1
|
Johnson SN, Brucks SD, Apley KD, Farrell MP, Berkland CJ. Multivalent Scaffolds to Promote B cell Tolerance. Mol Pharm 2023; 20:3741-3756. [PMID: 37410969 DOI: 10.1021/acs.molpharmaceut.3c00039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Autoimmune diseases are characterized by aberrant immune responses toward self-antigens. Current treatments lack specificity, promoting adverse effects by broadly suppressing the immune system. Therapies that specifically target the immune cells responsible for disease are a compelling strategy to mitigate adverse effects. Multivalent formats that display numerous binding epitopes off a single scaffold may enable selective immunomodulation by eliciting signals through pathways unique to the targeted immune cells. However, the architecture of multivalent immunotherapies can vary widely, and there is limited clinical data with which to evaluate their efficacy. Here, we set forth to review the architectural properties and functional mechanisms afforded by multivalent ligands and evaluate four multivalent scaffolds that address autoimmunity by altering B cell signaling pathways. First, we address both synthetic and natural polymer backbones functionalized with a variety of small molecule, peptide, and protein ligands for probing the effects of valency and costimulation. Then, we review nanoparticles composed entirely from immune signals which have been shown to be efficacious. Lastly, we outline multivalent liposomal nanoparticles capable of displaying high numbers of protein antigens. Taken together, these examples highlight the versatility and desirability of multivalent ligands for immunomodulation and illuminate strengths and weaknesses of multivalent scaffolds for treating autoimmunity.
Collapse
Affiliation(s)
- Stephanie N Johnson
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Spencer D Brucks
- Department of Chemistry, Harvey Mudd College, Claremont, California 91711, United States
| | - Kyle D Apley
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Mark P Farrell
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Cory J Berkland
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
- Bioengineering Program, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
2
|
Nevinsky GA, Zakharova OD, Kompaneets IY, Timofeeva AM, Dmitrenok PS, Menzorova NI. Six catalytic activities and cytotoxicity of immunoglobulin G and secretory immunoglobulin A from human milk. J Dairy Sci 2021; 104:6431-6448. [PMID: 33741158 DOI: 10.3168/jds.2020-19897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/11/2021] [Indexed: 01/28/2023]
Abstract
In the milk of healthy women, antibodies were found with different catalytic activities (abzymes), which are absent in the sera of other healthy people. Moreover, it was previously shown that DNase antibodies-abzymes of patients with autoimmune diseases are cytotoxic to cancer cells. In this work, it was first shown that IgG and secretory IgA (sIgA) do not possess embryotoxicity; they practically do not affect the development of fertilized eggs of sea urchins but demonstrate sperm toxicity. After addition to the eggs of sperm preincubated with IgG and sIgA, the number of unfertilized eggs was increased, in the case of sIgA 1.6-fold higher than that for IgG. The suppression of the growth of MCF-7 breast cancer cells by sIgA was 2.2 times more effective than with IgG antibodies. The relative enzymatic activity of milk sIgA was higher than IgG (-fold): 1.9 (DNase), 4.6 (amylase), 1.7 (peroxidase), 1.3 (protease), 3.7 [hydrolysis of poly(C)], 3.3 [hydrolysis of poly(U)], and 1.7 (oxidation of 3,3'-diaminobenzidine). One of the possible reasons for the observed difference between sIgA and IgG could be that all 6 catalytic activities of sIgA were, on average, 2.6 times higher than that for IgG. Correlation coefficients between all the relative 6 enzymatic activities of IgG and sIgA and their toxicity to sea urchin sperm and to cancer cells were calculated. Maximum correlation coefficients were observed for DNase (+0.71), protease (+0.64) activities for sIgA, as well as protease (+0.59) and RNase (+0.77) of IgG with their toxicity toward sperm. The correlation coefficients were also high between peroxidase activity (+0.85) of sIgA and poly(U) hydrolysis by IgG (+0.58) with their suppression of tumor cell growth. It has been suggested that the catalytic activities of abzymes may be important in the manifestation of their sperm toxicity and inhibition of cancer cell growth.
Collapse
Affiliation(s)
- Georgy A Nevinsky
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentiev Ave., Novosibirsk 630090, Russia.
| | - Ol'ga D Zakharova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Ivan Yu Kompaneets
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Anna M Timofeeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Pavel S Dmitrenok
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Pr. 100 let Vladivostoku, Vladivostok 690022, Russia
| | - Natalia I Menzorova
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Pr. 100 let Vladivostoku, Vladivostok 690022, Russia
| |
Collapse
|
3
|
Shepard SM, Windsor IW, Raines RT, Cummins CC. Nucleoside Tetra- and Pentaphosphates Prepared Using a Tetraphosphorylation Reagent Are Potent Inhibitors of Ribonuclease A. J Am Chem Soc 2019; 141:18400-18404. [PMID: 31651164 DOI: 10.1021/jacs.9b09760] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Adenosine and uridine 5'-tetra- and 5'-pentaphosphates were synthesized from an activated tetrametaphosphate ([PPN]2[P4O11], [PPN]2[1], PPN = bis(triphenylphosphine)iminium) and subsequently tested for inhibition of the enzymatic activity of ribonuclease A (RNase A). Reagent [PPN]2[1] reacts with unprotected uridine and adenosine in the presence of a base under anhydrous conditions to give nucleoside tetrametaphosphates. Ring opening of these intermediates with tetrabutylammonium hydroxide ([TBA][OH]) yields adenosine and uridine tetraphosphates (p4A, p4U) in 92% and 85% yields, respectively, from the starting nucleoside. Treatment of ([PPN]2[1]) with AMP or UMP yields nucleoside-monophosphate tetrametaphosphates (cp4pA, cp4pU) having limited aqueous stability. Ring opening of these ultraphosphates with [TBA][OH] yields p5A and p5U in 58% and 70% yield from AMP and UMP, respectively. We characterized inorganic and nucleoside-conjugated linear and cyclic oligophosphates as competitive inhibitors of RNase A. Increasing the chain length in both linear and cyclic inorganic oligophosphates resulted in improved binding affinity. Increasing the length of oligophosphates on the 5' position of adenosine beyond three had a deleterious effect on binding. Conversely, uridine nucleotides bearing 5' oligophosphates saw progressive increases in binding with chain length. We solved X-ray cocrystal structures of the highest affinity binders from several classes. The terminal phosphate of p5A binds in the P1 enzymic subsite and forces the oligophosphate to adopt a convoluted conformation, while the oligophosphate of p5U binds in several extended conformations, targeting multiple cationic regions of the active-site cleft.
Collapse
Affiliation(s)
- Scott M Shepard
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge Massachusetts 02139 , United States
| | - Ian W Windsor
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge Massachusetts 02139 , United States
| | - Ronald T Raines
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge Massachusetts 02139 , United States
| | - Christopher C Cummins
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge Massachusetts 02139 , United States
| |
Collapse
|
4
|
Ressler VT, Raines RT. Consequences of the Endogenous N-Glycosylation of Human Ribonuclease 1. Biochemistry 2019; 58:987-996. [PMID: 30633504 DOI: 10.1021/acs.biochem.8b01246] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ribonuclease 1 (RNase 1) is the most prevalent human homologue of the archetypal enzyme RNase A. RNase 1 contains sequons for N-linked glycosylation at Asn34, Asn76, and Asn88 and is N-glycosylated at all three sites in vivo. The effect of N-glycosylation on the structure and function of RNase 1 is unknown. By using an engineered strain of the yeast Pichia pastoris, we installed a heptasaccharide (Man5GlcNAc2) on the side chain of Asn34, Asn76, and Asn88 to produce the authentic triglycosylated form of human RNase 1. As a glutamine residue is not a substrate for cellular oligosaccharyltransferase, we used strategic asparagine-to-glutamine substitutions to produce the three diglycosylated and three monoglycosylated forms of RNase 1. We found that the N-glycosylation of RNase 1 at any position attenuates its catalytic activity but enhances both its thermostability and its resistance to proteolysis. N-Glycosylation at Asn34 generates the most active and stable glycoforms, in accord with its sequon being highly conserved among vertebrate species. These data provide new insight on the biological role of the N-glycosylation of a human secretory enzyme.
