1
|
Cheung BB, Kleynhans A, Mittra R, Kim PY, Holien JK, Nagy Z, Ciampa OC, Seneviratne JA, Mayoh C, Raipuria M, Gadde S, Massudi H, Wong IPL, Tan O, Gong A, Suryano A, Diakiw SM, Liu B, Arndt GM, Liu T, Kumar N, Sangfelt O, Zhu S, Norris MD, Haber M, Carter DR, Parker MW, Marshall GM. A novel combination therapy targeting ubiquitin-specific protease 5 in MYCN-driven neuroblastoma. Oncogene 2021; 40:2367-2381. [PMID: 33658627 PMCID: PMC8016666 DOI: 10.1038/s41388-021-01712-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 01/31/2023]
Abstract
Histone deacetylase (HDAC) inhibitors are effective in MYCN-driven cancers, because of a unique need for HDAC recruitment by the MYCN oncogenic signal. However, HDAC inhibitors are much more effective in combination with other anti-cancer agents. To identify novel compounds which act synergistically with HDAC inhibitor, such as suberanoyl hydroxamic acid (SAHA), we performed a cell-based, high-throughput drug screen of 10,560 small molecule compounds from a drug-like diversity library and identified a small molecule compound (SE486-11) which synergistically enhanced the cytotoxic effects of SAHA. Effects of drug combinations on cell viability, proliferation, apoptosis and colony forming were assessed in a panel of neuroblastoma cell lines. Treatment with SAHA and SE486-11 increased MYCN ubiquitination and degradation, and markedly inhibited tumorigenesis in neuroblastoma xenografts, and, MYCN transgenic zebrafish and mice. The combination reduced ubiquitin-specific protease 5 (USP5) levels and increased unanchored polyubiquitin chains. Overexpression of USP5 rescued neuroblastoma cells from the cytopathic effects of the combination and reduced unanchored polyubiquitin, suggesting USP5 is a therapeutic target of the combination. SAHA and SE486-11 directly bound to USP5 and the drug combination exhibited a 100-fold higher binding to USP5 than individual drugs alone in microscale thermophoresis assays. MYCN bound to the USP5 promoter and induced USP5 gene expression suggesting that USP5 and MYCN expression created a forward positive feedback loop in neuroblastoma cells. Thus, USP5 acts as an oncogenic cofactor with MYCN in neuroblastoma and the novel combination of HDAC inhibitor with SE486-11 represents a novel therapeutic approach for the treatment of MYCN-driven neuroblastoma.
Collapse
Affiliation(s)
- Belamy B Cheung
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia.
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia.
| | - Ane Kleynhans
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Rituparna Mittra
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Patrick Y Kim
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Jessica K Holien
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC, Australia
| | - Zsuzsanna Nagy
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Olivia C Ciampa
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Janith A Seneviratne
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Chelsea Mayoh
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Mukesh Raipuria
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Satyanarayana Gadde
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Chemistry, UNSW Sydney, Sydney, NSW, Australia
| | - Hassina Massudi
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Iris Poh Ling Wong
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Owen Tan
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Andrew Gong
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Aldwin Suryano
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Sonya M Diakiw
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Bing Liu
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Greg M Arndt
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Tao Liu
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Naresh Kumar
- School of Chemistry, UNSW Sydney, Sydney, NSW, Australia
| | - Olle Sangfelt
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Shizhen Zhu
- Department of Biochemistry and Molecular Biology, Cancer Center and Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Murray D Norris
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- University of New South Wales Centre for Childhood Cancer Research, Sydney, NSW, Australia
| | - Michelle Haber
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Daniel R Carter
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, Australia
| | - Michael W Parker
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Glenn M Marshall
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia.
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia.
| |
Collapse
|
2
|
González-Velasco Ó, De Las Rivas J, Lacal J. Proteomic and Transcriptomic Profiling Identifies Early Developmentally Regulated Proteins in Dictyostelium Discoideum. Cells 2019; 8:cells8101187. [PMID: 31581556 PMCID: PMC6830349 DOI: 10.3390/cells8101187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 09/26/2019] [Indexed: 02/06/2023] Open
Abstract
Cyclic AMP acts as a secondary messenger involving different cellular functions in eukaryotes. Here, proteomic and transcriptomic profiling has been combined to identify novel early developmentally regulated proteins in eukaryote cells. These proteomic and transcriptomic experiments were performed in Dictyostelium discoideum given the unique advantages that this organism offers as a eukaryotic model for cell motility and as a nonmammalian model of human disease. By comparing whole-cell proteome analysis of developed (cAMP-pulsed) wild-type AX2 cells and an independent transcriptomic analysis of developed wild-type AX4 cells, our results show that up to 70% of the identified proteins overlap in the two independent studies. Among them, we have found 26 proteins previously related to cAMP signaling and identified 110 novel proteins involved in calcium signaling, adhesion, actin cytoskeleton, the ubiquitin-proteasome pathway, metabolism, and proteins that previously lacked any annotation. Our study validates previous findings, mostly for the canonical cAMP-pathway, and also generates further insight into the complexity of the transcriptomic changes during early development. This article also compares proteomic data between parental and cells lacking glkA, a GSK-3 kinase implicated in substrate adhesion and chemotaxis in Dictyostelium. This analysis reveals a set of proteins that show differences in expression in the two strains as well as overlapping protein level changes independent of GlkA.
Collapse
Affiliation(s)
- Óscar González-Velasco
- Bioinformatics and Functional Genomics Research Group. Cancer Research Center (CIC-IBMCC, CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - Javier De Las Rivas
- Bioinformatics and Functional Genomics Research Group. Cancer Research Center (CIC-IBMCC, CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - Jesus Lacal
- Department of Microbiology and Genetics, Faculty of Biology, University of Salamanca, 37007 Salamanca, Spain.
| |
Collapse
|
3
|
Santarriaga S, Fikejs A, Scaglione J, Scaglione KM. A Heat Shock Protein 48 (HSP48) Biomolecular Condensate Is Induced during Dictyostelium discoideum Development. mSphere 2019; 4:e00314-19. [PMID: 31217303 PMCID: PMC6584373 DOI: 10.1128/msphere.00314-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/04/2019] [Indexed: 11/20/2022] Open
Abstract
The social amoeba Dictyostelium discoideum's proteome contains a vast array of simple sequence repeats, providing a unique model to investigate proteostasis. Upon conditions of cellular stress, D. discoideum undergoes a developmental process, transitioning from a unicellular amoeba to a multicellular fruiting body. Little is known about how proteostasis is maintained during D. discoideum's developmental process. Here, we have identified a novel α-crystallin domain-containing protein, heat shock protein 48 (HSP48), that is upregulated during D. discoideum development. HSP48 functions in part by forming a biomolecular condensate via its highly positively charged intrinsically disordered carboxy terminus. In addition to HSP48, the highly negatively charged primordial chaperone polyphosphate is also upregulated during D. discoideum development, and polyphosphate functions to stabilize HSP48. Upon germination, levels of both HSP48 and polyphosphate dramatically decrease, consistent with a role for HSP48 and polyphosphate during development. Together, our data demonstrate that HSP48 is strongly induced during Dictyostelium discoideum development. We also demonstrate that HSP48 forms a biomolecular condensate and that polyphosphate is necessary to stabilize the HSP48 biomolecular condensate.IMPORTANCE During cellular stress, many microbes undergo a transition to a dormant state. This includes the social amoeba Dictyostelium discoideum that transitions from a unicellular amoeba to a multicellular fruiting body upon starvation. In this work, we identify heat shock protein 48 (HSP48) as a chaperone that is induced during development. We also show that HSP48 forms a biomolecular condensate and is stabilized by polyphosphate. The findings here identify Dictyostelium discoideum as a novel microbe to investigate protein quality control pathways during the transition to dormancy.
