulatory interactions has allowed us to make novel, experimentally testable hypotheses about transcriptional mechanisms that control differentiation of mammalian stem cells. Contact:j.heringa@vu.nl or ioannis.xenarios@isb-sib.ch or bg200@cam.ac.uk Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Nicola Bonzanni
- IBIVU Centre for Integrative Bioinformatics, VU University Amsterdam, AIMMS Amsterdam Institute for Molecules Medicines and Systems, VU University Amsterdam, De Boelelaan 1081, NKI-AVL The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Yamamizu K, Piao Y, Sharov A, Zsiros V, Yu H, Nakazawa K, Schlessinger D, Ko M. Identification of transcription factors for lineage-specific ESC differentiation. Stem Cell Reports 2013; 1:545-59. [PMID: 24371809 PMCID: PMC3871400 DOI: 10.1016/j.stemcr.2013.10.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 10/11/2013] [Accepted: 10/11/2013] [Indexed: 11/17/2022] Open
Abstract
A network of transcription factors (TFs) determines cell identity, but identity can be altered by overexpressing a combination of TFs. However, choosing and verifying combinations of TFs for specific cell differentiation have been daunting due to the large number of possible combinations of ∼2,000 TFs. Here, we report the identification of individual TFs for lineage-specific cell differentiation based on the correlation matrix of global gene expression profiles. The overexpression of identified TFs—Myod1, Mef2c, Esx1, Foxa1, Hnf4a, Gata2, Gata3, Myc, Elf5, Irf2, Elf1, Sfpi1, Ets1, Smad7, Nr2f1, Sox11, Dmrt1, Sox9, Foxg1, Sox2, or Ascl1—can direct efficient, specific, and rapid differentiation into myocytes, hepatocytes, blood cells, and neurons. Furthermore, transfection of synthetic mRNAs of TFs generates their appropriate target cells. These results demonstrate both the utility of this approach to identify potent TFs for cell differentiation, and the unanticipated capacity of single TFs directly guides differentiation to specific lineage fates. Lineage-determining single TFs are identified based on the correlation matrix A proof of concept is demonstrated for ESC differentiation by 21 TFs TFs orchestrate global gene expression changes via direct binding to target genes Transfections of synthetic TF mRNAs generate desired differentiated cells
Collapse
Affiliation(s)
- Kohei Yamamizu
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Yulan Piao
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Alexei A. Sharov
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Veronika Zsiros
- Unit on Genetics of Cognition and Behavior, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hong Yu
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Kazu Nakazawa
- Unit on Genetics of Cognition and Behavior, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Schlessinger
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Minoru S.H. Ko
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
- Department of Systems Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo 160-8582, Japan
- Japan Science and Technology Agency, CREST, Tokyo160-8582, Japan
- Corresponding author
| |
Collapse
|
11
|
Moignard V, Woodhouse S, Fisher J, Göttgens B. Transcriptional hierarchies regulating early blood cell development. Blood Cells Mol Dis 2013; 51:239-47. [PMID: 23948234 DOI: 10.1016/j.bcmd.2013.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 06/25/2013] [Indexed: 11/15/2022]
Abstract
Hematopoiesis represents one of the paradigmatic systems for studying stem cell biology, but our understanding of how the hematopoietic system develops during embryogenesis is still incomplete. While many lessons have been learned from studying the mouse embryo, embryonic stem cells have come to the fore as an alternative and more tractable model to recapitulate hematopoietic development. Here we review what is known about the embryonic origin of blood from these complementary systems and how transcription factor networks regulate the emergence of hematopoietic tissue from the mesoderm. Furthermore, we have performed an integrated analysis of genome-wide microarray and ChIP-seq data sets from mouse embryos and embryonic stem (ES) cell lines deficient in key regulators and demonstrate how this type of analysis can be used to reconstruct regulatory hierarchies that both confirm existing regulatory linkages and suggest additional interactions.
Collapse
Affiliation(s)
- Victoria Moignard
- University of Cambridge, Department of Haematology, Wellcome Trust and MRC Cambridge Stem Cell Institute and Cambridge Institute for Medical Research, Cambridge, CB2 0XY, UK
| | | | | | | |
Collapse
|
12
|
Moignard V, Macaulay IC, Swiers G, Buettner F, Schütte J, Calero-Nieto FJ, Kinston S, Joshi A, Hannah R, Theis FJ, Jacobsen SE, de Bruijn M, Göttgens B. Characterization of transcriptional networks in blood stem and progenitor cells using high-throughput single-cell gene expression analysis. Nat Cell Biol 2013; 15:363-72. [PMID: 23524953 PMCID: PMC3796878 DOI: 10.1038/ncb2709] [Citation(s) in RCA: 205] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Accepted: 02/08/2013] [Indexed: 12/15/2022]
Abstract
Cellular decision-making is mediated by a complex interplay of external stimuli with the intracellular environment, in particular transcription factor regulatory networks. Here we have determined the expression of a network of 18 key haematopoietic transcription factors in 597 single primary blood stem and progenitor cells isolated from mouse bone marrow. We demonstrate that different stem/progenitor populations are characterized by distinctive transcription factor expression states, and through comprehensive bioinformatic analysis reveal positively and negatively correlated transcription factor pairings, including previously unrecognized relationships between Gata2, Gfi1 and Gfi1b. Validation using transcriptional and transgenic assays confirmed direct regulatory interactions consistent with a regulatory triad in immature blood stem cells, where Gata2 may function to modulate cross-inhibition between Gfi1 and Gfi1b. Single-cell expression profiling therefore identifies network states and allows reconstruction of network hierarchies involved in controlling stem cell fate choices, and provides a blueprint for studying both normal development and human disease.