Collapse
Affiliation(s)
- Valerie T Ressler
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Ronald T Raines
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
5
|
Hoang TT, Tanrikulu IC, Vatland QA, Hoang TM, Raines RT. A Human Ribonuclease Variant and ERK-Pathway Inhibitors Exhibit Highly Synergistic Toxicity for Cancer Cells. Mol Cancer Ther 2018; 17:2622-2632. [PMID: 30282811 DOI: 10.1158/1535-7163.mct-18-0724] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 08/15/2018] [Accepted: 09/27/2018] [Indexed: 12/20/2022]
Abstract
Pancreatic-type ribonucleases (ptRNases) are prevalent secretory enzymes that catalyze the cleavage of RNA. Ribonuclease inhibitor (RI) is a cytosolic protein that has femtomolar affinity for ptRNases, affording protection from the toxic catalytic activity of ptRNases, which can invade human cells. A human ptRNase variant that is resistant to inhibition by RI is a cytotoxin that is undergoing a clinical trial as a cancer chemotherapeutic agent. We find that the ptRNase and protein kinases in the ERK pathway exhibit strongly synergistic toxicity toward lung cancer cells (including a KRASG12C variant) and melanoma cells (including BRAFV600E variants). The synergism arises from inhibiting the phosphorylation of RI and thereby diminishing its affinity for the ptRNase. These findings link seemingly unrelated cellular processes, and suggest that the use of a kinase inhibitor to unleash a cytotoxic enzyme could lead to beneficial manifestations in the clinic.
Collapse
Affiliation(s)
- Trish T Hoang
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin
| | - I Caglar Tanrikulu
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Quinn A Vatland
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin
| | - Trieu M Hoang
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin
| | - Ronald T Raines
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin. .,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
6
|
Ermakov EA, Ivanova SA, Buneva VN, Nevinsky GA. Blood-Derived RNA- and microRNA-Hydrolyzing IgG Antibodies in Schizophrenia Patients. BIOCHEMISTRY (MOSCOW) 2018; 83:507-526. [PMID: 29738685 DOI: 10.1134/s0006297918050048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abzymes with various catalytic activities are the earliest statistically significant markers of existing and developing autoimmune diseases (AIDs). Currently, schizophrenia (SCZD) is not considered to be a typical AID. It was demonstrated recently that antibodies from SCZD patients efficiently hydrolyze DNA and myelin basic protein. Here, we showed for the first time that autoantibodies from 35 SCZD patients efficiently hydrolyze RNA (cCMP > poly(C) > poly(A) > yeast RNA) and analyzed site-specific hydrolysis of microRNAs involved in the regulation of several genes in SCZD (miR-137, miR-9-5p, miR-219-2-3p, and miR-219a-5p). All four microRNAs were cleaved by IgG preparations (n = 21) from SCZD patients in a site-specific manner. The RNase activity of the abzymes correlated with SCZD clinical parameters. The data obtained showed that SCZD patients might display signs of typical autoimmune processes associated with impaired functioning of microRNAs resulting from their hydrolysis by the abzymes.
Collapse
Affiliation(s)
- E A Ermakov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.,Novosibirsk State University, Novosibirsk, 630090, Russia
| | - S A Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634014, Russia
| | - V N Buneva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.,Novosibirsk State University, Novosibirsk, 630090, Russia
| | - G A Nevinsky
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia. .,Novosibirsk State University, Novosibirsk, 630090, Russia
| |
Collapse
|
7
|
Clark DD. Preliminary investigation of deoxyoligonucleotide binding to ribonuclease A using mass spectrometry: An attempt to develop a lab experience for undergraduates. F1000Res 2018; 7:340. [PMID: 29721314 PMCID: PMC5897785 DOI: 10.12688/f1000research.14268.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/23/2018] [Indexed: 11/28/2022] Open
Abstract
Deoxyoligonucleotide binding to bovine pancreatic ribonuclease A (RNase A) was investigated using electrospray ionization ion-trap mass spectrometry (ESI-IT-MS). Deoxyoligonucleotides included CCCCC (dC
5) and CCACC (dC
2AC
2). This work was an attempt to develop a biochemistry lab experience that would introduce undergraduates to the use of mass spectrometry for the analysis of protein-ligand interactions. Titration experiments were performed using a fixed RNase A concentration and variable deoxyoligonucleotide concentrations. Samples at equilibrium were infused directly into the mass spectrometer under native conditions. For each deoxyoligonucleotide, mass spectra showed one-to-one binding stoichiometry, with marked increases in the total ion abundance of ligand-bound RNase A complexes as a function of concentration, but the accurate determination of dC
5 and dC
2AC
2 dissociation constants was problematic.
Collapse
Affiliation(s)
- Daniel D Clark
- Department of Chemistry and Biochemistry, California State University, Chico, Chico, CA, 95929-0210, USA
| |
Collapse
|
8
|
Ermakov EA, Ivanova SA, Buneva VN, Nevinsky GA. Hydrolysis by catalytic IgGs of microRNA specific for patients with schizophrenia. IUBMB Life 2018; 70:153-164. [PMID: 29341394 DOI: 10.1002/iub.1712] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/23/2017] [Indexed: 12/20/2022]
Abstract
Significant importance of autoimmune changes in the pathogenesis of schizophrenia (SCZ) is not established. Here, we present the first evidence that autoantibodies of 100% SCZ patients possess RNase activity: сCMP > poly(C) > poly(A) > yeast RNA. In addition, we have got an unexpected result: there was revealed site-specific hydrolysis of four known SCZ specific microRNAs (miR-137, miR-9-5p, miR-219-2-3p, and miR-219a-5p) playing an important role in the regulation of several genes functioning. Three major of cleavage sites are located in the microRNA loops or duplex parts directly articulated with the loops. RNase abzymes can contribute to decreasing of microRNAs effects on the functioning of numerous genes and the products of their transcription. Therefore, abzymes with RNase activity may be to some extent important for the development of schizophrenia. © 2018 IUBMB Life, 70(2):153-164, 2018.
Collapse
Affiliation(s)
- Evgeny A Ermakov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 8 Lavrentiev Ave., Novosibirsk, Russia.,Novosibirsk State University, 2 Pirogova Str., Novosibirsk, Russia
| | - Svetlana A Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 4 Aleutskaya Ave., Tomsk, Russia
| | - Valentina N Buneva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 8 Lavrentiev Ave., Novosibirsk, Russia.,Novosibirsk State University, 2 Pirogova Str., Novosibirsk, Russia
| | - Georgy A Nevinsky
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 8 Lavrentiev Ave., Novosibirsk, Russia.,Novosibirsk State University, 2 Pirogova Str., Novosibirsk, Russia
| |
Collapse
|
9
|
Hsu CH, Chang CF, Liao YD, Wu SH, Chen C. Solution structure and base specificity of cytotoxic RC-RNase 2 from Rana catesbeiana. Arch Biochem Biophys 2015; 584:70-8. [PMID: 26302448 DOI: 10.1016/j.abb.2015.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 08/16/2015] [Accepted: 08/18/2015] [Indexed: 10/23/2022]
Abstract
Cytotoxic ribonucleases found in the oocytes and early embryos of frogs with antitumor activity are well-documented. RC-RNase 2, a cytotoxic ribonuclease isolated from oocytes of bullfrog Rana catesbeiana, consists of 105 residues linked with 4 disulfide bridges and belongs to the bovine pancreatic ribonuclease (RNase A) superfamily. Among the RC-RNases, the base preference for RNase 2 is UpG but CpG for RC-RNase 4; while RC-RNase possesses the base specificity of both UpG and CpG. Interestingly, RC-RNase 2 or 4 has much lower catalytic activity but only three-fold less cytotoxicity than RC-RNase. Here, we report the NMR solution structure of rRC-RNase 2, comprising three alpha-helices and two sets of antiparallel beta-sheets. The differences of side-chain conformations of subsite residues among RNase A, RC-RNase, RC-RNase 4 and rRNase 2 are related to their distinct catalytic activities and base preferences. Furthermore, the substrate-related residues in the base specificity among native RC-RNases are derived using the chemical shift perturbation on ligand binding.
