1
|
Karamanou DA, Aliferis KA. The yeast (Saccharomyces cerevisiae) YCF1 vacuole transporter: Evidence on its implication into the yeast resistance to flusilazole as revealed by GC/EI/MS metabolomics. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 165:104475. [PMID: 32359550 DOI: 10.1016/j.pestbp.2019.09.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/17/2019] [Indexed: 05/14/2023]
Abstract
The development of plant protection product (PPPs)-resistant populations of plant pathogens, pests, and weeds, represents a major challenge that the crop protection sector is facing. Focusing on plant pathogenic fungi, the increased efflux of the active ingredients (a.i.) from the cytoplasm is highly correlated to elevated resistance levels to the applied fungicides. Such mechanism is regulated by ATP-binding cassette transporters (ABC transporters), and although it has been investigated for the past two decades, the latest developments in "omics" technologies could provide new insights with potential applications in crop protection. Within this context, and based on results from preliminary experiments, we have undertaken the task of mining the involvement of the ABC transporter YCF1, which is located in the vacuole membrane, in the fungicide resistance development, applying a functional genomics approach and using yeast (Saccharomyces cerevisiae) as the model organism. Among the fungicides being assessed, flusilazole, which belongs to the azole group of dimethylation inhibitors (DMIs), was discovered as a possible substrate of the YCF1. GC/EI/MS metabolomics analysis revealed the effect of the fungicide's toxicity and that of genotype on yeast's metabolism, confirming the role of this transporter. Fluctuations in the activity of various yeast biosynthetic pathways associated with stress responses were recorded, and corresponding metabolites-biomarkers of flusilazole toxicity were discovered. The metabolites α,α-trehalose, glycerol, myo-inositol-1-phosphate, GABA, l-glutamine, l-tryptophan, l-phenylalanine, l-tyrosine, and phosphate, were the major identified biomarkers of toxicity. Among these, are metabolites that play important roles in fungal metabolism (e.g., cell responses to osmotic stress) or serve as signaling molecules. To the best of our knowledge, this is the first report on the implication of YCF1 in fungal resistance to PPPs. Additionally, the results of GC/EI/MS yeast metabolomics confirmed the robustness of the method and its applicability in the high-throughput study of fungal resistance to fungicides.
Collapse
Affiliation(s)
- Dimitra A Karamanou
- Laboratory of Pesticide Science, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Konstantinos A Aliferis
- Laboratory of Pesticide Science, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece; Department of Plant Science, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada.
| |
Collapse
|
2
|
Jiang Z, Wang T, Sun Y, Nong Y, Tang L, Gu T, Wang S, Li Z. Application of Pb(II) to probe the physiological responses of fungal intracellular vesicles. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 194:110441. [PMID: 32155484 DOI: 10.1016/j.ecoenv.2020.110441] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/17/2020] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
Vesicles (Ves) within fungal cells are the critical linkage between intracellular and extracellular systems. This study explored the application of Pb2+ to probe the physiology of intracellular Ves in Rhodotorula mucilaginosa (Rho). At low Pb2+ levels (0-500 mg/L), there was no evident change in the content of extracellular polymeric substances (EPS) or microbial activity. At medium-high levels (1000-2000 mg/L), the sizes of Ves within the Rho cells were significantly enlarged, with abundant lead nano-particles (Pb NPs) formed either on the cell surface or interior, whereas the EPS content and bioactivity were still stable. At a high level (2500 mg/L), the Rho cells were severely deformed, with cell counts reduced by more than 99%. However, the EPS contents and the respiration rate of the surviving cells dramatically increased to the maximum values (i.e., 1785 mg/1010 cells and 37 mg C 10-10 cells h-1, respectively). The Ves surface adsorbed Pb cations with higher density, compared with the cell membrane. Moreover, fusion of some Ves to the membrane (functioning in transport) was observed under transmission electron microscope (TEM). Three pathways of detoxification via intracellular Ves were finally proposed, i.e., Ve-mediated transport (from intracellular to extracellular) of EPS components, absorption of Pb NPs on the Ve surface, and accumulation of Pb NPs within Ves. This study sheds light on the possibility of exploring microbial physiology via Pb2+ cations.
Collapse
Affiliation(s)
- Zhongquan Jiang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China; Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tong Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Yalin Sun
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Ying Nong
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Lingyi Tang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Tingting Gu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| | - Shimei Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China; Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhen Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China; Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
3
|
Parzych KR, Klionsky DJ. Vacuolar hydrolysis and efflux: current knowledge and unanswered questions. Autophagy 2018; 15:212-227. [PMID: 30422029 DOI: 10.1080/15548627.2018.1545821] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Hydrolysis within the vacuole in yeast and the lysosome in mammals is required for the degradation and recycling of a multitude of substrates, many of which are delivered to the vacuole/lysosome by autophagy. In humans, defects in lysosomal hydrolysis and efflux can have devastating consequences, and contribute to a class of diseases referred to as lysosomal storage disorders. Despite the importance of these processes, many of the proteins and regulatory mechanisms involved in hydrolysis and efflux are poorly understood. In this review, we describe our current knowledge of the vacuolar/lysosomal degradation and efflux of a vast array of substrates, focusing primarily on what is known in the yeast Saccharomyces cerevisiae. We also highlight many unanswered questions, the answers to which may lead to new advances in the treatment of lysosomal storage disorders. Abbreviations: Ams1: α-mannosidase; Ape1: aminopeptidase I; Ape3: aminopeptidase Y; Ape4: aspartyl aminopeptidase; Atg: autophagy related; Cps1: carboxypeptidase S; CTNS: cystinosin, lysosomal cystine transporter; CTSA: cathepsin A; CTSD: cathepsin D; Cvt: cytoplasm-to-vacuole targeting; Dap2: dipeptidyl aminopeptidase B; GS-bimane: glutathione-S-bimane; GSH: glutathione; LDs: lipid droplets; MVB: multivesicular body; PAS: phagophore assembly site; Pep4: proteinase A; PolyP: polyphosphate; Prb1: proteinase B; Prc1: carboxypeptidase Y; V-ATPase: vacuolar-type proton-translocating ATPase; VTC: vacuolar transporter chaperone.
Collapse
Affiliation(s)
- Katherine R Parzych
- a Life Sciences Institute, and Department of Molecular, Cellular and Developmental Biology , University of Michigan , Ann Arbor , MI , USA
| | - Daniel J Klionsky
- a Life Sciences Institute, and Department of Molecular, Cellular and Developmental Biology , University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|
4
|
Oestreicher J, Morgan B. Glutathione: subcellular distribution and membrane transport 1. Biochem Cell Biol 2018; 97:270-289. [PMID: 30427707 DOI: 10.1139/bcb-2018-0189] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Glutathione (γ-l-glutamyl-l-cysteinylglycine) is a small tripeptide found at millimolar concentrations in nearly all eukaryotes as well as many prokaryotic cells. Glutathione synthesis is restricted to the cytosol in animals and fungi and to the cytosol and plastids in plants. Nonetheless, glutathione is found in virtually all subcellular compartments. This implies that transporters must exist that facilitate glutathione transport into and out of the various subcellular compartments. Glutathione may also be exported and imported across the plasma membrane in many cells. However, in most cases, the molecular identity of these transporters remains unclear. Whilst glutathione transport is essential for the supply and replenishment of subcellular glutathione pools, recent evidence supports a more active role for glutathione transport in the regulation of subcellular glutathione redox homeostasis. However, our knowledge of glutathione redox homeostasis at the level of specific subcellular compartments remains remarkably limited and the role of glutathione transport remains largely unclear. In this review, we discuss how new tools and techniques have begun to yield insights into subcellular glutathione distribution and glutathione redox homeostasis. In particular, we discuss the known and putative glutathione transporters and examine their contribution to the regulation of subcellular glutathione redox homeostasis.
Collapse
Affiliation(s)
- Julian Oestreicher
- a Cellular Biochemistry, University of Kaiserslautern, 67663 Kaiserslautern, Germany.,b Institute of Biochemistry, Center of Human and Molecular Biology (ZHMB), University of the Saarland, Campus B 2.2, D-66123 Saarbrücken, Germany
| | - Bruce Morgan
- a Cellular Biochemistry, University of Kaiserslautern, 67663 Kaiserslautern, Germany.,b Institute of Biochemistry, Center of Human and Molecular Biology (ZHMB), University of the Saarland, Campus B 2.2, D-66123 Saarbrücken, Germany
| |
Collapse
|
5
|
Abstract
SIGNIFICANCE Mitochondrial glutathione fulfills crucial roles in a number of processes, including iron-sulfur cluster biosynthesis and peroxide detoxification. Recent Advances: Genetically encoded fluorescent probes for the glutathione redox potential (EGSH) have permitted extensive new insights into the regulation of mitochondrial glutathione redox homeostasis. These probes have revealed that the glutathione pools of the mitochondrial matrix and intermembrane space (IMS) are highly reduced, similar to the cytosolic glutathione pool. The glutathione pool of the IMS is in equilibrium with the cytosolic glutathione pool due to the presence of porins that allow free passage of reduced glutathione (GSH) and oxidized glutathione (GSSG) across the outer mitochondrial membrane. In contrast, limited transport of glutathione across the inner mitochondrial membrane ensures that the matrix glutathione pool is kinetically isolated from the cytosol and IMS. CRITICAL ISSUES In contrast to the situation in the cytosol, there appears to be extensive crosstalk between the mitochondrial glutathione and thioredoxin systems. Further, both systems appear to be intimately involved in the removal of reactive oxygen species, particularly hydrogen peroxide (H2O2), produced in mitochondria. However, a detailed understanding of these interactions remains elusive. FUTURE DIRECTIONS We postulate that the application of genetically encoded sensors for glutathione in combination with novel H2O2 probes and conventional biochemical redox state assays will lead to fundamental new insights into mitochondrial redox regulation and reinvigorate research into the physiological relevance of mitochondrial redox changes. Antioxid. Redox Signal. 27, 1162-1177.