Collapse
Affiliation(s)
- Victoria Moignard
- University of Cambridge, Department of Haematology, Wellcome Trust and MRC Cambridge Stem Cell Institute & Cambridge Institute for Medical, Cambridge, CB2 0XY, United Kingdom
| | - Iain C. Macaulay
- Haematopoietic Stem Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, United Kingdom
| | - Gemma Swiers
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, United Kingdom
| | - Florian Buettner
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Ingolstadter Landstraße 1, 85764 Neuherberg, Germany
| | - Judith Schütte
- University of Cambridge, Department of Haematology, Wellcome Trust and MRC Cambridge Stem Cell Institute & Cambridge Institute for Medical, Cambridge, CB2 0XY, United Kingdom
| | - Fernando J. Calero-Nieto
- University of Cambridge, Department of Haematology, Wellcome Trust and MRC Cambridge Stem Cell Institute & Cambridge Institute for Medical, Cambridge, CB2 0XY, United Kingdom
| | - Sarah Kinston
- University of Cambridge, Department of Haematology, Wellcome Trust and MRC Cambridge Stem Cell Institute & Cambridge Institute for Medical, Cambridge, CB2 0XY, United Kingdom
| | - Anagha Joshi
- University of Cambridge, Department of Haematology, Wellcome Trust and MRC Cambridge Stem Cell Institute & Cambridge Institute for Medical, Cambridge, CB2 0XY, United Kingdom
| | - Rebecca Hannah
- University of Cambridge, Department of Haematology, Wellcome Trust and MRC Cambridge Stem Cell Institute & Cambridge Institute for Medical, Cambridge, CB2 0XY, United Kingdom
| | - Fabian J. Theis
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Ingolstadter Landstraße 1, 85764 Neuherberg, Germany
| | - Sten Eirik Jacobsen
- Haematopoietic Stem Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, United Kingdom
| | - Marella de Bruijn
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, United Kingdom
| | - Berthold Göttgens
- University of Cambridge, Department of Haematology, Wellcome Trust and MRC Cambridge Stem Cell Institute & Cambridge Institute for Medical, Cambridge, CB2 0XY, United Kingdom
| |
Collapse
|
13
|
Impaired in vitro erythropoiesis following deletion of the Scl (Tal1) +40 enhancer is largely compensated for in vivo despite a significant reduction in expression. Mol Cell Biol 2013; 33:1254-66. [PMID: 23319051 DOI: 10.1128/mcb.01525-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The Scl (Tal1) gene encodes a helix-loop-helix transcription factor essential for hematopoietic stem cell and erythroid development. The Scl +40 enhancer is situated downstream of Map17, the 3' flanking gene of Scl, and is active in transgenic mice during primitive and definitive erythropoiesis. To analyze the in vivo function of the Scl +40 enhancer within the Scl/Map17 transcriptional domain, we deleted this element in the germ line. Scl(Δ40/Δ40) mice were viable with reduced numbers of erythroid CFU in both bone marrow and spleen yet displayed a normal response to stress hematopoiesis. Analysis of Scl(Δ40/Δ40) embryonic stem (ES) cells revealed impaired erythroid differentiation, which was accompanied by a failure to upregulate Scl when erythropoiesis was initiated. Map17 expression was also reduced in hematopoietic tissues and differentiating ES cells, and the Scl +40 element was able to enhance activity of the Map17 promoter. However, only Scl but not Map17 could rescue the Scl(Δ40/Δ40) ES phenotype. Together, these data demonstrate that the Scl +40 enhancer is an erythroid cell-specific enhancer that regulates the expression of both Scl and Map17. Moreover, deletion of the +40 enhancer causes a novel erythroid phenotype, which can be rescued by ectopic expression of Scl but not Map17.
Collapse
|
14
|
Schütte J, Moignard V, Göttgens B. Establishing the stem cell state: insights from regulatory network analysis of blood stem cell development. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2012; 4:285-95. [PMID: 22334489 DOI: 10.1002/wsbm.1163] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Transcription factors (TFs) have long been recognized as powerful regulators of cell-type identity and differentiation. As TFs function as constituents of regulatory networks, identification and functional characterization of key interactions within these wider networks will be required to understand how TFs exert their powerful biological functions. The formation of blood cells (hematopoiesis) represents a widely used model system for the study of cellular differentiation. Moreover, specific TFs or groups of TFs have been identified to control the various cell fate choices that must be made when blood stem cells differentiate into more than a dozen distinct mature blood lineages. Because of the relative ease of accessibility, the hematopoietic system represents an attractive experimental system for the development of regulatory network models. Here, we review the modeling efforts carried out to date, which have already provided new insights into the molecular control of blood cell development. We also explore potential areas of future study such as the need for new high-throughput technologies and a focus on studying dynamic cellular systems. Many leukemias arise as the result of mutations that cause transcriptional dysregulation, thus suggesting that a better understanding of transcriptional control mechanisms in hematopoiesis is of substantial biomedical relevance. Moreover, lessons learned from regulatory network analysis in the hematopoietic system are likely to inform research on less experimentally tractable tissues.
Collapse
Affiliation(s)
- Judith Schütte
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
15
|
Li S, Zhang H, Gao P, Chen Z, Wang C, Li J. A functional mutation at position -155 in porcine APOE promoter affects gene expression. BMC Genet 2011; 12:40. [PMID: 21549015 PMCID: PMC3098798 DOI: 10.1186/1471-2156-12-40] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 05/09/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Apolipoprotein E, a component of the plasma lipoproteins, plays an important role in the transport and metabolism of cholesterol and other lipids. Three single nucleotide polymorphisms (SNPs) -491A>T, -219T>G and +113G>C in the regulatory region of human apolipoprotein E gene (APOE) change the promoter activity and are associated with a wide variety of disorders including Alzheimer disease (AD). Functional SNPs in porcine APOE gene 5' regulatory region have not been explored. RESULTS We examined SNPs within this region (from -831 to +855), and the analysis revealed that the T>A SNP at position -155 among these three polymorphism sites (-440, -155, +501) was found to exert a marked influence on the transcription of the porcine APOE gene. Electrophoretic mobility shift assays showed that the binding affinity of oligonucletides containing the -155A to transcription factor(s) was stronger than that of the -155T. Transient transfection assays and quantitative real-time PCR results revealed that the -155T>A variant enhanced the activity of the APOE promoter and was associated with increased APOE mRNA levels in vivo. CONCLUSIONS These data suggest that the -155T>A mutation in the promoter region of the porcine APOE gene is an important functional variant. The results provided new insights into aspects of pig genetics and might also facilitate the application of pigs in biomedical studies addressing important human diseases.
Collapse
Affiliation(s)
- Shixin Li
- Guangdong Provincial Key Lab of Agroanimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | | | | | | | | | | |
Collapse
|
16
|
Calero-Nieto FJ, Wood AD, Wilson NK, Kinston S, Landry JR, Göttgens B. Transcriptional regulation of Elf-1: locus-wide analysis reveals four distinct promoters, a tissue-specific enhancer, control by PU.1 and the importance of Elf-1 downregulation for erythroid maturation. Nucleic Acids Res 2010; 38:6363-74. [PMID: 20525788 PMCID: PMC2965225 DOI: 10.1093/nar/gkq490] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Ets transcription factors play important roles during the development and maintenance of the haematopoietic system. One such factor, Elf-1 (E74-like factor 1) controls the expression of multiple essential haematopoietic regulators including Scl/Tal1, Lmo2 and PU.1. However, to integrate Elf-1 into the wider regulatory hierarchies controlling haematopoietic development and differentiation, regulatory elements as well as upstream regulators of Elf-1 need to be identified. Here, we have used locus-wide comparative genomic analysis coupled with chromatin immunoprecipitation (ChIP-chip) assays which resulted in the identification of five distinct regulatory regions directing expression of Elf-1. Further, ChIP-chip assays followed by functional validation demonstrated that the key haematopoietic transcription factor PU.1 is a major upstream regulator of Elf-1. Finally, overexpression studies in a well-characterized erythroid differentiation assay from primary murine fetal liver cells demonstrated that Elf-1 downregulation is necessary for terminal erythroid differentiation. Given the known activation of PU.1 by Elf-1 and our newly identified reciprocal activation of Elf-1 by PU.1, identification of an inhibitory role for Elf-1 has significant implications for our understanding of how PU.1 controls myeloid-erythroid differentiation. Our findings therefore not only represent the first report of Elf-1 regulation but also enhance our understanding of the wider regulatory networks that control haematopoiesis.