Collapse
Affiliation(s)
- Chun-Hua Hsu
- Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan; Genome and Systems Biology Degree Program, Center for Systems Biology, National Taiwan University, Taipei 10617, Taiwan.
| | - Chi-Fon Chang
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - You-Di Liao
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Shih-Hsiung Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Chinpan Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
10
|
Andrews LD, Fenn TD, Herschlag D. Ground state destabilization by anionic nucleophiles contributes to the activity of phosphoryl transfer enzymes. PLoS Biol 2013; 11:e1001599. [PMID: 23843744 PMCID: PMC3699461 DOI: 10.1371/journal.pbio.1001599] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 05/23/2013] [Indexed: 11/25/2022] Open
Abstract
Enhanced phosphate binding by phosphatases upon removal of their anionic nucleophiles suggests that these enzymes use ground state destabilization by anionic active site nucleophiles as part of their catalytic arsenal. Enzymes stabilize transition states of reactions while limiting binding to ground states, as is generally required for any catalyst. Alkaline Phosphatase (AP) and other nonspecific phosphatases are some of Nature's most impressive catalysts, achieving preferential transition state over ground state stabilization of more than 1022-fold while utilizing interactions with only the five atoms attached to the transferred phosphorus. We tested a model that AP achieves a portion of this preference by destabilizing ground state binding via charge repulsion between the anionic active site nucleophile, Ser102, and the negatively charged phosphate monoester substrate. Removal of the Ser102 alkoxide by mutation to glycine or alanine increases the observed Pi affinity by orders of magnitude at pH 8.0. To allow precise and quantitative comparisons, the ionic form of bound Pi was determined from pH dependencies of the binding of Pi and tungstate, a Pi analog lacking titratable protons over the pH range of 5–11, and from the 31P chemical shift of bound Pi. The results show that the Pi trianion binds with an exceptionally strong femtomolar affinity in the absence of Ser102, show that its binding is destabilized by ≥108-fold by the Ser102 alkoxide, and provide direct evidence for ground state destabilization. Comparisons of X-ray crystal structures of AP with and without Ser102 reveal the same active site and Pi binding geometry upon removal of Ser102, suggesting that the destabilization does not result from a major structural rearrangement upon mutation of Ser102. Analogous Pi binding measurements with a protein tyrosine phosphatase suggest the generality of this ground state destabilization mechanism. Our results have uncovered an important contribution of anionic nucleophiles to phosphoryl transfer catalysis via ground state electrostatic destabilization and an enormous capacity of the AP active site for specific and strong recognition of the phosphoryl group in the transition state. Enzymes use a variety of tools and strategies to enhance (catalyze) biological reactions; these include the use of general acids and bases, cofactors, and the employment of remote binding interactions to position substrates near reactive chemical groups. Phosphatases are some of Nature's best enzymes, affording exceptional rate enhancements to the biologically ubiquitous removal of a phosphate group from a substrate (dephosphorylation). The apparent challenge faced by nonspecific phosphatases is that their wide substrate specificity precludes the efficient use of remote binding interactions. Previous work suggested that phosphatases could use negatively charged chemical groups (anionic nucleophiles) at the active site to destabilize substrate binding without simultaneously destabilizing the transition state barrier—an elusive catalytic strategy known as preferential ground state destabilization. In this work, we test this ground state destabilization model of catalysis by removing the anionic active site nucleophile of alkaline phosphatase and observing the effects on the enzyme's affinity for a phosphate ligand. We find that alkaline phosphatase has an exceptionally strong affinity for phosphate, and provide clear evidence for ground state destabilization by the anionic active site nucleophile that, when present, forestalls substrate saturation and product inhibition, and enhances catalysis by at least a thousand fold.
Collapse
Affiliation(s)
- Logan D Andrews
- Department of Chemical and Systems Biology, Stanford University, Stanford, California, United States of America
| | | | | |
Collapse
|
11
|
Nucleotide binding architecture for secreted cytotoxic endoribonucleases. Biochimie 2012; 95:1087-97. [PMID: 23274129 DOI: 10.1016/j.biochi.2012.12.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 12/13/2012] [Indexed: 12/20/2022]
Abstract
Vertebrate secreted RNases are small cationic protein endowed with an endoribonuclease activity that belong to the RNase A superfamily and display diverse cytotoxic activities. In an effort to unravel their mechanism of action, we have analysed their nucleotide binding recognition patterns. General shared features with other nucleotide binding proteins were deduced from overall statistics on the available structure complexes at the Protein Data Bank and compared with the particularities of selected representative endoribonuclease families. Results were compared with other endoribonuclease representative families and with the overall protein-nucleotide interaction features. Preferred amino acids and atom types involved in pair bonding interactions were identified, defining the spatial motives for phosphate, base and ribose building blocks. Together with the conserved catalytic triad at the active site, variability was observed for secondary binding subsites that may contribute to the proper substrate alignment and could explain the distinct substrate preference patterns. Highly conserved binding patterns were identified for the pyrimidine and purine subsites at the main and secondary base subsites. Particular substitution could be ascribed to specific adenine or guanine specificities. Distribution of evolutionary conserved residues were compared to search for the structure determinants that underlie their diverse catalytic efficiency and those that may account for putative physiological substrate targets or other non-catalytic biological activities that contribute to the antipathogen role of the RNases involved in the host defence system. A side by side comparison with another endoribonuclease superfamily of secreted cytotoxic proteins, the microbial RNases, was carried on to analyse the common features and peculiarities that rule their substrate recognition. The data provides the structural basis for the development of applied therapies targeting cellular nucleotide polymers.
Collapse
|
12
|
Multivalent ligand: design principle for targeted therapeutic delivery approach. Ther Deliv 2012; 3:1171-87. [DOI: 10.4155/tde.12.99] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Multivalent interactions of biological molecules play an important role in many biochemical events. A multivalent ligand comprises of multiple copies of ligands conjugated to scaffolds, allowing the simultaneous binding of multivalent ligands to multiple binding sites or receptors. Many research groups have successfully designed and synthesized multivalent ligands to increase the binding affinity, avidity and specificity of the ligand to the receptor. A multimeric ligand is a promising option for the specific treatment of diseases. In this review, the factors affecting multivalent interactions, including the size and shape of the ligand, geometry and an arrangement of ligands on the scaffold, linker length, thermodynamic, and kinetics of the interactions are discussed. Examples of the multivalent ligand applications for therapeutic delivery are also summarized.
Collapse
|
13
|
The sulfate-binding site structure of the human eosinophil cationic protein as revealed by a new crystal form. J Struct Biol 2012; 179:1-9. [DOI: 10.1016/j.jsb.2012.04.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 04/25/2012] [Accepted: 04/26/2012] [Indexed: 01/05/2023]
|
14
|
Debnath J, Dasgupta S, Pathak T. Dinucleosides with Non-Natural Backbones: A New Class of Ribonuclease A and Angiogenin Inhibitors. Chemistry 2012; 18:1618-27. [DOI: 10.1002/chem.201102816] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Indexed: 11/11/2022]
|
15
|
Cuchillo CM, Nogués MV, Raines RT. Bovine pancreatic ribonuclease: fifty years of the first enzymatic reaction mechanism. Biochemistry 2011; 50:7835-41. [PMID: 21838247 DOI: 10.1021/bi201075b] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fifty years ago, the group of Tony Mathias and Bob Rabin at University College London deduced the first mechanism for catalysis by an enzyme, ribonuclease [Findlay, D., Herries, D. G., Mathias, A. P., Rabin, B. R., and Ross, C. A. (1961) Nature 190, 781-784]. Here, we celebrate this historic accomplishment by surveying knowledge of enzymology and protein science at that time, facts that led to the formulation of the mechanism, criticisms and alternative mechanisms, data that supported the proposed mechanism, and some of the refinements that have since provided a more precise picture of catalysis of RNA cleavage by ribonucleases. The Mathias and Rabin mechanism has appeared in numerous textbooks, monographs, and reviews and continues to have a profound impact on biochemistry.
