1
|
Ayyangar U, Karkhanis A, Tay H, Afandi AFB, Bhattacharjee O, Ks L, Lee SH, Chan J, Raghavan S. Metabolic rewiring of macrophages by epidermal-derived lactate promotes sterile inflammation in the murine skin. EMBO J 2024; 43:1113-1134. [PMID: 38418556 PMCID: PMC10987662 DOI: 10.1038/s44318-024-00039-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 03/01/2024] Open
Abstract
Dysregulated macrophage responses and changes in tissue metabolism are hallmarks of chronic inflammation in the skin. However, the metabolic cues that direct and support macrophage functions in the skin are poorly understood. Here, we show that during sterile skin inflammation, the epidermis and macrophages uniquely depend on glycolysis and the TCA cycle, respectively. This compartmentalisation is initiated by ROS-induced HIF-1α stabilization leading to enhanced glycolysis in the epidermis. The end-product of glycolysis, lactate, is then exported by epithelial cells and utilized by the dermal macrophages to induce their M2-like fates through NF-κB pathway activation. In addition, we show that psoriatic skin disorder is also driven by such lactate metabolite-mediated crosstalk between the epidermis and macrophages. Notably, small-molecule inhibitors of lactate transport in this setting attenuate sterile inflammation and psoriasis disease burden, and suppress M2-like fate acquisition in dermal macrophages. Our study identifies an essential role for the metabolite lactate in regulating macrophage responses to inflammation, which may be effectively targeted to treat inflammatory skin disorders such as psoriasis.
Collapse
Affiliation(s)
- Uttkarsh Ayyangar
- Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India.
- School for Chemical and Biotechnology, Sastra University, Thanjavur, India.
| | - Aneesh Karkhanis
- A*Star Skin Research Labs, Agency for Science, Technology and Research, Singapore, Singapore
| | - Heather Tay
- A*Star Skin Research Labs, Agency for Science, Technology and Research, Singapore, Singapore
| | | | - Oindrila Bhattacharjee
- Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Lalitha Ks
- Animal Care and Resource Centre (ACRC), National Centre for Biological Sciences (NCBS), Bangalore, India
| | - Sze Han Lee
- A*Star Skin Research Labs, Agency for Science, Technology and Research, Singapore, Singapore
| | - James Chan
- A*Star Skin Research Labs, Agency for Science, Technology and Research, Singapore, Singapore
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science Technology and Research, Singapore, Singapore
| | - Srikala Raghavan
- Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India.
- A*Star Skin Research Labs, Agency for Science, Technology and Research, Singapore, Singapore.
| |
Collapse
|
2
|
Takeuchi M, Amao Y. An effective visible-light driven fumarate production from gaseous CO 2 and pyruvate by the cationic zinc porphyrin-based photocatalytic system with dual biocatalysts. Dalton Trans 2024; 53:418-422. [PMID: 38032087 DOI: 10.1039/d3dt03492e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Fumaric acid is a useful unsaturated dicarboxylic acid that serves as a precursor for the biodegradable plastics poly(butylene succinate) and poly(propylene fumarate). Currently, fumaric acid is mainly synthesised from petroleum resources such as benzene. It is therefore desirable to develop methods to produce fumaric acid from renewable resources such as those derived from biomass. In this work, an effective visible-light driven fumarate production from gaseous CO2 and pyruvate with the system consisting of triethanolamine, cationic water-soluble zinc porphyrin, zinc tetrakis(4-N,N,N-trimethylaminophenyl)porphyrin, pentamethylcyclopentadienyl coordinated rhodium(III) 2,2'-bipyridyl complex, NAD+, malate dehydrogenase (NAD+-dependent oxaloacetate-decarboxylating) and fumarase was developed.
Collapse
Affiliation(s)
- Mika Takeuchi
- Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan.
| | - Yutaka Amao
- Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan.