Collapse
Affiliation(s)
- Gaetano Calabrese
- 1 Institute of Biochemistry, University of Cologne , Cologne, Germany
| | - Bruce Morgan
- 2 Department of Cellular Biochemistry, University of Kaiserslautern , Kaiserslautern, Germany
| | - Jan Riemer
- 1 Institute of Biochemistry, University of Cologne , Cologne, Germany
| |
Collapse
|
6
|
Elbaz-Alon Y, Morgan B, Clancy A, Amoako TNE, Zalckvar E, Dick TP, Schwappach B, Schuldiner M. The yeast oligopeptide transporter Opt2 is localized to peroxisomes and affects glutathione redox homeostasis. FEMS Yeast Res 2014; 14:1055-67. [PMID: 25130273 DOI: 10.1111/1567-1364.12196] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/08/2014] [Accepted: 08/07/2014] [Indexed: 11/28/2022] Open
Abstract
Glutathione, the most abundant small-molecule thiol in eukaryotic cells, is synthesized de novo solely in the cytosol and must subsequently be transported to other cellular compartments. The mechanisms of glutathione transport into and out of organelles remain largely unclear. We show that budding yeast Opt2, a close homolog of the plasma membrane glutathione transporter Opt1, localizes to peroxisomes. We demonstrate that deletion of OPT2 leads to major defects in maintaining peroxisomal, mitochondrial, and cytosolic glutathione redox homeostasis. Furthermore, ∆opt2 strains display synthetic lethality with deletions of genes central to iron homeostasis that require mitochondrial glutathione redox homeostasis. Our results shed new light on the importance of peroxisomes in cellular glutathione homeostasis.
Collapse
Affiliation(s)
- Yael Elbaz-Alon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Hatem E, Berthonaud V, Dardalhon M, Lagniel G, Baudouin-Cornu P, Huang ME, Labarre J, Chédin S. Glutathione is essential to preserve nuclear function and cell survival under oxidative stress. Free Radic Biol Med 2014; 67:103-14. [PMID: 24145121 DOI: 10.1016/j.freeradbiomed.2013.10.807] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 10/08/2013] [Accepted: 10/12/2013] [Indexed: 12/17/2022]
Abstract
Glutathione (GSH) is considered the most important redox buffer of the cell. To better characterize its essential function during oxidative stress conditions, we studied the physiological response of H2O2-treated yeast cells containing various amounts of GSH. We showed that the transcriptional response of GSH-depleted cells is severely impaired, despite an efficient nuclear accumulation of the transcription factor Yap1. Moreover, oxidative stress generates high genome instability in GSH-depleted cells, but does not activate the checkpoint kinase Rad53. Surprisingly, scarce amounts of intracellular GSH are sufficient to preserve cell viability under H2O2 treatment. In these cells, oxidative stress still causes the accumulation of oxidized proteins and the inactivation of the translational activity, but nuclear components and activities are protected against oxidative injury. We conclude that the essential role of GSH is to preserve nuclear function, allowing cell survival and growth resumption after oxidative stress release. We propose that cytosolic proteins are part of a protective machinery that shields the nucleus by scavenging reactive oxygen species before they can cross the nuclear membrane.
Collapse
Affiliation(s)
- Elie Hatem
- CEA, iBiTecS, F-91191 Gif-sur-Yvette, France; CNRS, FRE3377, F-91191 Gif-sur-Yvette, France; Université Paris-Sud, FRE3377, F-91191 Gif-sur-Yvette, France
| | - Véronique Berthonaud
- CEA, iBiTecS, F-91191 Gif-sur-Yvette, France; CNRS, FRE3377, F-91191 Gif-sur-Yvette, France; Université Paris-Sud, FRE3377, F-91191 Gif-sur-Yvette, France
| | - Michèle Dardalhon
- CNRS, Institut Curie, UMR3348 "Genotoxic Stress and Cancer," F-91405 Orsay, France
| | - Gilles Lagniel
- CEA, iBiTecS, F-91191 Gif-sur-Yvette, France; CNRS, FRE3377, F-91191 Gif-sur-Yvette, France; Université Paris-Sud, FRE3377, F-91191 Gif-sur-Yvette, France
| | - Peggy Baudouin-Cornu
- CEA, iBiTecS, F-91191 Gif-sur-Yvette, France; CNRS, FRE3377, F-91191 Gif-sur-Yvette, France; Université Paris-Sud, FRE3377, F-91191 Gif-sur-Yvette, France
| | - Meng-Er Huang
- CNRS, Institut Curie, UMR3348 "Genotoxic Stress and Cancer," F-91405 Orsay, France
| | - Jean Labarre
- CEA, iBiTecS, F-91191 Gif-sur-Yvette, France; CNRS, FRE3377, F-91191 Gif-sur-Yvette, France; Université Paris-Sud, FRE3377, F-91191 Gif-sur-Yvette, France
| | - Stéphane Chédin
- CEA, iBiTecS, F-91191 Gif-sur-Yvette, France; CNRS, FRE3377, F-91191 Gif-sur-Yvette, France; Université Paris-Sud, FRE3377, F-91191 Gif-sur-Yvette, France.
| |
Collapse
|
8
|
Toledano MB, Delaunay-Moisan A, Outten CE, Igbaria A. Functions and cellular compartmentation of the thioredoxin and glutathione pathways in yeast. Antioxid Redox Signal 2013; 18. [PMID: 23198979 PMCID: PMC3771550 DOI: 10.1089/ars.2012.5033] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
SIGNIFICANCE The thioredoxin (TRX) and glutathione (GSH) pathways are universally conserved thiol-reductase systems that drive an array of cellular functions involving reversible disulfide formation. Here we consider these pathways in Saccharomyces cerevisiae, focusing on their cell compartment-specific functions, as well as the mechanisms that explain extreme differences of redox states between compartments. RECENT ADVANCES Recent work leads to a model in which the yeast TRX and GSH pathways are not redundant, in contrast to Escherichia coli. The cytosol possesses full sets of both pathways, of which the TRX pathway is dominant, while the GSH pathway acts as back up of the former. The mitochondrial matrix also possesses entire sets of both pathways, in which the GSH pathway has major role in redox control. In both compartments, GSH has also nonredox functions in iron metabolism, essential for viability. The endoplasmic reticulum (ER) and mitochondrial intermembrane space (IMS) are sites of intense thiol oxidation, but except GSH lack thiol-reductase pathways. CRITICAL ISSUES What are the thiol-redox links between compartments? Mitochondria are totally independent, and insulated from the other compartments. The cytosol is also totally independent, but also provides reducing power to the ER and IMS, possibly by ways of reduced and oxidized GSH entering and exiting these compartments. FUTURE DIRECTIONS Identifying the mechanisms regulating fluxes of GSH and oxidized glutathione between cytosol and ER, IMS, and possibly also peroxisomes, vacuole is needed to establish the proposed model of eukaryotic thiol-redox homeostasis, which should facilitate exploration of this system in mammals and plants.
Collapse
Affiliation(s)
- Michel B Toledano
- Laboratoire Stress Oxydants et Cancer, IBITECS, CEA-Saclay, Gif-sur-Yvette, France.
| | | | | | | |
Collapse
|
9
|
Abstract
BACKGROUND Glutathione (GSH) is synthesized in the cytoplasm but there is a requirement for glutathione not only in the cytoplasm, but in the other organelles and the extracellular milieu. GSH is also imported into the cytoplasm. The transports of glutathione across these different membranes in different systems have been biochemically demonstrated. However the molecular identity of the transporters has been established only in a few cases. SCOPE OF REVIEW An attempt has been made to present the current state of knowledge of glutathione transporters from different organisms as well as different organelles. These include the most well characterized transporters, the yeast high-affinity, high-specificity glutathione transporters involved in import into the cytoplasm, and the mammalian MRP proteins involved in low affinity glutathione efflux from the cytoplasm. Other glutathione transporters that have been described either with direct or indirect evidences are also discussed. MAJOR CONCLUSIONS The molecular identity of a few glutathione transporters has been unambiguously established but there is a need to identify the transporters of other systems and organelles. There is a lack of direct evidence establishing transport by suggested transporters in many cases. Studies with the high affinity transporters have led to important structure-function insights. GENERAL SIGNIFICANCE An understanding of glutathione transporters is critical to our understanding of redox homeostasis in living cells. By presenting our current state of understanding and the gaps in our knowledge the review hopes to stimulate research in these fields. This article is part of a Special Issue entitled Cellular functions of glutathione.
Collapse
|
10
|
Thorsen M, Jacobson T, Vooijs R, Navarrete C, Bliek T, Schat H, Tamás MJ. Glutathione serves an extracellular defence function to decrease arsenite accumulation and toxicity in yeast. Mol Microbiol 2012; 84:1177-88. [DOI: 10.1111/j.1365-2958.2012.08085.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
11
|
Ycf1p attenuates basal level oxidative stress response in Saccharomyces cerevisiae. FEBS Lett 2012; 586:847-53. [PMID: 22449970 DOI: 10.1016/j.febslet.2012.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 02/06/2012] [Accepted: 02/08/2012] [Indexed: 11/22/2022]
Abstract
Ycf1p function is regulated by casein kinase 2α, Cka1p, via phosphorylation of Ser251. Cka1p-mediated phosphorylation of Ycf1p is attenuated in response to high salt stress. Previous results from our lab suggest a role for Ycf1p in cellular resistance to salt stress. Here, we show that Ycf1p plays an important role in cellular resistance to salt stress by maintaining the cellular redox balance via glutathione recycling. Our results suggest that during acute salt stress increased Sod1p, Sod2p and Ctt1p activity is the main compensatory for the loss in Ycf1p function that results from reduced Ycf1p-dependent recycling of cellular GSH levels.