Collapse
Affiliation(s)
- Claudi M Cuchillo
- Departament de Bioquímica i Biologia Molecular, Unitat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | | | | |
Collapse
|
16
|
Rehman MT, Dey P, Hassan MI, Ahmad F, Batra JK. Functional role of glutamine 28 and arginine 39 in double stranded RNA cleavage by human pancreatic ribonuclease. PLoS One 2011; 6:e17159. [PMID: 21408145 PMCID: PMC3050822 DOI: 10.1371/journal.pone.0017159] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 01/21/2011] [Indexed: 12/05/2022] Open
Abstract
Human pancreatic ribonuclease (HPR), a member of RNase A superfamily, has a high activity on double stranded (ds) RNA. By virtue of this activity HPR appears to be involved in the host-defense against pathogenic viruses. To delineate the mechanism of dsRNA cleavage by HPR, we have investigated the role of glutamine 28 and arginine 39 of HPR in its activity on dsRNA. A non-basic residue glycine 38, earlier shown to be important for dsRNA cleavage by HPR was also included in the study in the context of glutamine 28 and arginine 39. Nine variants of HPR respectively containing Q28A, Q28L, R39A, G38D, Q28A/R39A, Q28L/R39A, Q28A/G38D, R39A/G38D and Q28A/G38D/R39A mutations were generated and functionally characterized. The far-UV CD-spectral analysis revealed all variants, except R39A, to have structures similar to that of HPR. The catalytic activity of all HPR variants on single stranded RNA substrate was similar to that of HPR, whereas on dsRNA, the catalytic efficiency of all single residue variants, except for the Q28L, was significantly reduced. The dsRNA cleavage activity of R39A/G38D and Q28A/G38D/R39A variants was most drastically reduced to 4% of that of HPR. The variants having reduced dsRNA cleavage activity also had reduction in their dsDNA melting activity and thermal stability. Our results indicate that in HPR both glutamine 28 and arginine 39 are important for the cleavage of dsRNA. Although these residues are not directly involved in catalysis, both arginine 39 and glutamine 28 appear to be facilitating a productive substrate-enzyme interaction during the dsRNA cleavage by HPR.
Collapse
Affiliation(s)
- Md. Tabish Rehman
- Centre for Interdisciplinary Research in Basic Sciences, New Delhi, India
| | - Punyatirtha Dey
- Immunochemistry Laboratory, National Institute of Immunology, New Delhi, India
| | | | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, New Delhi, India
| | - Janendra K. Batra
- Immunochemistry Laboratory, National Institute of Immunology, New Delhi, India
- * E-mail:
| |
Collapse
|
17
|
Thiyagarajan N, Smith BD, Raines RT, Acharya KR. Functional and structural analyses of N-acylsulfonamide-linked dinucleoside inhibitors of RNase A. FEBS J 2011; 278:541-9. [PMID: 21205197 PMCID: PMC3039443 DOI: 10.1111/j.1742-4658.2010.07976.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Molecular probes are useful for both studying and controlling the functions of enzymes and other proteins. The most useful probes have high affinity for their target, along with small size and resistance to degradation. Here, we report on new surrogates for nucleic acids that fulfill these criteria. Isosteres in which phosphoryl [R–O–P(O2−)–O–R′] groups are replaced with N-acylsulfonamidyl [R–C(O)–N−–S(O2)–R′] or sulfonimidyl [R–S(O2)–N−–S(O2)–R′] groups increase the number of nonbridging oxygens from two (phosphoryl) to three (N-acylsulfonamidyl) or four (sulfonimidyl). Six such isosteres were found to be more potent inhibitors of catalysis by bovine pancreatic RNase A than are parent compounds containing phosphoryl groups. The atomic structures of two RNase A·N-acylsulfonamide complexes were determined at high resolution by X-ray crystallography. The N-acylsulfonamidyl groups were observed to form more hydrogen bonds with active site residues than did the phosphoryl groups in analogous complexes. These data encourage the further development and use of N-acylsulfonamides and sulfonimides as antagonists of nucleic acid-binding proteins.
Collapse
|
18
|
Determining the catalytic role of remote substrate binding interactions in ketosteroid isomerase. Proc Natl Acad Sci U S A 2009; 106:14271-5. [PMID: 19706511 DOI: 10.1073/pnas.0901032106] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A fundamental difference between enzymes and small chemical catalysts is the ability of enzymes to use binding interactions with nonreactive portions of substrates to accelerate chemical reactions. Remote binding interactions can localize substrates to the active site, position substrates relative to enzymatic functional groups and other substrates, trigger conformational changes, induce local destabilization, and modulate an active site environment by solvent exclusion. We investigated the role of remote substrate binding interactions in the reaction catalyzed by the enzyme ketosteroid isomerase (KSI), which catalyzes a double bond migration of steroid substrates through a dienolate intermediate that is stabilized in an oxyanion hole. Comparison of a single-ring and multiple-ring substrate allowed the catalytic contribution of binding interactions with the distal substrate rings to be determined. The value of k(cat)/K(M) for a single-ring substrate is reduced 27,000-fold relative to a multiple-ring steroid substrate, suggesting that remote binding interactions with the steroid substrate contribute substantially to the KSI reaction. Nevertheless, the reaction rates for KSI-bound single- and multiple-ring substrates (k(cat)) are within 2-fold. Further, oxyanion hole mutations have the same effect on reactions of the single- and multiple-ring substrates. These results suggest that remote binding interactions contribute >5 kcal/mol to catalysis by KSI but that local rather than remote interactions dictate the catalytic contributions from KSI's general base and oxyanion hole.
Collapse
|
19
|
Abstract
Onconase (ONC) is a member of the ribonuclease A superfamily that is toxic to cancer cells in vitro and in vivo. ONC is now in Phase IIIb clinical trials for the treatment of malignant mesothelioma. Internalization of ONC to the cytosol of cancer cells is essential for its cytotoxic activity, despite the apparent absence of a cell-surface receptor protein. Endocytosis and cytotoxicity do, however, appear to correlate with the net positive charge of ribonucleases. To dissect the contribution made by the endogenous arginine and lysine residues of ONC to its cytotoxicity, 22 variants were created in which cationic residues were replaced with alanine. Variants with the same net charge (+2 to +5) as well as equivalent catalytic activity and conformational stability were found to exhibit large (> 10-fold) differences in toxicity for the cells of a human leukemia line. In addition, a more cationic ONC variant could be either much more or much less cytotoxic than a less cationic variant, again depending on the distribution of its cationic residues. The endocytosis of variants with widely divergent cytotoxic activity was quantified by flow cytometry using a small-molecule fluorogenic label, and was found to vary by twofold or less. This small difference in endocytosis did not account for the large difference in cytotoxicity, implicating the distribution of cationic residues as being critical for lipid-bilayer translocation subsequent to endocytosis. This finding has fundamental implications for understanding the interaction of ribonucleases and other proteins with mammalian cells.
Collapse
Affiliation(s)
- Rebecca F Turcotte
- Medical Scientist Training Program and Biophysics Graduate Program, University of Wisconsin-Madison, WI, USA
| | | | | |
Collapse
|
20
|
Sikriwal D, Seth D, Batra JK. Role of catalytic and non-catalytic subsite residues in ribonuclease activity of human eosinophil-derived neurotoxin. Biol Chem 2009; 390:225-34. [PMID: 19090717 DOI: 10.1515/bc.2009.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Human eosinophil-derived neurotoxin (EDN), a secretory protein from eosinophils, is a member of the RNase A superfamily. The ribonucleolytic activity of EDN is central to its biological activities. EDN binds RNA in a cationic cleft, and the interaction between EDN and RNA substrate extends beyond the scissile bond. Based on its homology with RNase A, putative substrate binding subsites have been identified in EDN. The B1 and B2 subsites interact specifically with bases, whereas P0, P1, and P2 subsites interact with phosphoryl groups. In this study, we evaluated the role of putative residues of these subsites in the ribonucleolytic activity of EDN. We demonstrate that of the two base binding subsites, B1 is critical for the catalytic activity of EDN, as the substrate cleavage was dramatically reduced upon substitution of B1 subsite residues. Among the phosphate-binding subsites, P1 is the most crucial as mutations of its constituting residues totally abolished the catalytic activity of EDN. Mutation of P0 and P2 subsite residues only affected the catalytic activity on the homopolymer Poly(U). Our study demonstrates that P1 and B1 subsites of EDN are critical for its catalytic activity and that the other phosphate-binding subsites are involved in the activity on long homopolymeric substrates.
Collapse
Affiliation(s)
- Deepa Sikriwal
- Immunochemistry Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | |
Collapse
|
21
|
Krasnorutskii MA, Buneva VN, Nevinsky GA. Antibodies against DNA hydrolyze DNA and RNA. BIOCHEMISTRY (MOSCOW) 2009; 73:1242-53. [PMID: 19120029 DOI: 10.1134/s0006297908110114] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this work, rabbits were immunized with a high polymer DNA complexed with methylated BSA (mBSA) and by mBSA. It is shown that electrophoretically homogeneous preparations of polyclonal antibodies (Ab) from non-immunized rabbits and animals immunized by mBSA do not exhibit catalytic activity. Ab from the blood of rabbits immunized with the DNA-mBSA complex hydrolyzed poly(C) and different RNAs with efficiency exceeding that towards DNA by approximately 3-4 orders of magnitude. Affinity chromatography of the IgG on DNA cellulose separated the Ab into fractions hydrolyzing both RNA and DNA, and for the first time fractions that hydrolyze only RNA were found. Kinetic parameters that characterize the RNA and DNA hydrolysis by initial Ab preparations and their fractions obtained by separation on an affinity sorbent are compared.
