1
|
Levay MK, Throm L, Bahrami N, Wieland T. The Muscarinic Acetylcholine M 2 Receptor-Induced Nitration of p190A by eNOS Increases RhoA Activity in Cardiac Myocytes. Cells 2023; 12:2432. [PMID: 37887276 PMCID: PMC10605742 DOI: 10.3390/cells12202432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
p190RhoGAP, which exists in two paralogs, p190RhoGAP-A (p190A) and p190RhoGAP-B (p190B), is a GTPase activating protein (GAP) contributing to the regulation of the cellular activity of RhoGTPases. Recent data showed that M2 muscarinic acetylcholine receptor (M2R) stimulation in neonatal rat cardiac myocytes (NRCM) induces the binding of p190RhoGAP to the long isoform of the regulator of G protein signaling 3 (RGS3L). This complex formation alters the substrate preference of p190RhoGAP from RhoA to Rac1. By analyzing carbachol-stimulated GAP activity, we show herein that p190A, but not p190B, alters its substrate preference in NRCM. Based on data that the RhoGAP activity of p190A in endothelial cells is diminished upon nitration by endothelial nitric oxide synthase (eNOS)-derived peroxynitrite, we studied whether carbachol-induced NO/peroxynitrite formation contributes to the carbachol-induced RhoA activation in NRCM. Interestingly, the carbachol-induced RhoA activation in NRCM was suppressed by the eNOS-preferring inhibitor L-NIO as well as the non-selective NOS inhibitor L-NAME. Using L-NIO, we firstly verified the carbachol-induced NO production concurrent with eNOS activation and, secondly, the carbachol-induced nitration of p190A in NRCM. By co-immunoprecipitation, the carbachol-induced complex formation of eNOS, p190A, RGS3L and caveolin-3 was detected. We thus conclude that the NO production by M2R-induced eNOS activation in caveolae in NRCM is required for the nitration of p190A, leading to the binding to RGS3L and the change in substrate preference from RhoA to Rac1. In line with this interpretation, the disruption of caveolae in NRCM by methyl-β-cyclodextrin suppressed carbachol-induced RhoA activation in NRCM to a similar extent as the inhibition of NO production.
Collapse
Affiliation(s)
- Magdolna K. Levay
- Experimental Pharmacology Mannheim (EPM), European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (M.K.L.); (L.T.); (N.B.)
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 68167 Mannheim, Germany
| | - Lena Throm
- Experimental Pharmacology Mannheim (EPM), European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (M.K.L.); (L.T.); (N.B.)
| | - Nabil Bahrami
- Experimental Pharmacology Mannheim (EPM), European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (M.K.L.); (L.T.); (N.B.)
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 68167 Mannheim, Germany
| | - Thomas Wieland
- Experimental Pharmacology Mannheim (EPM), European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (M.K.L.); (L.T.); (N.B.)
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 68167 Mannheim, Germany
| |
Collapse
|
2
|
The Relationship of Glutathione- S-Transferase and Multi-Drug Resistance-Related Protein 1 in Nitric Oxide (NO) Transport and Storage. Molecules 2021; 26:molecules26195784. [PMID: 34641326 PMCID: PMC8510172 DOI: 10.3390/molecules26195784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 12/18/2022] Open
Abstract
Nitric oxide is a diatomic gas that has traditionally been viewed, particularly in the context of chemical fields, as a toxic, pungent gas that is the product of ammonia oxidation. However, nitric oxide has been associated with many biological roles including cell signaling, macrophage cytotoxicity, and vasodilation. More recently, a model for nitric oxide trafficking has been proposed where nitric oxide is regulated in the form of dinitrosyl-dithiol-iron-complexes, which are much less toxic and have a significantly greater half-life than free nitric oxide. Our laboratory has previously examined this hypothesis in tumor cells and has demonstrated that dinitrosyl-dithiol-iron-complexes are transported and stored by multi-drug resistance-related protein 1 and glutathione-S-transferase P1. A crystal structure of a dinitrosyl-dithiol-iron complex with glutathione-S-transferase P1 has been solved that demonstrates that a tyrosine residue in glutathione-S-transferase P1 is responsible for binding dinitrosyl-dithiol-iron-complexes. Considering the roles of nitric oxide in vasodilation and many other processes, a physiological model of nitric oxide transport and storage would be valuable in understanding nitric oxide physiology and pathophysiology.
Collapse
|
3
|
Tiruppathi C, Regmi SC, Wang DM, Mo GCH, Toth PT, Vogel SM, Stan RV, Henkemeyer M, Minshall RD, Rehman J, Malik AB. EphB1 interaction with caveolin-1 in endothelial cells modulates caveolae biogenesis. Mol Biol Cell 2020; 31:1167-1182. [PMID: 32238105 PMCID: PMC7353165 DOI: 10.1091/mbc.e19-12-0713] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/24/2020] [Accepted: 03/25/2020] [Indexed: 12/16/2022] Open
Abstract
Caveolae, the cave-like structures abundant in endothelial cells (ECs), are important for multiple signaling processes such as production of nitric oxide and caveolae-mediated intracellular trafficking. Using superresolution microscopy, fluorescence resonance energy transfer, and biochemical analysis, we observed that the EphB1 receptor tyrosine kinase constitutively interacts with caveolin-1 (Cav-1), the key structural protein of caveolae. Activation of EphB1 with its ligand Ephrin B1 induced EphB1 phosphorylation and the uncoupling EphB1 from Cav-1 and thereby promoted phosphorylation of Cav-1 by Src. Deletion of Cav-1 scaffold domain binding (CSD) motif in EphB1 prevented EphB1 binding to Cav-1 as well as Src-dependent Cav-1 phosphorylation, indicating the importance of CSD in the interaction. We also observed that Cav-1 protein expression and caveolae numbers were markedly reduced in ECs from EphB1-deficient (EphB1-/-) mice. The loss of EphB1 binding to Cav-1 promoted Cav-1 ubiquitination and degradation, and hence the loss of Cav-1 was responsible for reducing the caveolae numbers. These studies identify the crucial role of EphB1/Cav-1 interaction in the biogenesis of caveolae and in coordinating the signaling function of Cav-1 in ECs.
Collapse
Affiliation(s)
- Chinnaswamy Tiruppathi
- Departments of Pharmacology, The University of Illinois College of Medicine, Chicago, IL 60612
- The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612
| | - Sushil C. Regmi
- Departments of Pharmacology, The University of Illinois College of Medicine, Chicago, IL 60612
| | - Dong-Mei Wang
- Departments of Pharmacology, The University of Illinois College of Medicine, Chicago, IL 60612
| | - Gary C. H. Mo
- Departments of Pharmacology, The University of Illinois College of Medicine, Chicago, IL 60612
| | - Peter T. Toth
- Departments of Pharmacology, The University of Illinois College of Medicine, Chicago, IL 60612
| | - Stephen M. Vogel
- Departments of Pharmacology, The University of Illinois College of Medicine, Chicago, IL 60612
| | - Radu V. Stan
- Department of Pathology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755
| | - Mark Henkemeyer
- Departments of Neuroscience and Developmental Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Richard D. Minshall
- Departments of Pharmacology, The University of Illinois College of Medicine, Chicago, IL 60612
- Anesthesiology, The University of Illinois College of Medicine, Chicago, IL 60612
- The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612
| | - Jalees Rehman
- Departments of Pharmacology, The University of Illinois College of Medicine, Chicago, IL 60612
| | - Asrar B. Malik
- Departments of Pharmacology, The University of Illinois College of Medicine, Chicago, IL 60612
- The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612
| |
Collapse
|
4
|
Schobesberger S, Wright PT, Poulet C, Sanchez Alonso Mardones JL, Mansfield C, Friebe A, Harding SE, Balligand JL, Nikolaev VO, Gorelik J. β 3-Adrenoceptor redistribution impairs NO/cGMP/PDE2 signalling in failing cardiomyocytes. eLife 2020; 9:e52221. [PMID: 32228862 PMCID: PMC7138611 DOI: 10.7554/elife.52221] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 03/25/2020] [Indexed: 12/17/2022] Open
Abstract
Cardiomyocyte β3-adrenoceptors (β3-ARs) coupled to soluble guanylyl cyclase (sGC)-dependent production of the second messenger 3',5'-cyclic guanosine monophosphate (cGMP) have been shown to protect from heart failure. However, the exact localization of these receptors to fine membrane structures and subcellular compartmentation of β3-AR/cGMP signals underpinning this protection in health and disease remain elusive. Here, we used a Förster Resonance Energy Transfer (FRET)-based cGMP biosensor combined with scanning ion conductance microscopy (SICM) to show that functional β3-ARs are mostly confined to the T-tubules of healthy rat cardiomyocytes. Heart failure, induced via myocardial infarction, causes a decrease of the cGMP levels generated by these receptors and a change of subcellular cGMP compartmentation. Furthermore, attenuated cGMP signals led to impaired phosphodiesterase two dependent negative cGMP-to-cAMP cross-talk. In conclusion, topographic and functional reorganization of the β3-AR/cGMP signalosome happens in heart failure and should be considered when designing new therapies acting via this receptor.
Collapse
Affiliation(s)
- Sophie Schobesberger
- Myocardial Function, National Heart and Lung Institute, Imperial College London, ICTEM, Hammersmith HospitalLondonUnited Kingdom
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, German Center for Cardiovascular Research (DZHK) partner site Hamburg/Kiel/LübeckHamburgGermany
| | - Peter T Wright
- Myocardial Function, National Heart and Lung Institute, Imperial College London, ICTEM, Hammersmith HospitalLondonUnited Kingdom
| | - Claire Poulet
- Myocardial Function, National Heart and Lung Institute, Imperial College London, ICTEM, Hammersmith HospitalLondonUnited Kingdom
| | - Jose L Sanchez Alonso Mardones
- Myocardial Function, National Heart and Lung Institute, Imperial College London, ICTEM, Hammersmith HospitalLondonUnited Kingdom
| | - Catherine Mansfield
- Myocardial Function, National Heart and Lung Institute, Imperial College London, ICTEM, Hammersmith HospitalLondonUnited Kingdom
| | - Andreas Friebe
- Physiologisches Institut, University of WürzburgWürzburgGermany
| | - Sian E Harding
- Myocardial Function, National Heart and Lung Institute, Imperial College London, ICTEM, Hammersmith HospitalLondonUnited Kingdom
| | - Jean-Luc Balligand
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain)BrusselsBelgium
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, German Center for Cardiovascular Research (DZHK) partner site Hamburg/Kiel/LübeckHamburgGermany
| | - Julia Gorelik
- Myocardial Function, National Heart and Lung Institute, Imperial College London, ICTEM, Hammersmith HospitalLondonUnited Kingdom
| |
Collapse
|
5
|
Kong CHT, Bryant SM, Watson JJ, Gadeberg HC, Roth DM, Patel HH, Cannell MB, Orchard CH, James AF. The Effects of Aging on the Regulation of T-Tubular ICa by Caveolin in Mouse Ventricular Myocytes. J Gerontol A Biol Sci Med Sci 2019; 73:711-719. [PMID: 29236992 PMCID: PMC5946816 DOI: 10.1093/gerona/glx242] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 12/07/2017] [Indexed: 11/25/2022] Open
Abstract
Aging is associated with diminished cardiac function in males. Cardiac excitation-contraction coupling in ventricular myocytes involves Ca influx via the Ca current (ICa) and Ca release from the sarcoplasmic reticulum, which occur predominantly at t-tubules. Caveolin-3 regulates t-tubular ICa, partly through protein kinase A (PKA), and both ICa and caveolin-3 decrease with age. We therefore investigated ICa and t-tubule structure and function in cardiomyocytes from male wild-type (WT) and caveolin-3-overexpressing (Cav-3OE) mice at 3 and 24 months of age. In WT cardiomyocytes, t-tubular ICa-density was reduced by ~50% with age while surface ICa density was unchanged. Although regulation by PKA was unaffected by age, inhibition of caveolin-3-binding reduced t-tubular ICa at 3 months, but not at 24 months. While Cav-3OE increased cardiac caveolin-3 protein expression ~2.5-fold at both ages, the age-dependent reduction in caveolin-3 (WT ~35%) was preserved in transgenic mice. Overexpression of caveolin-3 reduced t-tubular ICa density at 3 months but prevented further ICa loss with age. Measurement of Ca release at the t-tubules revealed that the triggering of local Ca release by t-tubular ICa was unaffected by age. In conclusion, the data suggest that the reduction in ICa density with age is associated with the loss of a caveolin-3-dependent mechanism that augments t-tubular ICa density.
