1
|
Model Substrate/Inactivation Reactions for MoaA and Ribonucleotide Reductases: Loss of Bromo, Chloro, or Tosylate Groups from C2 of 1,5-Dideoxyhomoribofuranoses upon Generation of an α-Oxy Radical at C3. Molecules 2020; 25:molecules25112539. [PMID: 32486052 PMCID: PMC7321198 DOI: 10.3390/molecules25112539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 01/05/2023] Open
Abstract
We report studies on radical-initiated fragmentations of model 1,5-dideoxyhomoribofuranose derivatives with bromo, chloro, and tosyloxy substituents on C2. The effects of stereochemical inversion at C2 were probed with the corresponding arabino epimers. In all cases, the elimination of bromide, chloride, and tosylate anions occurred when the 3-hydroxyl group was unprotected. The isolation of deuterium-labeled furanone products established heterolytic cleavage followed by the transfer of deuterium from labeled tributylstannane. In contrast, 3-O-methyl derivatives underwent the elimination of bromine or chlorine radicals to give the 2,3-alkene with no incorporation of label in the methyl vinyl ether. More drastic fragmentation occurred with both of the 3-O-methyl-2-tosyloxy epimers to give an aromatized furan derivative with no deuterium label. Contrasting results observed with the present anhydroalditol models relative to our prior studies with analogously substituted nucleoside models have demonstrated that insights from biomimetic chemical reactions can provide illumination of mechanistic pathways employed by ribonucleotide reductases (RNRs) and the MoaA enzyme involved in the biosynthesis of molybdopterin.
Collapse
|
2
|
Rajakovich LJ, Nørgaard H, Warui DM, Chang WC, Li N, Booker SJ, Krebs C, Bollinger JM, Pandelia ME. Rapid Reduction of the Diferric-Peroxyhemiacetal Intermediate in Aldehyde-Deformylating Oxygenase by a Cyanobacterial Ferredoxin: Evidence for a Free-Radical Mechanism. J Am Chem Soc 2015; 137:11695-709. [PMID: 26284355 DOI: 10.1021/jacs.5b06345] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Aldehyde-deformylating oxygenase (ADO) is a ferritin-like nonheme-diiron enzyme that catalyzes the last step in a pathway through which fatty acids are converted into hydrocarbons in cyanobacteria. ADO catalyzes conversion of a fatty aldehyde to the corresponding alk(a/e)ne and formate, consuming four electrons and one molecule of O2 per turnover and incorporating one atom from O2 into the formate coproduct. The source of the reducing equivalents in vivo has not been definitively established, but a cyanobacterial [2Fe-2S] ferredoxin (PetF), reduced by ferredoxin-NADP(+) reductase (FNR) using NADPH, has been implicated. We show that both the diferric form of Nostoc punctiforme ADO and its (putative) diferric-peroxyhemiacetal intermediate are reduced much more rapidly by Synechocystis sp. PCC6803 PetF than by the previously employed chemical reductant, 1-methoxy-5-methylphenazinium methyl sulfate. The yield of formate and alkane per reduced PetF approaches its theoretical upper limit when reduction of the intermediate is carried out in the presence of FNR. Reduction of the intermediate by either system leads to accumulation of a substrate-derived peroxyl radical as a result of off-pathway trapping of the C2-alkyl radical intermediate by excess O2, which consequently diminishes the yield of the hydrocarbon product. A sulfinyl radical located on residue Cys71 also accumulates with short-chain aldehydes. The detection of these radicals under turnover conditions provides the most direct evidence to date for a free-radical mechanism. Additionally, our results expose an inefficiency of the enzyme in processing its radical intermediate, presenting a target for optimization of bioprocesses exploiting this hydrocarbon-production pathway.
Collapse
Affiliation(s)
- Lauren J Rajakovich
- Department of Biochemistry and Molecular Biology and ‡Department of Chemistry, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Hanne Nørgaard
- Department of Biochemistry and Molecular Biology and ‡Department of Chemistry, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Douglas M Warui
- Department of Biochemistry and Molecular Biology and ‡Department of Chemistry, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Wei-chen Chang
- Department of Biochemistry and Molecular Biology and ‡Department of Chemistry, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Ning Li
- Department of Biochemistry and Molecular Biology and ‡Department of Chemistry, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Squire J Booker
- Department of Biochemistry and Molecular Biology and ‡Department of Chemistry, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Carsten Krebs
- Department of Biochemistry and Molecular Biology and ‡Department of Chemistry, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - J Martin Bollinger
- Department of Biochemistry and Molecular Biology and ‡Department of Chemistry, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Maria-Eirini Pandelia
- Department of Biochemistry and Molecular Biology and ‡Department of Chemistry, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| |
Collapse
|
3
|
Adhikary A, Kumar A, Rayala R, Hindi RM, Adhikary A, Wnuk SF, Sevilla MD. One-electron oxidation of gemcitabine and analogs: mechanism of formation of C3' and C2' sugar radicals. J Am Chem Soc 2014; 136:15646-53. [PMID: 25296262 PMCID: PMC4227712 DOI: 10.1021/ja5083156] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gemcitabine is a modified cytidine analog having two fluorine atoms at the 2'-position of the ribose ring. It has been proposed that gemcitabine inhibits RNR activity by producing a C3'• intermediate via direct H3'-atom abstraction followed by loss of HF to yield a C2'• with 3'-keto moiety. Direct detection of C3'• and C2'• during RNR inactivation by gemcitabine still remains elusive. To test the influence of 2'- substitution on radical site formation, electron spin resonance (ESR) studies are carried out on one-electron oxidized gemcitabine and other 2'-modified analogs, i.e., 2'-deoxy-2'-fluoro-2'-C-methylcytidine (MeFdC) and 2'-fluoro-2'-deoxycytidine (2'-FdC). ESR line components from two anisotropic β-2'-F-atom hyperfine couplings identify the C3'• formation in one-electron oxidized gemcitabine, but no further reaction to C2'• is found. One-electron oxidized 2'-FdC is unreactive toward C3'• or C2'• formation. In one-electron oxidized MeFdC, ESR studies show C2'• production presumably from a very unstable C3'• precursor. The experimentally observed hyperfine couplings for C2'• and C3'• match well with the theoretically predicted ones. C3'• to C2'• conversion in one-electron oxidized gemcitabine and MeFdC has theoretically been modeled by first considering the C3'• and H3O(+) formation via H3'-proton deprotonation and the subsequent C2'• formation via HF loss induced by this proximate H3O(+). Theoretical calculations show that in gemcitabine, C3'• to C2'• conversion in the presence of a proximate H3O(+) has a barrier in agreement with the experimentally observed lack of C3'• to C2'• conversion. In contrast, in MeFdC, the loss of HF from C3'• in the presence of a proximate H3O(+) is barrierless resulting in C2'• formation which agrees with the experimentally observed rapid C2'• formation.