Collapse
|
12
|
Baudouin-Cornu P, Lagniel G, Kumar C, Huang ME, Labarre J. Glutathione degradation is a key determinant of glutathione homeostasis. J Biol Chem 2011; 287:4552-61. [PMID: 22170048 DOI: 10.1074/jbc.m111.315705] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Glutathione (GSH) has several important functions in eukaryotic cells, and its intracellular concentration is tightly controlled. Combining mathematical models and (35)S labeling, we analyzed Saccharomyces cerevisiae sulfur metabolism. This led us to the observation that GSH recycling is markedly faster than previously estimated. We set up additional in vivo assays and concluded that under standard conditions, GSH half-life is around 90 min. Sulfur starvation and growth with GSH as the sole sulfur source strongly increase GSH degradation, whereas cadmium (Cd(2+)) treatment inhibits GSH degradation. Whatever the condition tested, GSH is degraded by the cytosolic Dug complex (composed of the three subunits Dug1, Dug2, and Dug3) but not by the γ-glutamyl-transpeptidase, raising the question of the role of this enzyme. In vivo, both DUG2/3 mRNA levels and Dug activity are quickly induced by sulfur deprivation in a Met4-dependent manner. This suggests that Dug activity is mainly regulated at the transcriptional level. Finally, analysis of dug2Δ and dug3Δ mutant cells shows that GSH degradation activity strongly impacts on GSH intracellular concentration and that GSH intracellular concentration does not affect GSH synthesis rate. Altogether, our data led us to reconsider important aspects of GSH metabolism, challenging notions on GSH synthesis and GSH degradation that were considered as established.
Collapse
Affiliation(s)
- Peggy Baudouin-Cornu
- Commissariat à I'Energie Atomique (CEA), Institut de Biologie et Technologies de Saclay (iBiTecS), Service de Biologie Integrative et Genetique Moleculaire (SBIGeM), 91191 Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
13
|
Wang Z, Xiang Q, Wang G, Wang H, Zhang Y. Optimizing expression and purification of an ATP-binding gene gsiA from Escherichia coli k-12 by using GFP fusion. Genet Mol Biol 2011; 34:661-8. [PMID: 22215971 PMCID: PMC3229122 DOI: 10.1590/s1415-47572011005000043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 05/28/2011] [Indexed: 11/26/2022] Open
Abstract
The cloning, expression and purification of the glutathione (sulfur) import system ATP-binding protein (gsiA) was carried out. The coding sequence of Escherichia coli gsiA, which encodes the ATP-binding protein of a glutathione importer, was amplified by PCR, and then inserted into a prokaryotic expression vector pWaldo-GFPe harboring green fluorescent protein (GFP) reporter gene. The resulting recombinant plasmid pWaldo-GFP-GsiA was transformed into various E. coli strains, and expression conditions were optimized. The effect of five E. coli expression strains on the production of the recombinant gsiA protein was evaluated. E. coli BL21 (DE3) was found to be the most productive strain for GsiA-GFP fusion-protein expression, most of which was insoluble fraction. However, results from in-gel and Western blot analysis suggested that expression of recombinant GsiA in Rosetta (DE3) provides an efficient source in soluble form. By using GFP as reporter, the most suitable host strain was conveniently obtained, whereby optimizing conditions for overexpression and purification of the proteins for further functional and structural studies, became, not only less laborious, but also time-saving.
Collapse
Affiliation(s)
- Zhongshan Wang
- College of Life Sciences, Sichuan University, Sichuan Key Laboratory of Molecular Biology and Biotechnology, Chengdu, China
| | | | | | | | | |
Collapse
|
14
|
Lazard M, Ha-Duong NT, Mounié S, Perrin R, Plateau P, Blanquet S. Selenodiglutathione uptake by the Saccharomyces cerevisiae vacuolar ATP-binding cassette transporter Ycf1p. FEBS J 2011; 278:4112-21. [PMID: 21880115 DOI: 10.1111/j.1742-4658.2011.08318.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The Saccharomyces cerevisiae vacuolar ATP-binding cassette transporter Ycf1p is involved in heavy metal detoxification by mediating the ATP-dependent transport of glutathione-metal conjugates to the vacuole. In the case of selenite toxicity, deletion of YCF1 was shown to confer increased resistance, rather than sensitivity, to selenite exposure [Pinson B, Sagot I & Daignan-Fornier B (2000) Mol Microbiol36, 679-687]. Here, we show that when Ycf1p is expressed from a multicopy plasmid, the toxicity of selenite is exacerbated. Using secretory vesicles isolated from a sec6-4 mutant transformed either with the plasmid harbouring YCF1 or the control plasmid, we establish that the glutathione-conjugate selenodigluthatione is a high-affinity substrate of this ATP-binding cassette transporter and that oxidized glutathione is also efficiently transported. Finally, we show that the presence of Ycf1p impairs the glutathione/oxidized glutathione ratio of cells subjected to a selenite stress. Possible mechanisms by which Ycf1p-mediated vacuolar uptake of selenodiglutathione and oxidized glutathione enhances selenite toxicity are discussed.
Collapse
Affiliation(s)
- Myriam Lazard
- Ecole polytechnique, Laboratoire de Biochimie, CNRS, Palaiseau, France.
| | | | | | | | | | | |
Collapse
|
15
|
ABC transporters in Saccharomyces cerevisiae and their interactors: new technology advances the biology of the ABCC (MRP) subfamily. Microbiol Mol Biol Rev 2010; 73:577-93. [PMID: 19946134 DOI: 10.1128/mmbr.00020-09] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Members of the ATP-binding cassette (ABC) transporter superfamily exist in bacteria, fungi, plants, and animals and play key roles in the efflux of xenobiotic compounds, physiological substrates, and toxic intracellular metabolites. Based on sequence relatedness, mammalian ABC proteins have been divided into seven subfamilies, ABC subfamily A (ABCA) to ABCG. This review focuses on recent advances in our understanding of ABC transporters in the model organism Saccharomyces cerevisiae. We propose a revised unified nomenclature for the six yeast ABC subfamilies to reflect the current mammalian designations ABCA to ABCG. In addition, we specifically review the well-studied yeast ABCC subfamily (formerly designated the MRP/CFTR subfamily), which includes six members (Ycf1p, Bpt1p, Ybt1p/Bat1p, Nft1p, Vmr1p, and Yor1p). We focus on Ycf1p, the best-characterized yeast ABCC transporter. Ycf1p is located in the vacuolar membrane in yeast and functions in a manner analogous to that of the human multidrug resistance-related protein (MRP1, also called ABCC1), mediating the transport of glutathione-conjugated toxic compounds. We review what is known about Ycf1p substrates, trafficking, processing, posttranslational modifications, regulation, and interactors. Finally, we discuss a powerful new yeast two-hybrid technology called integrated membrane yeast two-hybrid (iMYTH) technology, which was designed to identify interactors of membrane proteins. iMYTH technology has successfully identified novel interactors of Ycf1p and promises to be an invaluable tool in future efforts to comprehensively define the yeast ABC interactome.
Collapse
|
16
|
Ballatori N, Krance SM, Notenboom S, Shi S, Tieu K, Hammond CL. Glutathione dysregulation and the etiology and progression of human diseases. Biol Chem 2009; 390:191-214. [PMID: 19166318 DOI: 10.1515/bc.2009.033] [Citation(s) in RCA: 739] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Glutathione (GSH) plays an important role in a multitude of cellular processes, including cell differentiation, proliferation, and apoptosis, and as a result, disturbances in GSH homeostasis are implicated in the etiology and/or progression of a number of human diseases, including cancer, diseases of aging, cystic fibrosis, and cardiovascular, inflammatory, immune, metabolic, and neurodegenerative diseases. Owing to the pleiotropic effects of GSH on cell functions, it has been quite difficult to define the role of GSH in the onset and/or the expression of human diseases, although significant progress is being made. GSH levels, turnover rates, and/or oxidation state can be compromised by inherited or acquired defects in the enzymes, transporters, signaling molecules, or transcription factors that are involved in its homeostasis, or from exposure to reactive chemicals or metabolic intermediates. GSH deficiency or a decrease in the GSH/glutathione disulfide ratio manifests itself largely through an increased susceptibility to oxidative stress, and the resulting damage is thought to be involved in diseases, such as cancer, Parkinson's disease, and Alzheimer's disease. In addition, imbalances in GSH levels affect immune system function, and are thought to play a role in the aging process. Just as low intracellular GSH levels decrease cellular antioxidant capacity, elevated GSH levels generally increase antioxidant capacity and resistance to oxidative stress, and this is observed in many cancer cells. The higher GSH levels in some tumor cells are also typically associated with higher levels of GSH-related enzymes and transporters. Although neither the mechanism nor the implications of these changes are well defined, the high GSH content makes cancer cells chemoresistant, which is a major factor that limits drug treatment. The present report highlights and integrates the growing connections between imbalances in GSH homeostasis and a multitude of human diseases.
Collapse
Affiliation(s)
- Nazzareno Ballatori
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY 14642, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Adle DJ, Lee J. Expressional control of a cadmium-transporting P1B-type ATPase by a metal sensing degradation signal. J Biol Chem 2008; 283:31460-8. [PMID: 18753133 DOI: 10.1074/jbc.m806054200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Cadmium is a highly toxic environmental contaminant implicated in various diseases. Our previous data demonstrated that Pca1, a P1B-type ATPase, plays a critical role in cadmium resistance in yeast S. cerevisiae by extruding intracellular cadmium. This illustrates the first cadmium-specific efflux pump in eukaryotes. In response to cadmium, yeast cells rapidly enhance expression of Pca1 by a post-transcriptional mechanism. To gain mechanistic insights into the cadmium-dependent control of Pca1 expression, we have characterized the pathway for Pca1 turnover and the mechanism of cadmium sensing that leads to up-regulation of Pca1. Pca1 is a short-lived protein (t1/2 < 5 min) and is subject to ubiquitination when cells are growing in media lacking cadmium. Distinct from many plasma membrane transporters targeted to the vacuole for degradation via endocytosis, cells defective in this pathway did not stabilize Pca1. Rather, Pca1 turnover was dependent on the proteasome. These data suggest that, in the absence of cadmium, Pca1 is targeted for degradation before reaching the plasma membrane. Mapping of the N terminus of Pca1 identified a metal-responding degradation signal encompassing amino acids 250-350. Fusion of this domain to a stable protein demonstrated that it functions autonomously in a metal-responsive manner. Cadmium sensing by cysteine residues within this domain circumvents ubiquitination and degradation of Pca1. These data reveal a new mechanism for substrate-mediated control of P1B-type ATPase expression. Cells have likely evolved this mode of regulation for a rapid and specific cellular response to cadmium.