Collapse
Affiliation(s)
- Cherrie H T Kong
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, UK
| | - Simon M Bryant
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, UK
| | - Judy J Watson
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, UK
| | - Hanne C Gadeberg
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, UK
| | - David M Roth
- VA San Diego Healthcare System and Department of Anesthesiology, University of California, San Diego
| | - Hemal H Patel
- VA San Diego Healthcare System and Department of Anesthesiology, University of California, San Diego
| | - Mark B Cannell
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, UK
| | - Clive H Orchard
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, UK
| | - Andrew F James
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, UK
| |
Collapse
|
6
|
Kong CHT, Bryant SM, Watson JJ, Roth DM, Patel HH, Cannell MB, James AF, Orchard CH. Cardiac-specific overexpression of caveolin-3 preserves t-tubular I Ca during heart failure in mice. Exp Physiol 2019; 104:654-666. [PMID: 30786093 PMCID: PMC6488395 DOI: 10.1113/ep087304] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 02/18/2019] [Indexed: 12/17/2022]
Abstract
NEW FINDINGS What is the central question of this study? What is the cellular basis of the protection conferred on the heart by overexpression of caveolin-3 (Cav-3 OE) against many of the features of heart failure normally observed in vivo? What is the main finding and its importance? Cav-3 overexpression has little effect in normal ventricular myocytes but reduces cellular hypertrophy and preserves t-tubular ICa , but not local t-tubular Ca2+ release, in heart failure induced by pressure overload in mice. Thus Cav-3 overexpression provides specific but limited protection following induction of heart failure, although other factors disrupt Ca2+ release. ABSTRACT Caveolin-3 (Cav-3) is an 18 kDa protein that has been implicated in t-tubule formation and function in cardiac ventricular myocytes. During cardiac hypertrophy and failure, Cav-3 expression decreases, t-tubule structure is disrupted and excitation-contraction coupling (ECC) is impaired. Previous work has suggested that Cav-3 overexpression (OE) is cardio-protective, but the effect of Cav-3 OE on these cellular changes is unknown. We therefore investigated whether Cav-3 OE in mice is protective against the cellular effects of pressure overload induced by 8 weeks' transverse aortic constriction (TAC). Cav-3 OE mice developed cardiac dilatation, decreased stroke volume and ejection fraction, and hypertrophy and pulmonary congestion in response to TAC. These changes were accompanied by cellular hypertrophy, a decrease in t-tubule regularity and density, and impaired local Ca2+ release at the t-tubules. However, the extent of cardiac and cellular hypertrophy was reduced in Cav-3 OE compared to WT mice, and t-tubular Ca2+ current (ICa ) density was maintained. These data suggest that Cav-3 OE helps prevent hypertrophy and loss of t-tubular ICa following TAC, but that other factors disrupt local Ca2+ release.
Collapse
Affiliation(s)
- Cherrie H. T. Kong
- School of PhysiologyPharmacology & NeuroscienceBiomedical Sciences BuildingUniversity of BristolBristolBS8 1TDUK
| | - Simon M. Bryant
- School of PhysiologyPharmacology & NeuroscienceBiomedical Sciences BuildingUniversity of BristolBristolBS8 1TDUK
| | - Judy J. Watson
- School of PhysiologyPharmacology & NeuroscienceBiomedical Sciences BuildingUniversity of BristolBristolBS8 1TDUK
| | - David M. Roth
- VA San Diego Healthcare System and Department of AnesthesiologyUniversity of CaliforniaSan Diego, La JollaCAUSA
| | - Hemal H. Patel
- VA San Diego Healthcare System and Department of AnesthesiologyUniversity of CaliforniaSan Diego, La JollaCAUSA
| | - Mark B. Cannell
- School of PhysiologyPharmacology & NeuroscienceBiomedical Sciences BuildingUniversity of BristolBristolBS8 1TDUK
| | - Andrew F. James
- School of PhysiologyPharmacology & NeuroscienceBiomedical Sciences BuildingUniversity of BristolBristolBS8 1TDUK
| | - Clive H. Orchard
- School of PhysiologyPharmacology & NeuroscienceBiomedical Sciences BuildingUniversity of BristolBristolBS8 1TDUK
| |
Collapse
|
7
|
Bryant SM, Kong CHT, Watson JJ, Gadeberg HC, Roth DM, Patel HH, Cannell MB, James AF, Orchard CH. Caveolin-3 KO disrupts t-tubule structure and decreases t-tubular I Ca density in mouse ventricular myocytes. Am J Physiol Heart Circ Physiol 2018; 315:H1101-H1111. [PMID: 30028203 PMCID: PMC6415741 DOI: 10.1152/ajpheart.00209.2018] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/25/2018] [Accepted: 07/11/2018] [Indexed: 02/06/2023]
Abstract
Caveolin-3 (Cav-3) is a protein that has been implicated in t-tubule formation and function in cardiac ventricular myocytes. In cardiac hypertrophy and failure, Cav-3 expression decreases, t-tubule structure is disrupted, and excitation-contraction coupling is impaired. However, the extent to which the decrease in Cav-3 expression underlies these changes is unclear. We therefore investigated the structure and function of myocytes isolated from the hearts of Cav-3 knockout (KO) mice. These mice showed cardiac dilatation and decreased ejection fraction in vivo compared with wild-type control mice. Isolated KO myocytes showed cellular hypertrophy, altered t-tubule structure, and decreased L-type Ca2+ channel current ( ICa) density. This decrease in density occurred predominantly in the t-tubules, with no change in total ICa, and was therefore a consequence of the increase in membrane area. Cav-3 KO had no effect on L-type Ca2+ channel expression, and C3SD peptide, which mimics the scaffolding domain of Cav-3, had no effect on ICa in KO myocytes. However, inhibition of PKA using H-89 decreased ICa at the surface and t-tubule membranes in both KO and wild-type myocytes. Cav-3 KO had no significant effect on Na+/Ca2+ exchanger current or Ca2+ release. These data suggest that Cav-3 KO causes cellular hypertrophy, thereby decreasing t-tubular ICa density. NEW & NOTEWORTHY Caveolin-3 (Cav-3) is a protein that inhibits hypertrophic pathways, has been implicated in the formation and function of cardiac t-tubules, and shows decreased expression in heart failure. This study demonstrates that Cav-3 knockout mice show cardiac dysfunction in vivo, while isolated ventricular myocytes show cellular hypertrophy, changes in t-tubule structure, and decreased t-tubular L-type Ca2+ current density, suggesting that decreased Cav-3 expression contributes to these changes in cardiac hypertrophy and failure.
Collapse
MESH Headings
- Action Potentials
- Animals
- Calcium Channels, L-Type/metabolism
- Calcium Signaling
- Caveolin 3/deficiency
- Caveolin 3/genetics
- Down-Regulation
- Genetic Predisposition to Disease
- Heart Ventricles/metabolism
- Heart Ventricles/pathology
- Hypertrophy, Left Ventricular/genetics
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/pathology
- Hypertrophy, Left Ventricular/physiopathology
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Phenotype
- Ventricular Dysfunction, Left/genetics
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/pathology
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Function, Left
Collapse
Affiliation(s)
- Simon M Bryant
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol , Bristol , United Kingdom
| | - Cherrie H T Kong
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol , Bristol , United Kingdom
| | - Judy J Watson
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol , Bristol , United Kingdom
| | - Hanne C Gadeberg
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol , Bristol , United Kingdom
| | - David M Roth
- Veterans Affairs San Diego Healthcare System and Department of Anesthesiology, University of California-San Diego , La Jolla, California
| | - Hemal H Patel
- Veterans Affairs San Diego Healthcare System and Department of Anesthesiology, University of California-San Diego , La Jolla, California
| | - Mark B Cannell
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol , Bristol , United Kingdom
| | - Andrew F James
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol , Bristol , United Kingdom
| | - Clive H Orchard
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol , Bristol , United Kingdom
| |
Collapse
|
8
|
Keshavarz M, Skill M, Hollenhorst MI, Maxeiner S, Walecki M, Pfeil U, Kummer W, Krasteva-Christ G. Caveolin-3 differentially orchestrates cholinergic and serotonergic constriction of murine airways. Sci Rep 2018; 8:7508. [PMID: 29760450 PMCID: PMC5951923 DOI: 10.1038/s41598-018-25445-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 04/16/2018] [Indexed: 01/22/2023] Open
Abstract
The mechanisms of controlling airway smooth muscle (ASM) tone are of utmost clinical importance as inappropriate constriction is a hallmark in asthma and chronic obstructive pulmonary disease. Receptors for acetylcholine and serotonin, two relevant mediators in this context, appear to be incorporated in specialized, cholesterol-rich domains of the plasma membrane, termed caveolae due to their invaginated shape. The structural protein caveolin-1 partly accounts for anchoring of these receptors. We here determined the role of the other major caveolar protein, caveolin-3 (cav-3), in orchestrating cholinergic and serotonergic ASM responses, utilizing newly generated cav-3 deficient mice. Cav-3 deficiency fully abrogated serotonin-induced constriction of extrapulmonary airways in organ baths while leaving intrapulmonary airways unaffected, as assessed in precision cut lung slices. The selective expression of cav-3 in tracheal, but not intrapulmonary bronchial epithelial cells, revealed by immunohistochemistry, might explain the differential effects of cav-3 deficiency on serotonergic ASM constriction. The cholinergic response of extrapulmonary airways was not altered, whereas a considerable increase was observed in cav-3-/- intrapulmonary bronchi. Thus, cav-3 differentially organizes serotonergic and cholinergic signaling in ASM through mechanisms that are specific for airways of certain caliber and anatomical position. This may allow for selective and site-specific intervention in hyperreactive states.
Collapse
Affiliation(s)
- M Keshavarz
- Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - M Skill
- Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - M I Hollenhorst
- Institute of Anatomy and Cell Biology, School of Medicine, Saarland University, Saarbrucken, Germany
| | - S Maxeiner
- Institute of Anatomy and Cell Biology, School of Medicine, Saarland University, Saarbrucken, Germany
| | - M Walecki
- Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - U Pfeil
- Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - W Kummer
- Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, Giessen, Germany.,German Center for Lung Research (DZL), Marburg, Germany
| | - G Krasteva-Christ
- Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, Giessen, Germany. .,German Center for Lung Research (DZL), Marburg, Germany. .,Institute of Anatomy and Cell Biology, School of Medicine, Saarland University, Saarbrucken, Germany.
| |
Collapse
|
9
|
Bryant SM, Kong CHT, Watson JJ, Gadeberg HC, James AF, Cannell MB, Orchard CH. Caveolin 3-dependent loss of t-tubular I Ca during hypertrophy and heart failure in mice. Exp Physiol 2018; 103:652-665. [PMID: 29473235 PMCID: PMC6099270 DOI: 10.1113/ep086731] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/15/2018] [Indexed: 12/29/2022]
Abstract
NEW FINDINGS What is the central question of this study? Heart failure is associated with redistribution of L-type Ca2+ current (ICa ) away from the t-tubule membrane to the surface membrane of cardiac ventricular myocytes. However, the underlying mechanism and its dependence on severity of pathology (hypertrophy versus failure) are unclear. What is the main finding and its importance? Increasing severity of response to transverse aortic constriction, from hypertrophy to failure, was accompanied by graded loss of t-tubular ICa and loss of regulation of ICa by caveolin 3. Thus, the pathological loss of t-tubular ICa , which contributes to impaired excitation-contraction coupling and thereby cardiac function in vivo, appears to be attributable to loss of caveolin 3-dependent stimulation of t-tubular ICa . ABSTRACT Previous work has shown redistribution of L-type Ca2+ current (ICa ) from the t-tubules to the surface membrane of rat ventricular myocytes after myocardial infarction. However, whether this occurs in all species and in response to other insults, the relationship of this redistribution to the severity of the pathology, and the underlying mechanism, are unknown. We have therefore investigated the response of mouse hearts and myocytes to pressure overload induced by transverse aortic constriction (TAC). Male C57BL/6 mice underwent TAC or equivalent sham operation 8 weeks before use. ICa and Ca2+ transients were measured in isolated myocytes, and expression of caveolin 3 (Cav3), junctophilin 2 (Jph2) and bridging integrator 1 (Bin1) was determined. C3SD peptide was used to disrupt Cav3 binding to its protein partners. Some animals showed cardiac hypertrophy in response to TAC with little evidence of heart failure, whereas others showed greater hypertrophy and pulmonary congestion. These graded changes were accompanied by graded cellular hypertrophy, t-tubule disruption, decreased expression of Jph2 and Cav3, and decreased t-tubular ICa density, with no change at the cell surface, and graded impairment of Ca2+ release at t-tubules. C3SD decreased ICa density in control but not in TAC myocytes. These data suggest that the graded changes in cardiac function and size that occur in response to TAC are paralleled by graded changes in cell structure and function, which will contribute to the impaired function observed in vivo. They also suggest that loss of t-tubular ICa is attributable to loss of Cav3-dependent stimulation of ICa .