Collapse
Affiliation(s)
- M A Krasnorutskii
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | | | | |
Collapse
|
22
|
Krasnorutskii MA, Buneva VN, Nevinsky GA. Immunization of rabbits with DNase II leads to formation of polyclonal antibodies with DNase and RNase activities. Int Immunol 2009; 21:349-60. [DOI: 10.1093/intimm/dxp004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
23
|
Krasnorutskii MA, Buneva VN, Nevinsky GA. Antibodies against RNA hydrolyze RNA and DNA. J Mol Recognit 2008; 21:338-47. [PMID: 18729241 DOI: 10.1002/jmr.906] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Immunization of animals with DNA leads to the production of anti-DNA antibodies (Abs) demonstrating both DNase and RNase activities. It is currently not known whether anti-RNA Abs can possess nuclease activities. In an attempt to address this question, we have shown that immunization of three rabbits with complex of RNA with methylated BSA (mBSA) stimulates production of IgGs with RNase and DNase activities belonging to IgGs, while polyclonal Abs from three non-immunized rabbits and three animals immunized with mBSA are catalytically inactive. Affinity chromatography of IgGs from the sera of autoimmune (AI) patients on DNA-cellulose usually demonstrates a number of fractions, all of which effectively hydrolyze both DNA and RNA, while rabbit catalytic IgGs were separated into Ab subfractions, some of which demonstrated only DNase activity, while others hydrolyzed RNA faster than DNA. The enzymic properties of the RNase and DNase IgGs from rabbits immunized with RNA distinguish them from all known canonical RNases and DNases and DNA- and RNA-hydrolyzing abzymes (Abzs) from patients with different AI diseases. In contrast to RNases and AI RNA-hydrolyzing Abs, rabbit RNase IgGs catalyze only the first step of the hydrolysis reaction but cannot hydrolyze the formed terminal 2',3'-cyclophosphate. The data indicate that Abzs of AI patients hydrolyzing nucleic acids in part may be Abs against RNA and its complexes with proteins.
Collapse
Affiliation(s)
- Michael A Krasnorutskii
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, pr. Lavrent'eva 8, Novosibirsk, Russia
| | | | | |
Collapse
|
24
|
Krasnorutskii MA, Buneva VN, Nevinsky GA. Immunization of rabbits with DNase I produces polyclonal antibodies with DNase and RNase activities. J Mol Recognit 2008; 21:233-42. [PMID: 18446884 DOI: 10.1002/jmr.890] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Immunization of rabbits with DNase I leads to the production of antiidiotypic Abs with DNase activity. It is not known at present whether antiidiotypic Abs against DNA-hydrolyzing enzymes can possess RNase activity. Here we show that immunization of healthy rabbits with bovine DNase I produces IgGs with intrinsic DNase and RNase activities. Electrophoretically and immunologically homogeneous polyclonal IgGs were obtained by sequential chromatography of the immune sera on Protein A-Sepharose and gel filtration. Affinity chromatography on DNA cellulose using elution of Abs with different concentrations of NaCl and an acidic buffer separated catalytic IgGs into four Ab subfractions, three of which demonstrated only DNase activity while one subfraction hydrolyzed RNA faster than DNA. The serum of patients with many different autoimmune (AI) diseases contains small fractions of antibodies (Abs) interacting with immobilized DNA, which possess both DNase and RNase activities. Our data suggest that a fraction of abzymes from AI patients hydrolyzing both DNA and RNA can contain a subfraction of Abs against DNase I.
Collapse
Affiliation(s)
- Michael A Krasnorutskii
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, pr. Lavrent'eva 8, Novosibirsk 630090, Russia
| | | | | |
Collapse
|
25
|
Roy B, Dutta S, Choudhary A, Chowdhary A, Basak A, Dasgupta S. Design, synthesis and RNase A inhibition activity of catechin and epicatechin and nucleobase chimeric molecules. Bioorg Med Chem Lett 2008; 18:5411-4. [PMID: 18829315 DOI: 10.1016/j.bmcl.2008.09.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 08/17/2008] [Accepted: 09/10/2008] [Indexed: 11/17/2022]
Abstract
Several novel catechin/epicatechin and nucleobase chimeric molecules 1-6 have been synthesized via azide-alkyne click chemistry. The structures of these hybrids have been confirmed by NMR and mass spectroscopic data. The synthesized molecules were tested for their RNase A inhibition activities. Gel-based assays showed inhibition in micromolar concentrations. The extent of inhibition was found to be dependent upon the nature of base as well as the configuration at C-3 position of catechin.
Collapse
Affiliation(s)
- Basab Roy
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | | | | | | | | | | |
Collapse
|
26
|
Krasnorutskii MA, Buneva VN, Nevinsky GA. Antibodies against pancreatic ribonuclease A hydrolyze RNA and DNA. Int Immunol 2008; 20:1031-40. [DOI: 10.1093/intimm/dxn061] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
27
|
Kanazawa M, Sato S, Ohtsuka K, Takenaka S. Ferrocenylnaphthalene diimide-based electrochemical ribonuclease assay. ANAL SCI 2008; 23:1415-9. [PMID: 18071228 DOI: 10.2116/analsci.23.1415] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Messenger RNA (mRNA) poly(A)+RNA (from mouse kidney) was immobilized on a N-hydroxysuccinimide(NHS)-activated carboxylic acid modified electrode prepared by the treatment of a gold electrode with 3,3'-dithiodipropionic acid, followed by NHS and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC). An electrochemical measurement using this mRNA electrode was carried out in an electrolyte containing ferrocenylnaphthalene diimide (1), and showed an electrochemical signal based on 1 concentrated on immobilized mRNA. After treating this electrode with water containing varied amounts of ribonuclease A (RNase A), the current peak based on 1 decreased with increasing in the amount of RNase A with a linear correlation in the range of 0.2-10 pg of RNase A.
Collapse
Affiliation(s)
- Masanori Kanazawa
- Department of Applied Chemistry, Kyushu Institute of Technology, Kitakyushu, Fukuoka 840-8550, Japan
| | | | | | | |
Collapse
|
28
|
Rodríguez M, Moussaoui M, Benito A, Cuchillo CM, Nogués MV, Vilanova M. Human pancreatic ribonuclease presents higher endonucleolytic activity than ribonuclease A. Arch Biochem Biophys 2008; 471:191-7. [PMID: 18191631 DOI: 10.1016/j.abb.2007.12.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 12/14/2007] [Accepted: 12/15/2007] [Indexed: 11/17/2022]
Abstract
Analyzing the pattern of oligonucleotide formation induced by HP-RNase cleavage shows that the enzyme does not act randomly and follows a more endonucleolytic pattern when compared to RNase A. The enzyme prefers the binding and cleavage of longer substrate molecules, especially when the phosphodiester bond that is broken is 8-11 nucleotides away from at least one of the ends of the substrate molecule. This more endonucleolytic pattern is more appropriate for an enzyme with a regulatory role. Deleting two positive charges on the N-terminus (Arg4 and Lys6) modifies this pattern of external/internal phosphodiester bond cleavage preference, and produces a more exonucleolytic enzyme. These residues may reinforce the strength of a non-catalytic secondary phosphate binding (p2) or, alternatively, constitute a new non-catalytic phosphate binding subsite (p3).