Collapse
Affiliation(s)
- Fernando J Calero-Nieto
- Department of Haematology, Cambridge Institute for Medical Research, Cambridge University, Hills Road, Cambridge CB2 0XY, UK.
| | | | | | | | | | | |
Collapse
|
17
|
Suppressive effect of Elf-1 on FcεRI α-chain expression in primary mast cells. Immunogenetics 2008; 60:557-63. [DOI: 10.1007/s00251-008-0318-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Accepted: 06/25/2008] [Indexed: 10/21/2022]
|
18
|
Mast cell transcriptional networks. Blood Cells Mol Dis 2008; 41:82-90. [PMID: 18406636 DOI: 10.1016/j.bcmd.2008.02.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Accepted: 02/06/2008] [Indexed: 11/20/2022]
Abstract
Unregulated activation of mast cells can contribute to the pathogenesis of inflammatory and allergic diseases, including asthma, rheumatoid arthritis, inflammatory bowel disease, and multiple sclerosis. Absence of mast cells in animal models can lead to impairment in the innate immune response to parasites and bacterial infections. Aberrant clonal accumulation and proliferation of mast cells can result in a variety of diseases ranging from benign cutaneous mastocytosis to systemic mastocytosis or mast cell leukemia. Understanding mast cell differentiation provides important insights into mechanisms of lineage selection during hematopoiesis and can provide targets for new drug development to treat mast cell disorders. In this review, we discuss controversies related to development, sites of origin, and the transcriptional program of mast cells.
Collapse
|
19
|
Follows GA, Dhami P, Göttgens B, Bruce AW, Campbell PJ, Dillon SC, Smith AM, Koch C, Donaldson IJ, Scott MA, Dunham I, Janes ME, Vetrie D, Green AR. Identifying gene regulatory elements by genomic microarray mapping of DNaseI hypersensitive sites. Genome Res 2006; 16:1310-9. [PMID: 16963707 PMCID: PMC1581440 DOI: 10.1101/gr.5373606] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The identification of cis-regulatory elements is central to understanding gene transcription. Hypersensitivity of cis-regulatory elements to digestion with DNaseI remains the gold-standard approach to locating such elements. Traditional methods used to identify DNaseI hypersensitive sites are cumbersome and can only be applied to short stretches of DNA at defined locations. Here we report the development of a novel genomic array-based approach to DNaseI hypersensitive site mapping (ADHM) that permits precise, large-scale identification of such sites from as few as 5 million cells. Using ADHM we identified all previously recognized hematopoietic regulatory elements across 200 kb of the mouse T-cell acute lymphocytic leukemia-1 (Tal1) locus, and, in addition, identified two novel elements within the locus, which show transcriptional regulatory activity. We further validated the ADHM protocol by mapping the DNaseI hypersensitive sites across 250 kb of the human TAL1 locus in CD34+ primary stem/progenitor cells and K562 cells and by mapping the previously known DNaseI hypersensitive sites across 240 kb of the human alpha-globin locus in K562 cells. ADHM provides a powerful approach to identifying DNaseI hypersensitive sites across large genomic regions.
Collapse
Affiliation(s)
- George A Follows
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 2XY, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Zhu H, Traver D, Davidson AJ, Dibiase A, Thisse C, Thisse B, Nimer S, Zon LI. Regulation of the lmo2 promoter during hematopoietic and vascular development in zebrafish. Dev Biol 2006; 281:256-69. [PMID: 15893977 DOI: 10.1016/j.ydbio.2005.01.034] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Revised: 01/04/2005] [Accepted: 01/05/2005] [Indexed: 01/01/2023]
Abstract
The Lmo2 transcription factor, a T-cell oncoprotein, is required for both hematopoiesis and angiogenesis. To investigate the fate of lmo2-expressing cells and the transcriptional regulation of lmo2 in vivo, we generated stable transgenic zebrafish that express green fluorescent protein (EGFP) or DsRed under the control of an lmo2 promoter. A 2.5-kb fragment contains the cis-regulatory elements required to recapitulate endogenous lmo2 expression in embryonic hematopoietic and vascular tissues. We further characterized embryonic Lmo2+ cells through transplantation into vlad tepes (vlt), an erythropoietic mutant. These Lmo2+ primitive wave donor cells differentiated into circulating hematopoietic cells and extended the life span of vlt recipients, but did not demonstrate long-term repopulation of the erythroid lineage. Promoter analysis identified a 174-bp proximal promoter that was sufficient to recapitulate lmo2 expression. This element contains critical ETS-binding sites conserved between zebrafish and pufferfish. Furthermore, we show that ets1 is coexpressed with lmo2, and overexpression experiments indicate that ets1 can activate the lmo2 promoter through this element. Our studies elucidate the transcriptional regulation of this key transcription factor, and provide a transgenic system for the functional analysis of blood and blood vessels in zebrafish.
Collapse
Affiliation(s)
- Hao Zhu
- Division of Hematology/Oncology, Children's Hospital of Boston, Department of Pediatrics, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Bockamp E, Antunes C, Maringer M, Heck R, Presser K, Beilke S, Ohngemach S, Alt R, Cross M, Sprengel R, Hartwig U, Kaina B, Schmitt S, Eshkind L. Tetracycline-controlled transgenic targeting from the SCL locus directs conditional expression to erythrocytes, megakaryocytes, granulocytes, and c-kit-expressing lineage-negative hematopoietic cells. Blood 2006; 108:1533-41. [PMID: 16675709 DOI: 10.1182/blood-2005-12-012104] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The stem cell leukemia gene SCL, also known as TAL-1, encodes a basic helix-loop-helix transcription factor expressed in erythroid, myeloid, megakaryocytic, and hematopoietic stem cells. To be able to make use of the unique tissue-restricted and spatio-temporal expression pattern of the SCL gene, we have generated a knock-in mouse line containing the tTA-2S tetracycline transactivator under the control of SCL regulatory elements. Analysis of this mouse using different tetracycline-dependent reporter strains demonstrated that switchable transgene expression was restricted to erythrocytes, megakaryocytes, granulocytes, and, importantly, to the c-kit-expressing and lineage-negative cell fraction of the bone marrow. In addition, conditional transgene activation also was detected in a very minor population of endothelial cells and in the kidney. However, no activation of the reporter transgene was found in the brain of adult mice. These findings suggested that the expression of tetracycline-responsive reporter genes recapitulated the known endogenous expression pattern of SCL. Our data therefore demonstrate that exogenously inducible and reversible expression of selected transgenes in myeloid, megakaryocytic, erythroid, and c-kit-expressing lineage-negative bone marrow cells can be directed through SCL regulatory elements. The SCL knock-in mouse presented here represents a powerful tool for studying normal and malignant hematopoiesis in vivo.
Collapse
Affiliation(s)
- Ernesto Bockamp
- Institute of Toxicology/Mouse Genetics, Johannes Gutenberg-Universität Mainz, Obere Zahlbacher Str 67, 55131 Mainz, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Le Clech M, Chalhoub E, Dohet C, Roure V, Fichelson S, Moreau-Gachelin F, Mathieu D. PU.1/Spi-1 Binds to the Human TAL-1 Silencer to Mediate its Activity. J Mol Biol 2006; 355:9-19. [PMID: 16298389 DOI: 10.1016/j.jmb.2005.10.055] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Revised: 10/13/2005] [Accepted: 10/17/2005] [Indexed: 11/16/2022]
Abstract
The TAL-1/SCL gene encodes a basic helix-loop-helix (bHLH) transcription factor essential for primitive hematopoiesis and for adult erythroid and megakaryocytic development. Activated transcription of TAL-1 as a consequence of chromosomal rearrangements is associated with a high proportion of human T cell acute leukemias, showing that appropriate control of TAL-1 is crucial for the formation and subsequent fate of hematopoietic cells. Hence, the knowledge of the mechanisms, which govern the pattern of TAL-1 expression in hematopoiesis, is of great interest. We previously described a silencer in the 3'-untranslated region of human TAL-1, the activity of which is mediated through binding of a tissue-specific 40 kDa nuclear protein to a new DNA recognition motif, named tal-RE. Here, we show that tal-RE-binding activity, high in immature human hematopoietic progenitors is down regulated upon erythroid and megakaryocytic differentiation. This expression profile helped us to identify that PU.1/Spi-1 binds to the tal-RE sequences in vitro and occupies the TAL-1 silencer in vivo. By expressing a mutant protein containing only the ETS domain of PU.1 in human erythroleukemic HEL cells, we demonstrated that PU.1 mediates the transcriptional repression activity of the silencer. We found that ectopic PU.1 is not able to induce silencing activity in PU.1-negative Jurkat T cells, indicating that PU.1 activity, although necessary, is not sufficient to confer transcriptional repression activity to the TAL-1 silencer. Finally, we showed that the silencer is also active in TAL-1-negative myeloid HL60 cells that express PU.1 at high levels. In summary, our study shows that PU.1, in addition to its positive role in TAL-1 expression in early hematopoietic progenitors, may also act as a mediator of TAL-1 silencing in some hematopoietic lineages.