Collapse
Affiliation(s)
| | - Alicia Fikejs
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jamie Scaglione
- Department of Computational and Physical Sciences, Carroll University, Waukesha, Wisconsin, USA
| | - K Matthew Scaglione
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
4
|
Wang Z, Zhang H, Liu C, Xing J, Chen XL. A Deubiquitinating Enzyme Ubp14 Is Required for Development, Stress Response, Nutrient Utilization, and Pathogenesis of Magnaporthe oryzae. Front Microbiol 2018; 9:769. [PMID: 29720973 PMCID: PMC5915541 DOI: 10.3389/fmicb.2018.00769] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 04/04/2018] [Indexed: 02/02/2023] Open
Abstract
Ubiquitination is an essential protein modification in eukaryotic cells, which is reversible. Deubiquitinating enzymes (DUBs) catalyze deubiquitination process to reverse ubiquitination, maintain ubiquitin homeostasis or promote protein degradation by recycling ubiquitins. In order to investigate effects of deubiquitination process in plant pathogenic fungus Magnaporthe oryzae, we generated deletion mutants of MoUBP14. Ortholog of MoUbp14 was reported to play general roles in ubiquitin-mediated protein degradation in Saccharomyces cerevisiae. The ΔMoubp14 mutant lost its pathogenicity and was severely reduced in mycelial growth, sporulation, carbon source utilization, and increased in sensitivity to distinct stresses. The mutant was blocked in penetration, which could due to defect in turgor generation. It is also blocked in invasive growth, which could due to reduction in stress tolerance and nutrient utilization. Deletion of UBP14 also led to accumulation of free polyubiquitin chains. Pulldown assay identified some proteins related to carbohydrate metabolism and stress response may putatively interact with MoUbp14, including two key rate-limiting enzymes of gluconeogenesis, MoFbp1 and MoPck1. These two proteins were degraded when the glucose was supplied to M. oryzae grown in low glucose media for a short period of time (∼12 h), and this process required MoUbp14. In summary, pleiotropic phenotypes of the deletion mutants indicated that MoUbp14 is required for different developments and pathogenicity of M. oryzae.
Collapse
Affiliation(s)
- Zhao Wang
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hong Zhang
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Caiyun Liu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Junjie Xing
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
| | - Xiao-Lin Chen
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
| |
Collapse
|
5
|
Pergolizzi B, Bozzaro S, Bracco E. G-Protein Dependent Signal Transduction and Ubiquitination in Dictyostelium. Int J Mol Sci 2017; 18:ijms18102180. [PMID: 29048338 PMCID: PMC5666861 DOI: 10.3390/ijms18102180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/12/2017] [Accepted: 10/16/2017] [Indexed: 12/20/2022] Open
Abstract
Signal transduction through G-protein-coupled receptors (GPCRs) is central for the regulation of virtually all cellular functions, and it has been widely implicated in human diseases. These receptors activate a common molecular switch that is represented by the heterotrimeric G-protein generating a number of second messengers (cAMP, cGMP, DAG, IP3, Ca2+ etc.), leading to a plethora of diverse cellular responses. Spatiotemporal regulation of signals generated by a given GPCR is crucial for proper signalling and is accomplished by a series of biochemical modifications. Over the past few years, it has become evident that many signalling proteins also undergo ubiquitination, a posttranslational modification that typically leads to protein degradation, but also mediates processes such as protein-protein interaction and protein subcellular localization. The social amoeba Dictyostelium discoideum has proven to be an excellent model to investigate signal transduction triggered by GPCR activation, as cAMP signalling via GPCR is a major regulator of chemotaxis, cell differentiation, and multicellular morphogenesis. Ubiquitin ligases have been recently involved in these processes. In the present review, we will summarize the most significant pathways activated upon GPCRs stimulation and discuss the role played by ubiquitination in Dictyostelium cells.
Collapse
Affiliation(s)
- Barbara Pergolizzi
- Department of Clinical and Biological Sciences, University of Turin, AOUS. Luigi, 10043 Orbassano TO, Italy.
| | - Salvatore Bozzaro
- Department of Clinical and Biological Sciences, University of Turin, AOUS. Luigi, 10043 Orbassano TO, Italy.
| | - Enrico Bracco
- Department of Oncology, University of Turin, AOU S. Luigi, 10043 Orbassano TO, Italy.
| |
Collapse
|
6
|
Fan X, Huang Q, Ye X, Lin Y, Chen Y, Lin X, Qu J. Drosophila USP5 controls the activation of apoptosis and the Jun N-terminal kinase pathway during eye development. PLoS One 2014; 9:e92250. [PMID: 24643212 PMCID: PMC3958489 DOI: 10.1371/journal.pone.0092250] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 02/20/2014] [Indexed: 11/18/2022] Open
Abstract
The Jun N-terminal kinase pathway plays an important role in inducing programmed cell death (apoptosis) and is activated in a variety of contexts. The deubiquitinating enzymes (DUBs) are proteases regulating the protein stability by ubiquitin-proteasome system. Here, for the first time, we report the phenotypes observed during eye development that are induced by deleting Drosophila USP5 gene, which encodes one of the USP subfamily of DUBs. usp5 mutants displayed defects in photoreceptor differentiation. Using genetic epistasis analysis and molecular markers, we show that most of these phenotypes are caused by the activation of apoptosis and JNK pathway. These data may provide a mechanistic model for understanding the mammalian usp5 gene.
Collapse
Affiliation(s)
- Xiaolan Fan
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qinzhu Huang
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaolei Ye
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi Lin
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuting Chen
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinhua Lin
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jia Qu
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- * E-mail:
| |
Collapse
|
7
|
Danielson CM, Hope TJ. Using antiubiquitin antibodies to probe the ubiquitination state within rhTRIM5α cytoplasmic bodies. AIDS Res Hum Retroviruses 2013; 29:1373-85. [PMID: 23799296 DOI: 10.1089/aid.2013.0029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The first line of defense protecting rhesus macaques from HIV-1 is the restriction factor rhTRIM5α, which recognizes the capsid core of the virus early after entry and normally blocks infection prior to reverse transcription. Cytoplasmic bodies containing rhTRIM5α have been implicated in the ubiquitin-proteasome pathway, but the specific roles these structures play remain uncharacterized. Here, we examine the ubiquitination status of cytoplasmic body proteins. Using antibodies specific for different forms of ubiquitin, we show that ubiquitinated proteins are present in cytoplasmic bodies, and that this localization is altered after proteasome inhibition. A decrease in polyubiquitinated proteins localizing to cytoplasmic bodies was apparent after 1 h of proteasome inhibition, and greater differences were seen after extended proteasome inhibition. The decrease in polyubiquitin conjugates within cytoplasmic bodies was also observed when deubiquitinating enzymes were inhibited, suggesting that the removal of ubiquitin moieties from polyubiquitinated cytoplasmic body proteins after extended proteasome inhibition is not responsible for this phenomenon. Superresolution structured illumination microscopy revealed finer details of rhTRIM5α cytoplasmic bodies and the polyubiquitin conjugates that localize to these structures. Finally, linkage-specific polyubiquitin antibodies revealed that K48-linked ubiquitin chains localize to rhTRIM5α cytoplasmic bodies, implicating these structures in proteasomal degradation. Differential staining of cytoplasmic bodies seen with different polyubiquitin antibodies suggests that structural changes occur during proteasome inhibition that alter epitope availability. Taken together, it is likely that rhTRIM5α cytoplasmic bodies are involved in recruiting components of the ubiquitin-proteasome system to coordinate proteasomal destruction of a viral or cellular protein(s) during restriction of HIV-1.