Collapse
Affiliation(s)
- David J Adle
- Redox Biology Center, Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588-0664, USA
| | | |
Collapse
|
18
|
Ballatori N, Krance SM, Marchan R, Hammond CL. Plasma membrane glutathione transporters and their roles in cell physiology and pathophysiology. Mol Aspects Med 2008; 30:13-28. [PMID: 18786560 DOI: 10.1016/j.mam.2008.08.004] [Citation(s) in RCA: 219] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2008] [Revised: 08/15/2008] [Accepted: 08/15/2008] [Indexed: 12/16/2022]
Abstract
Reduced glutathione (GSH) is critical for many cellular processes, and both its intracellular and extracellular concentrations are tightly regulated. Intracellular GSH levels are regulated by two main mechanisms: by adjusting the rates of synthesis and of export from cells. Some of the proteins responsible for GSH export from mammalian cells have recently been identified, and there is increasing evidence that these GSH exporters are multispecific and multifunctional, regulating a number of key biological processes. In particular, some of the multidrug resistance-associated proteins (Mrp/Abcc) appear to mediate GSH export and homeostasis. The Mrp proteins mediate not only GSH efflux, but they also export oxidized glutathione derivatives (e.g., glutathione disulfide (GSSG), S-nitrosoglutathione (GS-NO), and glutathione-metal complexes), as well as other glutathione S-conjugates. The ability to export both GSH and oxidized derivatives of GSH, endows these transporters with the capacity to directly regulate the cellular thiol-redox status, and therefore the ability to influence many key signaling and biochemical pathways. Among the many processes that are influenced by the GSH transporters are apoptosis, cell proliferation, and cell differentiation. This report summarizes the evidence that Mrps contribute to the regulation of cellular GSH levels and the thiol-redox state, and thus to the many biochemical processes that are influenced by this tripeptide.
Collapse
Affiliation(s)
- Nazzareno Ballatori
- Department of Environmental Medicine, University of Rochester School of Medicine, 575 Elmwood Avenue, Box EHSC, Rochester, NY 14642, USA.
| | | | | | | |
Collapse
|
19
|
The yeast lysosome-like vacuole: endpoint and crossroads. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:650-63. [PMID: 18786576 DOI: 10.1016/j.bbamcr.2008.08.003] [Citation(s) in RCA: 299] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 08/01/2008] [Accepted: 08/06/2008] [Indexed: 12/21/2022]
Abstract
Fungal vacuoles are acidic organelles with degradative and storage capabilities that have many similarities to mammalian lysosomes and plant vacuoles. In the past several years, well-developed genetic, genomic, biochemical and cell biological tools in S. cerevisiae have provided fresh insights into vacuolar protein sorting, organelle acidification, ion homeostasis, autophagy, and stress-related functions of the vacuole, and these insights have often found parallels in mammalian lysosomes. This review provides a broad overview of the defining features and functions of S. cerevisiae vacuoles and compares these features to mammalian lysosomes. Recent research challenges the traditional view of vacuoles and lysosomes as simply the terminal compartment of biosynthetic and endocytic pathways (i.e. the "garbage dump" of the cell), and suggests instead that these compartments are unexpectedly dynamic and highly regulated.
Collapse
|
20
|
Mielniczki-Pereira AA, Schuch AZ, Bonatto D, Cavalcante CF, Vaitsman DS, Riger CJ, Eleutherio ECA, Henriques JAP. The role of the yeast ATP-binding cassette Ycf1p in glutathione and cadmium ion homeostasis during respiratory metabolism. Toxicol Lett 2008; 180:21-7. [DOI: 10.1016/j.toxlet.2008.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 05/21/2008] [Accepted: 05/21/2008] [Indexed: 10/22/2022]
|
21
|
Kristiansen S, Ifversen P, Danscher G. Ultrastructural localization and chemical binding of silver ions in human organotypic skin cultures. Histochem Cell Biol 2008; 130:177-84. [DOI: 10.1007/s00418-008-0415-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2008] [Indexed: 12/18/2022]
|
22
|
Yang Y, Chen Y, Johansson E, Schneider SN, Shertzer HG, Nebert DW, Dalton TP. Interaction between the catalytic and modifier subunits of glutamate-cysteine ligase. Biochem Pharmacol 2007; 74:372-81. [PMID: 17517378 DOI: 10.1016/j.bcp.2007.02.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2006] [Revised: 02/04/2007] [Accepted: 02/06/2007] [Indexed: 01/25/2023]
Abstract
Glutamate-cysteine ligase (GCL) is the rate-limiting enzyme in the glutathione (GSH) biosynthesis pathway. This enzyme is a heterodimer, comprising a catalytic subunit (GCLC) and a regulatory subunit (GCLM). Although GCLC alone can catalyze the formation of l-gamma-glutamyl-l-cysteine, its binding with GCLM enhances the enzyme activity by lowering the K(m) for glutamate and ATP, and increasing the K(i) for GSH inhibition. To characterize the enzyme structure-function relationship, we investigated the heterodimer formation between GCLC and GCLM, in vivo using the yeast two-hybrid system, and in vitro using affinity chromatography. A strong and specific interaction between GCLC and GCLM was observed in both systems. Deletion analysis indicated that most regions, except a portion of the C-terminal region of GCLC and a portion of the N-terminal region of GCLM, are required for the interaction to occur. Point mutations of selected amino acids were also tested for the binding activity. The GCLC Cys248Ala/Cys249Ala and Pro158Leu mutations enzyme showed the same strength of binding to GCLM as did wild-type GCLC, yet the catalytic activity was dramatically decreased. The results suggest that the heterodimer formation may not be dependent on primary amino-acid sequence but, instead, involves a complex formation of the tertiary structure of both proteins.
Collapse
Affiliation(s)
- Yi Yang
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati OH 45267-005, United States
| | | | | | | | | | | | | |
Collapse
|
23
|
Suzuki H, Koyanagi T, Izuka S, Onishi A, Kumagai H. The yliA, -B, -C, and -D genes of Escherichia coli K-12 encode a novel glutathione importer with an ATP-binding cassette. J Bacteriol 2005; 187:5861-7. [PMID: 16109926 PMCID: PMC1196167 DOI: 10.1128/jb.187.17.5861-5867.2005] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glutathione protects cells and organisms from oxygen species and peroxides and is indispensable for aerobically living organisms. Moreover, it acts against xenobiotics and drugs by the formation and excretion of glutathione S conjugates. In this study, we show that the yliA, -B, -C, and -D genes of Escherichia coli K-12 encode a glutathione transporter with the ATP-binding cassette. The transporter imports extracellular glutathione into the cytoplasm in an ATP-dependent manner. This transporter, along with gamma-glutamyltranspeptidase, has an important role in E. coli growth with glutathione as a sole sulfur source.
Collapse
Affiliation(s)
- Hideyuki Suzuki
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan.
| | | | | | | | | |
Collapse
|
24
|
Ballatori N, Hammond CL, Cunningham JB, Krance SM, Marchan R. Molecular mechanisms of reduced glutathione transport: role of the MRP/CFTR/ABCC and OATP/SLC21A families of membrane proteins. Toxicol Appl Pharmacol 2005; 204:238-55. [PMID: 15845416 DOI: 10.1016/j.taap.2004.09.008] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2004] [Accepted: 09/14/2004] [Indexed: 12/30/2022]
Abstract
The initial step in reduced glutathione (GSH) turnover in all mammalian cells is its transport across the plasma membrane into the extracellular space; however, the mechanisms of GSH transport are not clearly defined. GSH export is required for the delivery of its constituent amino acids to other tissues, detoxification of drugs, metals, and other reactive compounds of both endogenous and exogenous origin, protection against oxidant stress, and secretion of hepatic bile. Recent studies indicate that some members of the multidrug resistance-associated protein (MRP/CFTR or ABCC) family of ATP-binding cassette (ABC) proteins, as well as some members of the organic anion transporting polypeptide (OATP or SLC21A) family of transporters contribute to this process. In particular, five of the 12 members of the MRP/CFTR family appear to mediate GSH export from cells namely, MRP1, MRP2, MRP4, MRP5, and CFTR. Additionally, two members of the OATP family, rat Oatp1 and Oatp2, have been identified as GSH transporters. For the Oatp1 transporter, efflux of GSH may provide the driving force for the uptake of extracellular substrates. In humans, OATP-B and OATP8 do not appear to transport GSH; however, other members of this family have yet to be characterized in regards to GSH transport. In yeast, the ABC proteins Ycf1p and Bpt1p transport GSH from the cytosol into the vacuole, whereas Hgt1p mediates GSH uptake across the plasma membrane. Because transport is a key step in GSH homeostasis and is intimately linked to its biological functions, GSH export proteins are likely to modulate essential cellular functions.
Collapse
Affiliation(s)
- Nazzareno Ballatori
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY 14642, USA.
| | | | | | | | | |
Collapse
|
25
|
Ernst R, Klemm R, Schmitt L, Kuchler K. Yeast ATP-binding cassette transporters: cellular cleaning pumps. Methods Enzymol 2005; 400:460-84. [PMID: 16399365 DOI: 10.1016/s0076-6879(05)00026-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Numerous ATP-binding cassette (ABC) proteins have been implicated in multidrug resistance, and some are also intimately connected to genetic diseases. For example, mammalian ABC proteins such as P-glycoproteins or multidrug resistance-associated proteins are associated with multidrug resistance phenomena (MDR), thus hampering anticancer therapy. Likewise, homologues in bacteria, fungi, or parasites are tightly associated with multidrug and antibiotic resistance. Several orthologues of mammalian MDR genes operate in the unicellular eukaryote Saccharomyces cerevisiae. Their functions have been linked to stress response, cellular detoxification, and drug resistance. This chapter discusses those yeast ABC transporters implicated in pleiotropic drug resistance and cellular detoxification. We describe strategies for their overexpression, biochemical purification, functional analysis, and a reconstitution in phospholipid vesicles, all of which are instrumental to better understanding their mechanisms of action and perhaps their physiological function.