Collapse
Affiliation(s)
- Amitava Adhikary
- Department of Chemistry, Oakland University , Rochester, Michigan 48309, United States
| | | | | | | | | | | | | |
Collapse
|
4
|
The class III ribonucleotide reductase from Neisseria bacilliformis can utilize thioredoxin as a reductant. Proc Natl Acad Sci U S A 2014; 111:E3756-65. [PMID: 25157154 DOI: 10.1073/pnas.1414396111] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The class III anaerobic ribonucleotide reductases (RNRs) studied to date couple the reduction of ribonucleotides to deoxynucleotides with the oxidation of formate to CO2. Here we report the cloning and heterologous expression of the Neisseria bacilliformis class III RNR and show that it can catalyze nucleotide reduction using the ubiquitous thioredoxin/thioredoxin reductase/NADPH system. We present a structural model based on a crystal structure of the homologous Thermotoga maritima class III RNR, showing its architecture and the position of conserved residues in the active site. Phylogenetic studies suggest that this form of class III RNR is present in bacteria and archaea that carry out diverse types of anaerobic metabolism.
Collapse
|
5
|
Wnuk SF, Penjarla JAK, Dang T, Mebel AM, Nauser T, Schöneich C. Modeling of the ribonucleotide reductases substrate reaction. Hydrogen atom abstraction by a thiyl free radical and detection of the ribosyl-based carbon radical by pulse radiolysis. ACTA ACUST UNITED AC 2011. [DOI: 10.1135/cccc2011085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The 1,4-anhydro-5-deoxy-6-thio-D-ribo-hexofuranitol (1) was prepared from 1,2-O-isopropylidene-α-D-glucose in 10 steps. In a key step treatment of the 1,2-O-isopropylidenehexofuranose derivative with BF3/Et3SiH effected deacetonization and reductive deoxygenation at carbon 1. Pulse radiolysis experiments with 6-thiohexofuranitol 1 and its disulfide derivative demonstrated formation of the ribosyl-based carbon-centered radical upon generation of 6-thiyl radical in basic medium. The proposed [1,5]-hydrogen shift abstraction with generation of the C3 radical mimics the initial substrate reaction of RNRs. The reversible H-atom transfer has been quantified and was correlated with the computed rate constants for the internal H atom abstraction from C1, C2, C3 and C4 by the thiyl radical. The energy barrier for the H3 and H4 abstractions were calculated to be most favorable with the corresponding barriers of 11.1 and 11.2 kcal/mol, respectively.
Collapse
|
6
|
Salgado MT, Ramasamy S, Tsuneshige A, Manoharan PT, Rifkind JM. A new paramagnetic intermediate formed during the reaction of nitrite with deoxyhemoglobin. J Am Chem Soc 2011; 133:13010-22. [PMID: 21755997 PMCID: PMC3166623 DOI: 10.1021/ja1115088] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The reduction of nitrite by deoxygenated hemoglobin chains has been implicated in red cell-induced vasodilation, although the mechanism for this process has not been established. We have previously demonstrated that the reaction of nitrite with deoxyhemoglobin produces a hybrid intermediate with properties of Hb(II)NO(+) and Hb(III)NO that builds up during the reaction retaining potential NO bioactivity. To explain the unexpected stability of this intermediate, which prevents NO release from the Hb(III)NO component, we had implicated the transfer of an electron from the β-93 thiol to NO(+) producing ·SHb(II)NO. To determine if this species is formed and to characterize its properties, we have investigated the electron paramagnetic resonance (EPR) changes taking place during the nitrite reaction. The EPR effects of blocking the thiol group with N-ethyl-maleimide and using carboxypeptidase-A to stabilize the R-quaternary conformation have demonstrated that ·SHb(II)NO is formed and that it has the EPR spectrum expected for NO bound to the heme in the β-chain plus that of a thiyl radical. This new NO-related paramagnetic species is in equilibrium with the hybrid intermediate "Hb(II)NO(+) ↔ Hb(III)NO", thereby further inhibiting the release of NO from Hb(III)NO. The formation of an NO-related paramagnetic species other than the tightly bound NO in Hb(II)NO was also confirmed by a decrease in the EPR signal by -20 °C incubation, which shifts the equilibrium back to the "Hb(II)NO(+) ↔ Hb(III)NO" intermediate. This previously unrecognized NO hemoglobin species explains the stability of the intermediates and the buildup of a pool of potentially bioactive NO during nitrite reduction. It also provides a pathway for the formation of β-93 cysteine S-nitrosylated hemoglobin [SNOHb:S-nitrosohemoglobin], which has been shown to induce vasodilation, by a rapid radical-radical reaction of any free NO with the thiyl radical of this new paramagnetic intermediate.