Collapse
Affiliation(s)
- Simon M Bryant
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Cherrie H T Kong
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Judy J Watson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Hanne C Gadeberg
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Andrew F James
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Mark B Cannell
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Clive H Orchard
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| |
Collapse
|
10
|
Russell J, Du Toit EF, Peart JN, Patel HH, Headrick JP. Myocyte membrane and microdomain modifications in diabetes: determinants of ischemic tolerance and cardioprotection. Cardiovasc Diabetol 2017; 16:155. [PMID: 29202762 PMCID: PMC5716308 DOI: 10.1186/s12933-017-0638-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/22/2017] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease, predominantly ischemic heart disease (IHD), is the leading cause of death in diabetes mellitus (DM). In addition to eliciting cardiomyopathy, DM induces a ‘wicked triumvirate’: (i) increasing the risk and incidence of IHD and myocardial ischemia; (ii) decreasing myocardial tolerance to ischemia–reperfusion (I–R) injury; and (iii) inhibiting or eliminating responses to cardioprotective stimuli. Changes in ischemic tolerance and cardioprotective signaling may contribute to substantially higher mortality and morbidity following ischemic insult in DM patients. Among the diverse mechanisms implicated in diabetic impairment of ischemic tolerance and cardioprotection, changes in sarcolemmal makeup may play an overarching role and are considered in detail in the current review. Observations predominantly in animal models reveal DM-dependent changes in membrane lipid composition (cholesterol and triglyceride accumulation, fatty acid saturation vs. reduced desaturation, phospholipid remodeling) that contribute to modulation of caveolar domains, gap junctions and T-tubules. These modifications influence sarcolemmal biophysical properties, receptor and phospholipid signaling, ion channel and transporter functions, contributing to contractile and electrophysiological dysfunction, cardiomyopathy, ischemic intolerance and suppression of protective signaling. A better understanding of these sarcolemmal abnormalities in types I and II DM (T1DM, T2DM) can inform approaches to limiting cardiomyopathy, associated IHD and their consequences. Key knowledge gaps include details of sarcolemmal changes in models of T2DM, temporal patterns of lipid, microdomain and T-tubule changes during disease development, and the precise impacts of these diverse sarcolemmal modifications. Importantly, exercise, dietary, pharmacological and gene approaches have potential for improving sarcolemmal makeup, and thus myocyte function and stress-resistance in this ubiquitous metabolic disorder.
Collapse
Affiliation(s)
- Jake Russell
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Eugene F Du Toit
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Jason N Peart
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Hemal H Patel
- VA San Diego Healthcare System and Department of Anesthesiology, University of California San Diego, San Diego, USA
| | - John P Headrick
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia. .,School of Medical Science, Griffith University, Southport, QLD, 4217, Australia.
| |
Collapse
|
11
|
Bryant SM, Kong CHT, Cannell MB, Orchard CH, James AF. Loss of caveolin-3-dependent regulation of I Ca in rat ventricular myocytes in heart failure. Am J Physiol Heart Circ Physiol 2017; 314:H521-H529. [PMID: 29101175 PMCID: PMC5899261 DOI: 10.1152/ajpheart.00458.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
β2-Adrenoceptors and L-type Ca2+ current (ICa) redistribute from the t-tubules to the surface membrane of ventricular myocytes from failing hearts. The present study investigated the role of changes in caveolin-3 and PKA signaling, both of which have previously been implicated in this redistribution. ICa was recorded using the whole cell patch-clamp technique from ventricular myocytes isolated from the hearts of rats that had undergone either coronary artery ligation (CAL) or equivalent sham operation 18 wk earlier. ICa distribution between the surface and t-tubule membranes was determined using formamide-induced detubulation (DT). In sham myocytes, β2-adrenoceptor stimulation increased ICa in intact but not DT myocytes; however, forskolin (to increase cAMP directly) and H-89 (to inhibit PKA) increased and decreased, respectively, ICa at both the surface and t-tubule membranes. C3SD peptide (which decreases binding to caveolin-3) inhibited ICa in intact but not DT myocytes but had no effect in the presence of H-89. In contrast, in CAL myocytes, β2-adrenoceptor stimulation increased ICa in both intact and DT myocytes, but C3SD had no effect on ICa; forskolin and H-89 had similar effects as in sham myocytes. These data show the redistribution of β2-adrenoceptor activity and ICa in CAL myocytes and suggest constitutive stimulation of ICa by PKA in sham myocytes via concurrent caveolin-3-dependent (at the t-tubules) and caveolin-3-independent mechanisms, with the former being lost in CAL myocytes. NEW & NOTEWORTHY In ventricular myocytes from normal hearts, regulation of the L-type Ca2+ current by β2-adrenoceptors and the constitutive regulation by caveolin-3 is localized to the t-tubules. In heart failure, the regulation of L-type Ca2+ current by β2-adrenoceptors is redistributed to the surface membrane, and the constitutive regulation by caveolin-3 is lost.
Collapse
Affiliation(s)
- Simon M Bryant
- School of Physiology, Pharmacology and Neuroscience, University of Bristol , Bristol , United Kingdom
| | - Cherrie H T Kong
- School of Physiology, Pharmacology and Neuroscience, University of Bristol , Bristol , United Kingdom
| | - Mark B Cannell
- School of Physiology, Pharmacology and Neuroscience, University of Bristol , Bristol , United Kingdom
| | - Clive H Orchard
- School of Physiology, Pharmacology and Neuroscience, University of Bristol , Bristol , United Kingdom
| | - Andrew F James
- School of Physiology, Pharmacology and Neuroscience, University of Bristol , Bristol , United Kingdom
| |
Collapse
|
12
|
Nader M, Alotaibi S, Alsolme E, Khalil B, Abu-Zaid A, Alsomali R, Bakheet D, Dzimiri N. Cardiac striatin interacts with caveolin-3 and calmodulin in a calcium sensitive manner and regulates cardiomyocyte spontaneous contraction rate. Can J Physiol Pharmacol 2017; 95:1306-1312. [PMID: 28825318 DOI: 10.1139/cjpp-2017-0155] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Impaired cardiomyocyte contraction rate is detrimental to cardiac function and often lethal. Despite advancements in the field, there is a paucity of information regarding the coordination of molecules implicated in regulating the heart rate. Striatin (STRN) is a dynamic protein with binding domains to calmodulin (CaM) and caveolin (Cav), both of which are regulators of myocardial function. However, its role in cardiomyocyte contraction is not yet determined. Herein, we show that STRN is expressed in cardiomyocytes and is more abundant in atrial myocardium than in ventricles. Cardiac expression of STRN (protein and mRNA) was developmentally regulated with the highest expression being at neonatal stage (day one) and the lowest in adult rats (13 weeks). CaM pulldown assay indicated that the interaction of cardiac STRN with CaM and caveolin-3 (Cav-3) was calcium sensitive. Interestingly, the overexpression of STRN induced an increase (∼2-fold) in the rate of the spontaneous contraction of cultured cardiomyocytes, while the knockdown of STRN reduced their contraction rate (∼40%). The expression level of STRN was inversely proportional to the interaction of Cav-3 with the CaM/STRN complex. Collectively, our data delineate a novel role for STRN in regulating cardiomyocyte spontaneous contraction rate and the dynamics of the STRN/Cav-3/CaM complex.
Collapse
Affiliation(s)
- Moni Nader
- a Department of Physiological Sciences, College of Medicine, Alfaisal University, Riyadh 11533, Kingdom of Saudi Arabia.,b Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - Shahd Alotaibi
- a Department of Physiological Sciences, College of Medicine, Alfaisal University, Riyadh 11533, Kingdom of Saudi Arabia.,b Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - Ebtehal Alsolme
- a Department of Physiological Sciences, College of Medicine, Alfaisal University, Riyadh 11533, Kingdom of Saudi Arabia.,b Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - Bariaa Khalil
- a Department of Physiological Sciences, College of Medicine, Alfaisal University, Riyadh 11533, Kingdom of Saudi Arabia.,b Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - Ahmed Abu-Zaid
- a Department of Physiological Sciences, College of Medicine, Alfaisal University, Riyadh 11533, Kingdom of Saudi Arabia.,b Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - Rahmah Alsomali
- b Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - Dana Bakheet
- b Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - Nduna Dzimiri
- b Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
13
|
Kaakinen M, Reichelt ME, Ma Z, Ferguson C, Martel N, Porrello ER, Hudson JE, Thomas WG, Parton RG, Headrick JP. Cavin-1 deficiency modifies myocardial and coronary function, stretch responses and ischaemic tolerance: roles of NOS over-activity. Basic Res Cardiol 2017; 112:24. [PMID: 28343262 DOI: 10.1007/s00395-017-0613-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/09/2017] [Accepted: 03/09/2017] [Indexed: 02/07/2023]
Abstract
Caveolae and associated cavin and caveolins may govern myocardial function, together with responses to mechanical and ischaemic stresses. Abnormalities in these proteins are also implicated in different cardiovascular disorders. However, specific roles of the cavin-1 protein in cardiac and coronary responses to mechanical/metabolic perturbation remain unclear. We characterised cardiovascular impacts of cavin-1 deficiency, comparing myocardial and coronary phenotypes and responses to stretch and ischaemia-reperfusion in hearts from cavin-1 +/+ and cavin-1 -/- mice. Caveolae and caveolins 1 and 3 were depleted in cavin-1 -/- hearts. Cardiac ejection properties in situ were modestly reduced in cavin-1 -/- mice. While peak contractile performance in ex vivo myocardium from cavin-1 -/- and cavin-1 +/+ mice was comparable, intrinsic beating rate, diastolic stiffness and Frank-Starling behaviour (stretch-dependent diastolic and systolic forces) were exaggerated in cavin-1 -/- hearts. Increases in stretch-dependent forces were countered by NOS inhibition (100 µM L-NAME), which exposed negative inotropy in cavin-1 -/- hearts, and were mimicked by 100 µM nitroprusside. In contrast, chronotropic differences appeared largely NOS-independent. Cavin-1 deletion also induced NOS-dependent coronary dilatation, ≥3-fold prolongation of reactive hyperaemic responses, and exaggerated pressure-dependence of coronary flow. Stretch-dependent efflux of lactate dehydrogenase and cardiac troponin I was increased and induction of brain natriuretic peptide and c-Fos inhibited in cavin-1 -/- hearts, while ERK1/2 phospho-activation was preserved. Post-ischaemic dysfunction and damage was also exaggerated in cavin-1 -/- hearts. Diverse effects of cavin-1 deletion reveal important roles in both NOS-dependent and -independent control of cardiac and coronary functions, together with governing sarcolemmal fragility and myocardial responses to stretch and ischaemia.