Collapse
Affiliation(s)
- Cindy M. Danielson
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Thomas J. Hope
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
8
|
Lass A, Cocklin R, Scaglione KM, Skowyra M, Korolev S, Goebl M, Skowyra D. The loop-less tmCdc34 E2 mutant defective in polyubiquitination in vitro and in vivo supports yeast growth in a manner dependent on Ubp14 and Cka2. Cell Div 2011; 6:7. [PMID: 21453497 PMCID: PMC3080790 DOI: 10.1186/1747-1028-6-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 03/31/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The S73/S97/loop motif is a hallmark of the Cdc34 family of E2 ubiquitin-conjugating enzymes that together with the SCF E3 ubiquitin ligases promote degradation of proteins involved in cell cycle and growth regulation. The inability of the loop-less Δ12Cdc34 mutant to support growth was linked to its inability to catalyze polyubiquitination. However, the loop-less triple mutant (tm) Cdc34, which not only lacks the loop but also contains the S73K and S97D substitutions typical of the K73/D97/no loop motif present in other E2s, supports growth. Whether tmCdc34 supports growth despite defective polyubiquitination, or the S73K and S97D substitutions, directly or indirectly, correct the defect caused by the loop absence, are unknown. RESULTS tmCdc34 supports yeast viability with normal cell size and cell cycle profile despite producing fewer polyubiquitin conjugates in vivo and in vitro. The in vitro defect in Sic1 substrate polyubiquitination is similar to the defect observed in reactions with Δ12Cdc34 that cannot support growth. The synthesis of free polyubiquitin by tmCdc34 is activated only modestly and in a manner dependent on substrate recruitment to SCFCdc4. Phosphorylation of C-terminal serines in tmCdc34 by Cka2 kinase prevents the synthesis of free polyubiquitin chains, likely by promoting their attachment to substrate. Nevertheless, tmCDC34 yeast are sensitive to loss of the Ubp14 C-terminal ubiquitin hydrolase and DUBs other than Ubp14 inefficiently disassemble polyubiquitin chains produced in tmCDC34 yeast extracts, suggesting that the free chains, either synthesized de novo or recycled from substrates, have an altered structure. CONCLUSIONS The catalytic motif replacement compromises polyubiquitination activity of Cdc34 and alters its regulation in vitro and in vivo, but either motif can support Cdc34 function in yeast viability. Robust polyubiquitination mediated by the S73/S97/loop motif is thus not necessary for Cdc34 role in yeast viability, at least under typical laboratory conditions.
Collapse
Affiliation(s)
- Agnieszka Lass
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Ross Cocklin
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kenneth M Scaglione
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.,Dept. of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Michael Skowyra
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.,Dept. of Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sergey Korolev
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Mark Goebl
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Dorota Skowyra
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| |
Collapse
|
9
|
Properties of natural and artificial proteins displaying multiple ubiquitin-binding domains. Biochem Soc Trans 2010; 38:40-5. [DOI: 10.1042/bst0380040] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ubiquitylation provides a rapid alternative to control the activity of crucial cellular factors through the remodelling of a target protein. Diverse ubiquitin chains are recognized by domains with affinity for UBDs (ubiquitin-binding domains) present in receptor/effector proteins. Interestingly, some proteins contain more than one UBD and the preservation of this structure in many species suggests an evolutionary advantage for this topology. Here, we review some typical proteins that naturally contain more than one UBD and emphasize how such structures contribute to the mechanism they mediate. Characteristics such as higher affinities for polyubiquitin chains and chain-linkage preferences can be replicated by the TUBEs (tandem ubiquitin-binding entities). Furthermore, TUBEs show two additional properties: protection of ubiquitylated substrates from deubiquitylating enzymes and interference with the action of the proteasome. Consequently, TUBEs behave as ‘ubiquitin traps’ that efficiently capture endogenous ubiquitylated proteins. Interpretations and hypothetical models proposed by different groups to understand the synchronous action of multiple UBDs are discussed herein.
Collapse
|
10
|
Reyes-Turcu FE, Ventii KH, Wilkinson KD. Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu Rev Biochem 2009; 78:363-97. [PMID: 19489724 DOI: 10.1146/annurev.biochem.78.082307.091526] [Citation(s) in RCA: 1105] [Impact Index Per Article: 73.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Deubiquitinating enzymes (DUBs) are proteases that process ubiquitin or ubiquitin-like gene products, reverse the modification of proteins by a single ubiquitin(-like) protein, and remodel polyubiquitin(-like) chains on target proteins. The human genome encodes nearly 100 DUBs with specificity for ubiquitin in five gene families. Most DUB activity is cryptic, and conformational rearrangements often occur during the binding of ubiquitin and/or scaffold proteins. DUBs with specificity for ubiquitin contain insertions and extensions modulating DUB substrate specificity, protein-protein interactions, and cellular localization. Binding partners and multiprotein complexes with which DUBs associate modulate DUB activity and substrate specificity. Quantitative studies of activity and protein-protein interactions, together with genetic studies and the advent of RNAi, have led to new insights into the function of yeast and human DUBs. This review discusses ubiquitin-specific DUBs, some of the generalizations emerging from recent studies of the regulation of DUB activity, and their roles in various cellular processes.
Collapse
Affiliation(s)
- Francisca E Reyes-Turcu
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
11
|
Characterization of a REG/PA28 proteasome activator homolog in Dictyostelium discoideum indicates that the ubiquitin- and ATP-independent REGgamma proteasome is an ancient nuclear protease. EUKARYOTIC CELL 2009; 8:844-51. [PMID: 19411624 DOI: 10.1128/ec.00165-08] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The nuclear proteasome activator REGgamma/PA28gamma is an ATP- and ubiquitin-independent activator of the 20S proteasome and has been proposed to degrade and thereby regulate both a key human oncogene, encoding the coactivator SRC-3/AIB1, and the cyclin-dependent kinase inhibitor p21 (Waf/Cip1). We report the identification and characterization of a PA28/REG homolog in Dictyostelium. Association of a recombinant Dictyostelium REG with the purified Dictyostelium 20S proteasome led to the preferential stimulation of the trypsin-like proteasome peptidase activity. Immunolocalization studies demonstrated that the proteasome activator is localized to the nucleus and is present in growing as well as starving Dictyostelium cells. Our results indicate that the Dictyostelium PA28/REG activator can stimulate both the trypsin-like and chymotrypsin-like activities of the 20S proteasome and supports the idea that the REGgamma-20S proteasome represents an early unique nuclear degradation pathway for eukaryotic cells.