Collapse
Affiliation(s)
- Maria T. Salgado
- Molecular Dynamics Section, National Institute on Aging, NIH, Baltimore, MD 21224 USA
| | - Somasundaram Ramasamy
- Molecular Dynamics Section, National Institute on Aging, NIH, Baltimore, MD 21224 USA
| | - Antonio Tsuneshige
- Department of Frontier Bioscience, Faculty of Bioscience and Applied Chemistry, Hosei University, Tokyo 184-8584, Japan
| | | | - Joseph M. Rifkind
- Molecular Dynamics Section, National Institute on Aging, NIH, Baltimore, MD 21224 USA
| |
Collapse
|
7
|
Zipse H, Artin E, Wnuk S, Lohman GJS, Martino D, Griffin RG, Kacprzak S, Kaupp M, Hoffman B, Bennati M, Stubbe J, Lees N. Structure of the nucleotide radical formed during reaction of CDP/TTP with the E441Q-alpha2beta2 of E. coli ribonucleotide reductase. J Am Chem Soc 2009; 131:200-11. [PMID: 19128178 PMCID: PMC2651750 DOI: 10.1021/ja806693s] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2008] [Indexed: 11/28/2022]
Abstract
The Escherichia coli ribonucleotide reductase (RNR) catalyzes the conversion of nucleoside diphosphates to deoxynucleotides and requires a diferric-tyrosyl radical cofactor for catalysis. RNR is composed of a 1:1 complex of two homodimeric subunits: alpha and beta. Incubation of the E441Q-alpha mutant RNR with substrate CDP and allosteric effector TTP results in loss of the tyrosyl radical and formation of two new radicals on the 200 ms to min time scale. The first radical was previously established by stopped flow UV/vis spectroscopy and pulsed high field EPR spectroscopy to be a disulfide radical anion. The second radical was proposed to be a 4'-radical of a 3'-keto-2'-deoxycytidine 5'-diphosphate. To identify the structure of the nucleotide radical [1'-(2)H], [2'-(2)H], [4'-(2)H], [5'-(2)H], [U-(13)C, (15)N], [U-(15)N], and [5,6 -(2)H] CDP and [beta-(2)H] cysteine-alpha were synthesized and incubated with E441Q-alpha2beta2 and TTP. The nucleotide radical was examined by 9 GHz and 140 GHz pulsed EPR spectroscopy and 35 GHz ENDOR spectroscopy. Substitution of (2)H at C4' and C1' altered the observed hyperfine interactions of the nucleotide radical and established that the observed structure was not that predicted. DFT calculations (B3LYP/IGLO-III/B3LYP/TZVP) were carried out in an effort to recapitulate the spectroscopic observations and lead to a new structure consistent with all of the experimental data. The results indicate, unexpectedly, that the radical is a semidione nucleotide radical of cytidine 5'-diphosphate. The relationship of this radical to the disulfide radical anion is discussed.
Collapse
Affiliation(s)
- Hendrik Zipse
- Department of Chemistry and Biochemistry, Ludwig-Maximilians Universitaet Muenchen, 81377 Muenchen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Saleh L, Bollinger JM. Cation mediation of radical transfer between Trp48 and Tyr356 during O2 activation by protein R2 of Escherichia coli ribonucleotide reductase: relevance to R1-R2 radical transfer in nucleotide reduction? Biochemistry 2006; 45:8823-30. [PMID: 16846225 DOI: 10.1021/bi060325d] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A tryptophan 48 cation radical (W48(+)(*)) forms concomitantly with the Fe(2)(III/IV) cluster, X, during activation of oxygen for tyrosyl radical (Y122.) production in the R2 subunit of class I ribonucleotide reductase (RNR) from Escherichia coli. W48(+)(*) is also likely to be an intermediate in the long-range radical transfer between R2 and its partner subunit, R1, during nucleotide reduction by the RNR holoenzyme. The kinetics of decay of W48(+)(*) and formation of tyrosyl radicals during O(2) activation (in the absence of R1) in wild-type (wt) R2 and in variants with either Y122, Y356 (the residue thought to propagate the radical from W48(+)(*) into R1 during turnover), or both replaced by phenylalanine (F) have revealed that the presence of divalent cations at concentrations similar to the [Mg(2+)] employed in the standard RNR assay (15 mM) mediates a rapid radical-transfer equilibrium between W48 and Y356. Cation-mediated propagation of the radical from W48 to Y356 gives rise to a fast phase of Y. production that is essentially coincident with W48(+)(*) formation and creates an efficient pathway for decay of W48(+)(*). Possible mechanisms of this cation mediation and its potential relevance to intersubunit radical transfer during nucleotide reduction are considered.
Collapse
Affiliation(s)
- Lana Saleh
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | |
Collapse
|
9
|
Abstract
Ribonucleotide reductases (RNRs) transform RNA building blocks to DNA building blocks by catalyzing the substitution of the 2'OH-group of a ribonucleotide with a hydrogen by a mechanism involving protein radicals. Three classes of RNRs employ different mechanisms for the generation of the protein radical. Recent structural studies of members from each class have led to a deeper understanding of their catalytic mechanism and allosteric regulation by nucleoside triphosphates. The main emphasis of this review is on regulation of RNR at the molecular and cellular level. Conformational transitions induced by nucleotide binding determine the regulation of substrate specificity. An intricate interplay between gene activation, enzyme inhibition, and protein degradation regulates, together with the allosteric effects, enzyme activity and provides the appropriate amount of deoxynucleotides for DNA replication and repair. In spite of large differences in the amino acid sequences, basic structural features are remarkably similar and suggest a common evolutionary origin for the three classes.
Collapse
Affiliation(s)
- Pär Nordlund
- Division of Biophysics and 2Division of Biochemistry, Medical Nobel Institute, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-17177 Stockholm, Sweden.
| | | |
Collapse
|
10
|
Bennati M, Lendzian F, Schmittel M, Zipse H. Spectroscopic and theoretical approaches for studying radical reactions in class I ribonucleotide reductase. Biol Chem 2005; 386:1007-22. [PMID: 16218873 DOI: 10.1515/bc.2005.117] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Ribonucleotide reductases (RNRs) catalyze the production of deoxyribonucleotides, which are essential for DNA synthesis and repair in all organisms. The three currently known classes of RNRs are postulated to utilize a similar mechanism for ribonucleotide reduction via a transient thiyl radical, but they differ in the way this radical is generated. Class I RNR, found in all eukaryotic organisms and in some eubacteria and viruses, employs a diferric iron center and a stable tyrosyl radical in a second protein subunit, R2, to drive thiyl radical generation near the substrate binding site in subunit R1. From extensive experimental and theoretical research during the last decades, a general mechanistic model for class I RNR has emerged, showing three major mechanistic steps: generation of the tyrosyl radical by the diiron center in subunit R2, radical transfer to generate the proposed thiyl radical near the substrate bound in subunit R1, and finally catalytic reduction of the bound ribonucleotide. Amino acid- or substrate-derived radicals are involved in all three major reactions. This article summarizes the present mechanistic picture of class I RNR and highlights experimental and theoretical approaches that have contributed to our current understanding of this important class of radical enzymes.