Collapse
Affiliation(s)
- Mikaël Le Clech
- Institut de Génétique Moléculaire-UMR5535-IFR22, CNRS 1919 Route de Mende F-34980 Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
23
|
Silberstein L, Sánchez MJ, Socolovsky M, Liu Y, Hoffman G, Kinston S, Piltz S, Bowen M, Gambardella L, Green AR, Göttgens B. Transgenic analysis of the stem cell leukemia +19 stem cell enhancer in adult and embryonic hematopoietic and endothelial cells. Stem Cells 2005; 23:1378-88. [PMID: 16051983 DOI: 10.1634/stemcells.2005-0090] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Appropriate transcriptional regulation is critical for the biological functions of many key regulatory genes, including the stem cell leukemia (SCL) gene. As part of a systematic dissection of SCL transcriptional regulation, we have previously identified a 5,245-bp SCL +18/19 enhancer that targeted embryonic endothelium together with embryonic and adult hematopoietic progenitors and stem cells (HSCs). This enhancer is proving to be a powerful tool for manipulating hematopoietic progenitors and stem cells, but the design and interpretation of such transgenic studies require a detailed understanding of enhancer activity in vivo. In this study, we demonstrate that the +18/19 enhancer is active in mast cells, megakaryocytes, and adult endothelium. A 644-bp +19 core enhancer exhibited similar temporal and spatial activity to the 5,245-bp +18/19 fragment both during development and in adult mice. Unlike the +18/19 enhancer, the +19 core enhancer was only active in adult mice when linked to the eukaryotic reporter gene human placental alkaline phosphatase. Activity of a single core enhancer in HSCs, endothelium, mast cells, and megakaryocytes suggests possible overlaps in their respective transcriptional programs. Moreover, activity in a proportion of thymocytes and other SCL-negative cell types suggests the existence of a silencer elsewhere in the SCL locus.
Collapse
Affiliation(s)
- Lev Silberstein
- Department of Hematology, Cambridge Institute for Medical Research, Cambridge University, Hills Road, Cambridge CB2 2XY, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Okuno Y, Huang G, Rosenbauer F, Evans EK, Radomska HS, Iwasaki H, Akashi K, Moreau-Gachelin F, Li Y, Zhang P, Göttgens B, Tenen DG. Potential autoregulation of transcription factor PU.1 by an upstream regulatory element. Mol Cell Biol 2005; 25:2832-45. [PMID: 15767686 PMCID: PMC1061634 DOI: 10.1128/mcb.25.7.2832-2845.2005] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Regulation of the hematopoietic transcription factor PU.1 (Spi-1) plays a critical role in the development of white cells, and abnormal expression of PU.1 can lead to leukemia. We previously reported that the PU.1 promoter cannot induce expression of a reporter gene in vivo, and cell-type-specific expression of PU.1 in stable lines was conferred by a 3.4-kb DNA fragment including a DNase I hypersensitive site located 14 kb upstream of the transcription start site. Here we demonstrate that this kb -14 site confers lineage-specific reporter gene expression in vivo. This kb -14 upstream regulatory element contains two 300-bp regions which are highly conserved in five mammalian species. In Friend virus-induced erythroleukemia, the spleen focus-forming virus integrates into the PU.1 locus between these two conserved regions. DNA binding experiments demonstrated that PU.1 itself and Elf-1 bind to a highly conserved site within the proximal homologous region in vivo. A mutation of this site abolishing binding of PU.1 and Elf-1 led to a marked decrease in the ability of this upstream element to direct activity of reporter gene in myelomonocytic cell lines. These data suggest that a potential positive autoregulatory loop mediated through an upstream regulatory element is essential for proper PU.1 gene expression.
Collapse
Affiliation(s)
- Yutaka Okuno
- Harvard Institutes of Medicine, Room 954, 77 Ave. Louis Pasteur, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Grabmaier K, A de Weijert MC, Verhaegh GW, Schalken JA, Oosterwijk E. Strict regulation of CAIX(G250/MN) by HIF-1alpha in clear cell renal cell carcinoma. Oncogene 2004; 23:5624-31. [PMID: 15184875 DOI: 10.1038/sj.onc.1207764] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Renal cell carcinoma of the clear cell type (ccRCC) is associated with loss of functional von Hippel-Lindau (VHL) protein and high, homogeneous expression of the G250MN protein, an isoenzyme of the carbonic anhydrase family. High expression of G250MN is found in all ccRCCs, but not in most normal tissues, including normal human kidney. We specifically studied the mechanism of transcriptional regulation of the CAIXG250 gene in RCC. Previous studies identified Sp1 and hypoxia-inducible factor (HIF) as main regulatory transcription factors of G250MN in various non-RCC backgrounds. However, G250MN regulation in RCC has not been studied and may be differently regulated in view of the HIF accumulation under normoxic conditions due to VHL mutations. Transient transfection of different G250MN promoter constructs revealed strong promoter activity in G250MN -positive RCC cell lines, but no activity in G250MN -negative cell lines. DNase-I footprint and band-shift analysis demonstrated that Sp1 and HIF-1alpha proteins in nuclear extracts of RCC cells bind to the CAIX promoter and mutations in the most proximal Sp1 binding element or HIF binding element completely abolished CAIX promoter activity, indicating their critical importance for the activation of G250 expression in RCC. A close correlation between HIF-1alpha expression and G250MN expression was observed. In contrast, no relationship between HIF-2alpha expression and G250MN was seen. The participation of cofactor CBP/p300 in the regulation of G250 transcription was shown. In conclusion, HIF-1alpha and Sp1, in combination with CBP/p300, are crucial elements for G250MN expression in ccRCC, and CAIXG250 can be regarded as a unique HIF-1alpha target gene in ccRCC.