Collapse
|
12
|
Annesley SJ, Fisher PR. Dictyostelium discoideum--a model for many reasons. Mol Cell Biochem 2009; 329:73-91. [PMID: 19387798 DOI: 10.1007/s11010-009-0111-8] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 04/02/2009] [Indexed: 10/25/2022]
Abstract
The social amoeba or cellular slime mould Dictyostelium discoideum is a "professional" phagocyte that has long been recognized for its value as a biomedical model organism, particularly in studying the actomyosin cytoskeleton and chemotactic motility in non-muscle cells. The complete genome sequence of D. discoideum is known, it is genetically tractable, readily grown clonally as a eukaryotic microorganism and is highly accessible for biochemical, cell biological and physiological studies. These are the properties it shares with other microbial model organisms. However, Dictyostelium combines these with a unique life style, with motile unicellular and multicellular stages, and multiple cell types that offer for study an unparalleled variety of phenotypes and associated signalling pathways. These advantages have led to its recent emergence as a valuable model organism for studying the molecular pathogenesis and treatment of human disease, including a variety of infectious diseases caused by bacterial and fungal pathogens. Perhaps surprisingly, this organism, without neurons or brain, has begun to yield novel insights into the cytopathology of mitochondrial diseases as well as other genetic and idiopathic disorders affecting the central nervous system. Dictyostelium has also contributed significantly to our understanding of NDP kinase, as it was the Dictyostelium enzyme whose structure was first determined and related to enzymatic activity. The phenotypic richness and tractability of Dictyostelium should provide a fertile arena for future exploration of NDPK's cellular roles.
Collapse
Affiliation(s)
- Sarah J Annesley
- Department of Microbiology, La Trobe University, Bundoora, VIC 3086, Australia
| | | |
Collapse
|
13
|
|
14
|
Dayal S, Sparks A, Jacob J, Allende-Vega N, Lane DP, Saville MK. Suppression of the deubiquitinating enzyme USP5 causes the accumulation of unanchored polyubiquitin and the activation of p53. J Biol Chem 2008; 284:5030-41. [PMID: 19098288 DOI: 10.1074/jbc.m805871200] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Both p53 and its repressor Mdm2 are subject to ubiquitination and proteasomal degradation. We show that knockdown of the deubiquitinating enzyme USP5 (isopeptidase T) results in an increase in the level and transcriptional activity of p53. Suppression of USP5 stabilizes p53, whereas it has little or no effect on the stability of Mdm2. This provides a mechanism for transcriptional activation of p53. USP5 knockdown interferes with the degradation of ubiquitinated p53 rather than attenuating p53 ubiquitination. In vitro studies have shown that a preferred substrate for USP5 is unanchored polyubiquitin. Consistent with this, we observed for the first time in a mammalian system that USP5 makes a major contribution to Lys-48-linked polyubiquitin disassembly and that suppression of USP5 results in the accumulation of unanchored polyubiquitin chains. Ectopic expression of a C-terminal mutant of ubiquitin (G75A/G76A), which also causes the accumulation of free polyubiquitin, recapitulates the effects of USP5 knockdown on the p53 pathway. We propose a model in which p53 is selectively stabilized because the unanchored polyubiquitin that accumulates after USP5 knockdown is able to compete with ubiquitinated p53 but not with Mdm2 for proteasomal recognition. This raises the possibility that there are significant differences in proteasomal recognition of p53 and Mdm2. These differences could be exploited therapeutically. Our study reveals a novel mechanism for regulation of p53 and identifies USP5 as a potential target for p53 activating therapeutic agents for the treatment of cancer.
Collapse
Affiliation(s)
- Saurabh Dayal
- CR-UK Cell Transformation Research Group, Department of Surgery and Molecular Oncology, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland
| | | | | | | | | | | |
Collapse
|
15
|
Reyes-Turcu FE, Shanks JR, Komander D, Wilkinson KD. Recognition of polyubiquitin isoforms by the multiple ubiquitin binding modules of isopeptidase T. J Biol Chem 2008; 283:19581-92. [PMID: 18482987 DOI: 10.1074/jbc.m800947200] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The conjugation of polyubiquitin to target proteins acts as a signal that regulates target stability, localization, and function. Several ubiquitin binding domains have been described, and while much is known about ubiquitin binding to the isolated domains, little is known with regard to how the domains interact with polyubiquitin in the context of full-length proteins. Isopeptidase T (IsoT/USP5) is a deubiquitinating enzyme that is largely responsible for the disassembly of unanchored polyubiquitin in the cell. IsoT has four ubiquitin binding domains: a zinc finger domain (ZnF UBP), which binds the proximal ubiquitin, a UBP domain that forms the active site, and two ubiquitin-associated (UBA) domains whose roles are unknown. Here, we show that the UBA domains are involved in binding two different polyubiquitin isoforms, linear and K48-linked. Using isothermal titration calorimetry, we show that IsoT has at least four ubiquitin binding sites for both polyubiquitin isoforms. The thermodynamics of the interactions reveal that the binding is enthalpy-driven. Mutation of the UBA domains suggests that UBA1 and UBA2 domains of IsoT interact with the third and fourth ubiquitins in both polyubiquitin isoforms, respectively. These data suggest that recognition of the polyubiquitin isoforms by IsoT involves considerable conformational mobility in the polyubiquitin ligand, in the enzyme, or in both.
Collapse
Affiliation(s)
- Francisca E Reyes-Turcu
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
16
|
Whitney N, Pearson LJ, Lunsford R, McGill L, Gomer RH, Lindsey DF. A putative Ariadne-like ubiquitin ligase is required for Dictyostelium discoideum development. EUKARYOTIC CELL 2006; 5:1820-5. [PMID: 17031003 PMCID: PMC1595333 DOI: 10.1128/ec.00077-06] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Dictyostelium rbrA gene encodes a putative Ariadne ubiquitin ligase. rbrA(-) cells form defective slugs that cannot phototax. Prestalk cell numbers are reduced in rbrA(-) slugs, and these prestalk cells do not localize to the tip of slugs. Chimeric slugs containing wild-type cells could phototax and form fruiting bodies.
Collapse
Affiliation(s)
- Nathaniel Whitney
- Department of Biological Sciences, Walla Walla College, 204 S. College Ave., College Place, WA 99324, USA
| | | | | | | | | | | |
Collapse
|
17
|
Reyes-Turcu FE, Horton JR, Mullally JE, Heroux A, Cheng X, Wilkinson KD. The ubiquitin binding domain ZnF UBP recognizes the C-terminal diglycine motif of unanchored ubiquitin. Cell 2006; 124:1197-208. [PMID: 16564012 DOI: 10.1016/j.cell.2006.02.038] [Citation(s) in RCA: 260] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Revised: 01/14/2006] [Accepted: 02/28/2006] [Indexed: 11/28/2022]
Abstract
Ubiquitin binding proteins regulate the stability, function, and/or localization of ubiquitinated proteins. Here we report the crystal structures of the zinc-finger ubiquitin binding domain (ZnF UBP) from the deubiquitinating enzyme isopeptidase T (IsoT, or USP5) alone and in complex with ubiquitin. Unlike other ubiquitin binding domains, this domain contains a deep binding pocket where the C-terminal diglycine motif of ubiquitin is inserted, thus explaining the specificity of IsoT for an unmodified C terminus on the proximal subunit of polyubiquitin. Mutations in the domain demonstrate that it is required for optimal catalytic activation of IsoT. This domain is present in several other protein families, and the ZnF UBP domain from an E3 ligase also requires the C terminus of ubiquitin for binding. These data suggest that binding the ubiquitin C terminus may be necessary for the function of other proteins.