Collapse
Affiliation(s)
- Marina Bennati
- Institut für Physikalische und Theoretische Chemie und BMRZ, J.W. Goethe-Universität Frankfurt, Marie-Curie-Str. 11, D-60439 Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
11
|
Takeuchi F, Hori H, Tsubaki M. Selective Perturbation of the Intravesicular Heme Center of Cytochrome b561 by Cysteinyl Modification with 4,4′-Dithiodipyridine. ACTA ACUST UNITED AC 2005; 138:751-62. [PMID: 16428304 DOI: 10.1093/jb/mvi174] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Cytochrome b(561) from bovine adrenal chromaffin vesicles contains two hemes b with EPR signals at g(z) = 3.69 and 3.14 and participates in transmembrane electron transport from extravesicular ascorbate to an intravesicular monooxygenase, dopamine beta-hydroxylase. Treatment of purified cytochrome b(561) in an oxidized state with a sulfhydryl reagent, 4,4'-dithiodipyridine, caused the introduction of only one 4-thiopyridine group per b(561) molecule at either Cys57 or Cys125. About half of the heme centers of the modified cytochrome were reduced rapidly with ascorbate as found for the untreated sample, but the final reduction level decreased to approximately 65%. EPR spectra of the modified cytochrome showed that a part of the g(z) = 3.14 low-spin EPR species was converted to a new low-spin species with g(z) = 2.94, although a considerable part of the heme center was concomitantly converted to a high-spin g = 6 species. Addition of ascorbate to the modified cytochrome caused the disappearance or significant reduction of the EPR signals at g(z) = 3.69 and 3.14 of low-spin species and at g = 6.0 of the high-spin species, but not for the g(z) approximately 2.94 species. These results suggested that the bound 4-thiopyridone at either Cys57 or Cys125 affected the intravesicular heme center and converted it partially to a non-ascorbate-reducible form. The present observations suggested the importance of the two well-conserved Cys residues near the intravesicular heme center and implied their physiological roles during the electron donation to the monodehydroascorbate radical.
Collapse
Affiliation(s)
- Fusako Takeuchi
- Department of Molecular Science and Material Engineering, Graduate School of Science and Technology, Kobe University, Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501
| | | | | |
Collapse
|
12
|
Hirota S, Azuma K, Fukuba M, Kuroiwa S, Funasaki N. Heme Reduction by Intramolecular Electron Transfer in Cysteine Mutant Myoglobin under Carbon Monoxide Atmosphere. Biochemistry 2005; 44:10322-7. [PMID: 16042409 DOI: 10.1021/bi0507581] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human myoglobin (Mb) possesses a unique cysteine (Cys110), whereas other mammalian Mbs do not. To investigate the effect of a cysteine residue on Mb, we introduced cysteine to various sites on the surface of sperm whale Mb (K56C, V66C, K96C, K102C, A125C, and A144C) by mutation. The cysteines were inserted near the end of alpha-helices, except for V66C, where the cysteine was introduced in the middle of an alpha-helix. Reduction of the heme was observed for each mutant metMb by incubation at 37 degrees C under carbon monoxide atmosphere, which was much faster than reduction of wild-type metMb under the same condition. Heme reduction did not occur significantly under nitrogen or oxygen atmospheres. The rate constant for heme reduction increased for higher mutant Mb concentration, whereas it did not change significantly when the CO concentration was reduced from 100% CO to 50% CO with 50% O(2). The similarity in the rate constants with different CO concentrations indicates that CO stabilizes the reduced heme by coordination to the heme iron. SDS-PAGE analysis showed that mutant Mb dimers were formed by incubation under CO atmosphere but not under air. These dimers were converted back to Mb monomers by an addition of 2-mercaptoethanol, which showed formation of a Mb dimer through a disulfide bond. The rate constant decreased in general as the heme-cysteine distance was increased, although V66C Mb exhibited a very small rate constant. Since V66 is placed in the middle of an alpha-helix, steric hindrance would occur and prevent formation of a dimer when the cysteine residues of two different V66C Mb molecules interact with each other. The rate constants also decreased for K56C and A144C Mbs presumably because of the electrostatic repulsion during dimer formation, since they are relatively charged around the inserted cysteine.
Collapse
Affiliation(s)
- Shun Hirota
- Department of Physical Chemistry, 21st Century COE Program, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan.
| | | | | | | | | |
Collapse
|
13
|
Lendzian F. Structure and interactions of amino acid radicals in class I ribonucleotide reductase studied by ENDOR and high-field EPR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1707:67-90. [PMID: 15721607 DOI: 10.1016/j.bbabio.2004.02.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2003] [Accepted: 02/17/2004] [Indexed: 11/18/2022]
Abstract
This short review compiles high-field electron paramagnetic resonance (EPR) and electron nuclear double resonance (ENDOR) studies on different intermediate amino acid radicals, which emerge in wild-type and mutant class I ribonucleotide reductase (RNR) both in the reaction of protein subunit R2 with molecular oxygen, which generates the essential tyrosyl radical, and in the catalytic reaction, which involves a radical transfer between subunits R2 and R1. Recent examples are presented, how different amino acid radicals (tyrosyl, tryptophan, and different cysteine-based radicals) were identified, assigned to a specific residue, and their interactions, in particular hydrogen bonding, were investigated using high-field EPR and ENDOR spectroscopy. Thereby, unexpected diiron-radical centers, which emerge in mutants of R2 with changed iron coordination, and an important catalytic cysteine-based intermediate in the substrate turnover reaction in R1 were identified and characterized. Experiments on the essential tyrosyl radical in R2 single crystals revealed the so far unknown conformational changes induced by formation of the radical. Interesting structural differences between the tyrosyl radicals of class Ia and Ib enzymes were revealed. Recently accurate distances between the tyrosyl radicals in the protein dimer R2 could be determined using pulsed electron-electron double resonance (PELDOR), providing a new tool for docking studies of protein subunits. These studies show that high-field EPR and ENDOR are important tools for the identification and investigation of radical intermediates, which contributed significantly to the current understanding of the reaction mechanism of class I RNR.