Collapse
Affiliation(s)
- Mika Kaakinen
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland.,Institute for Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Melissa E Reichelt
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Zhibin Ma
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Charles Ferguson
- Institute for Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Nick Martel
- Institute for Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Enzo R Porrello
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - James E Hudson
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Walter G Thomas
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Robert G Parton
- Institute for Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - John P Headrick
- School of Medical Science, Griffith University, Southport, QLD, 4217, Australia.
| |
Collapse
|
14
|
Vielma AZ, León L, Fernández IC, González DR, Boric MP. Nitric Oxide Synthase 1 Modulates Basal and β-Adrenergic-Stimulated Contractility by Rapid and Reversible Redox-Dependent S-Nitrosylation of the Heart. PLoS One 2016; 11:e0160813. [PMID: 27529477 PMCID: PMC4986959 DOI: 10.1371/journal.pone.0160813] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 06/21/2016] [Indexed: 12/30/2022] Open
Abstract
S-nitrosylation of several Ca2+ regulating proteins in response to β-adrenergic stimulation was recently described in the heart; however the specific nitric oxide synthase (NOS) isoform and signaling pathways responsible for this modification have not been elucidated. NOS-1 activity increases inotropism, therefore, we tested whether β-adrenergic stimulation induces NOS-1-dependent S-nitrosylation of total proteins, the ryanodine receptor (RyR2), SERCA2 and the L-Type Ca2+ channel (LTCC). In the isolated rat heart, isoproterenol (10 nM, 3-min) increased S-nitrosylation of total cardiac proteins (+46±14%) and RyR2 (+146±77%), without affecting S-nitrosylation of SERCA2 and LTCC. Selective NOS-1 blockade with S-methyl-L-thiocitrulline (SMTC) and Nω-propyl-l-arginine decreased basal contractility and relaxation (−25–30%) and basal S-nitrosylation of total proteins (−25–60%), RyR2, SERCA2 and LTCC (−60–75%). NOS-1 inhibition reduced (−25–40%) the inotropic response and protein S-nitrosylation induced by isoproterenol, particularly that of RyR2 (−85±7%). Tempol, a superoxide scavenger, mimicked the effects of NOS-1 inhibition on inotropism and protein S-nitrosylation; whereas selective NOS-3 inhibitor L-N5-(1-Iminoethyl)ornithine had no effect. Inhibition of NOS-1 did not affect phospholamban phosphorylation, but reduced its oligomerization. Attenuation of contractility was abolished by PKA blockade and unaffected by guanylate cyclase inhibition. Additionally, in isolated mouse cardiomyocytes, NOS-1 inhibition or removal reduced the Ca2+-transient amplitude and sarcomere shortening induced by isoproterenol or by direct PKA activation. We conclude that 1) normal cardiac performance requires basal NOS-1 activity and S-nitrosylation of the calcium-cycling machinery; 2) β-adrenergic stimulation induces rapid and reversible NOS-1 dependent, PKA and ROS-dependent, S-nitrosylation of RyR2 and other proteins, accounting for about one third of its inotropic effect.
Collapse
Affiliation(s)
- Alejandra Z. Vielma
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, PO Box 114-D, Santiago, Chile
| | - Luisa León
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, PO Box 114-D, Santiago, Chile
| | - Ignacio C. Fernández
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, PO Box 114-D, Santiago, Chile
| | - Daniel R. González
- Departamento de Ciencias Básicas Biomédicas, Facultad de Ciencias de la Salud, Universidad de Talca, Av. Lircay S.N., Talca, Chile
| | - Mauricio P. Boric
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, PO Box 114-D, Santiago, Chile
- * E-mail:
| |
Collapse
|
15
|
Tarhouni K, Guihot A, Vessieres E, Procaccio V, Grimaud L, Abraham P, Lenfant F, Arnal J, Favre J, Loufrani L, Henrion D. Estrogens are needed for the improvement in endothelium-mediated dilation induced by a chronic increase in blood flow in rat mesenteric arteries. Vascul Pharmacol 2016; 80:35-42. [DOI: 10.1016/j.vph.2015.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 10/05/2015] [Accepted: 10/09/2015] [Indexed: 01/02/2023]
|
16
|
Methamphetamine reduces expression of caveolin-1 in the dorsal striatum: Implication for dysregulation of neuronal function. Neuroscience 2016; 328:147-56. [PMID: 27138644 DOI: 10.1016/j.neuroscience.2016.04.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 03/30/2016] [Accepted: 04/25/2016] [Indexed: 12/15/2022]
Abstract
Role of striatal dopamine D1 receptors (D1Rs) in methamphetamine (Meth) taking and seeking is recognized from contingent Meth self-administration studies. For example, Meth increases levels of D1Rs in the dorsal striatum in animal models of Meth addiction, and blockade of striatal D1Rs decreased responding for Meth and reduced Meth priming-induced drug seeking. However, the mechanism underlying enhanced expression of striatal D1Rs in animals self-administering Meth is unknown and is hypothesized to involve maladaptive intracellular signal transduction mechanism via hyperphosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2). D1Rs are predominantly localized to detergent-resistant membrane/lipid raft fractions (MLR fraction), and in vitro studies indicate that D1R signaling and recycling is regulated by the MLR-resident protein caveolin-1 (Cav-1), in an endocytotic-dependent manner. Notably, expression of Cav-1 is inversely regulated by ERK1/2 activation, suggesting a signaling interplay among D1Rs, ERK1/2 and Cav-1. We therefore evaluated the effects of extended access Meth self-administration on expression of striatal D1Rs, activated ERK1/2 and Cav-1. We first report that Cav-1 is heavily expressed in neurons located in the dorsal striatum. We also report that extended access Meth produces compulsive-like unregulated intake of the drug, and these behavioral outcomes are associated with enhanced expression of D1Rs, increased activity of ERK1/2, and reduced Cav-1 expression in the dorsal striatum. These data suggest a possible cellular mechanism that involves Cav-1 regulation of D1R expression in response to escalated Meth intake, and how this response of altered D1Rs and enhanced ERK1/2 activation to Meth self-administration contributes to contingent-related processes such as addiction.
Collapse
|
17
|
Novel Perspectives in Redox Biology and Pathophysiology of Failing Myocytes: Modulation of the Intramyocardial Redox Milieu for Therapeutic Interventions-A Review Article from the Working Group of Cardiac Cell Biology, Italian Society of Cardiology. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:6353469. [PMID: 26881035 PMCID: PMC4736421 DOI: 10.1155/2016/6353469] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 11/16/2015] [Indexed: 12/11/2022]
Abstract
The prevalence of heart failure (HF) is still increasing worldwide, with enormous human, social, and economic costs, in spite of huge efforts in understanding pathogenetic mechanisms and in developing effective therapies that have transformed this syndrome into a chronic disease. Myocardial redox imbalance is a hallmark of this syndrome, since excessive reactive oxygen and nitrogen species can behave as signaling molecules in the pathogenesis of hypertrophy and heart failure, leading to dysregulation of cellular calcium handling, of the contractile machinery, of myocardial energetics and metabolism, and of extracellular matrix deposition. Recently, following new interesting advances in understanding myocardial ROS and RNS signaling pathways, new promising therapeutical approaches with antioxidant properties are being developed, keeping in mind that scavenging ROS and RNS tout court is detrimental as well, since these molecules also play a role in physiological myocardial homeostasis.
Collapse
|
18
|
Fouda MA, El-Gowelli HM, El-Gowilly SM, El-Mas MM. The estrogen-dependent baroreflex dysfunction caused by nicotine in female rats is mediated via NOS/HO inhibition: Role of sGC/PI3K/MAPKERK. Toxicol Appl Pharmacol 2015; 289:466-73. [DOI: 10.1016/j.taap.2015.10.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 10/07/2015] [Accepted: 10/22/2015] [Indexed: 12/31/2022]
|
19
|
Murfitt L, Whiteley G, Iqbal MM, Kitmitto A. Targeting caveolin-3 for the treatment of diabetic cardiomyopathy. Pharmacol Ther 2015; 151:50-71. [PMID: 25779609 DOI: 10.1016/j.pharmthera.2015.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 03/09/2015] [Indexed: 12/21/2022]
Abstract
Diabetes is a global health problem with more than 550 million people predicted to be diabetic by 2030. A major complication of diabetes is cardiovascular disease, which accounts for over two-thirds of mortality and morbidity in diabetic patients. This increased risk has led to the definition of a diabetic cardiomyopathy phenotype characterised by early left ventricular dysfunction with normal ejection fraction. Here we review the aetiology of diabetic cardiomyopathy and explore the involvement of the protein caveolin-3 (Cav3). Cav3 forms part of a complex mechanism regulating insulin signalling and glucose uptake, processes that are impaired in diabetes. Further, Cav3 is key for stabilisation and trafficking of cardiac ion channels to the plasma membrane and so contributes to the cardiac action potential shape and duration. In addition, Cav3 has direct and indirect interactions with proteins involved in excitation-contraction coupling and so has the potential to influence cardiac contractility. Significantly, both impaired contractility and rhythm disturbances are hallmarks of diabetic cardiomyopathy. We review here how changes to Cav3 expression levels and altered relationships with interacting partners may be contributory factors to several of the pathological features identified in diabetic cardiomyopathy. Finally, the review concludes by considering ways in which levels of Cav3 may be manipulated in order to develop novel therapeutic approaches for treating diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Lucy Murfitt
- Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, University of Manchester, M13 9NT, UK
| | - Gareth Whiteley
- Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, University of Manchester, M13 9NT, UK
| | - Mohammad M Iqbal
- Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, University of Manchester, M13 9NT, UK
| | - Ashraf Kitmitto
- Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, University of Manchester, M13 9NT, UK.
| |
Collapse
|
20
|
Sand CA, Starr A, Nandi M, Grant AD. Blockade or deletion of transient receptor potential vanilloid 4 (TRPV4) is not protective in a murine model of sepsis. F1000Res 2015; 4:93. [PMID: 26064477 PMCID: PMC4448752 DOI: 10.12688/f1000research.6298.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/07/2015] [Indexed: 12/26/2022] Open
Abstract
Sepsis is a systemic inflammatory response triggered by microbial infection that can cause cardiovascular collapse, insufficient tissue perfusion and multi-organ failure. The cation channel transient receptor potential vanilloid 4 (TRPV4) is expressed in vascular endothelium and causes vasodilatation, but excessive TRPV4 activation leads to profound hypotension and circulatory collapse - key features of sepsis pathogenesis. We hypothesised that loss of TRPV4 signaling would protect against cardiovascular dysfunction in a mouse model of sepsis (endotoxaemia). Multi-parameter monitoring of conscious systemic haemodynamics (by radiotelemetry probe), mesenteric microvascular blood flow (laser speckle contrast imaging) and blood biochemistry (iSTAT blood gas analysis) was carried out in wild type (WT) and TRPV4 knockout (KO) mice. Endotoxaemia was induced by a single intravenous injection of lipopolysaccharide (LPS; 12.5 mg/kg) and systemic haemodynamics monitored for 24 h. Blood flow recording was then conducted under terminal anaesthesia after which blood was obtained for haematological/biochemical analysis. No significant differences were observed in baseline haemodynamics or mesenteric blood flow. Naïve TRPV4 KO mice were significantly acidotic relative to WT counterparts. Following induction of sepsis, all mice became significantly hypotensive, though there was no significant difference in the degree of hypotension between TRPV4 WT and KO mice. TRPV4 KO mice exhibited a higher sepsis severity score. While septic WT mice became significantly hypernatraemic relative to the naïve state, this was not observed in septic KO mice. Mesenteric blood flow was inhibited by topical application of the TRPV4 agonist GSK1016790A in naïve WT mice, but enhanced 24 h following LPS injection. Contrary to the initial hypothesis, loss of TRPV4 signaling (either through gene deletion or pharmacological antagonism) did not attenuate sepsis-induced cardiovascular dysfunction: in fact, pathology appeared to be modestly exaggerated in mice lacking TRPV4. Local targeting of TRPV4 signalling may be more beneficial than global inhibition in sepsis treatment.