Collapse
|
18
|
Wang Y, Marotti LA, Lee MJ, Dohlman HG. Differential regulation of G protein alpha subunit trafficking by mono- and polyubiquitination. J Biol Chem 2004; 280:284-91. [PMID: 15519996 DOI: 10.1074/jbc.m411624200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previously we used mass spectrometry to show that the yeast G protein alpha subunit Gpa1 is ubiquitinated at Lys-165, located within a subdomain not present in other G alpha proteins (Marotti, L. A., Jr., Newitt, R., Wang, Y., Aebersold, R., and Dohlman, H. G. (2002) Biochemistry 41, 5067-5074). Here we describe the functional role of Gpa1 ubiquitination. We find that Gpa1 expression is elevated in mutants deficient in either proteasomal or vacuolar protease function. Vacuolar protease pep4 mutants accumulate monoubiquitinated Gpa1, and much of the protein is localized within the vacuolar compartment. In contrast, proteasome-defective rpt6/cim3 mutants accumulate polyubiquitinated Gpa1, and in this case the protein exhibits cytoplasmic localization. Cells that lack Ubp12 ubiquitin-processing protease activity accumulate both mono- and polyubiquitinated forms of Gpa1. In this case, Gpa1 accumulates in both the cytoplasm and vacuole. Finally, a Gpa1 mutant that lacks the ubiquitinated subdomain remains unmodified and is predominantly localized at the plasma membrane. These data reveal a strong relationship between the extent of ubiquitination and trafficking of the G protein alpha subunit to its site of degradation.
Collapse
Affiliation(s)
- Yuqi Wang
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599-7260, USA
| | | | | | | |
Collapse
|
19
|
Guerin NA, Larochelle DA. A user's guide to restriction enzyme-mediated integration in Dictyostelium. J Muscle Res Cell Motil 2003; 23:597-604. [PMID: 12952058 DOI: 10.1023/a:1024494704863] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Restriction enzyme-mediated integration (REMI) has been used to study a number of cellular and developmental processes in Dictyostelium discoideum. In this paper we review the basics of this powerful method of introducing random mutations in Dictyostelium. Here we discuss several mutation screens that have been devised and some of the genes that have been discovered through this approach to mutagenesis. Included in this discussion is how one goes about isolating a gene that has been disrupted by REMI, and how one confirms that this disruption is actually responsible for the observed phenotype. Finally, we describe how REMI can be used as an effective teaching tool in undergraduate cell biology laboratory courses.
Collapse
Affiliation(s)
- Nicholas A Guerin
- Department of Biology, Clark University, 950 Main Street, Worcester, MA 01610, USA
| | | |
Collapse
|
20
|
Deubiquitinating enzymes--the importance of driving in reverse along the ubiquitin-proteasome pathway. Int J Biochem Cell Biol 2003; 35:590-605. [PMID: 12672452 DOI: 10.1016/s1357-2725(02)00392-8] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Ubiquitination of proteins is now recognized to target proteins for degradation by the proteasome and for internalization into the lysosomal system, as well as to modify functions of some target proteins. Although much progress has been made in characterizing enzymes that link ubiquitin to proteins, our understanding of deubiquitinating enzymes is less developed. These enzymes are involved in processing the products of ubiquitin genes which all encode fusion proteins, in negatively regulating the functions of ubiquitination (editing), in regenerating free ubiquitin after proteins have been targeted to the proteasome or lysosome (recycling) and in salvaging ubiquitin from possible adducts formed with small molecule nucleophiles in the cell. A large number of genes encode deubiquitinating enzymes suggesting that many have highly specific and regulated functions. Indeed, recent findings provide strong support for the concept that ubiquitination is regulated by both specific pathways of ubiquitination and deubiquitination. Interestingly, many of these enzymes are localized to subcellular structures or to molecular complexes. These localizations play important roles in determining specificity of function and can have major influences on their catalytic activities. Future studies, particularly aimed at characterizing the interacting partners and potential substrates in these complexes as well as at determining the effects of loss of function of specific deubiquitinating enzymes will rapidly advance our understanding of the important roles of these enzymes as biological regulators.
Collapse
|
21
|
Fischer JA. Deubiquitinating enzymes: their roles in development, differentiation, and disease. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 229:43-72. [PMID: 14669954 DOI: 10.1016/s0074-7696(03)29002-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The ubiquitin-mediated proteolysis pathway has come a long way in the past decade. At first thought to be an unglamorous garbage dump for damaged proteins, the ubiquitin pathway has been shown to regulate virtually everything that occurs in the cell. Deubiquitinating enzymes, which cleave ubiquitin-protein bonds, are the largest group of enzymes in the pathway, yet they are the least well understood. Deubiquitinating enzymes have two kinds of functions: housekeeping and regulatory. The housekeeping enzymes facilitate the proteolytic pathway. By contrast, the regulatory enzymes control the ubiquitination of specific protein substrates; their relationship to ubiquitination is analgous to that of phosphatases with respect to phosphorylation. Here, I review the current state of knowledge of the deubiquitinating enzymes. I focus particularly on the known regulatory enzymes, and also on the housekeeping enzymes that are implicated in development of disease.
Collapse
Affiliation(s)
- Janice A Fischer
- Section of Molecular Cell and Developmental Biology, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
22
|
Brock DA, Hatton RD, Giurgiutiu DV, Scott B, Ammann R, Gomer RH. The different components of a multisubunit cell number-counting factor have both unique and overlapping functions. Development 2002; 129:3657-68. [PMID: 12117815 DOI: 10.1242/dev.129.15.3657] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dictyostelium aggregation streams break up into groups of 103 to 2×104 cells. The cells sense the number of cells in a stream or group by the level of a secreted counting factor (CF). CF is a complex of at least 5 polypeptides. When the gene encoding countin (one of the CF polypeptides) was disrupted, the cells could not sense each other’s presence, resulting in non-breaking streams that coalesced into abnormally large groups. To understand the function of the components of CF, we have isolated cDNA sequences encoding a second component of CF, CF50. CF50 is 30% identical to lysozyme (but has very little lysozyme activity) and contains distinctive serine-glycine motifs. Transformants with a disrupted cf50 gene, like countin– cells, form abnormally large groups. Addition of recombinant CF50 protein to developing cf50– cells rescues their phenotype by decreasing group size. Abnormalities seen in aggregating countin– cells (such as high cell-cell adhesion and low motility) are also observed in the cf50– cells. Western blot analysis of conditioned medium sieve column fractions showed that the CF50 protein is present in the same fraction as the 450 kDa CF complex. In the absence of CF50, secreted countin is degraded, suggesting that one function of CF50 may be to protect countin from degradation. However, unlike countin– cells, cf50– cells differentiate into an abnormally high percentage of cells expressing SP70 (a marker expressed in a subset of prespore cells), and this difference can be rescued by exposing cells to recombinant CF50. These observations indicate that unlike other known multisubunit factors, CF contains subunits with both overlapping and unique properties.