Collapse
Affiliation(s)
- Friedhelm Lendzian
- Max-Volmer-Laboratory for Biophysical Chemistry, Institute for Chemistry, PC 14, Technical University Berlin, Strasse des 17. Juni 135, D-10623 Berlin, Germany.
| |
Collapse
|
14
|
New insights into a critical biological control step of the mechanism of Ribonucleotide reductase. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/j.theochem.2003.10.073] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Wnuk SF, Lewandowska E, Companioni DR, Garcia PI, Secrist JA. Synthesis and cytotoxicity of 9-(2-deoxy-2-alkyldithio-β-D-arabinofuranosyl)purine nucleosides which are stable precursors to potential mechanistic probes of ribonucleotide reductases. Org Biomol Chem 2004; 2:120-6. [PMID: 14737670 DOI: 10.1039/b311504f] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of 2[prime or minute]-thionucleosides, as potential inhibitors of ribonucleotide reductases, has been synthesized. Treatment of the 3[prime or minute],5[prime or minute]-O-TPDS-2[prime or minute]-O-(trifluoromethanesulfonyl)adenosine with potassium thioacetate gave the arabino epimer of 2[prime or minute]-S-acetyl-2[prime or minute]-thioadenosine which was deacetylated to give 9-(3,5-O-TPDS-2-thio-[small beta]-d-arabinofuranosyl)adenine in high yield. Treatment of the latter with diethyl azodicarboxylate-C(3)H(7)SH-THF gave 2[prime or minute]-propyl disulfide which was desilylated to give 9-(2-deoxy-2-propyldithio-[small beta]-d-arabinofuranosyl)adenine. Subsequent tosylation (O5[prime or minute]) and displacement of the tosylate with pyrophosphate afforded the 5[prime or minute]-O-diphosphate in a stable form as propyl mixed-disulfide, which upon treatment with dithiothreitol releases 9-(2-thio-[small beta]-d-arabinofuranosyl)adenine 5[prime or minute]-diphosphate. The arabino 2[prime or minute]-mercapto group might interact with the crucial thiyl radical at cysteine 439 leading to the inhibition of ribonucleotide reductases via formation of a Cys439-2[prime or minute]-mercapto disulfide bridge. The 2,6-diamino-, 2-amino-6-chloro- and 2-amino-6-methoxypurine ribosides were also converted to the corresponding 2[prime or minute]-deoxy-2[prime or minute]-propyldithio-[small beta]-d-arabinofuranosyl nucleosides, which might serve as convenient precursors to the arabino epimer of 2[prime or minute]-thioguanosine. Analogously, 2[prime or minute]-deoxy-2[prime or minute]-propyldithioadenosine was prepared from 9-([small beta]-d-arabinofuranosyl)adenine. The nucleoside disulfides show modest cytotoxicity in a panel of human tumor cell lines.
Collapse
Affiliation(s)
- Stanislaw F Wnuk
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA.
| | | | | | | | | |
Collapse
|
16
|
Giles NM, Watts AB, Giles GI, Fry FH, Littlechild JA, Jacob C. Metal and redox modulation of cysteine protein function. CHEMISTRY & BIOLOGY 2003; 10:677-93. [PMID: 12954327 DOI: 10.1016/s1074-5521(03)00174-1] [Citation(s) in RCA: 326] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In biological systems, the amino acid cysteine combines catalytic activity with an extensive redox chemistry and unique metal binding properties. The interdependency of these three aspects of the thiol group permits the redox regulation of proteins and metal binding, metal control of redox activity, and ligand control of metal-based enzyme catalysis. Cysteine proteins are therefore able to act as "redox switches," to sense concentrations of oxidative stressors and unbound zinc ions in the cytosol, to provide a "storage facility" for excess metal ions, to control the activity of metalloproteins, and to take part in important regulatory and signaling pathways. The diversity of cysteine's multiple roles in vivo is equally as fascinating as it is promising for future biochemical and pharmacological research.
Collapse
Affiliation(s)
- Niroshini M Giles
- School of Biological and Chemical Sciences, University of Exeter, Stocker Road, EX4 4QD, Exeter, United Kingdom
| | | | | | | | | | | |
Collapse
|
17
|
Stubbe J, Nocera DG, Yee CS, Chang MCY. Radical initiation in the class I ribonucleotide reductase: long-range proton-coupled electron transfer? Chem Rev 2003; 103:2167-201. [PMID: 12797828 DOI: 10.1021/cr020421u] [Citation(s) in RCA: 667] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- JoAnne Stubbe
- Department of Chemistry, 77 Massachusetts Avenue, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA.
| | | | | | | |
Collapse
|
18
|
Ekberg M, Birgander P, Sjöberg BM. In vivo assay for low-activity mutant forms of Escherichia coli ribonucleotide reductase. J Bacteriol 2003; 185:1167-73. [PMID: 12562785 PMCID: PMC142847 DOI: 10.1128/jb.185.4.1167-1173.2003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ribonucleotide reductase (RNR) catalyzes the essential production of deoxyribonucleotides in all living cells. In this study we have established a sensitive in vivo assay to study the activity of RNR in aerobic Escherichia coli cells. The method is based on the complementation of a chromosomally encoded nonfunctional RNR with plasmid-encoded RNR. This assay can be used to determine in vivo activity of RNR mutants with activities beyond the detection limits of traditional in vitro assays. E. coli RNR is composed of two homodimeric proteins, R1 and R2. The R2 protein contains a stable tyrosyl radical essential for the catalysis that takes place at the R1 active site. The three-dimensional structures of both proteins, phylogenetic studies, and site-directed mutagenesis experiments show that the radical is transferred from the R2 protein to the active site in the R1 protein via a radical transfer pathway composed of at least nine conserved amino acid residues. Using the new assay we determined the in vivo activity of mutants affecting the radical transfer pathway in RNR and identified some residual radical transfer activity in two mutant R2 constructs (D237N and W48Y) that had previously been classified as negative for enzyme activity. In addition, we show that the R2 mutant Y356W is completely inactive, in sharp contrast to what has previously been observed for the corresponding mutation in the mouse R2 enzyme.