Collapse
Affiliation(s)
- Claire A Sand
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Anna Starr
- Institute of Pharmaceutical Science, King's College London, London, SE1 9NH, UK
| | - Manasi Nandi
- Institute of Pharmaceutical Science, King's College London, London, SE1 9NH, UK
| | - Andrew D Grant
- Wolfson Centre for Age-Related Diseases, King's College London, London, SE1 1UL, UK
| |
Collapse
|
21
|
Silva BM, Barbosa TC, Neves FJ, Sales AK, Rocha NG, Medeiros RF, Pereira FS, Garcia VP, Cardoso FT, Nobrega ACL. eNOS gene haplotype is indirectly associated with the recovery of cardiovascular autonomic modulation from exercise. Auton Neurosci 2014; 186:77-84. [PMID: 25242530 DOI: 10.1016/j.autneu.2014.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 08/28/2014] [Accepted: 09/02/2014] [Indexed: 11/17/2022]
Abstract
Polymorphisms in the endothelial nitric oxide synthase (eNOS) gene decrease expression and activation of eNOS in vitro, which is associated with lower post-exercise increase in vasodilator reactivity in vivo. However, it is unknown whether such polymorphisms are associated with other eNOS-related phenotypes during recovery from exercise. Therefore, we investigated the impact of an eNOS haplotype containing polymorphic alleles at loci -786 and 894 on the recovery of cardiovascular autonomic function from exercise. Sedentary, non-obese, healthy subjects were enrolled [n = 107, age 32 ± 1 years (mean ± SEM)]. Resting autonomic modulation (heart rate variability, systolic blood pressure variability, and spontaneous baroreflex sensitivity) and vascular reactivity (forearm hyperemic response post-ischemia) were assessed at baseline, 10, 60, and 120 min after a maximal cardiopulmonary exercise test. Besides, autonomic function was assessed by heart rate recovery (HRR) immediately after peak exercise. Haplotype analysis showed that vagal modulation (i.e., HF n.u.) was significantly higher, combined sympathetic and vagal modulation (i.e., LF/HF) was significantly lower and total blood pressure variability was significantly lower post-exercise in a haplotype containing polymorphic alleles (H2) compared to a haplotype with wild type alleles (H1). HRR was similar between groups. Corroborating previous evidence, H2 had significantly lower post-exercise increase in vasodilator reactivity than H1. In conclusion, a haplotype containing polymorphic alleles at loci -786 and 894 had enhanced recovery of autonomic modulation from exercise, along with unchanged HRR, and attenuated vasodilator reactivity. Then, these results suggest an autonomic compensatory response of a direct deleterious effect of eNOS polymorphisms on the vascular function.
Collapse
Affiliation(s)
- Bruno M Silva
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil; Department of Physiology, Section of Exercise Physiology, Federal University of São Paulo, São Paulo, Brazil.
| | - Thales C Barbosa
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Fabricia J Neves
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Allan K Sales
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Natalia G Rocha
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Renata F Medeiros
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Felipe S Pereira
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Vinicius P Garcia
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Fabiane T Cardoso
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Antonio C L Nobrega
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
22
|
Pugh SD, MacDougall DA, Agarwal SR, Harvey RD, Porter KE, Calaghan S. Caveolin contributes to the modulation of basal and β-adrenoceptor stimulated function of the adult rat ventricular myocyte by simvastatin: a novel pleiotropic effect. PLoS One 2014; 9:e106905. [PMID: 25211146 PMCID: PMC4161364 DOI: 10.1371/journal.pone.0106905] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/10/2014] [Indexed: 12/22/2022] Open
Abstract
The number of people taking statins is increasing across the globe, highlighting the importance of fully understanding statins' effects on the cardiovascular system. The beneficial impact of statins extends well beyond regression of atherosclerosis to include direct effects on tissues of the cardiovascular system ('pleiotropic effects'). Pleiotropic effects on the cardiac myocyte are often overlooked. Here we consider the contribution of the caveolin protein, whose expression and cellular distribution is dependent on cholesterol, to statin effects on the cardiac myocyte. Caveolin is a structural and regulatory component of caveolae, and is a key regulator of cardiac contractile function and adrenergic responsiveness. We employed an experimental model in which inhibition of myocyte HMG CoA reductase could be studied in the absence of paracrine influences from non-myocyte cells. Adult rat ventricular myocytes were treated with 10 µM simvastatin for 2 days. Simvastatin treatment reduced myocyte cholesterol, caveolin 3 and caveolar density. Negative inotropic and positive lusitropic effects (with corresponding changes in [Ca2+]i) were seen in statin-treated cells. Simvastatin significantly potentiated the inotropic response to β2-, but not β1-, adrenoceptor stimulation. Under conditions of β2-adrenoceptor stimulation, phosphorylation of phospholamban at Ser16 and troponin I at Ser23/24 was enhanced with statin treatment. Simvastatin increased NO production without significant effects on eNOS expression or phosphorylation (Ser1177), consistent with the reduced expression of caveolin 3, its constitutive inhibitor. In conclusion, statin treatment can reduce caveolin 3 expression, with functional consequences consistent with the known role of caveolae in the cardiac cell. These data are likely to be of significance, particularly during the early phases of statin treatment, and in patients with heart failure who have altered β-adrenoceptor signalling. In addition, as caveolin is ubiquitously expressed and has myriad tissue-specific functions, the impact of statin-dependent changes in caveolin is likely to have many other functional sequelae.
Collapse
Affiliation(s)
- Sara D. Pugh
- School of Biomedical Sciences, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - David A. MacDougall
- School of Biomedical Sciences, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - Shailesh R. Agarwal
- Department of Pharmacology, University of Nevada Reno, Reno, Nevada, United States of America
| | - Robert D. Harvey
- Department of Pharmacology, University of Nevada Reno, Reno, Nevada, United States of America
| | - Karen E. Porter
- Division of Cardiovascular and Diabetes Research, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - Sarah Calaghan
- School of Biomedical Sciences, University of Leeds, Leeds, West Yorkshire, United Kingdom
| |
Collapse
|
23
|
Bryant S, Kimura TE, Kong CHT, Watson JJ, Chase A, Suleiman MS, James AF, Orchard CH. Stimulation of ICa by basal PKA activity is facilitated by caveolin-3 in cardiac ventricular myocytes. J Mol Cell Cardiol 2014; 68:47-55. [PMID: 24412535 PMCID: PMC3980375 DOI: 10.1016/j.yjmcc.2013.12.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 12/22/2013] [Accepted: 12/31/2013] [Indexed: 12/14/2022]
Abstract
L-type Ca channels (LTCC), which play a key role in cardiac excitation–contraction coupling, are located predominantly at the transverse (t-) tubules in ventricular myocytes. Caveolae and the protein caveolin-3 (Cav-3) are also present at the t-tubules and have been implicated in localizing a number of signaling molecules, including protein kinase A (PKA) and β2-adrenoceptors. The present study investigated whether disruption of Cav-3 binding to its endogenous binding partners influenced LTCC activity. Ventricular myocytes were isolated from male Wistar rats and LTCC current (ICa) recorded using the whole-cell patch-clamp technique. Incubation of myocytes with a membrane-permeable peptide representing the scaffolding domain of Cav-3 (C3SD) reduced basal ICa amplitude in intact, but not detubulated, myocytes, and attenuated the stimulatory effects of the β2-adrenergic agonist zinterol on ICa. The PKA inhibitor H-89 also reduced basal ICa; however, the inhibitory effects of C3SD and H-89 on basal ICa amplitude were not summative. Under control conditions, myocytes stained with antibody against phosphorylated LTCC (pLTCC) displayed a striated pattern, presumably reflecting localization at the t-tubules. Both C3SD and H-89 reduced pLTCC staining at the z-lines but did not affect staining of total LTCC or Cav-3. These data are consistent with the idea that the effects of C3SD and H-89 share a common pathway, which involves PKA and is maximally inhibited by H-89, and suggest that Cav-3 plays an important role in mediating stimulation of ICa at the t-tubules via PKA-induced phosphorylation under basal conditions, and in response to β2-adrenoceptor stimulation. Basal L type calcium current was reduced by interfering with caveolin-3 binding. L type calcium current is tonically regulated by PKA phosphorylation. Interfering with caveolin-3 binding reduced beta2 adrenergic stimulation of ICa.
Collapse
Affiliation(s)
- Simon Bryant
- School of Physiology and Pharmacology, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Tomomi E Kimura
- School of Physiology and Pharmacology, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Cherrie H T Kong
- School of Physiology and Pharmacology, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Judy J Watson
- School of Physiology and Pharmacology, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Anabelle Chase
- School of Physiology and Pharmacology, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - M Saadeh Suleiman
- School of Physiology and Pharmacology, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Andrew F James
- School of Physiology and Pharmacology, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK.
| | - Clive H Orchard
- School of Physiology and Pharmacology, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK.
| |
Collapse
|
24
|
Tang L, Wang H, Ziolo MT. Targeting NOS as a therapeutic approach for heart failure. Pharmacol Ther 2013; 142:306-15. [PMID: 24380841 DOI: 10.1016/j.pharmthera.2013.12.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 11/19/2013] [Indexed: 02/07/2023]
Abstract
Nitric oxide is a key signaling molecule in the heart and is produced endogenously by three isoforms of nitric oxide synthase, neuronal NOS (NOS1), endothelial NOS (NOS3), and inducible NOS (NOS2). Nitric oxide signals via cGMP-dependent or independent pathways to modulate downstream proteins via specific post translational modifications (i.e. cGMP-dependent protein kinase phosphorylation, S-nitrosylation, etc.). Dysfunction of NOS (i.e. altered expression, location, coupling, activity, etc.) exists in various cardiac disease conditions, such as heart failure, contributing to the contractile dysfunction, adverse remodeling, and hypertrophy. This review will focus on the signaling pathways of each NOS isoform during health and disease, and discuss current and potential therapeutic approaches targeting nitric oxide signaling to treat heart disease.
Collapse
Affiliation(s)
- Lifei Tang
- Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, USA
| | - Honglan Wang
- Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, USA
| | - Mark T Ziolo
- Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, USA.
| |
Collapse
|
25
|
Developmental programming of eNOS uncoupling and enhanced vascular oxidative stress in adult rats after transient neonatal oxygen exposure. J Cardiovasc Pharmacol 2013; 61:8-16. [PMID: 23011469 DOI: 10.1097/fjc.0b013e318274d1c4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The authors have previously shown that neonatal hyperoxic stress leads to high blood pressure, impaired endothelium-mediated vasodilatation, and increased vascular production of superoxide anion by NAD(P)H oxidase in adulthood. However, it is unknown whether changes in nitric oxide (NO) production and/or bioinactivation prevail and whether NO synthase (NOS) is also a source of superoxide. The purpose of this study was to evaluate whether adult animals exposed to neonatal hyperoxic stress have impaired vascular NO production associated with NOS uncoupling participating to vascular superoxide production and vascular dysfunction. In adult male rats exposed to 80% oxygen from day 3 to 10 of life (H, n = 6) versus room air controls (CTRL, n = 6), vascular (aorta) NO production is decreased at baseline (CTRL: 21 ± 1 vs. H: 16 ± 2 4,5-diaminofluorescein diacetate fluorescence intensity arbitrary units; P < 0.05) and after carbachol stimulation (acetylcholine analog; CTRL: 26 ± 2 vs. H: 18±2; P < 0.05). Pretreatment with L-arginine (CTRL: 32 ± 4 vs. H: 31 ± 5) and L-sepiapterine [analog of key NOS cofactor tetrahydro-L-biopterin (BH4)] (CTRL: 30 ± 3 vs. H: 29 ± 3) normalizes NO production after carbachol. L-Sepiapterine also normalizes impaired vasodilatation to carbachol. Vascular endothelial NO synthase (eNOS) immunostaining is reduced, whereas total eNOS protein expression is increased in H (CTRL: 0.76 ± 0.08 vs. H: 1.76± 0.21; P < 0.01). The significantly higher superoxide generation (CTRL: 20 ± 2 vs. H: 28 ± 3 hydroethidine fluorescence intensity arbitrary units; P < 0.05) is prevented by pretreatment with the eNOS inhibitor N-nitro-L-arginine methyl ester (CTRL: 21 ± 4 vs. H: 22 ± 4). Taken together, the current data indicate a role for eNOS uncoupling in enhanced vascular superoxide, impaired endothelium-mediated vasodilatation, and decreased NO production in adult animals with programmed elevated blood pressure after a brief neonatal oxygen exposure.