Collapse
Affiliation(s)
- Karin Grabmaier
- Laboratory for Experimental Urology, 190-RT NCMLS, University Medical Center Nijmegen, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
26
|
McBride K, Charron F, Lefebvre C, Nemer M. Interaction with GATA transcription factors provides a mechanism for cell-specific effects of c-Fos. Oncogene 2003; 22:8403-12. [PMID: 14627981 DOI: 10.1038/sj.onc.1206877] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
c-Fos is a multifunctional transcription factor that is involved in cellular proliferation, differentiation and apoptosis. c-Fos is rapidly induced by a variety of hormones, growth factors and other extracellular stimuli, resulting in cell-specific responses. One potential mechanism underlying the cell-specific effects of c-Fos may be its ability to regulate gene expression through interaction with tissue-restricted transcription factors. We report here that c-Fos interacts with the cell-specific GATA proteins to potentiate their ability to transactivate target promoters, via GATA-binding sites. c-Fos is recruited to GATA proteins through direct interaction with their N-terminal activation domain. Neither the leucine zipper nor the DNA-binding domain of c-Fos is required for physical interaction with GATA proteins. Instead, a C-terminal domain located between amino acids 235 and 296, which is conserved in FosB but not in the nontransforming Fos family members, FosB/SF or Fra-1, is essential for c-Fos-GATA interaction. These data suggest that c-Fos may act as an inducible cofactor for cell-specific transcription factors and unravel a novel mechanism for transcriptional regulation by c-Fos, independent of the well-studied AP-1 pathway. The results also raise the possibility that dysregulated interaction with cell-specific transcription factors may be an important component in cellular transformation by nuclear oncogenes.
Collapse
Affiliation(s)
- Kevin McBride
- Laboratoire de Développement et différenciation cardiaques, Institut de recherches cliniques de Montréal, 110, avenue des Pins Ouest, Montréal, QC, Canada H2W 1R7
| | | | | | | |
Collapse
|
27
|
Lacorazza HD, Nimer SD. The emerging role of the myeloid Elf-1 like transcription factorin hematopoiesis. Blood Cells Mol Dis 2003; 31:342-50. [PMID: 14636650 DOI: 10.1016/s1079-9796(03)00162-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
MEF (myeloid Elf-1 like factor) is a member of the ETS family of transcription factors (TF) with transcriptional activating properties. ETS proteins have been implicated in widely divergent physiological and pathological processes (such as development and oncogenesis). MEF is expressed in non-hematopoietic and hematopoietic (lymphoid and myeloid) tissues, and after generating MEF-deficient mice by homologous recombination, we have studied its role in lymphopoiesis (Immunity 17 (2002), 437). MEF plays a critical role in NK and NK-T cell development and the constitutive expression of perforin by NK cells. MEF interacts with other TFs such as AML1 (Runx1) and with the cyclin A/cdk2 kinase complex. In this review, we discuss the biology of MEF in the context of the other members of this family of transcriptional regulators.
Collapse
Affiliation(s)
- H Daniel Lacorazza
- Laboratory of Molecular Aspects of Hematopoiesis, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA.
| | | |
Collapse
|
28
|
Chapman MA, Charchar FJ, Kinston S, Bird CP, Grafham D, Rogers J, Grützner F, Graves JAM, Green AR, Göttgens B. Comparative and functional analyses of LYL1 loci establish marsupial sequences as a model for phylogenetic footprinting. Genomics 2003; 81:249-59. [PMID: 12659809 DOI: 10.1016/s0888-7543(03)00005-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Comparative genomic sequence analysis is a powerful technique for identifying regulatory regions in genomic DNA. However, its utility largely depends on the evolutionary distances between the species involved. Here we describe the screening of a genomic BAC library from the stripe-faced dunnart, Sminthopsis macroura, formerly known as the narrow-footed marsupial mouse. We isolated a clone containing the LYL1 locus, completely sequenced the 60.6-kb insert, and compared it with orthologous human and mouse sequences. Noncoding homology was substantially reduced in the human/dunnart analysis compared with human/mouse, yet we could readily identify all promoters and exons. Human/mouse/dunnart alignments of the LYL1 candidate promoter allowed us to identify putative transcription factor binding sites, revealing a pattern highly reminiscent of critical regulatory regions of the LYL1 paralogue, SCL. This newly identified LYL1 promoter showed strong activity in myeloid progenitor cells and was bound in vivo by Fli1, Elf1, and Gata2-transcription factors all previously shown to bind to the SCL stem cell enhancer. This study represents the first large-scale comparative analysis involving marsupial genomic sequence and demonstrates that such comparisons provide a powerful approach to characterizing mammalian regulatory elements.
Collapse
Affiliation(s)
- Michael A Chapman
- Department of Haematology, Cambridge Institute for Medical Research, Cambridge University, Hills Road, Cambridge CB2 2XY, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Rao MK, Maiti S, Ananthaswamy HN, Wilkinson MF. A highly active homeobox gene promoter regulated by Ets and Sp1 family members in normal granulosa cells and diverse tumor cell types. J Biol Chem 2002; 277:26036-45. [PMID: 11986330 DOI: 10.1074/jbc.m203374200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
One mechanism by which normal cells become converted to tumor cells involves the aberrant transcriptional activation of genes that are normally silent. We characterize a promoter that normally exhibits highly tissue- and stage-specific expression but displays ubiquitous expression when cells become immortalized or malignant, regardless of their lineage or tissue origin. This promoter normally drives the expression of the Pem homeobox gene in specific cell types in ovary and placenta but is aberrantly expressed in lymphomas, neuroblastomas, retinoblastomas, carcinomas, and sarcomas. By deletion analysis we identified a region between nucleotides -80 and -104 that was absolutely critical for the expression from this distal Pem promoter (Pem Pd). Site-specific mutagenesis and transfection studies revealed that this region contains two consensus Ets sites and a single Sp1 site that were necessary for Pem Pd expression. Gel shift analysis showed that Ets and Sp1 family members bound to these sites. Transfection studies demonstrated that the Ets family members Elf1 and Gabp and the Sp1 family members Sp1 and Sp3 transactivated the Pem Pd. Surprisingly, we found that Sp3 was a more potent activator of the Pem Pd than was Sp1; this is unusual, because Sp3 is either a weak activator or a repressor of most other promoters. Activation by either Elf1 or Gabp required an intact Sp1 family member binding site, suggesting that Ets and Sp1 family members cooperate to activate Pem Pd transcription. Expression from the Pem Pd (either transiently transfected or endogenous) depended on the Ras pathway, which could explain both its Ets- and Sp1-dependent expression in normal cells and its aberrant expression in tumor cells, in which ras protooncogenes are frequently mutated. We suggest that the Pem Pd may be a useful model system to understand the molecular mechanism by which a tissue-specific promoter can be corrupted in tumor cells.
Collapse
Affiliation(s)
- Manjeet K Rao
- Department of Immunology, the University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
30
|
Göttgens B, Nastos A, Kinston S, Piltz S, Delabesse EC, Stanley M, Sanchez MJ, Ciau-Uitz A, Patient R, Green AR. Establishing the transcriptional programme for blood: the SCL stem cell enhancer is regulated by a multiprotein complex containing Ets and GATA factors. EMBO J 2002; 21:3039-50. [PMID: 12065417 PMCID: PMC126046 DOI: 10.1093/emboj/cdf286] [Citation(s) in RCA: 182] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2002] [Revised: 04/18/2002] [Accepted: 04/18/2002] [Indexed: 12/22/2022] Open
Abstract
Stem cells are a central feature of metazoan biology. Haematopoietic stem cells (HSCs) represent the best-characterized example of this phenomenon, but the molecular mechanisms responsible for their formation remain obscure. The stem cell leukaemia (SCL) gene encodes a basic helix-loop-helix (bHLH) transcription factor with an essential role in specifying HSCs. Here we have addressed the transcriptional hierarchy responsible for HSC formation by characterizing an SCL 3' enhancer that targets expression to HSCs and endothelium and their bipotential precursors, the haemangioblast. We have identified three critical motifs, which are essential for enhancer function and bind GATA-2, Fli-1 and Elf-1 in vivo. Our results suggest that these transcription factors are key components of an enhanceosome responsible for activating SCL transcription and establishing the transcriptional programme required for HSC formation.