Collapse
Affiliation(s)
- Robert Ernst
- Institute of Biochemistry, Membrane Transport Group, Heinrich-Heine University of Düsseldorf, Germany
| | | | | | | |
Collapse
|
26
|
Affiliation(s)
- Melinda Neal Martin
- Rutgers University, Center for Biotechnology and the Environment, New Brunswick, NJ 08901-8520, USA
| |
Collapse
|
27
|
Østergaard H, Tachibana C, Winther JR. Monitoring disulfide bond formation in the eukaryotic cytosol. ACTA ACUST UNITED AC 2004; 166:337-45. [PMID: 15277542 PMCID: PMC2172265 DOI: 10.1083/jcb.200402120] [Citation(s) in RCA: 254] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Glutathione is the most abundant low molecular weight thiol in the eukaryotic cytosol. The compartment-specific ratio and absolute concentrations of reduced and oxidized glutathione (GSH and GSSG, respectively) are, however, not easily determined. Here, we present a glutathione-specific green fluorescent protein–based redox probe termed redox sensitive YFP (rxYFP). Using yeast with genetically manipulated GSSG levels, we find that rxYFP equilibrates with the cytosolic glutathione redox buffer. Furthermore, in vivo and in vitro data show the equilibration to be catalyzed by glutaredoxins and that conditions of high intracellular GSSG confer to these a new role as dithiol oxidases. For the first time a genetically encoded probe is used to determine the redox potential specifically of cytosolic glutathione. We find it to be −289 mV, indicating that the glutathione redox status is highly reducing and corresponds to a cytosolic GSSG level in the low micromolar range. Even under these conditions a significant fraction of rxYFP is oxidized.
Collapse
Affiliation(s)
- Henrik Østergaard
- Department of Physiology, Carlsberg Laboratory, Gamle Carlsberg Vej 10, DK-2500 Copenhagen Valby, Denmark
| | | | | |
Collapse
|
28
|
Mauzeroll J, Bard AJ. Scanning electrochemical microscopy of menadione-glutathione conjugate export from yeast cells. Proc Natl Acad Sci U S A 2004; 101:7862-7. [PMID: 15148374 PMCID: PMC419522 DOI: 10.1073/pnas.0402556101] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The uptake of menadione (2-methyl-1,4-naphthoquinone), which is toxic to yeast cells, and its expulsion as a glutathione complex were studied by scanning electrochemical microscopy. The progression of the in vitro reaction between menadione and glutathione was monitored electrochemically by cyclic voltammetry and correlated with the spectroscopic (UV-visible) behavior. By observing the scanning electrochemical microscope tip current of yeast cells suspended in a menadione-containing solution, the export of the conjugate from the cells with time could be measured. Similar experiments were performed on immobilized yeast cell aggregates stressed by a menadione solution. From the export of the menadione-glutathione conjugate detected at a 1-microm-diameter electrode situated 10 microm from the cells, a flux of about 30,000 thiodione molecules per second per cell was extracted. Numerical simulations based on an explicit finite difference method further revealed that the observation of a constant efflux of thiodione from the cells suggested the rate was limited by the uptake of menadione and that the efflux through the glutathione-conjugate pump was at least an order of magnitude faster.
Collapse
Affiliation(s)
- Janine Mauzeroll
- Department of Chemistry and Biochemistry, University of Texas, 1 University Station, A5300, Austin, TX 78712, USA
| | | |
Collapse
|
29
|
Abstract
Glutathione (GSH; gamma-L-glutamyl-L-cysteinyl-glycine), a non-protein thiol with a very low redox potential (E'0 = 240 mV for thiol-disulfide exchange), is present in high concentration up to 10 mM in yeasts and filamentous fungi. GSH is concerned with basic cellular functions as well as the maintenance of mitochondrial structure, membrane integrity, and in cell differentiation and development. GSH plays key roles in the response to several stress situations in fungi. For example, GSH is an important antioxidant molecule, which reacts non-enzymatically with a series of reactive oxygen species. In addition, the response to oxidative stress also involves GSH biosynthesis enzymes, NADPH-dependent GSH-regenerating reductase, glutathione S-transferase along with peroxide-eliminating glutathione peroxidase and glutaredoxins. Some components of the GSH-dependent antioxidative defence system confer resistance against heat shock and osmotic stress. Formation of protein-SSG mixed disulfides results in protection against desiccation-induced oxidative injuries in lichens. Intracellular GSH and GSH-derived phytochelatins hinder the progression of heavy metal-initiated cell injuries by chelating and sequestering the metal ions themselves and/or by eliminating reactive oxygen species. In fungi, GSH is mobilized to ensure cellular maintenance under sulfur or nitrogen starvation. Moreover, adaptation to carbon deprivation stress results in an increased tolerance to oxidative stress, which involves the induction of GSH-dependent elements of the antioxidant defence system. GSH-dependent detoxification processes concern the elimination of toxic endogenous metabolites, such as excess formaldehyde produced during the growth of the methylotrophic yeasts, by formaldehyde dehydrogenase and methylglyoxal, a by-product of glycolysis, by the glyoxalase pathway. Detoxification of xenobiotics, such as halogenated aromatic and alkylating agents, relies on glutathione S-transferases. In yeast, these enzymes may participate in the elimination of toxic intermediates that accumulate in stationary phase and/or act in a similar fashion as heat shock proteins. GSH S-conjugates may also form in a glutathione S-transferases-independent way, e.g. through chemical reaction between GSH and the antifugal agent Thiram. GSH-dependent detoxification of penicillin side-chain precursors was shown in Penicillium sp. GSH controls aging and autolysis in several fungal species, and possesses an anti-apoptotic feature.
Collapse
Affiliation(s)
- István Pócsi
- Department of Microbiology and Biotechnology, Faculty of Sciences, University of Debrecen, P.O. Box 63, H-4010 Debrecen, Hungary
| | | | | |
Collapse
|
30
|
Wallin C, Abbas AK, Tranberg M, Weber SG, Wigström H, Sandberg M. Searching for mechanisms of N-methyl-D-aspartate-induced glutathione efflux in organotypic hippocampal cultures. Neurochem Res 2003; 28:281-91. [PMID: 12608701 PMCID: PMC1475825 DOI: 10.1023/a:1022381318126] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
N-Methyl-D-aspartate (NMDA)-receptor stimulation evoked a selective and partly delayed elevated efflux of glutathione, phosphoethanolamine, and taurine from organotypic rat hippocampus slice cultures. The protein kinase inhibitors H9 and staurosporine had no effect on the efflux. The phospholipase A2 inhibitors quinacrine and 4-bromophenacyl bromide, as well as arachidonic acid, a product of phospholipase A2 activity, did not affect the stimulated efflux. Polymyxin B, an antimicrobal agent that inhibits protein kinase C, and quinacrine in high concentration (500 microM), blocked efflux completely. The stimulated efflux after but not during NMDA incubation was attenuated by a calmodulin antagonist (W7) and an anion transport inhibitor (DNDS). Omission of calcium increased the spontaneous efflux with no or small additional effects by NMDA. In conclusion, NMDA receptor stimulation cause an increased selective efflux of glutathione, phosphoethanolamine and taurine in organotypic cultures of rat hippocampus. The efflux may partly be regulated by calmodulin and DNDS sensitive channels.
Collapse
Affiliation(s)
- Camilla Wallin
- Department of Medical Biophysics, University of Göteborg, Medicinaregatan 11, S-405 30 Göteborg, Sweden
| | - Abdul-Karim Abbas
- Department of Medical Biophysics, University of Göteborg, Medicinaregatan 11, S-405 30 Göteborg, Sweden
| | - Mattias Tranberg
- Department of Medical Biophysics, University of Göteborg, Medicinaregatan 11, S-405 30 Göteborg, Sweden
| | - Stephen G. Weber
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Holger Wigström
- Department of Medical Biophysics, University of Göteborg, Medicinaregatan 11, S-405 30 Göteborg, Sweden
| | - Mats Sandberg
- Department of Medical Biophysics, University of Göteborg, Medicinaregatan 11, S-405 30 Göteborg, Sweden
- Address reprint requests to: Mats Sandberg, Tel: (46)-31-7733395; Fax: (46)-31-7733558; E-mail:
| |
Collapse
|
31
|
Homolya L, Váradi A, Sarkadi B. Multidrug resistance-associated proteins: Export pumps for conjugates with glutathione, glucuronate or sulfate. Biofactors 2003; 17:103-14. [PMID: 12897433 DOI: 10.1002/biof.5520170111] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Many endogenous or xenobiotic lipophilic substances are eliminated from the cells by the sequence of oxidation, conjugation to an anionic group (glutathione, glucuronate or sulfate) and transport across the plasma membrane into the extracellular space. The latter step is mediated by integral membrane glycoproteins belonging to the superfamily of ATP-Binding Cassette (ABC) transporters. A subfamily, referred as ABCC, includes the famous/infamous cystic fibrosis transmembrane regulator (CFTR), the sulfonylurea receptors (SUR 1 and 2), and the multidrug resistance-associated proteins (MRPs). The name of the MRPs refers to their potential role in clinical multidrug resistance, a phenomenon that hinders the effective chemotherapy of tumors. The MRPs that have been functionally characterized so far share the property of ATP-dependent export pumps for conjugates with glutathione (GSH), glucuronate or sulfate. MRP1 and MRP2 are also mediating the cotransport of unconjugated amphiphilic compounds together with free GSH. MRP3 preferentially transports glucuronides but not glutathione S-conjugates or free GSH. MRP1 and MRP2 also contribute to the control of the intracellular glutathione disulfide (GSSG) level. Although these proteins are low affinity GSSG transporters, they can play essential role in response to oxidative stress when the activity of GSSG reductase becomes rate limiting. The human MRP4, MRP5 and MRP6 have only partially been characterized. However, it has been revealed that MRP4 can function as an efflux pump for cyclic nucleotides and nucleoside analogues, used as anti-HIV drugs. MRP5 also transports GSH conjugates, nucleoside analogues, and possibly heavy metal complexes. Transport of glutathione S-conjugates mediated by MRP6, the mutation of which causes pseudoxantoma elasticum, has recently been shown. In summary, numerous members of the multidrug resistance-associated protein family serve as export pumps that prevent the accumulation of anionic conjugates and GSSG in the cytoplasm, and play, therefore, an essential role in detoxification and defense against oxidative stress.