- Research Centre of Artificial Photosynthesis (ReCAP), Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| |
Collapse
|
3
|
Mansouri K, Rastegari-Pouyani M, Ghanbri-Movahed M, Safarzadeh M, Kiani S, Ghanbari-Movahed Z. Can a metabolism-targeted therapeutic intervention successfully subjugate SARS-COV-2? A scientific rational. Biomed Pharmacother 2020; 131:110694. [PMID: 32920511 PMCID: PMC7451059 DOI: 10.1016/j.biopha.2020.110694] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/23/2022] Open
Abstract
As a process entailing a high turnover of the host cell molecules, viral replication is required for a successful viral infection and requests virus capacity to acquire the macromolecules required for its propagation. To this end, viruses have adopted several strategies to harness cellular metabolism in accordance with their specific demands. Most viruses upregulate specific cellular anabolic pathways and are largely dependent on such alterations. RNA viruses, for example, upregulate both glycolysisand glycogenolysis providing TCA cycle intermediates essential for anabolic lipogenesis. Also, these infections usually induce the PPP, leading to increased nucleotide levels supporting viral replication. SARS-CoV-2 (the cause of COVID-19)that has so far spread from China throughout the world is also an RNA virus. Owing to the more metabolic plasticity of uninfected cells, a promising approach for specific antiviral therapy, which has drawn a lot of attention in the recent years, would be the targeting of metabolic changes induced by viruses. In the current review, we first summarize some of virus-induced metabolic adaptations and then based on these information as well as SARS-CoV-2 pathogenesis, propose a potential therapeutic modality for this calamitous world-spreading virus with the hope of employing this strategy for near-future clinical application.
Collapse
Affiliation(s)
- Kamran Mansouri
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohsen Rastegari-Pouyani
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Ghanbri-Movahed
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Mehrnoush Safarzadeh
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Kiani
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Ghanbari-Movahed
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
4
|
Katsuyama Y, Sato Y, Sugai Y, Higashiyama Y, Senda M, Senda T, Ohnishi Y. Crystal structure of the nitrosuccinate lyase CreD in complex with fumarate provides insights into the catalytic mechanism for nitrous acid elimination. FEBS J 2018; 285:1540-1555. [PMID: 29505698 DOI: 10.1111/febs.14429] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 02/23/2018] [Accepted: 03/01/2018] [Indexed: 01/30/2023]
Abstract
Enzymes belonging to the aspartase/fumarase superfamily catalyze elimination of various functional groups from succinate derivatives and play an important role in primary metabolism and aromatic compound degradation. Recently, an aspartase/fumarase superfamily enzyme, CreD, was discovered in cremeomycin biosynthesis. This enzyme catalyzes the elimination of nitrous acid from nitrosuccinate synthesized from aspartate by CreE, a flavin-dependent monooxygenase. Nitrous acid generated by this pathway is an important precursor of the diazo group of cremeomycin. CreD is the first aspartase/fumarase superfamily enzyme that was reported to catalyze the elimination of nitrous acid, and therefore we aimed to analyze its reaction mechanism. The crystal structure of CreD was determined by the molecular replacement native-single anomalous diffraction method at 2.18 Å resolution. Subsequently, the CreD-fumarate complex structure was determined at 2.30 Å resolution by the soaking method. Similar to other aspartase/fumarase superfamily enzymes, the crystal structure of CreD was composed of three domains and formed a tetramer. Two molecules of fumarate were observed in one subunit of the CreD-fumarate complex. One of them was located in the active site pocket formed by three different subunits. Intriguingly, no histidine residue, which usually functions as a catalytic acid in aspartase/fumarase superfamily enzymes, was found around the fumarate molecule in the active site. Based on the mutational analysis, we propose a catalytic mechanism of CreD, in which Arg325 acts as a catalytic acid. DATABASES The crystal structures of CreD and the CreD-fumarate complex were deposited to PDB under the accession numbers 5XNY and 5XNZ, respectively. ENZYMES Nitrosuccinate lyase CreD, EC4.3.