Collapse
Affiliation(s)
- Berthold Göttgens
- University of Cambridge Department of Haematology, Cambridge Institute for Medical Research, Hills Road, Cambridge CB2 2XY and
Institute of Genetics, Nottingham University, Queen’s Medical Centre, Nottingham NG7 2UH, UK Corresponding author e-mail:
| | - Aristotelis Nastos
- University of Cambridge Department of Haematology, Cambridge Institute for Medical Research, Hills Road, Cambridge CB2 2XY and
Institute of Genetics, Nottingham University, Queen’s Medical Centre, Nottingham NG7 2UH, UK Corresponding author e-mail:
| | | | | | | | | | | | - Aldo Ciau-Uitz
- University of Cambridge Department of Haematology, Cambridge Institute for Medical Research, Hills Road, Cambridge CB2 2XY and
Institute of Genetics, Nottingham University, Queen’s Medical Centre, Nottingham NG7 2UH, UK Corresponding author e-mail:
| | - Roger Patient
- University of Cambridge Department of Haematology, Cambridge Institute for Medical Research, Hills Road, Cambridge CB2 2XY and
Institute of Genetics, Nottingham University, Queen’s Medical Centre, Nottingham NG7 2UH, UK Corresponding author e-mail:
| | | |
Collapse
|
31
|
Nishiyama C, Takahashi K, Ohtake Y, Yokota T, Okumura K, Ogawa H, Ra C. Analysis of transactivation region of Elf-1 by using a yeast one-hybrid system. Biosci Biotechnol Biochem 2002; 66:1105-7. [PMID: 12092822 DOI: 10.1271/bbb.66.1105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The transcriptional regulatory region of Elf-1 was analyzed by the combination of a yeast one-hybrid system and site-directed mutagenesis. This analysis enabled us to map an activation region between 85-175 of Elf-1.
Collapse
Affiliation(s)
- Chiharu Nishiyama
- Allergy Research Center, Juntendo University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
32
|
Göttgens B, Barton LM, Chapman MA, Sinclair AM, Knudsen B, Grafham D, Gilbert JGR, Rogers J, Bentley DR, Green AR. Transcriptional regulation of the stem cell leukemia gene (SCL)--comparative analysis of five vertebrate SCL loci. Genome Res 2002; 12:749-59. [PMID: 11997341 PMCID: PMC186570 DOI: 10.1101/gr.45502] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2001] [Accepted: 03/19/2002] [Indexed: 12/25/2022]
Abstract
The stem cell leukemia (SCL) gene encodes a bHLH transcription factor with a pivotal role in hematopoiesis and vasculogenesis and a pattern of expression that is highly conserved between mammals and zebrafish. Here we report the isolation and characterization of the zebrafish SCL locus together with the identification of three neighboring genes, IER5, MAP17, and MUPP1. This region spans 68 kb and comprises the longest zebrafish genomic sequence currently available for comparison with mammalian, chicken, and pufferfish sequences. Our data show conserved synteny between zebrafish and mammalian SCL and MAP17 loci, thus suggesting the likely genomic domain necessary for the conserved pattern of SCL expression. Long-range comparative sequence analysis/phylogenetic footprinting was used to identify noncoding conserved sequences representing candidate transcriptional regulatory elements. The SCL promoter/enhancer, exon 1, and the poly(A) region were highly conserved, but no homology to other known mouse SCL enhancers was detected in the zebrafish sequence. A combined homology/structure analysis of the poly(A) region predicted consistent structural features, suggesting a conserved functional role in mRNA regulation. Analysis of the SCL promoter/enhancer revealed five motifs, which were conserved from zebrafish to mammals, and each of which is essential for the appropriate pattern or level of SCL transcription.
Collapse
Affiliation(s)
- Berthold Göttgens
- Cambridge Institute for Medical Research, Cambridge University, Cambridge, CB2 2XY, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Bloor AJC, Sánchez MJ, Green AR, Göttgens B. The role of the stem cell leukemia (SCL) gene in hematopoietic and endothelial lineage specification. JOURNAL OF HEMATOTHERAPY & STEM CELL RESEARCH 2002; 11:195-206. [PMID: 11983093 DOI: 10.1089/152581602753658402] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Anatomical observations made at the beginning of the twentieth century revealed an intimate association between the ontogeny of blood and endothelium and led to the hypothesis of a common cell of origin termed the hemangioblast. However, the precise nature of the cellular intermediates involved in the development of both lineages from uncommitted precursors to mature cell types is still the subject of ongoing studies, as are the molecular mechanisms driving this process. There is clear evidence that lineage-restricted transcription factors play a central role in the genesis of mature lineage committed cells from multipotent progenitors. Amongst these, the basic helix-loop-helix (bHLH) family is of key importance for cell fate determination in the development of the hematopoietic system and beyond. This article will review the current evidence for the common origin of blood and endothelium, focusing on the function of the bHLH protein encoded by the stem cell leukemia (SCL) gene, and its role as a pivotal regulator of hematopoiesis and vasculogenesis.
Collapse
Affiliation(s)
- Adrian J C Bloor
- Cambridge University Department of Haematology, Cambridge Institute for Medical Research, Hills Road, Cambridge, CB2 2XY, UK
| | | | | | | |
Collapse
|
34
|
Sánchez MJ, Bockamp EO, Miller J, Gambardella L, Green AR. Selective rescue of early haematopoietic progenitors in Scl–/– mice by expressing Scl under the control of a stem cell enhancer. Development 2001; 128:4815-27. [PMID: 11731461 DOI: 10.1242/dev.128.23.4815] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The stem cell leukaemia gene (Scl) encodes a basic helix-loop-helix transcription factor with a pivotal role in both haematopoiesis and endothelial development. During mouse development, Scl is first expressed in extra-embryonic mesoderm, and is required for the generation of all haematopoietic lineages and normal yolk sac angiogenesis. Ectopic expression of Scl during zebrafish development specifies haemangioblast formation from early mesoderm. These results suggest that SCL is essential for establishing the transcriptional programme responsible for the formation of haematopoietic stem cells and have focused attention on the transcriptional regulation of Scl itself. Previous studies have identified a panel of Scl enhancers each of which directed expression to a subdomain of the normal Scl expression pattern. Among them, a 3′ enhancer directed expression during development to vascular endothelium and haematopoietic progenitors but not to Ter119+ erythroid cells. The expression in haematopoietic stem cells, however, remained undetermined. We demonstrate that this 3′ enhancer directs lacZ expression in transgenic mice to most foetal and adult long-term repopulating haematopoietic stem cells, and therefore functions as a stem cell enhancer. Consistent with these results, expression in Scl–/– embryos of exogenous Scl driven by the stem cell enhancer rescued the formation of early haematopoietic progenitors and also resulted in normal yolk sac angiogenesis. By contrast, erythropoiesis remained markedly deficient in rescued embryos. This observation is consistent with the inactivity of the stem cell enhancer in erythroid cells and reveals an essential role for SCL during erythroid differentiation in vivo.