Collapse
Affiliation(s)
- Monica Ekberg
- Department of Molecular Biology and Functional Genomics, Stockholm University, SE-10691 Stockholm, Sweden
| | | | | |
Collapse
|
19
|
Lassmann G, Kolberg M, Bleifuss G, Gräslund A, Sjöberg BM, Lubitz W. Protein thiyl radicals in disordered systems: A comparative EPR study at low temperature. Phys Chem Chem Phys 2003. [DOI: 10.1039/b302601a] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Pelmenschikov V, Cho KB, Siegbahn PEM. Class I ribonucleotide reductase revisited: The effect of removing a proton on Glu441. J Comput Chem 2003; 25:311-21. [PMID: 14696066 DOI: 10.1002/jcc.10389] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The substrate mechanism of class I ribonucleotide reductase has been revisited using the hybrid density functional B3LYP method. The molecular model used is based on the X-ray structure and includes all the residues of the R1 subunit commonly considered in the RNR substrate conversion scheme: Cys439 initiating the reaction as a thiyl radical, the redox-active cysteines Cys225 and Cys462, and the catalytically important Glu441 and Asn437. In contrast to previous theoretical studies of the overall mechanism, Glu441 is added as an anion. All relevant transition states have been optimized, including one where an electron is transferred 8 A from the disulfide to the substrate simultaneously with a proton transfer from Glu441. The calculated barrier for this step is 19.1 kcal/mol, which can be compared to the rate-limiting barrier indicated by experiments of about 17 kcal/mol. Even though the calculated barrier is somewhat higher than the experimental limit, the discrepancy is within the normal error bounds of B3LYP. The suggestion from the present modeling study is thus that a protonated Glu441 does not need to be present at the active site from the beginning of the catalytic cycle. However, the previously suggested mechanism with an initial protonation of Glu441 cannot be ruled out, because even with the cost added for protonation of Glu441 with a typical pK(a) of 4, the barrier for that mechanism is lower than the one obtained for the present mechanism. The results are compared to experimental results and suggestions.
Collapse
|
21
|
Affiliation(s)
- Britt-Marie Sjöberg
- Department of Molecular Biology and Functional Genomics, Stockholm University, SE-10691 Stockholm, Sweden
| | | |
Collapse
|
22
|
Wnuk SF, Chowdhury SM, Garcia PI, Robins MJ. Stereodefined synthesis of O3'-labeled uracil nucleosides. 3'-[(17)O]-2'-Azido-2'-deoxyuridine 5'-diphosphate as a probe for the mechanism of inactivation of ribonucleotide reductases. J Org Chem 2002; 67:1816-9. [PMID: 11895397 DOI: 10.1021/jo010899i] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Thermolysis of a 2'-[(16)O]-O-benzoyl-[(17)O]-5'-O-(tert-butyldimethylsilyl)-O(2),3'-cyclouridine derivative gave the more stable 3'-[(17)O]-O-benzoyl-[(16)O]- 5'-O-(tert-butyldimethylsilyl)-O(2),2'-cyclouridine isomer, which was converted into 3'-[(17)O]-2'-azido-2'-deoxyuridine by deprotection and nucleophilic ring opening at C2' with lithium azide. The 5'-diphosphate was prepared by nucleophilic displacement of the 5'-O-tosyl group with tris(tetrabutylammonium) hydrogen pyrophosphate. Model reactions gave (16)O and (18)O isotopomers, and base-promoted hydrolysis of an O(2),2'-cyclonucleoside gave stereodefined access to 3'-[(18)O]-1-(beta-D-arabinofuranosyl)uracil. Inactivation of ribonucleoside diphosphate reductase with 2'-azido-2'-deoxynucleotides results in appearance of EPR signals for a nitrogen-centered radical derived from azide, and 3'-[(17)O]-2'-azido-2'-deoxyuridine 5'-diphosphate provides an isotopomer to perturb EPR spectra in a predictable manner.
Collapse
Affiliation(s)
- Stanislaw F Wnuk
- Department of Chemistry, Florida International University, Miami, Florida 33199, USA.
| | | | | | | |
Collapse
|
23
|
Affiliation(s)
- R P Pesavento
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | |
Collapse
|
24
|
Kasrayan A, Persson AL, Sahlin M, Sjoberg BM. The conserved active site asparagine in class I ribonucleotide reductase is essential for catalysis. J Biol Chem 2002; 277:5749-55. [PMID: 11733508 DOI: 10.1074/jbc.m106538200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The active site residue Asn-437 in protein R1 of the Escherichia coli ribonucleotide reductase makes a hydrogen bond to the 2'-OH group of the substrate. To elucidate its role(s) during catalysis, Asn-437 was engineered by site-directed mutagenesis to several other side chains (Ala, Ser, Asp, Gln). All mutant proteins were incapable of enzymatic turnover but promoted rapid protein R2 tyrosyl radical decay in the presence of the k(cat) inhibitor 2'-azido-2'-deoxy-CDP with similar decay rate constants as the wild-type R1. These results show that all Asn-437 mutants can perform 3'-H abstraction, the first substrate-related step in the reaction mechanism. The most interesting observation was that three of the mutant proteins (N437A/S/D) behaved as suicidal enzymes by catalyzing a rapid tyrosyl radical decay also in reaction mixtures containing the natural substrate CDP. The suicidal CDP-dependent reaction was interpreted to suggest elimination of the substrate's protonated 2'-OH group in the form of water, a step that has been proposed to drive the 3'-H abstraction step. A furanone-related chromophore was formed in the N437D reaction, which is indicative of stalling of the reaction mechanism at the reduction step. We conclude that Asn-437 is essential for catalysis but not for 3'-H abstraction. We propose that the suicidal N437A, N437S, and N437D mutants can also catalyze the water elimination step, whereas the inert N437Q mutant cannot. Our results suggest that Asn-437, apart from hydrogen bonding to the substrate, also participates in the reduction steps of catalysis by class I ribonucleotide reductase.