Collapse
Affiliation(s)
- László Homolya
- Membrane Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | |
Collapse
|
32
|
|
33
|
Fraser JA, Davis MA, Hynes MJ. A gene from Aspergillus nidulans with similarity to URE2 of Saccharomyces cerevisiae encodes a glutathione S-transferase which contributes to heavy metal and xenobiotic resistance. Appl Environ Microbiol 2002; 68:2802-8. [PMID: 12039735 PMCID: PMC123945 DOI: 10.1128/aem.68.6.2802-2808.2002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2001] [Accepted: 03/20/2002] [Indexed: 11/20/2022] Open
Abstract
Aspergillus nidulans is a saprophytic ascomycete that utilizes a wide variety of nitrogen sources. We identified a sequence from A. nidulans similar to the glutathione S-transferase-like nitrogen regulatory domain of Saccharomyces cerevisiae Ure2. Cloning and sequencing of the gene, designated gstA, revealed it to be more similar to URE2 than the S. cerevisiae glutathione S-transferases. However, creation and analysis of a gstA deletion mutant revealed that the gene does not participate in nitrogen metabolite repression. Instead, it encodes a functional theta class glutathione S-transferase that is involved in resistance to a variety of xenobiotics and metals and confers susceptibility to the systemic fungicide carboxin. Northern analysis showed that gstA transcription is strongly activated upon exposure to 1-chloro-2,4-dinitrobenzene and weakly activated by oxidative stress or growth on galactose as a carbon source. These results suggest that nitrogen metabolite repression in A. nidulans does not involve a homolog of the S. cerevisiae URE2 gene and that the global nitrogen regulatory system differs significantly in these two fungi.
Collapse
Affiliation(s)
- James A Fraser
- Department of Genetics, University of Melbourne, Victoria 3010, Australia
| | | | | |
Collapse
|
34
|
Johnson DR, Klaassen CD. Role of rat multidrug resistance protein 2 in plasma and biliary disposition of dibromosulfophthalein after microsomal enzyme induction. Toxicol Appl Pharmacol 2002; 180:56-63. [PMID: 11922777 DOI: 10.1006/taap.2002.9375] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously demonstrated that microsomal enzyme inducers phenobarbital (PB) and pregnenolone-16alpha-carbonitrile (PCN), but not 3-methylcholanthrene (3-MC) and benzo(a)pyrene (BaP), increase expression and function of rat Multidrug Resistance Protein 2 (Mrp2), a canalicular organic anion transporter. Thus, the purpose of this study was to determine whether Mrp2 protein induction alters the biliary and plasma dispositions of dibromosulfophthalein (DBSP). After four daily ip injections of PB, PCN, 3-MC, BaP, or vehicle, DBSP (100 mg/kg) was injected iv and was measured in blood and bile over a 40-min period. PB and PCN significantly enhanced plasma disappearance and biliary excretion of DBSP, whereas 3-MC and BaP did not. To determine whether the enhanced plasma disappearance and biliary excretion was entirely due an increase in Mrp2, PCN was also administered ip daily for 4 days to Mrp2-null Eisai hyperbilirubinemic (EHBR) rats and then injected iv with DBSP. PCN significantly increased plasma DBSP disappearance in EHBR rats during early time intervals (2-20 min), but not at later time intervals (25-40 min). PCN did not increase DBSP biliary excretion in EHBR rats, but actually decreased it at later time intervals. In summary, the increase in Mrp2 protein after microsomal enzyme induction is responsible for increased biliary DBSP excretion. Furthermore, the increase in Mrp2 protein after microsomal enzyme induction is not responsible for the enhanced plasma DBSP disappearance at early time points, yet may influence plasma DBSP disappearance at later time points. This study also demonstrates the importance of compensatory hepatic transporters in eliminating DBSP by alternative pathways other than Mrp2.
Collapse
Affiliation(s)
- David R Johnson
- Environmental Health and Occupational Medicine Center, Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160-7417, USA
| | | |
Collapse
|
35
|
Rebbeor JF, Connolly GC, Ballatori N. Inhibition of Mrp2- and Ycf1p-mediated transport by reducing agents: evidence for GSH transport on rat Mrp2. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1559:171-8. [PMID: 11853683 DOI: 10.1016/s0005-2736(01)00454-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mammalian Mrp2 and its yeast orthologue, Ycf1p, mediate the ATP-dependent cellular export of a variety of organic anions. Ycf1p also appears to transport the endogenous tripeptide glutathione (GSH), whereas no ATP-dependent GSH transport has been detected in Mrp2-containing mammalian plasma membrane vesicles. Because GSH uptake measurements in isolated membrane vesicles are normally carried out in the presence of 5-10 mM dithiothreitol (DTT) to maintain the tripeptide in the reduced form, the present study examined the effects of DTT and other sulfhydryl-reducing agents on Ycf1p- and Mrp2-mediated transport activity. Uptake of S-dinitrophenyl glutathione (DNP-SG), a prototypic substrate of both proteins, was measured in Ycf1p-containing Saccharomyces cerevisiae vacuolar membrane vesicles and in Mrp2-containing rat liver canalicular plasma membrane vesicles. Uptake was inhibited in both vesicle systems in a concentration-dependent manner by DTT, dithioerythritol, and beta-mercaptoethanol, with concentrations of 10 mM inhibiting by approximately 40%. DTT's inhibition of DNP-SG transport was noncompetitive. In contrast, ATP-dependent transport of [(3)H]taurocholate, a substrate for yeast Bat1p and mammalian Bsep bile acid transporters, was not significantly affected by DTT. DTT also inhibited the ATP-dependent uptake of GSH by Ycf1p. As the DTT concentration in incubation solutions containing rat liver canalicular plasma membrane vesicles was gradually decreased, ATP-dependent GSH transport was now detected. These results demonstrate that Ycf1p and Mrp2 are inhibited by concentrations of reducing agents that are normally employed in studies of GSH transport. When this inhibition was partially relieved, ATP-dependent GSH transport was detected in rat liver canalicular plasma membranes, indicating that both Mrp2 and Ycf1p are able to transport GSH by an ATP-dependent mechanism.
Collapse
Affiliation(s)
- James F Rebbeor
- Department of Environmental Medicine, University of Rochester School of Medicine, 575 Elmwood Ave., Box EHSC, Rochester, NY 14642, USA
| | | | | |
Collapse
|
36
|
Mehdi K, Thierie J, Penninckx MJ. gamma-Glutamyl transpeptidase in the yeast Saccharomyces cerevisiae and its role in the vacuolar transport and metabolism of glutathione. Biochem J 2001; 359:631-7. [PMID: 11672438 PMCID: PMC1222185 DOI: 10.1042/0264-6021:3590631] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In the yeast Saccharomyces cerevisiae, the enzyme gamma-glutamyl transpeptidase (gamma-GT; EC 2.3.2.2) is a glycoprotein that is bound to the vacuolar membrane. The kinetic parameters of GSH transport into isolated vacuoles were measured using intact vacuoles isolated from the wild-type yeast strain Sigma 1278b, under conditions of gamma-GT synthesis (nitrogen starvation) and repression (growth in the presence of ammonium ions). Vacuoles devoid of gamma-GT displayed a K(m) (app) of 18+/-2 mM and a V(max) (app) of 48.5+/-5 nmol of GSH/min per mg of protein. Vacuoles containing gamma-GT displayed practically the same K(m), but a higher V(max) (app) (150+/-12 nmol of GSH/min per mg of protein). Vacuoles prepared from a disruptant lacking gamma-GT showed no increase in V(max) (app) with nitrogen starvation. From a comparison of the transport data obtained for vacuoles isolated from various reference and mutant strains, it appears that the yeast cadmium factor 1 (YCF1) transport system accounts for approx. 70% of the GSH transport capacity of the vacuoles, the remaining 30% being due to a vacuolar (H(+)) ATPase-coupled system. The V(max) (app)-increasing effect of gamma-GT concerns only the YCF1 system. gamma-GT in the vacuolar membrane activates the Ycf1p transporter, either directly or indirectly. Moreover, GSH accumulating in the vacuolar space may exert a feedback effect on its own entry. Excretion of glutamate from radiolabelled GSH in isolated vacuoles containing gamma-GT was also measured. It is proposed that gamma-GT and a L-Cys-Gly dipeptidase catalyse the complete hydrolysis of GSH stored in the central vacuole of the yeast cell, prior to release of its constitutive amino acids L-glutamate, L-cysteine and glycine into the cytoplasm. Yeast appears to be a useful model for studying gamma-GT physiology and GSH metabolism.
Collapse
Affiliation(s)
- K Mehdi
- Université Libre de Bruxelles, Laboratoire de Physiologie et d'Ecologie Microbiennes, Institut Pasteur de Bruxelles, 642 Rue Engeland, B-1180 Brussels, Belgium
| | | | | |
Collapse
|
37
|
Foyer CH, Theodoulou FL, Delrot S. The functions of inter- and intracellular glutathione transport systems in plants. TRENDS IN PLANT SCIENCE 2001; 6:486-92. [PMID: 11590068 DOI: 10.1016/s1360-1385(01)02086-6] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Glutathione is one of the major redox buffers in most aerobic cells, and it has a broad spectrum of functions in plants. Recent discoveries implicate this thiol peptide in signalling and cellular homeostasis. Glutathione can sense intracellular redox status: perturbations of glutathione reduction state are transduced into changes in gene expression. This central role demands precise control of both the concentration and the reduction state of glutathione in different compartments. In addition to the regulation of glutathione biosynthesis and redox state, attention is now turning to the role of glutathione transporters.