Collapse
|
26
|
Tarhouni K, Guihot AL, Freidja ML, Toutain B, Henrion B, Baufreton C, Pinaud F, Procaccio V, Grimaud L, Ayer A, Loufrani L, Lenfant F, Arnal JF, Henrion D. Key role of estrogens and endothelial estrogen receptor α in blood flow-mediated remodeling of resistance arteries. Arterioscler Thromb Vasc Biol 2013; 33:605-11. [PMID: 23288162 DOI: 10.1161/atvbaha.112.300334] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Flow- (shear stress-)mediated outward remodeling of resistance arteries is involved in collateral growth during postischemic revascularization. As this remodeling is especially important during pregnancy, we hypothesized that estrogens may be involved. A surgical model eliciting a local increase in blood flow in 1 mesenteric resistance artery was used in 3-month-old ovariectomized female rats either treated with 17-β-estradiol (E2) or left untreated. METHODS AND RESULTS After 14 days, arterial diameter was greater in high-flow arteries than in normal-flow vessels. An ovariectomy suppressed high-flow remodeling, while E2 restored it. High-flow remodeling was absent in mice lacking the estrogen receptor α but not estrogen receptor β. The kinetics of inflammatory marker expression, macrophage infiltration, oxidative stress, and metaloproteinases expression were not altered by the absence of E2 after 2 and 4 days, that is, during remodeling. Nevertheless, E2 was required for the increase in endothelial nitric oxide synthase expression and activation at day 4 when diameter expansion occurs. Finally, the impact of E2 on the endothelium appeared crucial for high-flow remodeling, as this E2 action was abrogated in mice lacking endothelial NOS, as well as in Tie2-Cre(+) ERα(f/f) mice. CONCLUSIONS We demonstrate the essential role of E2 and endothelial estrogen receptor α in flow-mediated remodeling of resistance arteries in vivo.
Collapse
Affiliation(s)
- K Tarhouni
- LUNAM Université and Université d’Angers, Angers, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Collins BM, Davis MJ, Hancock JF, Parton RG. Structure-based reassessment of the caveolin signaling model: do caveolae regulate signaling through caveolin-protein interactions? Dev Cell 2012; 23:11-20. [PMID: 22814599 DOI: 10.1016/j.devcel.2012.06.012] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Caveolin proteins drive formation of caveolae, specialized cell-surface microdomains that influence cell signaling. Signaling proteins are proposed to use conserved caveolin-binding motifs (CBMs) to associate with caveolae via the caveolin scaffolding domain (CSD). However, structural and bioinformatic analyses argue against such direct physical interactions: in the majority of signaling proteins, the CBM is buried and inaccessible. Putative CBMs do not form a common structure for caveolin recognition, are not enriched among caveolin-binding proteins, and are even more common in yeast, which lack caveolae. We propose that CBM/CSD-dependent interactions are unlikely to mediate caveolar signaling, and the basis for signaling effects should therefore be reassessed.
Collapse
Affiliation(s)
- Brett M Collins
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
| | | | | | | |
Collapse
|
28
|
Stary CM, Tsutsumi YM, Patel PM, Head BP, Patel HH, Roth DM. Caveolins: targeting pro-survival signaling in the heart and brain. Front Physiol 2012; 3:393. [PMID: 23060817 PMCID: PMC3464704 DOI: 10.3389/fphys.2012.00393] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 09/14/2012] [Indexed: 12/20/2022] Open
Abstract
The present review discusses intracellular signaling moieties specific to membrane lipid rafts (MLRs) and the scaffolding proteins caveolin and introduces current data promoting their potential role in the treatment of pathologies of the heart and brain. MLRs are discreet microdomains of the plasma membrane enriched in gylcosphingolipids and cholesterol that concentrate and localize signaling molecules. Caveolin proteins are necessary for the formation of MLRs, and are responsible for coordinating signaling events by scaffolding and enriching numerous signaling moieties in close proximity. Specifically in the heart and brain, caveolins are necessary for the cytoprotective phenomenon termed ischemic and anesthetic preconditioning. Targeted overexpression of caveolin in the heart and brain leads to induction of multiple pro-survival and pro-growth signaling pathways; thus, caveolins represent a potential novel therapeutic target for cardiac and neurological pathologies.
Collapse
Affiliation(s)
- Creed M Stary
- Department of Anesthesiology, Veterans Affairs San Diego Healthcare System, University of California San Diego, La Jolla, CA, USA
| | | | | | | | | | | |
Collapse
|
29
|
Vascular Hypoxic Preconditioning Relies on TRPV4-Dependent Calcium Influx and Proper Intercellular Gap Junctions Communication. Arterioscler Thromb Vasc Biol 2012; 32:2241-9. [DOI: 10.1161/atvbaha.112.252783] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective—
We investigated the impact of hypoxia-reoxygenation on endothelial relaxation and aimed to clarify the role of transient receptor potential cation channels V4 (TRPV4) and gap junctions in the protective effect associated with hypoxic preconditioning on the vascular function.
Methods and Results—
By mimicking ischemia-reperfusion in C57BL/6 male mice in vivo, we documented a reduced NO-mediated relaxation and an increased endothelium-derived hyperpolarization (EDH[F])-mediated relaxation. Hypoxic preconditioning, however, restored NO relaxation and further improved the EDH(F) response. We also examined specifically 2 major effectors of the EDH(F) pathway, transient receptor potential cation channels V4 and connexins. We found that in endothelial cells, expression and activity of transient receptor potential cation channels V4 were increased by hypoxic stimuli independently of preconditioning which was interestingly associated with an increase of structural caveolar component caveolin-1 at membrane locations. Gap junctions, however, seemed to directly support EDH(F)-driven preconditioning as connexin 40 and connexin 43 expression increased and as in vivo carbenoxolone treatment completely inhibited the EDH(F) pathway and significantly reduced the protection afforded by preconditioning for the concomitant NO-mediated relaxation.
Conclusion—
Our work provides evidence on how transient receptor potential cation channels V4 and connexins might participate in preserving vasorelaxation under hypoxia and restoring the NO-mediated pathway in hypoxic preconditioning conditions pointing out caveolae as a common signaling location.
Collapse
|
30
|
Nitric oxide-dependent bradycardia in mutant analbuminemic rats. Biochem Pharmacol 2012; 84:1062-9. [PMID: 22889827 DOI: 10.1016/j.bcp.2012.07.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Revised: 07/25/2012] [Accepted: 07/25/2012] [Indexed: 02/07/2023]
Abstract
Nagase analbuminemic rats (NAR) are natural mutant Sprague-Dawley rats which do not express albumin due to a single splice mutation in the albumin gene. We accidentally discovered that NAR have a significant bradycardia compared with wild type Sprague-Dawley rats, and the present study was carried out to investigate the mechanism of bradycardia in analbuminemic rats. In vitro studies showed that the basal spontaneous beating rate of isolated atria is similar in NAR compared with wild type animals. However, the chronotropic responsiveness of isolated atria to cholinergic stimulation was markedly increased in NAR, an effect which was prevented by incubation with a nitric oxide synthase (NOS) or guanylyl cyclase inhibitor. NAR had a significant increase in plasma nitrite/nitrate concentrations. Administration of a NOS inhibitor for 5 days normalized heart rate in NAR. The level of NOS isoforms, caveolin-1 and caveolin-3 expression in the atria was assessed by real time PCR. There was no significant difference in the expression of NOS isoforms or caveolin-3 in NAR compared with wild type controls. However, NAR exhibited a significant decrease in caveolin-1 expression in the atria. Since caveolin-1 is known to inhibit endothelial NOS activity in cardiomyocytes, we suggest that decreased caveolin-1 levels may have a role in increased nitric oxide production in NAR. Our data suggest that a NOS/cGMP-dependent mechanism might be involved in increased responsiveness to vagal stimulation and bradycardia in analbuminemic condition.
Collapse
|
31
|
Lanzafame AA, Christopoulos A, Mitchelson F. Cellular Signaling Mechanisms for Muscarinic Acetylcholine Receptors. ACTA ACUST UNITED AC 2011. [DOI: 10.3109/10606820308263] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
32
|
Pagel PS, Hudetz JA. Delayed Cardioprotection by Inhaled Anesthetics. J Cardiothorac Vasc Anesth 2011; 25:1125-40. [DOI: 10.1053/j.jvca.2010.09.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Indexed: 02/07/2023]
|
33
|
Kunugi S, Iwabuchi S, Matsuyama D, Okajima T, Kawahara K. Negative-feedback regulation of ATP release: ATP release from cardiomyocytes is strictly regulated during ischemia. Biochem Biophys Res Commun 2011; 416:409-15. [PMID: 22133679 DOI: 10.1016/j.bbrc.2011.11.068] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 11/12/2011] [Indexed: 11/25/2022]
Abstract
Extracellular ATP acts as a potent agonist on cardiomyocytes, inducing a broad range of physiological responses via P2 purinoceptors. Its concentration in the interstitial space within the heart is elevated during ischemia or hypoxia due to its release from a number of cell types, including cardiomyocytes. However, the exact mechanism responsible for the release of ATP from cardiomyocytes during ischemia is not known. In this study, we investigated whether and how the release of ATP was strictly regulated during ischemia in cultured neonatal rat cardiomyocytes. Ischemia was mimicked by oxygen-glucose deprivation (OGD). Exposure of cardiomyocytes to OGD resulted in an increase in the concentration of extracellular ATP shortly after the onset of OGD (15 min), and the increase was reversed by treatment with blockers of maxi-anion channels. Unexpectedly, at 1 and 2h after the onset of OGD, the blocking of maxi-anion channels increased the concentration of extracellular ATP, and the increase was significantly suppressed by co-treatment with blockers of hemichannels, suggesting that ATP release via maxi-anion channels was involved in the suppression of ATP release via hemichannels during persistent OGD. Here we show the possibility that the release of ATP from cardiomyocytes was strictly regulated during ischemia by negative-feedback mechanisms; that is, maxi-anion channel-derived ATP-induced suppression of ATP release via hemichannels in cardiomyocytes.
Collapse
Affiliation(s)
- Satohiko Kunugi
- Laboratory of Cellular Cybernetics, Graduate School of Information Science and Technology, Hokkaido University, Sapporo 060-0814, Japan
| | | | | | | | | |
Collapse
|
34
|
Volatile anesthetics protect cancer cells against tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis via caveolins. Anesthesiology 2011; 115:499-508. [PMID: 21862885 DOI: 10.1097/aln.0b013e3182276d42] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Volatile anesthetics have a dual effect on cell survival dependent on caveolin expression. The effect of volatile anesthetics on cancer cell survival and death after anesthetic exposure has not been well investigated. The authors examined the effects of isoflurane exposure on apoptosis and its regulation by caveolin-1 (Cav-1). METHODS The authors exposed human colon cancer cell lines to isoflurane and proapoptotic stimuli and assessed what role Cav-1 plays in cell protection. They evaluated apoptosis using assays for nucleosomal fragmentation, cleaved caspase 3 expression, and caspase activity assays. To test the mechanism, they used pharmacologic inhibitors (i.e., pertussis toxin) and assessed changes in glycolysis. RESULTS Apoptosis as measured by nucleosomal fragmentation was enhanced by isoflurane (1.2% in air) in HT29 (by 64% relative to control, P < 0.001) and decreased in HCT116 (by 23% relative to control, P < 0.001) cells. Knockdown of Cav-1 in HCT116 cells increased the sensitivity to apoptotic stimuli but not with scrambled small interfering RNA (siRNA) treatment (19.7 ± 0.4 vs. 20.0 ± 0.6, P = 0.7786 and 19.7 ± 0.5 vs. 16.3 ± 0.4, P = 0.0012, isoflurane vs. control in Cav-1 small interfering RNA vs. scrambled small interfering RNA treated cells, respectively). The protective effect of isoflurane with various exposure times on apoptosis was enhanced in HT29 cells overexpressing Cav-1 (P < 0.001 by two-way ANOVA). Pertussis toxin effectively blocked the antiapoptotic effect of isoflurane exhibited by Cav-1 in all cell lines. Cav-1 cells had increased glycolysis with isoflurane exposure; however, in the presence of tumor necrosis factor-related apoptosis-inducing ligand, this increase in glycolysis was maintained in HT29-Cav-1 but not control cells. CONCLUSION Brief isoflurane exposure leads to resistance against apoptosis via a Cav-1-dependent mechanism.