Collapse
Affiliation(s)
- Alex Kasrayan
- Department of Molecular Biology and Functional Genomics, Stockholm University, SE-10691 Stockholm, Sweden
| | | | | | | |
Collapse
|
25
|
Kolberg M, Bleifuss G, Sjöberg BM, Gräslund A, Lubitz W, Lendzian F, Lassmann G. Generation and electron paramagnetic resonance spin trapping detection of thiyl radicals in model proteins and in the R1 subunit of Escherichia coli ribonucleotide reductase. Arch Biochem Biophys 2002; 397:57-68. [PMID: 11747310 DOI: 10.1006/abbi.2001.2658] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the Escherichia coli class Ia ribonucleotide reductase (RNR), the best characterized RNR, there is no spectroscopic evidence for the existence of the postulated catalytically essential thiyl radical (R-S(*)) in the substrate binding subunit R1. We report first results on artificially generated thiyl radicals in R1 using two different methods: chemical oxidation by Ce(IV)/nitrilotriacetate (NTA) and laser photolysis of nitric oxide from nitrosylated cysteines. In both cases, EPR spin trapping at room temperature using phenyl-N-t-butylnitrone, and controls with chemically blocked cysteines, has shown that the observed spin adduct originates from thiyl radicals. The EPR line shape of the protein-bound spin adduct is typical for slow motion of the nitroxide moiety, which indicates that the majority of trapped thiyl radicals are localized in a folded region of R1. In aerobic R1 samples without spin trap that were frozen after treatment with Ce(IV)/NTA or laser photolysis, we observed sulfinyl radicals (R-S(*)=O) assigned via their g-tensor components 2.0213, 2.0094, and 2.0018 and the hyperfine tensor components 1.0, 1.1, and 0.9 mT of one beta-proton. Sulfinyl radicals are the reaction products of thiyl radicals and oxygen and give additional evidence for generation of thiyl radicals in R1 by the procedures used.
Collapse
Affiliation(s)
- Matthias Kolberg
- Max-Volmer-Laboratorium für Biophysikalische Chemie, Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
26
|
Andersson J, Bodevin S, Westman M, Sahlin M, Sjöberg BM. Two active site asparagines are essential for the reaction mechanism of the class III anaerobic ribonucleotide reductase from bacteriophage T4. J Biol Chem 2001; 276:40457-63. [PMID: 11526118 DOI: 10.1074/jbc.m106863200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Class III ribonucleotide reductase is an anaerobic enzyme that uses a glycyl radical to catalyze the reduction of ribonucleotides to deoxyribonucleotides and formate as ultimate reductant. The reaction mechanism of class III ribonucleotide reductases requires two cysteines within the active site, Cys-79 and Cys-290 in bacteriophage T4 NrdD numbering. Cys-290 is believed to form a transient thiyl radical that initiates the reaction with substrate and Cys-79 to take part as a transient thiyl radical in later steps of the reductive reaction. The recently solved three-dimensional structure of class III ribonucleotide reductase (RNR) from bacteriophage T4 shows that two highly conserved asparagines, Asn-78 and Asn-311, are positioned close to the essential Cys-79. We have investigated the function of Asn-78 and Asn-311 by site-directed mutagenesis and measured enzyme activity and glycyl radical formation in five single (N78(A/C/D) and N311(A/C)) and one double (N78A/N311A) mutant proteins. Our results suggest that both asparagines are important for the catalytic mechanism of class III RNR and that one asparagine can partially compensate for the lack of the other functional group in the single Asn --> Ala mutant proteins. A plausible role for these two asparagines could be in positioning formate in the active site to orient it toward the proposed thiyl radical of Cys-79. This would also control the highly reactive carbon dioxide radical anion form of formate within the active site before it is released as carbon dioxide. A detailed reaction scheme including the function of the two asparagines and two formate molecules is proposed for class III RNRs.
Collapse
Affiliation(s)
- J Andersson
- Department of Molecular Biology and Functional Genomics, Stockholm University, SE-10691 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
27
|
Eklund H, Uhlin U, Färnegårdh M, Logan DT, Nordlund P. Structure and function of the radical enzyme ribonucleotide reductase. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2001; 77:177-268. [PMID: 11796141 DOI: 10.1016/s0079-6107(01)00014-1] [Citation(s) in RCA: 256] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ribonucleotide reductases (RNRs) catalyze all new production in nature of deoxyribonucleotides for DNA synthesis by reducing the corresponding ribonucleotides. The reaction involves the action of a radical that is produced differently for different classes of the enzyme. Class I enzymes, which are present in eukaryotes and microorganisms, use an iron center to produce a stable tyrosyl radical that is stored in one of the subunits of the enzyme. The other classes are only present in microorganisms. Class II enzymes use cobalamin for radical generation and class III enzymes, which are found only in anaerobic organisms, use a glycyl radical. The reductase activity is in all three classes contained in enzyme subunits that have similar structures containing active site cysteines. The initiation of the reaction by removal of the 3'-hydrogen of the ribose by a transient cysteinyl radical is a common feature of the different classes of RNR. This cysteine is in all RNRs located on the tip of a finger loop inserted into the center of a special barrel structure. A wealth of structural and functional information on the class I and class III enzymes can now give detailed views on how these enzymes perform their task. The class I enzymes demonstrate a sophisticated pattern as to how the free radical is used in the reaction, in that it is only delivered to the active site at exactly the right moment. RNRs are also allosterically regulated, for which the structural molecular background is now starting to be revealed.
Collapse
Affiliation(s)
- H Eklund
- Department of Molecular Biology, Swedish University of Agricultural Sciences, Uppsala Biomedical Center, Box 590, S-751 24, Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
28
|
Sahlin M, Sjöberg BM. Ribonucleotide reductase. A virtual playground for electron transfer reactions. Subcell Biochem 2001; 35:405-43. [PMID: 11192729 DOI: 10.1007/0-306-46828-x_12] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- M Sahlin
- Department of Molecular Biology, Stockholm University, SE-10691 Stockholm, Sweden
| | | |
Collapse
|
29
|
Engström M, Vahtras O, Ågren H. MCSCF and DFT calculations of EPR parameters of sulfur centered radicals. Chem Phys Lett 2000. [DOI: 10.1016/s0009-2614(00)00961-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Himo F, Siegbahn PEM. Very Stable Ribonucleotide Substrate Radical Relevant for Class I Ribonucleotide Reductase. J Phys Chem B 2000. [DOI: 10.1021/jp000752f] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fahmi Himo
- Department of Physics, Stockholm University, Box 6730, S-113 85 Stockholm, Sweden
| | - Per E. M. Siegbahn
- Department of Physics, Stockholm University, Box 6730, S-113 85 Stockholm, Sweden
| |
Collapse
|
31
|
Andersson J, Westman M, Sahlin M, Sjoberg BM. Cysteines involved in radical generation and catalysis of class III anaerobic ribonucleotide reductase. A protein engineering study of bacteriophage T4 NrdD. J Biol Chem 2000; 275:19449-55. [PMID: 10748010 DOI: 10.1074/jbc.m001278200] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Class III ribonucleotide reductase (RNR) is an anaerobic glycyl radical enzyme that catalyzes the reduction of ribonucleotides to deoxyribonucleotides. We have investigated the importance in the reaction mechanism of nine conserved cysteine residues in class III RNR from bacteriophage T4. By using site-directed mutagenesis, we show that two of the cysteines, Cys-79 and Cys-290, are directly involved in the reaction mechanism. Based on the positioning of these two residues in the active site region of the known three-dimensional structure of the phage T4 enzyme, and their structural equivalence to two cysteine residues in the active site region of the aerobic class I RNR, we suggest that Cys-290 participates in the reaction mechanism by forming a transient thiyl radical and that Cys-79 participates in the actual reduction of the substrate. Our results provide strong experimental evidence for a similar radical-based reaction mechanism in all classes of RNR but also identify important differences between class III RNR and the other classes of RNR as regards the reduction per se. We also identify a cluster of four cysteines (Cys-543, Cys-546, Cys-561, and Cys-564) in the C-terminal part of the class III enzyme, which are essential for formation of the glycyl radical. These cysteines make up a CX(2)C-CX(2)C motif in the vicinity of the stable radical at Gly-580. We propose that the four cysteines are involved in radical transfer between Gly-580 and the cofactor S-adenosylmethionine of the activating NrdG enzyme needed for glycyl radical generation.