Collapse
Affiliation(s)
- Yohei Katsuyama
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | - Yukari Sato
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Japan
| | - Yoshinori Sugai
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | - Yousuke Higashiyama
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | - Miki Senda
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Japan
| | - Toshiya Senda
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Japan.,Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University for Advanced Studies (Soken-dai), Tsukuba, Japan
| | - Yasuo Ohnishi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| |
Collapse
|
5
|
Hou E, Li X, Liu Z, Zhang F, Tian Z. Combined metabolomic and correlation networks analyses reveal fumarase insufficiency altered amino acid metabolism. Biomed Chromatogr 2018; 32. [DOI: 10.1002/bmc.4133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/16/2017] [Accepted: 10/27/2017] [Indexed: 01/18/2023]
Affiliation(s)
- Entai Hou
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology; Xi'an Jiaotong University; Xi'an China
| | - Xian Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology; Xi'an Jiaotong University; Xi'an China
| | - Zerong Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology; Xi'an Jiaotong University; Xi'an China
| | - Fuchang Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology; Xi'an Jiaotong University; Xi'an China
| | - Zhongmin Tian
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology; Xi'an Jiaotong University; Xi'an China
| |
Collapse
|
6
|
Selective small molecule inhibitor of the Mycobacterium tuberculosis fumarate hydratase reveals an allosteric regulatory site. Proc Natl Acad Sci U S A 2016; 113:7503-8. [PMID: 27325754 DOI: 10.1073/pnas.1600630113] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Enzymes in essential metabolic pathways are attractive targets for the treatment of bacterial diseases, but in many cases, the presence of homologous human enzymes makes them impractical candidates for drug development. Fumarate hydratase, an essential enzyme in the tricarboxylic acid (TCA) cycle, has been identified as one such potential therapeutic target in tuberculosis. We report the discovery of the first small molecule inhibitor, to our knowledge, of the Mycobacterium tuberculosis fumarate hydratase. A crystal structure at 2.0-Å resolution of the compound in complex with the protein establishes the existence of a previously unidentified allosteric regulatory site. This allosteric site allows for selective inhibition with respect to the homologous human enzyme. We observe a unique binding mode in which two inhibitor molecules interact within the allosteric site, driving significant conformational changes that preclude simultaneous substrate and inhibitor binding. Our results demonstrate the selective inhibition of a highly conserved metabolic enzyme that contains identical active site residues in both the host and the pathogen.
Collapse
|
7
|
Su RR, Wang A, Hou ST, Gao P, Zhu GP, Wang W. Identification of a novel fumarase C from Streptomyces lividans TK54 as a good candidate for L-malate production. Mol Biol Rep 2013; 41:497-504. [PMID: 24307253 DOI: 10.1007/s11033-013-2885-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 11/23/2013] [Indexed: 12/13/2022]
Abstract
Fumarase is a key enzyme that catalyzes the reversible hydration of fumarate to L-malate in the tricarboxylic acid cycle. This reaction has been extensively utilized for industrial applications in producing L-malate. In this study, a fumarase C gene from Streptomyces lividans TK54 (slFumC) was cloned and expressed as a fused protein (SlFumC) in Escherichia coli. The molecular mass of SlFumC was about 49 kDa determined by SDS-PAGE. Kinetic studies showed that the K m value of SlFumC for L-malate increased by approximately 8.5-fold at pH 6.5 (6.7 ± 0.81 mM) to 8.0 (57.0 ± 1.12 mM), which was higher than some known fumarases. The catalytic efficiency (k cat) and the specific activity increased by about 9.5-fold at pH 6.5 (65 s(-1)) to 8.0 (620 s(-1)) and from 79 U/mg at pH 6.5 to 752 U/mg at pH 8.0, respectively. Therefore, SlFumC may acquire strong catalytic ability by increasing pH to partially compensate for the loss of substrate affinity. The enzyme also showed substrate inhibition phenomenon, which is pH-dependent. Specific activity of SlFumC was gradually enhanced with increasing phosphate concentrations. However, no inhibition was observed at high concentration of phosphate ion, which was distinctly different in case of other Class II fumarases. In industrial process, the reaction temperatures for L-malate production are usually set between 40 and 60 °C. The recombinant SlFumC displayed maximal activity at 45 °C and remained over 85 % of original activity after 48 h incubation at 40 °C, which was more thermostable than other fumarases from Streptomyces and make it an efficient enzyme for use in the industrial production of L-malate.