Collapse
Affiliation(s)
- M J Sánchez
- University of Cambridge, Department of Haematology, CIMR Centre, Hills Road, Cambridge CB2 2XY, UK.
| | | | | | | | | |
Collapse
|
35
|
Garrett-Sinha LA, Dahl R, Rao S, Barton KP, Simon MC. PU.1 exhibits partial functional redundancy with Spi-B, but not with Ets-1 or Elf-1. Blood 2001; 97:2908-12. [PMID: 11313289 DOI: 10.1182/blood.v97.9.2908] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previously it was shown that the Ets proteins, PU.1 and Spi-B, exhibit functional redundancy in B lymphocytes. To investigate the possibility that PU.1 or Spi-B or both share overlapping roles with Ets-1 or Elf-1, PU.1(+/-)Ets-1(-/-), PU.1(+/-)Elf-1(-/-), and Spi-B(-/-)Ets-1(-/-) animals were generated. No blood cell defects were observed in these animals except those previously reported for Ets-1(-/-) mice. Therefore, no genetic overlap was detected between PU.1 or Spi-B with Ets-1 or Elf-1. In contrast, the results confirmed functional redundancy for PU.1 and Spi-B in that PU.1(+/-)Spi-B(-/-) bone marrow progenitors yielded smaller colonies in methylcellulose cultures than did wild-type, PU.1(+/-) or Spi-B(-/-) progenitors. In addition, PU.1(+/-)Spi-B(+/+), PU.1(+/-)Spi-B(+/-), and PU.1(+/-) Spi-B(-/-) mice displayed extramedullary splenic hematopoiesis. In summary, PU.1 and Spi-B regulate common target genes required for proliferation of hematopoietic progenitors or their committed descendants, whereas Ets-1 or Elf-1 do not appear to regulate shared target genes with PU.1 or Spi-B.
Collapse
Affiliation(s)
- L A Garrett-Sinha
- Department of Medicine and Pathology, University of Chicago, IL, USA
| | | | | | | | | |
Collapse
|
36
|
Abstract
Chromosomal translocations involving transcription factors and aberrant expression of transcription factors are frequently associated with leukemogenesis. Transcription factors are essential in maintaining the regulation of cell growth, development, and differentiation in the hematopoietic system. Alterations in the mechanisms that normally control these functions can lead to hematological malignancies. Further characterization of the molecular biology of leukemia will enhance our ability to develop disease-specific treatment strategies, and to develop effective methods of diagnosis and prognosis.
Collapse
Affiliation(s)
- H N Crans
- Department of Pediatrics, UCLA School of Medicine and Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | | |
Collapse
|
37
|
Göttgens B, Gilbert JG, Barton LM, Grafham D, Rogers J, Bentley DR, Green AR. Long-range comparison of human and mouse SCL loci: localized regions of sensitivity to restriction endonucleases correspond precisely with peaks of conserved noncoding sequences. Genome Res 2001; 11:87-97. [PMID: 11156618 PMCID: PMC311011 DOI: 10.1101/gr.153001] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2000] [Accepted: 10/12/2000] [Indexed: 11/24/2022]
Abstract
Long-range comparative sequence analysis provides a powerful strategy for identifying conserved regulatory elements. The stem cell leukemia (SCL) gene encodes a bHLH transcription factor with a pivotal role in hemopoiesis and vasculogenesis, and it displays a highly conserved expression pattern. We present here a detailed sequence comparison of 193 kb of the human SCL locus to 234 kb of the mouse SCL locus. Four new genes have been identified together with an ancient mitochondrial insertion in the human locus. The SCL gene is flanked upstream by the SIL gene and downstream by the MAP17 gene in both species, but the gene order is not collinear downstream from MAP17. To facilitate rapid identification of candidate regulatory elements, we have developed a new sequence analysis tool (SynPlot) that automates the graphical display of large-scale sequence alignments. Unlike existing programs, SynPlot can display the locus features of more than one sequence, thereby indicating the position of homology peaks relative to the structure of all sequences in the alignment. In addition, high-resolution analysis of the chromatin structure of the mouse SCL gene permitted the accurate positioning of localized zones accessible to restriction endonucleases. Zones known to be associated with functional regulatory regions were found to correspond precisely with peaks of human/mouse homology, thus demonstrating that long-range human/mouse sequence comparisons allow accurate prediction of the extent of accessible DNA associated with active regulatory regions.
Collapse
Affiliation(s)
- B Göttgens
- The Wellcome Trust Centre for Molecular Mechanisms in Disease, Cambridge Institute for Medical Research, Addenbrooke's Hospital Site, Cambridge CB2 2XY, UK.
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Ets is a family of transcription factors present in species ranging from sponges to human. All family members contain an approximately 85 amino acid DNA binding domain, designated the Ets domain. Ets proteins bind to specific purine-rich DNA sequences with a core motif of GGAA/T, and transcriptionally regulate a number of viral and cellular genes. Thus, Ets proteins are an important family of transcription factors that control the expression of genes that are critical for several biological processes, including cellular proliferation, differentiation, development, transformation, and apoptosis. Here, we tabulate genes that are regulated by Ets factors and describe past, present and future strategies for the identification and validation of Ets target genes. Through definition of authentic target genes, we will begin to understand the mechanisms by which Ets factors control normal and abnormal cellular processes.
Collapse
Affiliation(s)
- V I Sementchenko
- Center for Molecular and Structural Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, SC 29403, USA
| | | |
Collapse
|
39
|
Nishiyama C, Takahashi K, Nishiyama M, Okumura K, Ra C, Ohtake Y, Yokota T. Splice isoforms of transcription factor Elf-1 affecting its regulatory function in transcription-molecular cloning of rat Elf-1. Biosci Biotechnol Biochem 2000; 64:2601-7. [PMID: 11210123 DOI: 10.1271/bbb.64.2601] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To elucidate the role of Elf-1 in Fc epsilonRI alpha chain expression, rat Elf-1 cDNAs were isolated and characterized. The rat Elf-1 cDNA of 2744 bp contained an open reading frame of 1848 bp. In addition to the full length rat Elf-1 cDNA (named type 1), two splice isoforms were isolated. One of the two isoforms lacked the amino acid residues from 85th to 120th (type 2), and the other from 85th to 175th (type 3). Similar isoforms were also observed in human tissue. Overexpression of rat Elf-1 (type 1) using a transient coexpression system inhibited of the alpha chain promoter activity. The inhibition activity was different between the isoforms; the inhibition activity of type 2 was lower than that of type 1, and type 3 did not have an inhibitory effect. This observation suggested that each Elf-1 isoform played a different role in the gene expression under its control.
Collapse
Affiliation(s)
- C Nishiyama
- Foods & Pharmaceuticals Research & Development Laboratory, Asahi Breweries, Ltd., Kitasoma-gun, Ibaraki, Japan.
| | | | | | | | | | | | | |
Collapse
|
40
|
Göttgens B, Barton LM, Gilbert JG, Bench AJ, Sanchez MJ, Bahn S, Mistry S, Grafham D, McMurray A, Vaudin M, Amaya E, Bentley DR, Green AR, Sinclair AM. Analysis of vertebrate SCL loci identifies conserved enhancers. Nat Biotechnol 2000; 18:181-6. [PMID: 10657125 DOI: 10.1038/72635] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The SCL gene encodes a highly conserved bHLH transcription factor with a pivotal role in hemopoiesis and vasculogenesis. We have sequenced and analyzed 320 kb of genomic DNA composing the SCL loci from human, mouse, and chicken. Long-range sequence comparisons demonstrated multiple peaks of human/mouse homology, a subset of which corresponded precisely with known SCL enhancers. Comparisons between mammalian and chicken sequences identified some, but not all, SCL enhancers. Moreover, one peak of human/mouse homology (+23 region), which did not correspond to a known enhancer, showed significant homology to an analogous region of the chicken SCL locus. A transgenic Xenopus reporter assay was established and demonstrated that the +23 region contained a new neural enhancer. This combination of long-range comparative sequence analysis with a high-throughput transgenic bioassay provides a powerful strategy for identifying and characterizing developmentally important enhancers.