Collapse
Affiliation(s)
- M Rodríguez
- Laboratori d'Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi s/n, 17071 Girona, Spain
| | | | | | | | | | | |
Collapse
|
29
|
Bole M, Menon L, Mihailescu MR. Fragile X mental retardation protein recognition of G quadruplex structure per se is sufficient for high affinity binding to RNA. MOLECULAR BIOSYSTEMS 2008; 4:1212-9. [DOI: 10.1039/b812537f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Lee JE, Bae E, Bingman CA, Phillips GN, Raines RT. Structural basis for catalysis by onconase. J Mol Biol 2007; 375:165-77. [PMID: 18001769 DOI: 10.1016/j.jmb.2007.09.089] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2007] [Accepted: 09/20/2007] [Indexed: 11/18/2022]
Abstract
Onconase (ONC) is a homolog of bovine pancreatic ribonuclease (RNase A) from the frog Rana pipiens. ONC displays antitumoral activity and is in advanced clinical trials for the treatment of cancer. Here, we report the first atomic structures of ONC-nucleic acid complexes: a T89N/E91A ONC-5'-AMP complex at 1.65 A resolution and a wild-type ONC-d(AUGA) complex at 1.90 A resolution. The latter structure and site-directed mutagenesis were used to reveal the atomic basis for substrate recognition and turnover by ONC. The residues in ONC that are proximal to the scissile phosphodiester bond (His10, Lys31, and His97) and uracil nucleobase (Thr35, Asp67, and Phe98) are conserved from RNase A and serve to generate a similar bell-shaped pH versus k(cat)/K(M) profile for RNA cleavage. Glu91 of ONC forms two hydrogen bonds with the guanine nucleobase in d(AUGA), and Thr89 is in close proximity to that nucleobase. Installing a neutral or cationic residue at position 91 or an asparagine residue at position 89 virtually eliminated the 10(2)-fold guanine:adenine preference of ONC. A variant that combined such substitutions, T89N/E91A ONC, actually preferred adenine over guanine. In contrast, installing an arginine residue at position 91 increased the guanine preference and afforded an ONC variant with the highest known k(cat)/K(M) value. These data indicate that ONC discriminates between guanine and adenine by using Coulombic interactions and a network of hydrogen bonds. The structure of the ONC-d(AUGA) complex was also used to probe other aspects of catalysis. For example, the T5R substitution, designed to create a favorable Coulombic interaction between ONC and a phosphoryl group in RNA, increased ribonucleolytic activity by twofold. No variant, however, was more toxic to human cancer cells than wild-type ONC. Together, these findings provide a cynosure for understanding catalysis of RNA cleavage in a system of high medicinal relevance.
Collapse
Affiliation(s)
- J Eugene Lee
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706-1544, USA
| | | | | | | | | |
Collapse
|
31
|
Sikriwal D, Seth D, Dey P, Batra JK. Human eosinophil-derived neurotoxin: involvement of a putative non-catalytic phosphate-binding subsite in its catalysis. Mol Cell Biochem 2007; 303:175-81. [PMID: 17483910 DOI: 10.1007/s11010-007-9471-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Accepted: 03/30/2007] [Indexed: 11/25/2022]
Abstract
Human eosinophil-derived neurotoxin (EDN) or RNase 2, found in the non-core matrix of eosinophils is a ribonuclease belonging to the Ribonuclease A superfamily. EDN manifests a number of bioactions including neurotoxic and antiviral activities, which are dependent on its ribonuclease activity. The core of the catalytic site of EDN contains various base and phosphate-binding subsites. Unlike many members of the RNase A superfamily, EDN contains an additional non-catalytic phosphate-binding subsite, P(-1). Although RNase A also contains a P(-1) subsite, the composition of the site in EDN and RNase A is different. In the current study we have generated site-specific mutants to study the role of P(-1) subsite residues Arg(36), Asn(39), and Gln(40) of EDN in its catalytic activity. The individual mutation of Arg(36), Asn (39), and Gln(40) resulted in a reduction in the catalytic activity of EDN on poly(U) and poly(C). However, there was no change in the activities on yeast tRNA and dinucleotide substrates. The study shows that the P(-1) subsite is crucial for the ribonucleolytic activity of EDN on polymeric RNA substrates.
Collapse
Affiliation(s)
- Deepa Sikriwal
- Immunochemistry Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | | | | | | |
Collapse
|
32
|
Moussaoui M, Cuchillo CM, Nogués MV. A phosphate-binding subsite in bovine pancreatic ribonuclease A can be converted into a very efficient catalytic site. Protein Sci 2007; 16:99-109. [PMID: 17192592 PMCID: PMC2222832 DOI: 10.1110/ps.062251707] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A general acid-base catalytic mechanism is responsible for the cleavage of the phosphodiester bonds of the RNA by ribonuclease A (RNase A). The main active site is formed by the amino acid residues His12, His119, and Lys41, and the process follows an endonucleolytic pattern that depends on the existence of a noncatalytic phosphate-binding subsite adjacent, on the 3'-side, to the active site; in this region the phosphate group of the substrate establishes electrostatic interactions through the side chains of Lys7 and Arg10. We have obtained, by means of site-directed mutagenesis, RNase A variants with His residues both at positions 7 and 10. These mutations have been introduced with the aim of transforming a noncatalytic binding subsite into a putative new catalytic active site. The RNase activity of these variants was determined by the zymogram technique and steady-state kinetic parameters were obtained by spectrophotometric methods. The variants showed a catalytic efficiency in the same order of magnitude as the wild-type enzyme. However, we have demonstrated in these variants important effects on the substrate's cleavage pattern. The quadruple mutant K7H/R10H/H12K/H119Q shows a clear increase of the exonucleolytic activity; in this case the original native active site has been suppressed, and, as consequence, its activity can only be associated to the new active site. In addition, the mutant K7H/R10H, with two putative active sites, also shows an increase in the exonucleolytic preference with respect to the wild type, a fact that may be correlated with the contribution of the new active site.
Collapse
Affiliation(s)
- Mohammed Moussaoui
- Department de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Spain
| | | | | |
Collapse
|
33
|
Maiti TK, Dasgupta S, Pathak T. 3′-N-Alkylamino-3′-deoxy-ara-uridines: A new class of potential inhibitors of ribonuclease A and angiogenin. Bioorg Med Chem 2006; 14:1221-8. [PMID: 16216513 DOI: 10.1016/j.bmc.2005.09.049] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Revised: 09/19/2005] [Accepted: 09/20/2005] [Indexed: 11/28/2022]
Abstract
In this study, we report the inhibition of ribonuclease A (RNase A) by certain aminonucleosides. This is the first such instance of the use of this group of compounds to investigate the inhibitory activity of this protein. The compounds synthesized have been tested for their ability to inhibit the ribonucleolytic activity of RNase A by an agarose gel-based assay. A tRNA precipitation assay and inhibition kinetic studies with cytidine 2',3'-cyclic monophosphate as the substrate have also been conducted for two of the compounds. Results indicate substantial inhibitory activity with inhibition association constants in the micromolar range. The experimental studies have been substantiated by docking of the aminonucleoside ligands to RNase A using AutoDock. We find that the ligands preferentially bind to the active site of the protein molecule with a favorable free energy of binding. The study has been extended to a member of the ribonuclease superfamily, angiogenin, which is a potent inducer of blood vessel formation. We show that the aminonucleosides act as potent inhibitors of angiogenin induced angiogenesis.
Collapse
Affiliation(s)
- Tushar K Maiti
- Department of Chemistry, Indian Institute of Technology, Kharagpur
| | | | | |
Collapse
|
34
|
Abstract
The binding of inosine 5' phosphate (IMP) to ribonuclease A has been studied by kinetic and X-ray crystallographic experiments at high (1.5 A) resolution. IMP is a competitive inhibitor of the enzyme with respect to C>p and binds to the catalytic cleft by anchoring three IMP molecules in a novel binding mode. The three IMP molecules are connected to each other by hydrogen bond and van der Waals interactions and collectively occupy the B1R1P1B2P0P(-1) region of the ribonucleolytic active site. One of the IMP molecules binds with its nucleobase in the outskirts of the B2 subsite and interacts with Glu111 while its phosphoryl group binds in P1. Another IMP molecule binds by following the retro-binding mode previously observed only for guanosines with its nucleobase at B1 and the phosphoryl group in P(-1). The third IMP molecule binds in a novel mode towards the C-terminus. The RNase A-IMP complex provides structural evidence for the functional components of subsite P(-1) while it further supports the role inferred by other studies to Asn71 as the primary structural determinant for the adenine specificity of the B2 subsite. Comparative structural analysis of the IMP and AMP complexes highlights key aspects of the specificity of the base binding subsites of RNase A and provides a structural explanation for their potencies. The binding of IMP suggests ways to develop more potent inhibitors of the pancreatic RNase superfamily using this nucleotide as the starting point.