Collapse
Affiliation(s)
- Rui-Rui Su
- Institute of Molecular Biology and Biotechnology, Anhui Normal University, No. 1 Beijing East Road, Wuhu, 241000, Anhui, People's Republic of China
| | | | | | | | | | | |
Collapse
|
8
|
Ludin P, Woodcroft B, Ralph SA, Mäser P. In silico prediction of antimalarial drug target candidates. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2012; 2:191-9. [PMID: 24533280 DOI: 10.1016/j.ijpddr.2012.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/28/2012] [Accepted: 07/03/2012] [Indexed: 10/28/2022]
Abstract
The need for new antimalarials is persistent due to the emergence of drug resistant parasites. Here we aim to identify new drug targets in Plasmodium falciparum by phylogenomics among the Plasmodium spp. and comparative genomics to Homo sapiens. The proposed target discovery pipeline is largely independent of experimental data and based on the assumption that P. falciparum proteins are likely to be essential if (i) there are no similar proteins in the same proteome and (ii) they are highly conserved across the malaria parasites of mammals. This hypothesis was tested using sequenced Saccharomycetaceae species as a touchstone. Consecutive filters narrowed down the potential target space of P. falciparum to proteins that are likely to be essential, matchless in the human proteome, expressed in the blood stages of the parasite, and amenable to small molecule inhibition. The final set of 40 candidate drug targets was significantly enriched in essential proteins and comprised proven targets (e.g. dihydropteroate synthetase or enzymes of the non-mevalonate pathway), targets currently under investigation (e.g. calcium-dependent protein kinases), and new candidates of potential interest such as phosphomannose isomerase, phosphoenolpyruvate carboxylase, signaling components, and transporters. The targets were prioritized based on druggability indices and on the availability of in vitro assays. Potential inhibitors were inferred from similarity to known targets of other disease systems. The identified candidates from P. falciparum provide insight into biochemical peculiarities and vulnerable points of the malaria parasite and might serve as starting points for rational drug discovery.
Collapse
Affiliation(s)
- Philipp Ludin
- Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland ; University of Basel, 4000 Basel, Switzerland
| | - Ben Woodcroft
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria 3010, Australia
| | - Stuart A Ralph
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria 3010, Australia
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland ; University of Basel, 4000 Basel, Switzerland
| |
Collapse
|
9
|
Gaster M, Nehlin JO, Minet AD. Impaired TCA cycle flux in mitochondria in skeletal muscle from type 2 diabetic subjects: marker or maker of the diabetic phenotype? Arch Physiol Biochem 2012; 118:156-89. [PMID: 22385297 DOI: 10.3109/13813455.2012.656653] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The diabetic phenotype is complex, requiring elucidation of key initiating defects. Recent research has shown that diabetic myotubes express a primary reduced tricarboxylic acid (TCA) cycle flux. A reduced TCA cycle flux has also been shown both in insulin resistant offspring of T2D patients and exercising T2D patients in vivo. This review will discuss the latest advances in the understanding of the molecular mechanisms regulating the TCA cycle with focus on possible underlying mechanism which could explain the impaired TCA flux in insulin resistant human skeletal muscle in type 2 diabetes. A reduced TCA is both a marker and a maker of the diabetic phenotype.
Collapse
Affiliation(s)
- Michael Gaster
- Laboratory of Molecular Physiology, Department of Pathology, Odense University Hospital, Denmark.
| | | | | |
Collapse
|
10
|
Mescam M, Vinnakota KC, Beard DA. Identification of the catalytic mechanism and estimation of kinetic parameters for fumarase. J Biol Chem 2011; 286:21100-9. [PMID: 21498518 PMCID: PMC3122171 DOI: 10.1074/jbc.m110.214452] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 04/13/2011] [Indexed: 11/06/2022] Open
Abstract
The enzyme fumarase catalyzes the reversible hydration of fumarate to malate. The reaction catalyzed by fumarase is critical for cellular energetics as a part of the tricarboxylic acid cycle, which produces reducing equivalents to drive oxidative ATP synthesis. A catalytic mechanism for the fumarase reaction that can account for the kinetic behavior of the enzyme observed in both isotope exchange studies and initial velocity studies has not yet been identified. In the present study, we develop an 11-state kinetic model of the enzyme based on the current consensus on its catalytic mechanism and design a series of experiments to estimate the model parameters and identify the major flux routes through the mechanism. The 11-state mechanism accounts for competitive binding of inhibitors and activation by different anions, including phosphate and fumarate. The model is identified from experimental time courses of the hydration of fumarate to malate obtained over a wide range of buffer and substrate concentrations. Further, the 11-state model is found to effectively reduce to a five-state model by lumping certain successive steps together to yield a mathematically less complex representation that is able to match the data. Analysis suggests the primary reaction route of the catalytic mechanism, with fumarate binding to the free unprotonated enzyme and a proton addition prior to malate release in the fumarate hydration reaction. In the reverse direction (malate dehydration), malate binds the protonated form of the enzyme, and a proton is generated before fumarate is released from the active site.