Collapse
Affiliation(s)
- Debra A Brock
- Howard Hughes Medical Institute, Rice University, 6100 South Main Street, Houston, TX 77005-1892, USA
| | | | | | | | | | | |
Collapse
|
23
|
Sharma SK, Brock DA, Ammann RR, DeShazo T, Khosla M, Gomer RH, Weeks G. The cdk5 homologue, crp, regulates endocytosis and secretion in dictyostelium and is necessary for optimum growth and differentiation. Dev Biol 2002; 247:1-10. [PMID: 12074548 DOI: 10.1006/dbio.2002.0684] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dictyostelium Crp is a member of the cyclin-dependent kinase (Cdk) family of proteins. It is most related in sequence to mammalian Cdk5, which unlike other members of the family, has functions that are unrelated to the cell cycle. In order to better understand the function of Crp in Dictyostelium, we overexpressed a dominant negative form, Crp-D144N, under the control of the actin 15 promoter. Cells overexpressing Crp-D144N exhibit a reduced growth rate in suspension culture and reduced rates of fluid-phase endocytosis and phagocytosis. There is no reduction in Cdc2 kinase activity in extracts from cells overexpressing Crp-D144N, suggesting that the growth defect is not due to inhibition of Cdc2. In addition to the growth defect, the act15::crp-D144N transformants aggregate at a slower rate than wild-type cells and form large aggregation streams. These eventually break up to form small aggregates and most of these do not produce mature fruiting bodies. The aggregation defect is fully reversed in the presence of wild-type cells but terminal differentiation is only partially rescued. In act15::crp-D144N transformants, the countin component of the counting factor, a secreted protein complex that regulates the breakup of streams, mostly appears outside the cell as degradation products and the reduced level of the intact protein may at least partially account for the initial formation of the large aggregation streams. Our observations indicate that Crp is important for both endocytosis and efflux and that defects in these functions lead to reduced growth and aberrant development.
Collapse
Affiliation(s)
- Shiv K Sharma
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | |
Collapse
|
24
|
Wang Y, Dohlman HG. Pheromone-dependent ubiquitination of the mitogen-activated protein kinase kinase Ste7. J Biol Chem 2002; 277:15766-72. [PMID: 11864977 DOI: 10.1074/jbc.m111733200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many cell signaling pathways are regulated by phosphorylation, ubiquitination, and degradation of constituent proteins. As with phosphorylation, protein ubiquitination can be reversed, through the action of ubiquitin-specific processing proteases (UBPs). Here we have analyzed 15 UBP disruption mutants in the yeast Saccharomyces cerevisiae and identified one (ubp3 Delta) that acts specifically in the pheromone response pathway. Upon pheromone stimulation, ubp3 Delta mutants accumulate unconjugated polyubiquitin chains as well as polyubiquitinated forms of the mitogen-activated protein kinase kinase Ste7. The ubp3 Delta mutants exhibit a potentiated response to pheromone, as measured by in vivo MAP kinase activity, transcriptional induction, and cell cycle arrest. Signaling is likewise enhanced upon direct activation of Ste4 (G protein beta subunit) and Ste11 (Ste7 kinase) but not the downstream transcription factor Ste12. These findings reveal a mechanism by which pheromone-triggered ubiquitination of Ste7 can modulate the pheromone response in vivo.
Collapse
Affiliation(s)
- Yuqi Wang
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599-2852, USA
| | | |
Collapse
|
25
|
Rajapurohitam V, Bedard N, Wing SS. Control of ubiquitination of proteins in rat tissues by ubiquitin conjugating enzymes and isopeptidases. Am J Physiol Endocrinol Metab 2002; 282:E739-45. [PMID: 11882492 DOI: 10.1152/ajpendo.00511.2001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The activity of the ubiquitin-dependent proteolytic system in differentiated tissues under basal conditions remains poorly explored. We measured rates of ubiquitination in rat tissue extracts. Accumulation of ubiquitinated proteins increased in the presence of ubiquitin aldehyde, indicating that deubiquitinating enzymes can regulate ubiquitination. Rates of ubiquitination varied fourfold, with the highest rate in the testis. We tested whether ubiquitin-activating enzyme (E1) or ubiquitin-conjugating enzymes (E2s) could be limiting for conjugation. Immunodepletion of the E2s UBC2 or UBC4 lowered rates of conjugation similarly. Supplementation of extracts with excess UBC2 or UBC4, but not E1, stimulated conjugation. However, UBC2-stimulated rates of ubiquitination still differed among tissues, indicating that tissue differences in E3s or substrate availability may also be rate controlling. UBC2 and UBC4 stimulated conjugation half-maximally at concentrations of 10-50 and 28-44 nM, respectively. Endogenous tissue levels of UBC2, but not UBC4, appeared saturating for conjugation, suggesting that in vivo modulation of UBC4 levels can likely control ubiquitin conjugation. Thus the pool of ubiquitin conjugates and therefore the rate of degradation of proteins by this system may be controlled by E2s, E3s, and isopeptidases. The regulation of the ubiquitin pathway appears complex, but precise.
Collapse
|
26
|
Tzafrir I, McElver JA, Liu Cm CM, Yang LJ, Wu JQ, Martinez A, Patton DA, Meinke DW. Diversity of TITAN functions in Arabidopsis seed development. PLANT PHYSIOLOGY 2002. [PMID: 11788751 DOI: 10.1104/pp.010911] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The titan mutants of Arabidopsis exhibit striking defects in seed development. The defining feature is the presence of abnormal endosperm with giant polyploid nuclei. Several TTN genes encode structural maintenance of chromosome proteins (condensins and cohesins) required for chromosome function at mitosis. Another TTN gene product (TTN5) is related to the ARL2 class of GTP-binding proteins. Here, we identify four additional TTN genes and present a general model for the titan phenotype. TTN1 was cloned after two tagged alleles were identified through a large-scale screen of T-DNA insertion lines. The predicted gene product is related to tubulin-folding cofactor D, which interacts with ARL2 in fission yeast (Schizosaccharomyces pombe) and humans to regulate tubulin dynamics. We propose that TTN5 and TTN1 function in a similar manner to regulate microtubule function in seed development. The titan phenotype can therefore result from disruption of chromosome dynamics (ttn3, ttn7, and ttn8) or microtubule function (ttn1 and ttn5). Three other genes have been identified that affect endosperm nuclear morphology. TTN4 and TTN9 appear to encode plant-specific proteins of unknown function. TTN6 is related to the isopeptidase T class of deubiquitinating enzymes that recycle polyubiquitin chains following protein degradation. Disruption of this gene may reduce the stability of the structural maintenance of chromosome complex. Further analysis of the TITAN network should help to elucidate the regulation of microtubule function and chromosome dynamics in seed development.