Collapse
|
35
|
Hydrogen peroxide differentially modulates cardiac myocyte nitric oxide synthesis. Proc Natl Acad Sci U S A 2011; 108:15792-7. [PMID: 21896719 DOI: 10.1073/pnas.1111331108] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nitric oxide (NO) and hydrogen peroxide (H(2)O(2)) are synthesized within cardiac myocytes and play key roles in modulating cardiovascular signaling. Cardiac myocytes contain both the endothelial (eNOS) and neuronal (nNOS) NO synthases, but the differential roles of these NOS isoforms and the interplay of reactive oxygen species and reactive nitrogen species in cardiac signaling pathways are poorly understood. Using a recently developed NO chemical sensor [Cu(2)(FL2E)] to study adult cardiac myocytes from wild-type, eNOS(null), and nNOS(null) mice, we discovered that physiological concentrations of H(2)O(2) activate eNOS but not nNOS. H(2)O(2)-stimulated eNOS activation depends on phosphorylation of both the AMP-activated protein kinase and kinase Akt, and leads to the robust phosphorylation of eNOS. Cardiac myocytes isolated from mice infected with lentivirus expressing the recently developed H(2)O(2) biosensor HyPer2 show marked H(2)O(2) synthesis when stimulated by angiotensin II, but not following β-adrenergic receptor activation. We discovered that the angiotensin-II-promoted increase in cardiac myocyte contractility is dependent on H(2)O(2), whereas β-adrenergic contractile responses occur independently of H(2)O(2) signaling. These studies establish differential roles for H(2)O(2) in control of cardiac contractility and receptor-dependent NOS activation in the heart, and they identify new points for modulation of NO signaling responses by oxidant stress.
Collapse
|
36
|
Sobajima M, Nozawa T, Shida T, Ohori T, Suzuki T, Matsuki A, Inoue H. Repeated sauna therapy attenuates ventricular remodeling after myocardial infarction in rats by increasing coronary vascularity of noninfarcted myocardium. Am J Physiol Heart Circ Physiol 2011; 301:H548-54. [DOI: 10.1152/ajpheart.00103.2011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Repeated sauna therapy (ST) increases endothelial nitric oxide synthase (eNOS) activity and improves cardiac function in heart failure as well as peripheral blood flow in ischemic limbs. The present study investigates whether ST can increase coronary vascularity and thus attenuate cardiac remodeling after myocardial infarction (MI). We induced MI by ligating the left coronary artery of Wistar rats. The rats were placed in a far-infrared dry sauna at 41°C for 15 min and then at 34°C for 20 min once daily for 4 wk. Cardiac hemodynamic, histopathological, and gene analyses were performed. Despite the similar sizes of MI between the ST and non-ST groups (51.4 ± 0.3 vs. 51.1 ± 0.2%), ST reduced left ventricular (LV) end-diastolic (9.7 ± 0.4 vs. 10.7 ± 0.5 mm, P < 0.01) and end-systolic (8.6 ± 0.5 vs. 9.6 ± 0.6 mm, P < 0.01) dimensions and attenuated MI-induced increases in LV end-diastolic pressure. Cross-sectional areas of cardiomyocytes were smaller in ST rats and associated with a significant reduction in myocardial atrial natriuretic peptide mRNA levels. Vascular density was reduced in the noninfarcted myocardium of non-ST rats, and the density of cells positive for CD31 and for α-smooth muscle actin was decreased. These decreases were attenuated in ST rats compared with non-ST rats and associated with increases in myocardial eNOS and vascular endothelial growth factor mRNA levels. In conclusion, ST attenuates cardiac remodeling after MI, at least in part, through improving coronary vascularity in the noninfarcted myocardium. Repeated ST might serve as a novel noninvasive therapy for patients with MI.
Collapse
Affiliation(s)
- Mitsuo Sobajima
- The Second Department of Internal Medicine, Graduate School of Medicine, University of Toyama, Sugitani, Toyama, Japan
| | - Takashi Nozawa
- The Second Department of Internal Medicine, Graduate School of Medicine, University of Toyama, Sugitani, Toyama, Japan
| | - Takuya Shida
- The Second Department of Internal Medicine, Graduate School of Medicine, University of Toyama, Sugitani, Toyama, Japan
| | - Takashi Ohori
- The Second Department of Internal Medicine, Graduate School of Medicine, University of Toyama, Sugitani, Toyama, Japan
| | - Takayuki Suzuki
- The Second Department of Internal Medicine, Graduate School of Medicine, University of Toyama, Sugitani, Toyama, Japan
| | - Akira Matsuki
- The Second Department of Internal Medicine, Graduate School of Medicine, University of Toyama, Sugitani, Toyama, Japan
| | - Hiroshi Inoue
- The Second Department of Internal Medicine, Graduate School of Medicine, University of Toyama, Sugitani, Toyama, Japan
| |
Collapse
|
37
|
Harvey RD, Calaghan SC. Caveolae create local signalling domains through their distinct protein content, lipid profile and morphology. J Mol Cell Cardiol 2011; 52:366-75. [PMID: 21782827 DOI: 10.1016/j.yjmcc.2011.07.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 06/21/2011] [Accepted: 07/07/2011] [Indexed: 01/02/2023]
Abstract
Compartmentation of signalling allows multiple stimuli to achieve diverse cellular responses with only a limited pool of second messengers. This spatial control of signalling is achieved, in part, by cellular structures which bring together elements of a particular cascade. One such structure is the caveola, a flask-shaped lipid raft. Caveolae are well-recognised as signalosomes, platforms for assembly of signalling complexes of receptors, effectors and their targets, which can facilitate efficient and specific cellular responses. Here we extend this simple model and present evidence to show how the protein and lipid profiles of caveolae, as well as their characteristic morphology, define their roles in creating local signalling domains in the cardiac myocyte. This article is part of a Special Issue entitled "Local Signaling in Myocytes."
Collapse
Affiliation(s)
- Robert D Harvey
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | | |
Collapse
|
38
|
MacDougall DA, Agarwal SR, Stopford EA, Chu H, Collins JA, Longster AL, Colyer J, Harvey RD, Calaghan S. Caveolae compartmentalise β2-adrenoceptor signals by curtailing cAMP production and maintaining phosphatase activity in the sarcoplasmic reticulum of the adult ventricular myocyte. J Mol Cell Cardiol 2011; 52:388-400. [PMID: 21740911 PMCID: PMC3270222 DOI: 10.1016/j.yjmcc.2011.06.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 06/02/2011] [Accepted: 06/20/2011] [Indexed: 01/24/2023]
Abstract
Inotropy and lusitropy in the ventricular myocyte can be efficiently induced by activation of β1-, but not β2-, adrenoceptors (ARs). Compartmentation of β2-AR-derived cAMP-dependent signalling underlies this functional discrepancy. Here we investigate the mechanism by which caveolae (specialised sarcolemmal invaginations rich in cholesterol and caveolin-3) contribute to compartmentation in the adult rat ventricular myocyte. Selective activation of β2-ARs (with zinterol/CGP20712A) produced little contractile response in control cells but pronounced inotropic and lusitropic responses in cells treated with the cholesterol-depleting agent methyl-β-cyclodextrin (MBCD). This was not linked to modulation of L-type Ca2+ current, but instead to a discrete PKA-mediated phosphorylation of phospholamban at Ser16. Application of a cell-permeable inhibitor of caveolin-3 scaffolding interactions mimicked the effect of MBCD on phosphorylated phospholamban (pPLB) during β2-AR stimulation, consistent with MBCD acting via caveolae. Biosensor experiments revealed β2-AR mobilisation of cAMP in PKA II signalling domains of intact cells only after MBCD treatment, providing a real-time demonstration of cAMP freed from caveolar constraint. Other proteins have roles in compartmentation, so the effects of phosphodiesterase (PDE), protein phosphatase (PP) and phosphoinositide-3-kinase (PI3K) inhibitors on pPLB and contraction were compared in control and MBCD treated cells. PP inhibition alone was conspicuous in showing robust de-compartmentation of β2-AR-derived signalling in control cells and a comparatively diminutive effect after cholesterol depletion. Collating all evidence, we promote the novel concept that caveolae limit β2-AR-cAMP signalling by providing a platform that not only attenuates production of cAMP but also prevents inhibitory modulation of PPs at the sarcoplasmic reticulum. This article is part of a Special Issue entitled “Local Signaling in Myocytes”.
Collapse
Affiliation(s)
- David A. MacDougall
- Institute of Membrane and Systems Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Shailesh R. Agarwal
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | | | - Hongjin Chu
- Institute of Membrane and Systems Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Jennifer A. Collins
- Institute of Membrane and Systems Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Anna L. Longster
- Institute of Membrane and Systems Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - John Colyer
- Institute of Membrane and Systems Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Robert D. Harvey
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Sarah Calaghan
- Institute of Membrane and Systems Biology, University of Leeds, Leeds, LS2 9JT, UK
- Corresponding author at: Institute of Membrane and Systems Biology, Garstang 7.52d, University of Leeds, Leeds LS2 9JT, UK. Tel.: + 44 113 343 4309; fax: + 44 113 343 4228.
| |
Collapse
|
39
|
|
40
|
Abstract
Myocardial ischemia/reperfusion injury is a major cause of morbidity and mortality. The molecular signaling pathways involved in cardiac protection from myocardial ischemia/reperfusion injury are complex. An emerging idea in signal transduction suggests the existence of spatially organized complexes of signaling molecules in lipid-rich microdomains of the plasma membrane known as caveolae. Caveolins-proteins abundant in caveolae-provide a scaffold to organize, traffic, and regulate signaling molecules. Numerous signaling molecules involved in cardiac protection are known to exist within caveolae or interact directly with caveolins. Over the last 4 years, our laboratories have explored the hypothesis that caveolae are vitally important to cardiac protection from myocardial ischemia/reperfusion injury. We have provided evidence that (1) caveolae and the caveolin isoforms 1 and 3 are essential for cardiac protection from myocardial ischemia/reperfusion injury, (2) stimuli that produce preconditioning of cardiac myocytes, including brief periods of ischemia/reperfusion and exposure to volatile anesthetics, alter the number of membrane caveolae, and (3) cardiac myocyte-specific overexpression of caveolin-3 can produce innate cardiac protection from myocardial ischemia/reperfusion injury. The work demonstrates that caveolae and caveolins are critical elements of signaling pathways involved in cardiac protection and suggests that caveolins are unique targets for therapy in patients at risk of myocardial ischemia.
Collapse
|
41
|
Role of caveolin-3 and glucose transporter-4 in isoflurane-induced delayed cardiac protection. Anesthesiology 2010; 112:1136-45. [PMID: 20418694 DOI: 10.1097/aln.0b013e3181d3d624] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Caveolae are small, flask-like invaginations of the plasma membrane. Caveolins are structural proteins found in caveolae that have scaffolding properties to allow organization of signaling. The authors tested the hypothesis that delayed cardiac protection induced by volatile anesthetics is caveolae or caveolin dependent. METHODS An in vivo mouse model of ischemia-reperfusion injury with delayed anesthetic preconditioning (APC) was tested in wild-type, caveolin-1 knockout, and caveolin-3 knockout mice. Mice were exposed to 30 min of oxygen or isoflurane and allowed to recover for 24 h. After 24 h recovery, mice underwent 30-min coronary artery occlusion followed by 2 h of reperfusion at which time infarct size was determined. Biochemical assays were also performed in excised hearts. RESULTS Infarct size as a percent of the area at risk was reduced by isoflurane in wild-type (24.0 +/- 8.8% vs. 45.1 +/- 10.1%) and caveolin-1 knockout mice (27.2 +/- 12.5%). Caveolin-3 knockout mice did not show delayed APC (41.5 +/- 5.0%). Microscopically distinct caveolae were observed in wild-type and caveolin-1 knockout mice but not in caveolin-3 knockout mice. Delayed APC increased the amount of caveolin-3 protein but not caveolin-1 protein in discontinuous sucrose-gradient buoyant fractions. In addition, glucose transporter-4 was increased in buoyant fractions, and caveolin-3/glucose transporter-4 colocalization was observed in wild-type and caveolin-1 knockout mice after APC. CONCLUSIONS These results show that delayed APC involves translocation of caveolin-3 and glucose transporter-4 to caveolae, resulting in delayed protection in the myocardium.