Collapse
Affiliation(s)
- Muriel Mescam
- From the Biotechnology and Bioengineering Center and Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Kalyan C. Vinnakota
- From the Biotechnology and Bioengineering Center and Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Daniel A. Beard
- From the Biotechnology and Bioengineering Center and Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| |
Collapse
|
11
|
Tian Z, Liu Y, Usa K, Mladinov D, Fang Y, Ding X, Greene AS, Cowley AW, Liang M. Novel role of fumarate metabolism in dahl-salt sensitive hypertension. Hypertension 2009; 54:255-60. [PMID: 19546378 PMCID: PMC2721687 DOI: 10.1161/hypertensionaha.109.129528] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Accepted: 05/22/2009] [Indexed: 11/16/2022]
Abstract
In a previous proteomic study, we found dramatic differences in fumarase in the kidney between Dahl salt-sensitive rats and salt-insensitive consomic SS-13(BN) rats. Fumarase catalyzes the conversion between fumarate and l-malate in the tricarboxylic acid cycle. Little is known about the pathophysiological significance of fumarate metabolism in cardiovascular and renal functions, including salt-induced hypertension. The fumarase gene is located on the chromosome substituted in the SS-13(BN) rat. Sequencing of fumarase cDNA indicated the presence of lysine at amino acid position 481 in Dahl salt-sensitive rats and glutamic acid in Brown Norway and SS-13(BN) rats. Total fumarase activity was significantly lower in the kidneys of Dahl salt-sensitive rats compared with SS-13(BN) rats, despite an apparent compensatory increase in fumarase abundance in Dahl salt-sensitive rats. Intravenous infusion of a fumarate precursor in SS-13(BN) rats resulted in a fumarate excess in the renal medulla comparable to that seen in Dahl salt-sensitive rats. The infusion significantly exacerbated salt-induced hypertension in SS-13(BN) rats (140+/-3 vs125+/-2 mm Hg in vehicle control at day 5 on a 4% NaCl diet; P<0.05). In addition, the fumarate infusion increased renal medullary tissue levels of H2O2. Treatment of cultured human renal epithelial cells with the fumarate precursor also increased cellular levels of H2O2. These data suggest a novel role for fumarate metabolism in salt-induced hypertension and renal medullary oxidative stress.
Collapse
Affiliation(s)
- Zhongmin Tian
- Department of Physiology, Biomedical Engineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
- Department of Biotechnology and Biomedical Engineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
- Department of Biomedical Engineering, Xi’an Jiaotong University, Shanxi, P. R. China
| | - Yong Liu
- Department of Physiology, Biomedical Engineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Kristie Usa
- Department of Physiology, Biomedical Engineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Domagoj Mladinov
- Department of Physiology, Biomedical Engineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Yi Fang
- Department of Physiology, Biomedical Engineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Andrew S. Greene
- Department of Physiology, Biomedical Engineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
- Department of Biotechnology and Biomedical Engineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Allen W. Cowley
- Department of Physiology, Biomedical Engineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Mingyu Liang
- Department of Physiology, Biomedical Engineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| |
Collapse
|
12
|
Lorenzato A, Olivero M, Perro M, Brière JJ, Rustin P, Di Renzo MF. A cancer-predisposing "hot spot" mutation of the fumarase gene creates a dominant negative protein. Int J Cancer 2008; 122:947-51. [PMID: 17960613 DOI: 10.1002/ijc.23209] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The Fumarase (Fumarate Hydratase, FH) is a tumor suppressor gene whose germline heterozygous mutations predispose to hereditary leiomyomatosis and renal cell cancer (HLRCC). The FH gene encodes an enzyme of the Krebs cycle, functioning as a homotetramer and catalyzing the hydration of fumarate to malate. Among the numerous FH mutations reported so far, the R190H missense mutation is the most frequent in HLRCC patients. Here we show the functional analyses of the R190H, in comparison to the better characterized E319Q mutation. We first expressed wild-type and mutated proteins in FH deficient human skin fibroblasts, using lentiviral vectors. The wild-type transgene was able to restore the FH enzymatic activity in cells, while the R190H- and E319Q-FH were not. More interestingly, when the same transgenes were expressed in normal, FH-proficient cells, only the R190H-FH reduced the endogenous FH enzymatic activity. By enforcing the expression of equal amount of wild-type and R190H-FH in the same cell, we showed that the mutated FH protein directly inhibited enzymatic activity by nearly abrogating the FH homotetramer formation. These data demonstrate the dominant negative effect of the R190H missense mutation in the FH gene and suggest that the FH tumor-suppressing activity might be impaired in cells carrying a heterozygous mutation.