Collapse
Affiliation(s)
- George N Hatzopoulos
- Institute of Organic & Pharmaceutical Chemistry, The National Hellenic Research Foundation, Athens, Greece
| | | | | | | | | |
Collapse
|
35
|
Smith BD, Soellner MB, Raines RT. Potent inhibition of ribonuclease A by oligo(vinylsulfonic acid). J Biol Chem 2003; 278:20934-8. [PMID: 12649287 DOI: 10.1074/jbc.m301852200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ribonuclease A (RNase A) can make multiple contacts with an RNA substrate. In particular, the enzymatic active site and adjacent subsites bind sequential phosphoryl groups in the RNA backbone through Coulombic interactions. Here, oligomers of vinylsulfonic acid (OVS) are shown to be potent inhibitors of RNase A that exploit these interactions. Inhibition is competitive with substrate and has Ki = 11 pm in assays at low salt concentration. The effect of salt concentration on inhibition indicates that nearly eight favorable Coulombic interactions occur in the RNase A.OVS complex. The phosphonic acid and sulfuric acid analogs of OVS are also potent inhibitors although slightly less effective. OVS is also shown to be a contaminant of MES and other buffers that contain sulfonylethyl groups. Oligomers greater than nine units in length can be isolated from commercial MES buffer. Inhibition by contaminating OVS is responsible for the apparent decrease in catalytic activity that has been observed in assays of RNase A at low salt concentration. Thus, OVS is both a useful inhibitor of RNase A and a potential bane to chemists and biochemists who use ethanesulfonic acid buffers.
Collapse
Affiliation(s)
- Bryan D Smith
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
36
|
Matousek J, Poucková P, Soucek J, Skvor J. PEG chains increase aspermatogenic and antitumor activity of RNase A and BS-RNase enzymes. J Control Release 2002; 82:29-37. [PMID: 12106974 DOI: 10.1016/s0168-3659(02)00082-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
RNase A (bovine pancreatic ribonuclease) and BS-RNase (bovine seminal ribonuclease) are monomeric and dimeric enzymes, respectively, with aspermatogenic and antitumor activities. While the aspermatogenic and, in some experimental situations, the antitumor effects of the RNase A are only minor, the activity of BS-RNase in these phenomena is very significant. These differences can be annulled by means of conjugation of the enzymes with PEG (polyethylene glycol) chains. Aspermatogenic activity was studied histologically following subcutaneous injections of RNase A and BS-RNase conjugates in ICR mice, and the antitumor activity in athymic nude mice with growing human melanoma with i.p. injection of these conjugated ribonucleases. The experiments proved that RNase A, when conjugated to PEG, produced identical aspermatogenic and antitumour effects as BS-RNase conjugated to this polymer. Immunogenicity of RNase A and BS-RNase did not change substantially after the conjugation with PEG polymers. Binding of produced antibodies to both ribonucleases attached to PEG, however, was substantially reduced.
Collapse
Affiliation(s)
- Josef Matousek
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Libechov 27721, Czech Republic.
| | | | | | | |
Collapse
|
37
|
Korn C, Scholz SR, Gimadutdinow O, Pingoud A, Meiss G. Involvement of conserved histidine, lysine and tyrosine residues in the mechanism of DNA cleavage by the caspase-3 activated DNase CAD. Nucleic Acids Res 2002; 30:1325-32. [PMID: 11884629 PMCID: PMC101349 DOI: 10.1093/nar/30.6.1325] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The caspase-activated DNase (CAD) is involved in DNA degradation during apoptosis. Chemical modification of murine CAD with the lysine-specific reagent 2,4,6-trinitrobenzenesulphonic acid and the tyrosine-specific reagent N-acetylimidazole leads to inactivation of the nuclease, indicating that lysine and tyrosine residues are important for DNA cleavage by this enzyme. The presence of DNA or the inhibitor ICAD-L protects the enzyme from modification. Amino acid substitution in murine CAD of lysines and tyrosines conserved in CADs from five different species leads to variants with little if any catalytic activity, but unaltered DNA binding (K155Q, K301Q, K310Q, Y247F), with the exception of Y170F, which retains wild-type activity. Similarly, as observed for the previously characterised H242N, H263N, H308N and H313N variants, the newly introduced His-->Asp/Glu or Arg exchanges lead to variants with <1% of wild-type activity, with two exceptions: H313R shows wild-type activity, and H308D at pH 5.0 exhibits approximately 5% of wild-type activity at this pH. Y170F and H313R produce a specific pattern of fragments, different from wild-type CAD, which degrades DNA non-specifically. The recombinant nuclease variants produced in Escherichia coli were tested for their ability to form nucleolytically active oligomers. They did not show any significant deviation from the wild-type enzyme. Based on these and published data possible roles of the amino acid residues under investigation are discussed.
Collapse
Affiliation(s)
- Christian Korn
- Institut für Biochemie, Justus-Liebig-Universität, Heinrich Buff Ring 58, 35392 Giessen, Germany
| | | | | | | | | |
Collapse
|
38
|
Affiliation(s)
- A Russo
- Department of Life Sciences, Second University of Naples, 81100 Caserta, Italy
| | | | | |
Collapse
|
39
|
Cuchillo CM, Moussaoui M, Barman T, Travers F, Nogués MV. The exo- or endonucleolytic preference of bovine pancreatic ribonuclease A depends on its subsites structure and on the substrate size. Protein Sci 2002; 11:117-28. [PMID: 11742128 PMCID: PMC2368780 DOI: 10.1110/ps.13702] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The cleavage pattern of oligocytidylic acid substrates by bovine pancreatic ribonuclease A (RNase A) was studied by means of reversed-phase HPLC. Oligocytidylic acids, ranging from dinucleotides to heptanucleotides, were obtained by RNase A digestion of poly(C). They were identified by MALDI-TOF mass spectrometry; it was confirmed that all of them corresponded to the general structure (Cp)(n)C>p, in which C>p indicates a 2',3'-cyclic phosphate. This is a confirmation of the proposed mechanism for RNase A, wherein the so-called hydrolytic (or second) step is in fact a special case of the reverse of transphosphorylation (first step). The patterns of cleavage for the oligonucleotide substrates show that the native enzyme has no special preference for endonucleolytic or exonucleolytic cleavage, whereas a mutant of the enzyme (K7Q/R10Q-RNase A) lacking p(2) (a phosphate binding subsite adjacent, on the 3' side, to the main phosphate binding site p(1)) shows a clear exonucleolytic pattern; a mutant (K66Q-RNase A) lacking p(0) (a phosphate binding subsite adjacent, on the 5' side, to the main phosphate binding site p(1)) shows a more endonucleolytic pattern. This indicates the important role played by the subsites on the preference for the bond cleaved. Molecular modeling shows that, in the case of the p(2) mutant, the amide group of glutamine can form a hydrogen bond with the 2',3'-cyclic terminal phosphate, whereas the distance to a 3',5'-phosphodiester bond is too long to form such a hydrogen bond. This could explain the preference for exonucleolytic cleavage shown by the p(2) mutant.
Collapse
Affiliation(s)
- Claudi M Cuchillo
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | | | | | | | | |
Collapse
|
40
|
Abstract
The antitumor effect of ribonucleases was studied with animal ribonucleolytic enzymes, bovine pancreatic RNase A, bovine seminal RNase (BS-RNase), onconase and angiogenin. While bovine pancreatic RNase A exerts a minor antitumor effect, BS-RNase and onconase exert significant effects. Angiogenin, as RNase, works in an opposite way, it initiates vascularization of tumors and subsequent tumor growth. Ribonunclease inhibitors are not able to inhibit the antitumor effectiveness of BS-RNase or onconase. However, they do so in the case of pancreatic RNases. Conjugation of BS-RNase with antibodies against tumor antigens (preparation of immunotoxins) like the conjugation of the enzyme with polymers enhances the antitumor activity of the ribonuclease. After conjugation with polymers, the half-life of BS-RNase in blood is extended and its immunogenicity reduced. Recombinant RNases have the same functional activity as the native enzymes. The synthetic genes have also been modified, some of them with gene sequences typical for the BS-RNase parts. Recent experimental efforts are directed to the preparation of 'humanized antitumor ribonuclease' that would be structurally similar to human enzyme with minimal immunogenicity and side effects. The angiogenesis of tumors is attempted to be minimized by specific antibodies or anti-angiogenic substances.