Collapse
Affiliation(s)
- Iris Tzafrir
- Department of Botany, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Lee J, Jee C, Lee JI, Lee MH, Lee MH, Koo HS, Chung CH, Ahnn J. A deubiquitinating enzyme, UCH/CeUBP130, has an essential role in the formation of a functional microtubule-organizing centre (MTOC) during early cleavage in C. elegans. Genes Cells 2001; 6:899-911. [PMID: 11683918 DOI: 10.1046/j.1365-2443.2001.00471.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Deubiquitinating enzymes generate monomeric ubiquitin in protein degradation pathways and are known to be important for the early development in many organisms. RESULTS RNA interference experiments targeted for a UBP homologue, UCH/CeUBP130, in C. elegans resulted in cell division defective embryos. Immunostaining localized UCH/CeUBP130 in the sperm and at the microtubule-organizing centre (MTOC) during early cleavage. Furthermore, the embryonic lethal phenotype was rescued by mating with wild-type males. CONCLUSIONS Since it is known that the MTOC in the fertilized embryo is contributed by sperm asters in C. elegans, we suggest that UCH/CeUBP130 and ubiquitin protein degradation pathways may be involved in microtubule-based sperm aster formation. Therefore UCH/CeUBP130 is necessary for the formation of a functional MTOC in the fertilized embryo of C. elegans.
Collapse
Affiliation(s)
- J Lee
- Department of Life Science, Kwangju Institute of Science and Technology, Kwangju 500-712, Korea
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Doelling JH, Yan N, Kurepa J, Walker J, Vierstra RD. The ubiquitin-specific protease UBP14 is essential for early embryo development in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 27:393-405. [PMID: 11576424 DOI: 10.1046/j.1365-313x.2001.01106.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The ubiquitin/26S proteasome pathway is a major route for selectively degrading cytoplasmic and nuclear proteins in eukaryotes. In this pathway, chains of ubiquitins become attached to short-lived proteins, signalling recognition and breakdown of the modified protein by the 26S proteasome. During or following target degradation, the attached multi-ubiquitin chains are released and subsequently disassembled by ubiquitin-specific proteases (UBPs) to regenerate free ubiquitin monomers for re-use. Here, we describe Arabidopsis thaliana UBP14 that may participate in this recycling process. Its amino acid sequence is most similar to yeast UBP14 and its orthologues, human IsoT1-3 and Dictyostelium UbpA, and it can functionally replace yeast UBP14 in a ubp14Delta mutant. Like its orthologues, AtUBP14 can disassemble multi-ubiquitin chains linked internally via epsilon-amino isopeptide bonds using Lys48 and can process some, but not all, translational fusions of ubiquitin linked via alpha-amino peptide bonds. However, unlike its yeast and Dictyostelium orthologues, AtUBP14 is essential in Arabidopsis. T-DNA insertion mutations in the single gene that encodes AtUBP14 cause an embryonic lethal phenotype, with the homozygous embryos arresting at the globular stage. The arrested seeds have substantially increased levels of multi-ubiquitin chains, indicative of a defect in ubiquitin recycling. Taken together, the data demonstrate an essential role for the ubiquitin/26S proteasome pathway in general and for AtUBP14 in particular during early plant development.
Collapse
Affiliation(s)
- J H Doelling
- The Cellular and Molecular Biology Program and Department of Horticulture, University of Wisconsin-Madison, 1575 Linden Drive, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
29
|
Chung PA, Johnson J, Khramtsov NV, Upton SJ. Cloning and molecular characterization of a gene encoding a Cryptosporidium parvum putative 20S proteasome beta1-type subunit. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 2001; 11:309-14. [PMID: 11092745 DOI: 10.3109/10425170009033248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A DNA sequence composed of 1281 nucleotides (nt) consisting of a single open reading frame (ORF) encoding a putative 20S proteasome beta1-type subunit was isolated from clones derived from genomic libraries constructed from the KSU-1 isolate of Cryptosporidium parvum. Southern blot analysis suggested that the sequenced DNA exists in the C. parvum genome as a single copy; transcription was verified through reverse transcription-polymerase chain reaction (RT-PCR) performed on total RNA isolated from C. parvum sporozoites. The predicted protein consists of 210 amino acids (aa), contains characteristic amino acids common to all proteasomal subunits, and shares stronger similarity to the beta1-type subunit of yeast than to other types of beta-subunits.
Collapse
Affiliation(s)
- P A Chung
- Division of Biology, Kansas State University, Manhattan 66506, USA.
| | | | | | | |
Collapse
|
30
|
Yan N, Doelling JH, Falbel TG, Durski AM, Vierstra RD. The ubiquitin-specific protease family from Arabidopsis. AtUBP1 and 2 are required for the resistance to the amino acid analog canavanine. PLANT PHYSIOLOGY 2000; 124:1828-43. [PMID: 11115897 PMCID: PMC59878 DOI: 10.1104/pp.124.4.1828] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2000] [Accepted: 09/26/2000] [Indexed: 05/18/2023]
Abstract
Ubiquitin-specific proteases (UBPs) are a family of unique hydrolases that specifically remove polypeptides covalently linked via peptide or isopeptide bonds to the C-terminal glycine of ubiquitin. UBPs help regulate the ubiquitin/26S proteolytic pathway by generating free ubiquitin monomers from their initial translational products, recycling ubiquitins during the breakdown of ubiquitin-protein conjugates, and/or by removing ubiquitin from specific targets and thus presumably preventing target degradation. Here, we describe a family of 27 UBP genes from Arabidopsis that contain both the conserved cysteine (Cys) and histidine boxes essential for catalysis. They can be clustered into 14 subfamilies based on sequence similarity, genomic organization, and alignments with their closest relatives from other organisms, with seven subfamilies having two or more members. Recombinant AtUBP2 functions as a bona fide UBP: It can release polypeptides attached to ubiquitins via either alpha- or epsilon-amino linkages by an activity that requires the predicted active-site Cys within the Cys box. From the analysis of T-DNA insertion mutants, we demonstrate that the AtUBP1 and 2 subfamily helps confer resistance to the arginine analog canavanine. This phenotype suggests that the AtUBP1 and 2 enzymes are needed for abnormal protein turnover in Arabidopsis.
Collapse
Affiliation(s)
- N Yan
- Cellular and Molecular Biology Program and the Department of Horticulture, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
31
|
Roisin-Bouffay C, Jang W, Caprette DR, Gomer RH. A Precise Group Size in Dictyostelium Is Generated by a Cell-Counting Factor Modulating Cell–Cell Adhesion. Mol Cell 2000. [DOI: 10.1016/s1097-2765(05)00082-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Dharamsi A, Tessarolo D, Coukell B, Pun J. CBP1 associates with the Dictyostelium cytoskeleton and is important for normal cell aggregation under certain developmental conditions. Exp Cell Res 2000; 258:298-309. [PMID: 10896781 DOI: 10.1006/excr.2000.4950] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In cells of the eukaryotic microorganism Dictyostelium discoideum, at least eight small, four-EF-hand Ca(2+)-binding proteins of unknown function are expressed at specific times during development. One of these proteins, calcium-binding protein 1 (CBP1), first appears just prior to cell aggregation and then is present at relatively constant levels throughout development. To determine a role for CBP1 during development, the protein was used as bait in a yeast two-hybrid screen to reveal putative CBP1-interacting proteins. Two proteins identified in this screen were the actin-binding proteins, protovillin and EF-1alpha. Using an in vitro binding assay, both of these proteins were found to interact with CBP1 in the absence of Ca(2+), but the interaction of CBP1 with EF-1alpha was increased substantially by Ca(2+). CBP1 was also shown by fluorescence microscopy and by binding assays to associate with the actin cytoskeleton of Dictyostelium cells during development, and these interactions were partially Ca(2+)-dependent. cbpA-null cells grew normally, but under certain developmental conditions, cell aggregation was prolonged and irregular. This defect in aggregation appeared to be related to a general reduction in cell motility rather than to a decrease in the ability of the cells to respond to the chemoattractant cAMP. Together, these results suggest that CBP1 might function to help regulate the reorganization of the Dictyostelium actin cytoskeleton during cell aggregation.