Collapse
|
42
|
Shih CD. Activation of nitric oxide/cGMP/PKG signaling cascade mediates antihypertensive effects of Muntingia calabura in anesthetized spontaneously hypertensive rats. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2010; 37:1045-58. [PMID: 19938215 DOI: 10.1142/s0192415x0900748x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We previously reported that the leaf extract of Muntingia calabura L. (Tiliaceae) exerts a potent hypotensive effect in the normotensive rats. The antihypertensive activity of this plant extract, however, is currently unknown. In the present study, we investigated the antihypertensive effects of the n-butanol soluble fraction (BSF) from methanol leaf extract of M. calabura in spontaneously hypertensive rats (SHR), and delineated is underlying mechanisms. The intravenous bolus administration of the BSF (10-100 mg/kg) of M. calabura produced biphasic dose-related antihypertensive and bradycardiac effects in SHR. The BSF-induced initial cardiovascular depressive effects lasted for 10 min, and the delayed effects commenced 40 min and lasted for at least 120 min postinjection. These cardiovascular depressive effects of BSF treatments were greater in SHR than in normotensive Wistar-Kyoto (WKY) rats. Both the initial and delayed antihypertensive and bradycardiac effects of BSF (25 mg/kg, i.v.) in SHR, were significantly blocked by pretreatment with a nonselective nitric oxide (NO) synthase (NOS) inhibitor, a soluble guanylyl cyclase (sGC) inhibitor, or a protein kinase G (PKG) inhibitor. Moreover, the initial effects of BSF in SHR were inhibited by pretreatment with a selective endothelial NOS (eNOS) inhibitor; whereas the delayed effects were attenuated by a selective inducible NOS (iNOS) inhibitor. These results indicate that the BSF from the leaf of M. calabura elicited both transient and delayed antihypertensive and bradycardiac actions in SHR, which might be mediated through NO generated respectively by eNOS and iNOS. Furthermore, activation of sGC/cGMP/PKG signaling pathway may participate in the M. calabura-induced biphasic cardiovascular effects.
Collapse
Affiliation(s)
- Cheng-Dean Shih
- Graduate Institute of Pharmaceutical Technology, Tajen University, Pingtung County 90741, Taiwan.
| |
Collapse
|
43
|
The regulation of endothelial nitric oxide synthase by caveolin: a paradigm validated in vivo and shared by the ‘endothelium-derived hyperpolarizing factor’. Pflugers Arch 2010; 459:817-27. [DOI: 10.1007/s00424-010-0815-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Revised: 02/21/2010] [Accepted: 02/23/2010] [Indexed: 02/03/2023]
|
44
|
Abstract
Nitric oxide (NO) plays an important role in the regulation of cardiovascular function. In addition to the classic NO activation of the cGMP-dependent pathway, NO can also regulate cell function through protein S-nitrosylation, a redox dependent, thiol-based, reversible posttranslational protein modification that involves attachment of an NO moiety to a nucleophilic protein sulfhydryl group. There are emerging data suggesting that S-nitrosylation of proteins plays an important role in cardioprotection. Protein S-nitrosylation not only leads to changes in protein structure and function but also prevents these thiol(s) from further irreversible oxidative/nitrosative modification. A better understanding of the mechanism regulating protein S-nitrosylation and its role in cardioprotection will provide us new therapeutic opportunities and targets for interventions in cardiovascular diseases.
Collapse
Affiliation(s)
- Junhui Sun
- Translational Medicine Branch, NHLBI, NIH, 10 Center Dr, Room 7N112, Bethesda, MD 20892, USA
| | | |
Collapse
|
45
|
Frérart F, Lobysheva I, Gallez B, Dessy C, Feron O. Vascular caveolin deficiency supports the angiogenic effects of nitrite, a major end product of nitric oxide metabolism in tumors. Mol Cancer Res 2009; 7:1056-63. [PMID: 19567781 DOI: 10.1158/1541-7786.mcr-08-0388] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The biological status of nitrite recently evolved from an inactive end product of nitric oxide (NO) metabolism to a major intravascular and tissue storage of NO. Several enzymes and proteins may indeed work as nitrite reductases. The endothelial NO synthase (eNOS) is proposed to be one of them, particularly when oxygen is lacking. Here, we examined whether the lack of caveolin, a scaffold protein known to limit eNOS activity under basal conditions and to be down-regulated in tumor vessels, could favor the reconversion of nitrite into NO and thereby promote angiogenesis. We found that nitrite-rich serum from caveolin-deficient mice and exogenous nitrite exert proangiogenic effects on aortic explants cultured in a three-dimensional collagen matrix. We identified a higher intrinsic capacity of caveolin-deficient vessels and endothelial cells to convert nitrite into bioactive NO. These effects did occur under moderate hypoxia and were abolished on exposure to a NO scavenger. Evidence for eNOS acting as a nitrite reductase derived from the failure to reproduce the proangiogenic effects of nitrite on eNOS-deficient aorta rings and endothelial cells. Finally, in a mouse tumor model, we documented the higher nitrite content in hypoxic tumors and identified inducible NO synthase as the major source of nitrite. Altogether, these data identify the lack of caveolin observed in the tumor vasculature as a favorable ground for nitrite-driven formation of endothelial tubes in the hypoxic tumor microenvironment. This work also strengthens the therapeutic value of the modulation of caveolin expression to interfere with tumor angiogenesis.
Collapse
Affiliation(s)
- Françoise Frérart
- Unit of Pharmacology and Therapeutics, Université Catholique de Louvain, UCL-FATH 5349, Brussels, Belgium
| | | | | | | | | |
Collapse
|
46
|
Liu L, Li Y, Lin J, Liang Q, Sheng X, Wu J, Huang R, Liu S, Li Y. Connexin43 interacts with Caveolin-3 in the heart. Mol Biol Rep 2009; 37:1685-91. [PMID: 19544087 DOI: 10.1007/s11033-009-9584-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Accepted: 06/08/2009] [Indexed: 02/05/2023]
Abstract
Gap junctions (GJs), collections of multiple intercellular channels between neighboring cells, are specialized channels facilitating intercellular electrical and chemical communication. GJs are important for synchronizing coupling and coordinated contraction in the heart, and are crucial regulators of heart gene transcription, cardiac development, and protection of ischemic cardiomyocytes through second messenger communication. Identification of proteins that interact with Connexin43 (Cx43), the predominant protein in cardiac GJs, may contribute to the understanding of GJ functional regulation. Using a yeast two-hybrid system, we identified Caveolin-3 (Cav3) as a new Cx43-interacting protein. This interaction was confirmed by co-immunoprecipitation and co-localization experiments. CX43 interacts with Cav3, suggesting that Cav3 may participate in the functional regulation of GJs.
Collapse
Affiliation(s)
- Limei Liu
- Department of Cardiology, The First Affiliated Hospital, Shantou University Medical College, 57 Changping Road, 515041, Shantou, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Phosphodiesterase 5 restricts NOS3/Soluble guanylate cyclase signaling to L-type Ca2+ current in cardiac myocytes. J Mol Cell Cardiol 2009; 47:304-14. [PMID: 19345227 DOI: 10.1016/j.yjmcc.2009.03.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Accepted: 03/21/2009] [Indexed: 11/23/2022]
Abstract
Endothelial nitric oxide synthase (NOS3) regulates the functional response to beta-adrenergic (beta-AR) stimulation via modulation of the L-type Ca(2+) current (I(Ca)). However, the NOS3 signaling pathway modulating I(Ca) is unknown. This study investigated the contribution of soluble guanylate cyclase (sGC) and phosphodiesterase type 5 (PDE5), a cGMP-specific PDE, in the NOS3-mediated regulation of I(Ca). Myocytes were isolated from NOS3 knockout (NOS3(-/-)) and wildtype (WT) mice. We measured I(Ca) (whole-cell voltage-clamp), and simultaneously measured Ca(2+) transients (Fluo-4 AM) and cell shortening (edge detection). Zaprinast (selective inhibitor of PDE5), decreased beta-AR stimulated (isoproterenol, ISO)-I(Ca), and Ca(2+) transient and cell shortening amplitudes in WT myocytes. However, YC-1 (NO-independent activator of sGC) only reduced ISO-stimulated I(Ca), but not cardiac contraction. We further investigated the NOS3/sGC/PDE5 pathway in NOS3(-/-) myocytes. PDE5 is mislocalized in these myocytes and we observed dissimilar effects of PDE5 inhibition and sGC activation compared to WT. That is, zaprinast had no effect on ISO-stimulated I(Ca), or Ca(2+) transient and cell shortening amplitudes. Conversely, YC-1 significantly decreased both ISO-stimulated I(Ca), and cardiac contraction. Further confirming that PDE5 localizes NOS3/cGMP signaling to I(Ca); YC-1, in the presence of zaprinast, now significantly decreased ISO-stimulated Ca(2+) transient and cell shortening amplitudes in WT myocytes. The effects of YC-1 on I(Ca) and cardiac contraction were blocked by KT5823 (a selective inhibitor of the cGMP-dependent protein kinase, PKG). Our data suggests a novel physiological role for PDE5 in restricting the effects of NOS3/sGC/PKG signaling pathway to modulating beta-AR stimulated I(Ca), while limiting effects on cardiac contraction.
Collapse
|
48
|
Balijepalli RC, Kamp TJ. Caveolae, ion channels and cardiac arrhythmias. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2009; 98:149-60. [PMID: 19351512 DOI: 10.1016/j.pbiomolbio.2009.01.012] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Caveolae are specialized membrane microdomains enriched in cholesterol and sphingolipids which are present in multiple cell types including cardiomyocytes. Along with the essential scaffolding protein caveolin-3, a number of different ion channels and transporters have been localized to caveolae in cardiac myocytes including L-type Ca2+ channels (Ca(v)1.2), Na+ channels (Na(v)1.5), pacemaker channels (HCN4), Na+/Ca2+ exchanger (NCX1) and others. Closely associated with these channels are specific macromolecular signaling complexes that provide highly localized regulation of the channels. Mutations in the caveolin-3 gene (CAV3) have been linked with the congenital long QT syndrome (LQT9), and mutations in caveolar-localized ion channels may contribute to other inherited arrhythmias. Changes in the caveolar microdomain in acquired heart disease may also lead to dysregulation and dysfunction of ion channels, altering the risk of arrhythmias in conditions such as heart failure. This review highlights the existing evidence identifying and characterizing ion channels localized to caveolae in cardiomyocytes and their role in arrhythmogenesis.
Collapse
Affiliation(s)
- Ravi C Balijepalli
- Department of Medicine, Cellular and Molecular Arrhythmia Research Program, University of Wisconsin, Madison, WI 53792, USA
| | | |
Collapse
|
49
|
Chapter 4 The Biology of Caveolae. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 273:117-62. [DOI: 10.1016/s1937-6448(08)01804-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
50
|
Abstract
Secreted and intracellular proteins including antibodies, cytokines, major histocompatibility complex molecules, antigens, and enzymes can be redirected to and anchored on the surface of mammalian cells to reveal novel functions and properties such as reducing systemic toxicity, altering the in vivo distribution of drugs and extending the range of useful drugs, creating novel, specific signaling receptors and reshaping protein immunogenicity. The present review highlights progress in designing vectors to target and retain chimeric proteins on the surface of mammalian cells. Comparison of chimeric proteins indicates that selection of the proper cytoplasmic domain and introduction of oligiosaccharides near the cell surface can dramatically enhance surface expression, especially for single-chain antibodies. We also describe progress and limitations of employing surface-tethered proteins for preferential activation of prodrugs at cancer cells, imaging gene expression in living animals, performing high-throughput screening, selectively activating immune cells in tumors, producing new adhesion molecules, creating local immune privileged sites, limiting the distribution of soluble factors such as cytokines, and enhancing polypeptide immunogenicity. Surface-anchored chimeric proteins represent a rich source for developing new techniques and creating novel therapeutics.
Collapse
Affiliation(s)
- Tian-Lu Cheng
- Faculty of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | |
Collapse
|