Collapse
Affiliation(s)
- J Matousek
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, 277-21, Libechov, Czech Republic.
| |
Collapse
|
41
|
Leonidas DD, Boix E, Prill R, Suzuki M, Turton R, Minson K, Swaminathan GJ, Youle RJ, Acharya KR. Mapping the ribonucleolytic active site of eosinophil-derived neurotoxin (EDN). High resolution crystal structures of EDN complexes with adenylic nucleotide inhibitors. J Biol Chem 2001; 276:15009-17. [PMID: 11154698 DOI: 10.1074/jbc.m010585200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eosinophil-derived neurotoxin (EDN), a basic ribonuclease found in the large specific granules of eosinophils, belongs to the pancreatic RNase A family. Although its physiological function is still unclear, it has been shown that EDN is a neurotoxin capable of inducing the Gordon phenomenon in rabbits. EDN is also a potent helminthotoxin and can mediate antiviral activity of eosinophils against isolated virions of the respiratory syncytial virus. EDN is a catalytically efficient RNase sharing similar substrate specificity with pancreatic RNase A with its ribonucleolytic activity being absolutely essential for its neurotoxic, helminthotoxic, and antiviral activities. The crystal structure of recombinant human EDN in the unliganded form has been determined previously (Mosimann, S. C., Newton, D. L., Youle, R. J., and James, M. N. G. (1996) J. Mol. Biol. 260, 540-552). We have now determined high resolution (1.8 A) crystal structures for EDN in complex with adenosine-3',5'-diphosphate (3',5'-ADP), adenosine-2',5'-di-phosphate (2',5'-ADP), adenosine-5'-diphosphate (5'-ADP) as well as for a native structure in the presence of sulfate refined at 1.6 A. The inhibition constant of these mononucleotides for EDN has been determined. The structures present the first detailed picture of differences between EDN and RNase A in substrate recognition at the ribonucleolytic active site. They also provide a starting point for the design of tight-binding inhibitors, which may be used to restrain the RNase activity of EDN.
Collapse
Affiliation(s)
- D D Leonidas
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Stelea SD, Pancoska P, Benight AS, Keiderling TA. Thermal unfolding of ribonuclease A in phosphate at neutral pH: deviations from the two-state model. Protein Sci 2001; 10:970-8. [PMID: 11316877 PMCID: PMC2374205 DOI: 10.1110/ps.47101] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
The thermal denaturation of ribonuclease A (RNase A) in the presence of phosphate at neutral pH was studied by differential scanning calorimetry (DSC) and a combination of optical spectroscopic techniques to probe the existence of intermediate states. Fourier transform infrared (FTIR) spectra of the amide I' band and far-uv circular dichroism (CD) spectra were used to monitor changes in the secondary structure. Changes in the tertiary structure were monitored by near-uv CD. Spectral bandshape changes with change in temperature were analyzed using factor analysis. The global unfolding curves obtained from DSC confirmed that structural changes occur in the molecule before the main thermal denaturation transition. The analysis of the far-uv CD and FTIR spectra showed that these lower temperature-induced modifications occur in the secondary structure. No pretransition changes in the tertiary structure (near-uv CD) were observed. The initial changes observed in far-uv CD were attributed to the fraying of the helical segments, which would explain the loss of spectral intensity with almost no modification of spectral bandshape. Separate analyses of different regions of the FTIR amide I' band indicate that, in addition to alpha-helix, part of the pretransitional change also occurs in the beta-strands.
Collapse
Affiliation(s)
- S D Stelea
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607-7061, USA
| | | | | | | |
Collapse
|
43
|
Chatani E, Hayashi R. Functional and structural roles of constituent amino acid residues of bovine pancreatic ribonuclease A. J Biosci Bioeng 2001. [DOI: 10.1016/s1389-1723(01)80208-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Abstract
Pentavalent organo-vanadates have been used extensively to mimic the transition state of phosphoryl group transfer reactions. Here, decavanadate (V(10)O(28)6-) is shown to be an inhibitor of catalysis by bovine pancreatic ribonuclease A (RNase A). Isothermal titration calorimetry shows that the Kd for the RNase A decavanadate complex is 1.4 microM. This value is consistent with kinetic measurements of the inhibition of enzymatic catalysis. The interaction between RNase A and decavanadate has a coulombic component, as the affinity for decavanadate is diminished by NaCl and binding is weaker to variant enzymes in which one (K41A RNase A) or three (K7A/R10A/K66A RNase A) of the cationic residues near the active site have been replaced with alanine. Decavanadate is thus the first oxometalate to be identified as an inhibitor of catalysis by a ribonuclease. Surprisingly, decavanadate binds to RNase A with an affinity similar to that of the pentavalent organo-vanadate, uridine 2',3'-cyclic vanadate.
Collapse
Affiliation(s)
- J M Messmore
- Department of Biochemistry, University of Wisconsin-Madison 53706, USA
| | | |
Collapse
|
45
|
Abstract
The effect of salt concentration on catalysis by ribonuclease A (RNase A) has been reexamined. At low salt concentration, the enzyme is inhibited by low-level contaminants in common buffers. When an uncontaminated buffer system is used or H12A RNase A, an inactive variant, is added to absorb inhibitory contaminants, enzymatic activity is manifested fully at low salt concentration. Catalysis by RNase A does not have an optimal salt concentration. Instead, k(cat)/K(M)10(9) M(-1)s(-1) for RNA cleavage at low salt concentration. These findings highlight the care that must accompany the determination of meaningful salt-rate profiles for enzymatic catalysis.
Collapse
Affiliation(s)
- C Park
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | | |
Collapse
|
46
|
Kelemen BR, Klink TA, Behlke MA, Eubanks SR, Leland PA, Raines RT. Hypersensitive substrate for ribonucleases. Nucleic Acids Res 1999; 27:3696-701. [PMID: 10471739 PMCID: PMC148625 DOI: 10.1093/nar/27.18.3696] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A substrate for a hypersensitive assay of ribonucleolytic activity was developed in a systematic manner. This substrate is based on the fluorescence quenching of fluorescein held in proximity to rhodamine by a single ribonucleotide embedded within a series of deoxynucleotides. When the substrate is cleaved, the fluorescence of fluorescein is manifested. The optimal substrate is a tetranucleotide with a 5',6-carboxyfluorescein label (6-FAM) and a 3',6-carboxy-tetramethylrhodamine (6-TAMRA) label: 6-FAM-dArUdAdA-6-TAMRA. The fluorescence of this substrate increases 180-fold upon cleavage. Bovine pancreatic ribonuclease A (RNase A) cleaves this substrate with a k (cat)/ K (m)of 3.6 x 10(7)M(-1)s(-1). Human angiogenin, which is a homolog of RNase A that promotes neovascularization, cleaves this substrate with a k (cat)/ K (m)of 3. 3 x 10(2)M(-1)s(-1). This value is >10-fold larger than that for other known substrates of angio-genin. With these attributes, 6-FAM-dArUdAdA-6-TAMRA is the most sensitive known substrate for detecting ribo-nucleolytic activity. This high sensitivity enables a simple protocol for the rapid determination of the inhibition constant ( K (i)) for competitive inhibitors such as uridine 3'-phosphate and adenosine 5'-diphos-phate.
Collapse
Affiliation(s)
- B R Kelemen
- Department of Biochemistry, University of Wisconsin-Madison, WI 53706, USA
| | | | | | | | | | | |
Collapse
|
47
|
Quirk DJ, Raines RT. His ... Asp catalytic dyad of ribonuclease A: histidine pKa values in the wild-type, D121N, and D121A enzymes. Biophys J 1999; 76:1571-9. [PMID: 10049337 PMCID: PMC1300133 DOI: 10.1016/s0006-3495(99)77316-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Bovine pancreatic ribonuclease A (RNase A) has a conserved His ... Asp catalytic dyad in its active site. Structural analyses had indicated that Asp121 forms a hydrogen bond with His119, which serves as an acid during catalysis of RNA cleavage. The enzyme contains three other histidine residues including His12, which is also in the active site. Here, 1H-NMR spectra of wild-type RNase A and the D121N and D121A variants were analyzed thoroughly as a function of pH. The effect of replacing Asp121 on the microscopic pKa values of the histidine residues is modest: none change by more than 0.2 units. There is no evidence for the formation of a low-barrier hydrogen bond between His119 and either an aspartate or an asparagine residue at position 121. In the presence of the reaction product, uridine 3'-phosphate (3'-UMP), protonation of one active-site histidine residue favors protonation of the other. This finding is consistent with the phosphoryl group of 3'-UMP interacting more strongly with the two active-site histidine residues when both are protonated. Comparison of the titration curves of the unliganded enzyme with that obtained in the presence of different concentrations of 3'-UMP shows that a second molecule of 3'-UMP can bind to the enzyme. Together, the data indicate that the aspartate residue in the His ... Asp catalytic dyad of RNase A has a measurable but modest effect on the ionization of the adjacent histidine residue.
Collapse
Affiliation(s)
- D J Quirk
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706 USA
| | | |
Collapse
|