Collapse
Affiliation(s)
- B Göttgens
- University of Cambridge, Department of Haematology, MRC Centre, Hills Road, Cambridge CB2 2QH, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Courtes C, Lecointe N, Le Cam L, Baudoin F, Sardet C, Mathieu-Mahul D. Erythroid-specific inhibition of the tal-1 intragenic promoter is due to binding of a repressor to a novel silencer. J Biol Chem 2000; 275:949-58. [PMID: 10625632 DOI: 10.1074/jbc.275.2.949] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The basic helix-loop-helix tal-1 gene plays a key role in hematopoiesis, and its expression is tightly controlled through alternative promoters and complex interactions of cis-acting regulatory elements. tal-1 is not expressed in normal T cells, but its transcription is constitutive in a large proportion of human T cell leukemias. We have previously described a downstream initiation of tal-1 transcription specifically associated with a subset of T cell leukemias that leads to the production of NH(2)-truncated TAL-1 proteins. In this study, we characterize the human promoter (promoter IV), embedded within a GC-rich region in exon IV, responsible for this transcriptional activity. The restriction of promoter IV usage is assured by a novel silencer element in the 3'-untranslated region of the human gene that represses its activity in erythroid but not in T cells. The silencer activity is mediated through binding of a tissue-specific nuclear factor to a novel protein recognition motif (designated tal-RE) in the silencer. Mutation of a single residue within the tal-RE abolishes both specific protein binding and silencing activity. Altogether, our results demonstrate that the tal-1 promoter IV is actively repressed in cells of the erythro-megakaryocytic lineage and that this repression is released in leukemic T cells, resulting in the expression of the tal-1 truncated transcript.
Collapse
Affiliation(s)
- C Courtes
- Institut de Génétique Moléculaire, UMR 5535, IFR 24, 1919 Route de Mende, F 34293, Montpellier, France
| | | | | | | | | | | |
Collapse
|
42
|
Barton LM, Göttgens B, Green AR. The stem cell leukaemia (SCL) gene: a critical regulator of haemopoietic and vascular development. Int J Biochem Cell Biol 1999; 31:1193-207. [PMID: 10582347 DOI: 10.1016/s1357-2725(99)00082-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- L M Barton
- Department of Haematology, University of Cambridge, MRC Centre, UK
| | | | | |
Collapse
|
43
|
Sánchez M, Göttgens B, Sinclair AM, Stanley M, Begley CG, Hunter S, Green AR. An SCL 3′ enhancer targets developing endothelium together with embryonic and adult haematopoietic progenitors. Development 1999; 126:3891-904. [PMID: 10433917 DOI: 10.1242/dev.126.17.3891] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The SCL gene encodes a basic helix-loop-helix transcription factor which is expressed in early haematopoietic progenitors throughout ontogeny and is essential for the normal development of blood and blood vessels. Transgenic studies have characterised spatially distinct 5′ enhancers which direct lacZ expression to subdomains of the normal SCL expression pattern, but the same elements failed to produce appropriate haematopoietic expression. We now describe an SCL 3′ enhancer with unique properties. It directed lacZ expression in transgenic mice to extra-embryonic mesoderm and subsequently to both endothelial cells and to a subset of blood cells at multiple sites of embryonic haematopoiesis including the yolk sac, para-aortic splanchnopleura and AGM region. The 3′ enhancer also targeted expression to haematopoietic progenitors in both foetal liver and adult bone marrow. Purified lacZ(+)cells were highly enriched for clonogenic myeloid and erythroid progenitors as well as day-12 spleen colony forming units (CFU-S). Within the total gated population from bone marrow, 95% of the myeloid and 90% of the erythroid colony-forming cells were contained in the lacZ(+) fraction, as were 98% of the CFU-S. Activation of the enhancer did not require SCL protein. On the contrary, transgene expression in yolk sacs was markedly increased in an SCL−/− background, suggesting that SCL is subject to negative autoregulation. Alternatively the SCL−/− environment may alter differentiation of extra-embryonic mesoderm and result in an increased number of cells capable of expressing high levels of the transgene. Our data represents the first description of an enhancer that integrates information necessary for expression in developing endothelium and early haematopoietic progenitors at distinct times and sites throughout ontogeny. This enhancer provides a potent tool for the manipulation of haematopoiesis and vasculogenesis in vivo.
Collapse
Affiliation(s)
- M Sánchez
- University of Cambridge, Department of Haematology, MRC Centre, Hills Road, Cambridge CB2 2QH, UK
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
The development of T cells and B cells from pluripotent hematopoietic precursors occurs through a stepwise narrowing of developmental potential that ends in lineage commitment. During this process, lineage-specific genes are activated asynchronously, and lineage-inappropriate genes, although initially expressed, are asynchronously turned off. These complex gene expression events are the outcome of the changes in expression of multiple transcription factors with partially overlapping roles in early lymphocyte and myeloid cell development. Key transcription factors promoting B-cell development and candidates for this role in T-cell development are discussed in terms of their possible modes of action in fate determination. We discuss how a robust, stable, cell-type-specific gene expression pattern may be established in part by the interplay between endogenous transcription factors and signals transduced by cytokine receptors, and in part by the network of effects of particular transcription factors on each other.
Collapse
Affiliation(s)
- E V Rothenberg
- Division of Biology 156-29, California Institute of Technology, Pasadena, California 91125, USA.
| | | | | |
Collapse
|
45
|
|
46
|
|
47
|
Sinclair AM, Göttgens B, Barton LM, Stanley ML, Pardanaud L, Klaine M, Gering M, Bahn S, Sanchez M, Bench AJ, Fordham JL, Bockamp E, Green AR. Distinct 5' SCL enhancers direct transcription to developing brain, spinal cord, and endothelium: neural expression is mediated by GATA factor binding sites. Dev Biol 1999; 209:128-42. [PMID: 10208748 DOI: 10.1006/dbio.1999.9236] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The SCL gene encodes a basic helix-loop-helix transcription factor with a pivotal role in the development of endothelium and of all hematopoietic lineages. SCL is also expressed in the central nervous system, although its expression pattern has not been examined in detail and its function in neural development is unknown. In this article we present the first analysis of SCL transcriptional regulation in vivo. We have identified three spatially distinct regulatory modules, each of which was both necessary and sufficient to direct reporter gene expression in vivo to three different regions within the normal SCL expression domain, namely, developing endothelium, midbrain, and hindbrain/spinal cord. In addition we have demonstrated that GATA factor binding sites are essential for neural expression of the SCL constructs. The midbrain element was particularly powerful and axonal lacZ expression revealed the details of axonal projections, thus implicating SCL in the development of occulomotor, pupillary, or retinotectal pathways. The neural expression pattern of the SCL gene was highly conserved in mouse, chicken, and zebrafish embryos and the 5' region of the chicken SCL locus exhibited a striking degree of functional conservation in transgenic mice. These data suggest that SCL performs critical functions in neural development. The regulatory elements identified here provide important tools for analyzing these functions.
Collapse
Affiliation(s)
- A M Sinclair
- Department of Haematology, University of Cambridge, MRC Centre, Hills Road, Cambridge, CB2 2QH, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|