Collapse
|
38
|
Cnubben NH, Rietjens IM, Wortelboer H, van Zanden J, van Bladeren PJ. The interplay of glutathione-related processes in antioxidant defense. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2001; 10:141-152. [PMID: 21782570 DOI: 10.1016/s1382-6689(01)00077-1] [Citation(s) in RCA: 215] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This review summarizes current knowledge on glutathione (GSH) associated cellular processes that play a central role in defense against oxidative stress. GSH itself is a critical factor in maintaining the cellular redox balance and has been demonstrated to be involved in regulation of cell signalling and repair pathways. Enhanced expression of various enzymes involved in GSH metabolism, including glutathione peroxidases, γ-glutamyl cysteinyl synthetase (γ-GCS), glutathione S-transferases (GST) and membrane proteins belonging to the ATP-binding cassette family, such as the multidrug resistance associated protein, have all been demonstrated to play a prominent role in cellular resistance towards oxidative stress. This review stresses the fact that aco-ordinateinterplay between these systems is essential for efficient protection against oxidative stress.
Collapse
Affiliation(s)
- N H Cnubben
- TNO Nutrition and Food Research, PO Box 360, 3700 AJ Zeist, Netherlands; WUR/TNO Centre for Food Toxicology, PO Box 8000, 6700 EA Wageningen, Netherlands
| | | | | | | | | |
Collapse
|
39
|
Lee TK, Hammond CL, Ballatori N. Intracellular glutathione regulates taurocholate transport in HepG2 cells. Toxicol Appl Pharmacol 2001; 174:207-15. [PMID: 11485381 DOI: 10.1006/taap.2001.9208] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The hepatic organic anion transporter 1, Oatp1, was recently demonstrated to function as a GSH exchanger, indicating that hepatic uptake of drugs and xenobiotics may be sensitive to intracellular GSH levels. The present study characterized taurocholate uptake and efflux mechanisms in HepG2 cells and the effects of intracellular GSH on these transport processes. Taurocholate uptake into HepG2 cells was Na(+)-independent, saturable ( K(m) = 82 +/- 16 microM), and was cis-inhibited by bromosulfophthalein and some bile acids. Intracellular GSH depletion inhibited 3H-taurocholate uptake, and, conversely, the release of GSH from HepG2 cells was stimulated in the presence of extracellular taurocholate and other bile acids, consistent with a role for intracellular GSH in stimulating organic anion uptake. Interestingly, efflux of 3H-taurocholate from HepG2 cells was also sensitive to intracellular GSH concentration: efflux was inhibited in cells with lower intracellular GSH and stimulated in cells with higher GSH. RT-PCR analysis revealed that OATP-A, OATP-D, OATP-E, OATP-8, MRP1, MRP2, and MRP3 are expressed in HepG2 cells but that their expression is not altered by the maneuvers used to lower or raise intracellular GSH. These results provide direct evidence that intracellular GSH levels modulate both uptake and efflux of taurocholate and suggest that GSH plays a regulatory role in the hepatobiliary transport of potentially toxic organic compounds.
Collapse
Affiliation(s)
- T K Lee
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York, 14642, USA
| | | | | |
Collapse
|
40
|
Falcón-Pérez JM, Martínez-Burgos M, Molano J, Mazón MJ, Eraso P. Domain interactions in the yeast ATP binding cassette transporter Ycf1p: intragenic suppressor analysis of mutations in the nucleotide binding domains. J Bacteriol 2001; 183:4761-70. [PMID: 11466279 PMCID: PMC99530 DOI: 10.1128/jb.183.16.4761-4770.2001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The yeast cadmium factor (Ycf1p) is a vacuolar ATP binding cassette (ABC) transporter required for heavy metal and drug detoxification. Cluster analysis shows that Ycf1p is strongly related to the human multidrug-associated protein (MRP1) and cystic fibrosis transmembrane conductance regulator and therefore may serve as an excellent model for the study of eukaryotic ABC transporter structure and function. Identifying intramolecular interactions in these transporters may help to elucidate energy transfer mechanisms during transport. To identify regions in Ycf1p that may interact to couple ATPase activity to substrate binding and/or movement across the membrane, we sought intragenic suppressors of ycf1 mutations that affect highly conserved residues presumably involved in ATP binding and/or hydrolysis. Thirteen intragenic second-site suppressors were identified for the D777N mutation which affects the invariant Asp residue in the Walker B motif of the first nucleotide binding domain (NBD1). Two of the suppressor mutations (V543I and F565L) are located in the first transmembrane domain (TMD1), nine (A1003V, A1021T, A1021V, N1027D, Q1107R, G1207D, G1207S, S1212L, and W1225C) are found within TMD2, one (S674L) is in NBD1, and another one (R1415G) is in NBD2, indicating either physical proximity or functional interactions between NBD1 and the other three domains. The original D777N mutant protein exhibits a strong defect in the apparent affinity for ATP and V(max) of transport. The phenotypic characterization of the suppressor mutants shows that suppression does not result from restoring these alterations but rather from a change in substrate specificity. We discuss the possible involvement of Asp777 in coupling ATPase activity to substrate binding and/or transport across the membrane.
Collapse
Affiliation(s)
- J M Falcón-Pérez
- Instituto de Investigaciones Biomédicas "Alberto Sols," CSIC-UAM, Madrid, Spain
| | | | | | | | | |
Collapse
|
41
|
Bagrij T, Klokouzas A, Hladky SB, Barrand MA. Influences of glutathione on anionic substrate efflux in tumour cells expressing the multidrug resistance-associated protein, MRP1. Biochem Pharmacol 2001; 62:199-206. [PMID: 11389878 DOI: 10.1016/s0006-2952(01)00660-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ATP-dependent transport of natural product drugs, e.g. vincristine, by multidrug resistance-associated protein (MRP1) requires reduced glutathione (GSH), whilst that of anionic substrates does not. The present results suggest, however, that GSH can modulate transport of anionic species. Efflux of fluorescent anionic substrates was measured from adherent MRP1-expressing human multidrug-resistant lung tumour cells, COR-L23/R, and drug-sensitive parental cells. As expected, much greater efflux of calcein, methylfluorescein-glutathione (GS-MF), and 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF) was observed from the resistant cells. Unexpectedly, lowering GSH levels in COR-L23/R cells by inhibiting GSH synthesis with buthionine sulfoximine decreased efflux of calcein and of GS-MF (3-fold and 1.6-fold) but not efflux of BCECF. Transport of the anionic conjugate dinitrophenyl-glutathione ([(3)H]DNP-SG) was investigated by following its uptake into inside-out plasma membrane vesicles prepared from the MRP1-expressing cells. At least 90% of the ATP-dependent uptake was blockable by the anti-MRP1 antibody QCRL-3 and 100 microM vincristine inhibited uptake but only in the presence of 1--3 mM GSH, suggesting MRP1 to be the protein primarily responsible for this transport. Agents shown to reduce efflux of calcein from resistant cells, i.e. indomethacin, MK-571, and probenecid, also inhibited [(3)H]DNP-SG uptakes, consistent with MRP1 being responsible for export of calcein. At concentrations achievable within cells, GSSG (70 microM) inhibited uptake whereas GSH (1 and 3 mM) enhanced uptake. We suggest that variations in both GSH and GSSG levels within cells may affect MRP1-mediated anion transport.
Collapse
Affiliation(s)
- T Bagrij
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QJ, UK
| | | | | | | |
Collapse
|
42
|
Hammond CL, Lee TK, Ballatori N. Novel roles for glutathione in gene expression, cell death, and membrane transport of organic solutes. J Hepatol 2001; 34:946-54. [PMID: 11451183 DOI: 10.1016/s0168-8278(01)00037-x] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- C L Hammond
- Department of Environmental Medicine, University of Rochester School of Medicine, NY 14642, USA
| | | | | |
Collapse
|
43
|
Wolfger H, Mamnun YM, Kuchler K. Fungal ABC proteins: pleiotropic drug resistance, stress response and cellular detoxification. Res Microbiol 2001; 152:375-89. [PMID: 11421285 DOI: 10.1016/s0923-2508(01)01209-8] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A number of prominent genetic diseases are caused by mutations in genes encoding ATP-binding cassette (ABC) proteins (Ambudkar, Gottesmann, 1998). Moreover, several mammalian ABC proteins such as P-glycoprotein (P-gp) (Gottesman et al., 1995) and multidrug-resistance-associated proteins (MRPs) (Cole, Deeley, 1998) have been implicated in multidrug resistance (MDR) phenotypes of tumor cells highly resistant to many different anticancer drugs. The characteristics of MDR phenomena include the initial resistance to a single anticancer drug, followed by the development of cross-resistance to many structurally and functionally unrelated drugs. Similar mechanisms of MDR exist in pathogenic fungi, including Candida and Aspergillus (Vanden Bossche et al., 1998), and also in parasites such as Plasmodium and Leishmania (Ambudkar, Gottesmann, 1998), as well as in many bacterial pathogens (Nikaido, 1998). To dissect the mechanisms of MDR development and to elucidate the physiological functions of ABC proteins, many efforts have been made during the past decade. Importantly, yeast orthologues of mammalian disease genes made this unicellular eukaryote an invaluable model system for studies on the molecular mechanisms of ABC proteins, in order to better understand and perhaps improve treatment of ABC gene-related disease. In this review, we provide an overview of ABC proteins and pleiotropic drug resistance in the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe. Furthermore, we discuss the role of ABC proteins in clinical drug resistance development of certain fungal pathogens.
Collapse
Affiliation(s)
- H Wolfger
- Institute of Medical Biochemistry, Department of Molecular Genetics, University and Biocenter of Vienna, Austria
| | | | | |
Collapse
|
44
|
Pascolo L, Petrovic S, Cupelli F, Bruschi CV, Anelli PL, Lorusso V, Visigalli M, Uggeri F, Tiribelli C. Abc protein transport of MRI contrast agents in canalicular rat liver plasma vesicles and yeast vacuoles. Biochem Biophys Res Commun 2001; 282:60-6. [PMID: 11263971 DOI: 10.1006/bbrc.2001.4318] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The mechanism of excretion into bile of hepatospecific magnetic resonance imaging (MRI) contrast media employed labeled Gd-reagents EOB.DTPA, BOPTA, B 20790 (iopanoate-linked), and B 21690 (glycocholate-linked) for measurement in rat liver canalicular plasma membrane vesicles and yeast vacuoles. The presence of ATP gave threefold greater transport of B 20790 and B 21690 than of EOB.DTPA and BOPTA. In yeast vacuoles the ATP stimulatory effect was eightfold with B 20790 and fivefold greater for B 21690, whereas in YCF1- or YLLO115w-deleted yeast cells the transport was significantly reduced and absent from double mutants, YCF1 and YLLO15w. The transport was similar in wild-type and deletant cells for B 21690; taurocholate gave 85% inhibition. These data suggest that bilary secretion of structurally related MRI agents depend on molecular structure. The findings are suggestive as of possible value for clinical diagnosis of inherited hyperbilirubinemias and other liver disorders.