Collapse
Affiliation(s)
- Annalisa Lorenzato
- Laboratory of Cancer Genetics, Institute for Cancer Research and Treatment (IRCC), University of Turin Medical School, SP142, KM 395, 10060 Candiolo, Turin, Italy
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
The role of a malate binding site in a concavity external to the more deeply situated active site has been a major mystery of the fumarase reaction. The malate, within 12 A of the active site, was bound by hydrogen bonds to two main-chain amides and to two basic residues, H129 and R126. Mutation of the His of this so-called B site of Escherichia coli fumarase had little effect on the overall initial rate kinetics of the enzyme, which has obscured an understanding of the critical role of the site. Contrary to the WT enzyme, which is rate-limited in the recycling of free enzyme isoforms that follows product release, the enzyme with both basic residues modified is rate-limited in the product release step itself. A loss of complexity in the mutated, but still functional, step is indicated by a greatly reduced sensitivity of its rate to changes in temperature. Unlike the inhibition by glycerol shown with normal enzyme and attributed to a viscogenic effect on the recycling rate, the product-release step of the B-site mutants is accelerated by glycerol, suggestive of a structural effect on the 12-A space between the A and B sites. It is proposed that the "extra" malate represents a stage in the transfer of substrate and product between the solvent and the "buried" active site of the enzyme.
Collapse
Affiliation(s)
- Irwin A Rose
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA.
| | | |
Collapse
|
14
|
Pollard PJ, Wortham NC, Tomlinson IPM. The TCA cycle and tumorigenesis: the examples of fumarate hydratase and succinate dehydrogenase. Ann Med 2003; 35:632-9. [PMID: 14708972 DOI: 10.1080/07853890310018458] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
It is well documented that disturbances in mitochondrial function are associated with rare childhood disorders and possibly with many common diseases of ageing, such as Parkinson's disease and dementia. There has also been increasing evidence linking mitochondrial dysfunction with tumorigenesis. Recently, heterozygous germline mutations in two enzymes of the Krebs tricarboxylic acid cycle (TCA cycle) have been shown to predispose individuals to tumours. The two enzymes, fumarate hydratase (FH) and succinate dehydrogenase (SDH), are ubiquitously expressed, playing a vital role in adenosine triphosphate (ATP) production through the mitochondrial respiratory chain. Germline mutations in FH are associated with leiomyomatosis and renal cell carcinoma, whilst SDH mutations are associated with predisposition to paraganglioma (PGL) and phaeochromocytoma (PCC). At present, there are few data to explain the pathway(s) involved in this predisposition to neoplasia through TCA cycle defects. We shall review the mechanisms by which mutations in FH and SDH might play a role in tumorigenesis. These include pseudo-hypoxia, mitochondrial dysfunction and impaired apoptosis, oxidative stress and anabolic drive. All of these mechanisms are currently poorly defined. To date, FH and SDH mutations have not been reported in non-familial leiomyomata, renal cancers, PCCs or PGLs. It remains entirely possible, however, that the underlying mechanisms of tumorigenesis in these sporadic tumours are the same as those in the Mendelian syndromes.
Collapse
Affiliation(s)
- Patrick J Pollard
- Molecular and Population Genetics Laboratory, Cancer Research UK, Lincoln's Inn Fields, London, UK.
| | | | | |
Collapse
|
15
|
Metzler DE, Metzler CM, Sauke DJ. Enzymatic Addition, Elimination, Condensation, and Isomerization. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50016-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Leung DK, Yang Z, Breslow R. Selective disruption of protein aggregation by cyclodextrin dimers. Proc Natl Acad Sci U S A 2000; 97:5050-3. [PMID: 10805768 PMCID: PMC25779 DOI: 10.1073/pnas.97.10.5050] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2000] [Indexed: 11/18/2022] Open
Abstract
Beta-cyclodextrin (CD) dimers (n = 11) were synthesized and tested against eight enzymes, seven of which were dimeric or tetrameric, for inhibitor activity. Initial screening showed that only L-lactate dehydrogenase and citrate synthase were inhibited but only by two specific CD dimers in which two beta-CDs were linked on the secondary face by a pyridine-2,6-dicarboxylic group. Further investigation suggested that these CD dimers inhibit the activity of L-lactate dehydrogenase and citrate synthase at least in part by disruption of protein-protein aggregation.
Collapse
Affiliation(s)
- D K Leung
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | | | | |
Collapse
|