Collapse
Affiliation(s)
- J Andersson
- Department of Molecular Biology, Stockholm University, SE-10691 Stockholm, Sweden
| | | | | | | |
Collapse
|
32
|
Lawrence CC, Bennati M, Obias HV, Bar G, Griffin RG, Stubbe J. High-field EPR detection of a disulfide radical anion in the reduction of cytidine 5'-diphosphate by the E441Q R1 mutant of Escherichia coli ribonucleotide reductase. Proc Natl Acad Sci U S A 1999; 96:8979-84. [PMID: 10430881 PMCID: PMC17718 DOI: 10.1073/pnas.96.16.8979] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Class I ribonucleotide reductases (RNRs) are composed of two subunits, R1 and R2. The R2 subunit contains the essential diferric cluster-tyrosyl radical (Y.) cofactor and R1 is the site of the conversion of nucleoside diphosphates to 2'-deoxynucleoside diphosphates. A mutant in the R1 subunit of Escherichia coli RNR, E441Q, was generated in an effort to define the function of E441 in the nucleotide-reduction process. Cytidine 5'-diphosphate was incubated with E441Q RNR, and the reaction was monitored by using stopped-flow UV-vis spectroscopy and high-frequency (140 GHz) time-domain EPR spectroscopy. These studies revealed loss of the Y. and formation of a disulfide radical anion and present experimental mechanistic insight into the reductive half-reaction catalyzed by RNR. These results support the proposal that the protonated E441 is required for reduction of a 3'-ketodeoxynucleotide by a disulfide radical anion. On the minute time scale, a second radical species was also detected by high-frequency EPR. Its g values suggest that this species may be a 4'-ketyl radical and is not on the normal reduction pathway. These experiments demonstrate that high-field time-domain EPR spectroscopy is a powerful new tool for deconvolution of a mixture of radical species.
Collapse
Affiliation(s)
- C C Lawrence
- Departments of Chemistry and Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | |
Collapse
|
33
|
Pötsch S, Lendzian F, Ingemarson R, Hörnberg A, Thelander L, Lubitz W, Lassmann G, Gräslund A. The iron-oxygen reconstitution reaction in protein R2-Tyr-177 mutants of mouse ribonucleotide reductase. Epr and electron nuclear double resonance studies on a new transient tryptophan radical. J Biol Chem 1999; 274:17696-704. [PMID: 10364210 DOI: 10.1074/jbc.274.25.17696] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ferrous iron/oxygen reconstitution reaction in protein R2 of mouse and Escherichia coli ribonucleotide reductase (RNR) leads to the formation of a stable protein-linked tyrosyl radical and a mu-oxo-bridged diferric iron center, both necessary for enzyme activity. We have studied the reconstitution reaction in three protein R2 mutants Y177W, Y177F, and Y177C of mouse RNR to investigate if other residues at the site of the radical forming Tyr-177 can harbor free radicals. In Y177W we observed for the first time the formation of a tryptophan radical in protein R2 of mouse RNR with a lifetime of several minutes at room temperature. We assign it to an oxidized neutral tryptophan radical on Trp-177, based on selective deuteration and EPR and electron nuclear double resonance spectroscopy in H2O and D2O solution. The reconstitution reaction at 22 degrees C in both Y177F and Y177C leads to the formation of a so-called intermediate X which has previously been assigned to an oxo (hydroxo)-bridged Fe(III)/Fe(IV) cluster. Surprisingly, in both mutants that do not have successor radicals as Trp. in Y177W, this cluster exists on a much longer time scale (several seconds) at room temperature than has been reported for X in E. coli Y122F or native mouse protein R2. All three mouse R2 mutants were enzymatically inactive, indicating that only a tyrosyl radical at position 177 has the capability to take part in the reduction of substrates.
Collapse
Affiliation(s)
- S Pötsch
- Department of Biophysics, Stockholm University, Arrhenius Laboratories, S-106 91 Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Logan DT, Andersson J, Sjöberg BM, Nordlund P. A glycyl radical site in the crystal structure of a class III ribonucleotide reductase. Science 1999; 283:1499-504. [PMID: 10066165 DOI: 10.1126/science.283.5407.1499] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Ribonucleotide reductases catalyze the reduction of ribonucleotides to deoxyribonucleotides. Three classes have been identified, all using free-radical chemistry but based on different cofactors. Classes I and II have been shown to be evolutionarily related, whereas the origin of anaerobic class III has remained elusive. The structure of a class III enzyme suggests a common origin for the three classes but shows differences in the active site that can be understood on the basis of the radical-initiation system and source of reductive electrons, as well as a unique protein glycyl radical site. A possible evolutionary relationship between early deoxyribonucleotide metabolism and primary anaerobic metabolism is suggested.
Collapse
Affiliation(s)
- D T Logan
- Department of Biochemistry and Department of Molecular Biology, Stockholm University, S-106 91 Stockholm, Sweden.
| | | | | | | |
Collapse
|