Collapse
Affiliation(s)
- L Pascolo
- CSF-Department BBC, University of Trieste, Via Giorgeri 1, Trieste, 34127, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Cummings BS, Angeles R, McCauley RB, Lash LH. Role of voltage-dependent anion channels in glutathione transport into yeast mitochondria. Biochem Biophys Res Commun 2000; 276:940-4. [PMID: 11027572 DOI: 10.1006/bbrc.2000.3572] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glutathione (GSH) is imported into mitochondria from the extra-mitochondrial cytoplasm. Translocation across the inner membrane of mitochondria is thought to occur via the dicarboxylate and 2-oxoglutarate carriers; however, the means by which GSH passes through the outer membrane is unknown. Disruption of the outer membrane of yeast mitochondria using either digitonin or osmotic shock did not alter GSH accumulation as compared with accumulation in intact mitochondria. These results suggested that passage across the outer membrane was not the rate-limiting step in GSH accumulation. Mitochondria isolated from yeast strains with a disruption in the major pore-forming protein of the outer membrane, VDAC1, accumulated GSH to a greater extent than mitochondria isolated from a wild-type strain. Disruption of the gene for VDAC2 did not affect GSH import. Thus, neither VDAC form is essential for GSH translocation into mitochondria, and the participation of another outer membrane channel in GSH import is possible.
Collapse
Affiliation(s)
- B S Cummings
- Department of Pharmacology, Wayne State University, Detroit, Michigan, 48201, USA
| | | | | | | |
Collapse
|
46
|
Renes J, de Vries EGE, Jansen PLM, Müller M. The (patho)physiological functions of the MRP family. Drug Resist Updat 2000; 3:289-302. [PMID: 11498397 DOI: 10.1054/drup.2000.0156] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The identification of certain members of the large superfamily of ATP binding cassette transport proteins such as MDR1 -P-glycoprotein and the multidrug resistance protein MRP1 as ATP-dependent drug efflux pumps has been a major contribution in our understanding of the multidrug resistance phenotype of cancer cells. Importantly, both transport proteins that exhibit only low structural homology have a very different substrate specificity but confer resistance to a similar spectrum of natural product chemotherapeutic drugs. In contrast to the drug transporter MDR1, MRP1 mainly transports anionic Phase II-conjugates. In addition MRP1-mediated drug resistance is highly dependent on high intracellular glutathione levels which may be linked to the apparent physiological involvement of MRP1 in glutathione-related cellular processes. This review summarizes the current knowledge about functional aspects of MRP1 and its five recently cloned homologues MRP2-MRP6 and discusses their substrate specificities and cellular localization with emphasis on drug resistance. Copyright 2000 Harcourt Publishers Ltd.
Collapse
Affiliation(s)
- Johan Renes
- Groningen University Institute of Drug Exploration (GUIDE), Department of Gastroenterology, Hepatology, Department of Medical Oncology, University Hospital Groningen, Groningen, The Netherlands
| | | | | | | |
Collapse
|
47
|
Favilli F, Catarzi S, Iantomasi T, Vincenzini MT. Glutathione transport system in NIH3t3 fibroblasts. MOLECULAR CELL BIOLOGY RESEARCH COMMUNICATIONS : MCBRC 2000; 4:212-8. [PMID: 11409914 DOI: 10.1006/mcbr.2001.0280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The current study characterizes a mediated transport for GSH uptake in murine fibroblasts NIH3T3. The presence of GSH mediated transport is indicated by the behaviour of GSH uptake time-course, as well as by kinetic saturation and the specific inhibition of the initial rate of GSH transport. Moreover, a concentrative GSH uptake has been measured, whose driving force may be due to a change of membrane potential and the direct involvement of ATP. Hyperbolic kinetic saturation shows a single mediated transport with high affinity for GSH (Km = 0.209 +/- 0.03 mM). High specificity of this GSH transporter for the entire structure of GSH is also demonstrated. To summarize, GSH uptake into NIH3T3 cells occurs by an active transport system and shows characteristics similar to ATP-dependent mechanisms previously identified in hepatocyte membranes. Moreover, a possible physiological role of this GSH transporter related to NIH3T3 cell proliferation has been hypothesized.
Collapse
Affiliation(s)
- F Favilli
- Department of Biochemical Sciences, University of Firenze, viale Morgagni 50, Florence, 50134, Italy
| | | | | | | |
Collapse
|
48
|
Rebbeor JF, Connolly GC, Henson JH, Boyer JL, Ballatori N. ATP-dependent GSH and glutathione S-conjugate transport in skate liver: role of an Mrp functional homologue. Am J Physiol Gastrointest Liver Physiol 2000; 279:G417-25. [PMID: 10915652 DOI: 10.1152/ajpgi.2000.279.2.g417] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Multidrug resistance-associated proteins 1 and 2 (Mrp1 and Mrp2) are thought to mediate low-affinity ATP-dependent transport of reduced glutathione (GSH), but there is as yet no direct evidence for this hypothesis. The present study examined whether livers from the little skate (Raja erinacea) express an Mrp2 homologue and whether skate liver membrane vesicles exhibit ATP-dependent GSH transport activity. Antibodies directed against mammalian Mrp2-specific epitopes labeled a 180-kDa protein band in skate liver plasma membranes and stained canaliculi by immunofluorescence, indicating that skate livers express a homologous protein. Functional assays of Mrp transport activity were carried out using (3)H-labeled S-dinitrophenyl-glutathione (DNP-SG). DNP-SG was accumulated in skate liver membrane vesicles by both ATP-dependent and ATP-independent mechanisms. ATP-dependent DNP-SG uptake was of relatively high affinity [Michaelis-Menten constant (K(m)) = 32 +/- 9 microM] and was cis-inhibited by known substrates of Mrp2 and by GSH. Interestingly, ATP-dependent transport of (3)H-labeled S-ethylglutathione and (3)H-labeled GSH was also detected in the vesicles. ATP-dependent GSH transport was mediated by a low-affinity pathway (K(m) = 12 +/- 2 mM) that was cis-inhibited by substrates of the Mrp2 transporter but was not affected by membrane potential or pH gradient uncouplers. These results provide the first direct evidence for ATP-dependent transport of GSH in liver membrane vesicles and support the hypothesis that GSH efflux from mammalian cells is mediated by members of the Mrp family of proteins.
Collapse
Affiliation(s)
- J F Rebbeor
- Department of Environmental Medicine, University of Rochester School of Medicine, NY 14642, USA
| | | | | | | | | |
Collapse
|
49
|
Abstract
Glutathione is excreted in a dose-dependent, non-stoichiometric fashion from Saccharomyces cerevisiae cells expressing and secreting Bovine Pancreatic Trypsin Inhibitor (BPTI), a small, disulfide-bonded protein. Glutathione excretion commences 40 hours following induction of BPTI synthesis. Expression of several secretory proteins with varying disulfide and cysteine contents results in glutathione excretion with no apparent requirement for protein disulfide content. Glutathione excretion is also triggered by overexpression of Kar2p/BiP, a native ER-resident protein-folding chaperone, indicating that the response is a general one not restricted to overexpression of thiol-containing heterologous proteins. Functional vesicular transport is not required at the time of glutathione excretion, and glutathione excretion requires the presence of molecular oxygen. These data are consistent with a delayed oxidative stress response potentiated by earlier heterologous secretion, but are inconsistent with secretory transport of glutathione spent as oxidizing equivalents for disulfide-bond formation in the endoplasmic reticulum.
Collapse
Affiliation(s)
- S J Bannister
- Department of Chemical Engineering, University of Illinois, Urbana, Illinois, USA
| | | |
Collapse
|
50
|
Chen XJ, Bauer BE, Kuchler K, Clark-Walker GD. Positive and negative control of multidrug resistance by the Sit4 protein phosphatase in Kluyveromyces lactis. J Biol Chem 2000; 275:14865-72. [PMID: 10809730 DOI: 10.1074/jbc.275.20.14865] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nuclear gene encoding the Sit4 protein phosphatase was identified in the budding yeast Kluyveromyces lactis. K. lactis cells carrying a disrupted sit4 allele are resistant to oligomycin, antimycin, ketoconazole, and econazole but hypersensitive to paromomycin, sorbic acid, and 4-nitroquinoline-N-oxide (4-NQO). Overexpression of SIT4 leads to an elevation in resistance to paromomycin and to lesser extent tolerance to sorbic acid, but it has no detectable effect on resistance to 4-NQO. These observations suggest that the Sit4 protein phosphatase has a broad role in modulating multidrug resistance in K. lactis. Expression or activity of a membrane transporter specific for paromomycin and the ABC pumps responsible for 4-NQO and sorbic acid would be positively regulated by Sit4p. In contrast, the function of a Pdr5-type transporter responsible for ketoconazole and econazole extrusion, and probably also for efflux of oligomycin and antimycin, is likely to be negatively regulated by the phosphatase. Drug resistance of sit4 mutants was shown to be mediated by ABC transporters as efflux of the anionic fluorescent dye rhodamine 6G, a substrate for the Pdr5-type pump, is markedly increased in sit4 mutants in an energy-dependent and FK506-sensitive manner.
Collapse
Affiliation(s)
- X J Chen
- Molecular Genetics and Evolution Group, Research School of Biological Sciences, The Australian National University, GPO Box 475, Canberra, ACT 2601, Australia.
| | | | | | | |
Collapse
|