Collapse
Affiliation(s)
- A Dharamsi
- Department of Biology, York University, Toronto, M3J 1P3, Canada
| | | | | | | |
Collapse
|
33
|
Wilkinson KD. Ubiquitination and deubiquitination: targeting of proteins for degradation by the proteasome. Semin Cell Dev Biol 2000; 11:141-8. [PMID: 10906270 DOI: 10.1006/scdb.2000.0164] [Citation(s) in RCA: 398] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The post-translational modification of proteins by covalent attachment of ubiquitin targets these proteins for degradation by the proteasome. An astounding number of proteins are involved in ubiquitination and deubiquitination of proteins. The pathways are combinatorial, and selectivity of proteolysis will depend strongly on the exact combination of ubiquitinating and deubiquitinating enzymes present at any time. In addition to temporal control, it is likely that these modifications are also regulated spatially. In this review, we discuss the regulation of ubiquitination by enzymes of this pathway and highlight some of the outstanding problems in understanding this regulation.
Collapse
Affiliation(s)
- K D Wilkinson
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
34
|
Abstract
A growing number of important regulatory proteins within cells are modified by conjugation of ubiquitin, a well-conserved 76-amino-acid polypeptide. The ubiquitinated proteins are targeted to proteasome for degradation or alternative metabolic fates, such as triggering of plasma membrane endocytosis and trafficking to vacuoles or lysosomes. Deubiquitination, reversal of this modification, is being recognized as an important regulatory step. Deubiquitinating enzymes are cysteine proteases that specifically cleave off ubiquitin from ubiquitin-conjugated protein substrates as well as from its precursor proteins. Genome sequencing projects have identified more than 90 deubiquitinating enzymes, making them the largest family of enzymes in the ubiquitin system. This review will concentrate on recent important findings as well as new insights into the diversity and emerging roles of deubiquitinating enzymes in the ubiquitin-dependent pathway.
Collapse
Affiliation(s)
- C H Chung
- Department of Molecular Biology, College of Natural Sciences, Seoul National University, Seoul, 151-742, Korea.
| | | |
Collapse
|
35
|
Abstract
When Dictyostelium cells starve, they begin secreting a glycoprotein called conditioned medium factor (CMF). When there is a high density of starved cells, as indicated by a high concentration of CMF, the cells begin expressing some genes and aggregate using pulses of cAMP as a chemoattractant. CMF regulates gene expression via a G protein-independent pathway, whereas CMF regulates cAMP signal transduction via a G protein-dependent pathway. To elucidate receptors mediating cell density sensing, we used CMF-Sepharose to isolate membrane proteins that bind CMF. We identified a 50-kDa protein, CMFR1, that is sensitive to trypsin treatment of whole cells. We obtained partial amino acid sequence of CMFR1 and isolated the cDNA encoding it. The derived amino acid sequence has no significant similarity to known proteins and has two or three predicted transmembrane domains. Expression of CMFR1 in insect cells caused an increase in CMF binding. Repression of CMFR1 in Dictyostelium by gene disruption resulted in a approximately 50% decrease of the CMF binding and a loss of CMF-induced G protein-independent gene expression. The G protein-dependent CMF signal transduction pathways appear to be functional in cmfr1 cells, suggesting that cells sense the density-sensing factor CMF using two or more different receptors.
Collapse
Affiliation(s)
- W J Deery
- Howard Hughes Medical Institute, Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005-1892, USA
| | | |
Collapse
|
36
|
Hochstrasser M, Johnson PR, Arendt CS, Swaminathan S, Swanson R, Li SJ, Laney J, Pals-Rylaarsdam R, Nowak J, Connerly PL. The Saccharomyces cerevisiae ubiquitin-proteasome system. Philos Trans R Soc Lond B Biol Sci 1999; 354:1513-22. [PMID: 10582237 PMCID: PMC1692666 DOI: 10.1098/rstb.1999.0495] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Our studies of the yeast ubiquitin-proteasome pathway have uncovered a number of general principles that govern substrate selectivity and proteolysis in this complex system. Much of the work has focused on the destruction of a yeast transcription factor, MAT alpha 2. The alpha 2 protein is polyubiquitinated and rapidly degraded in alpha-haploid cells. One pathway of proteolytic targeting, which depends on two distinct endoplasmic reticulum-localized ubiquitin-conjugating enzymes, recognizes the hydrophobic face of an amphipathic helix in alpha 2. Interestingly, degradation of alpha 2 is blocked in a/alpha-diploid cells by heterodimer formation between the alpha 2 and a1 homeodomain proteins. The data suggest that degradation signals may overlap protein-protein interaction surfaces, allowing a straightforward steric mechanism for regulated degradation. Analysis of alpha 2 degradation led to the identification of both 20S and 26S proteasome subunits, and several key features of proteasome assembly and active-site formation were subsequently uncovered. Finally, it has become clear that protein (poly) ubiquitination is highly dynamic in vivo, and our studies of yeast de-ubiquitinating enzymes illustrate how such enzymes can facilitate the proteolysis of diverse substrates.
Collapse
Affiliation(s)
- M Hochstrasser
- Department of Biochemistry and Molecular Biology, University of Chicago, IL 60637, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Timms KM, Ansari-Lari MA, Morris W, Brown SN, Gibbs RA. The genomic organization of Isopeptidase T-3 (ISOT-3), a new member of the ubiquitin specific protease family (UBP). Gene 1998; 217:101-6. [PMID: 9841226 DOI: 10.1016/s0378-1119(98)00341-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
A novel Isopeptidase T gene (ISOT-3) has been identified on human mosome 3q26.2--q26.3. gene shows 67.3% nucleotide identity and 54.8% amino acid identity to n Isopeptidase (ISOT-1). Northern blot analysis has shown that ISOT-3 is highly essed in ovary and testes, low-level expression in six other tissues tested. In contrast, ISOT-1 is essed at high levels in brain, and there is no detectable expression in ovary. The exonic nization of these two genes highly conserved with only one variant intron position. Intron 15 in -3 is absent in ISOT-1, there is an alternate splice site at the same location. Although the --intron structure has been erved between the two genes, ISOT-3 has significantly larger intronic ons, and the overall of this gene is at least 90 kb compared to 15 kb for ISOT-1. These data suggest that both ISOT-1 and ISOT-3 have descended from a common ancestor. In addition, the low overall sequence identity and different expression patterns may reflect differences in substrate specificity.
Collapse
Affiliation(s)
- K M Timms
- Department of Molecular and Human Genetics, Baylor College of Medicine,Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|