1
|
Osiak-Wicha C, Kras K, Tomaszewska E, Muszyński S, Arciszewski MB. Examining the Potential Applicability of Orexigenic and Anorexigenic Peptides in Veterinary Medicine for the Management of Obesity in Companion Animals. Curr Issues Mol Biol 2024; 46:6725-6745. [PMID: 39057043 PMCID: PMC11275339 DOI: 10.3390/cimb46070401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
This review article comprehensively explores the role of orexigenic and anorexigenic peptides in the management of obesity in companion animals, with a focus on clinical applications. Obesity in domestic animals, particularly dogs and cats, is prevalent, with significant implications for their health and well-being. Factors contributing to obesity include overfeeding, poor-quality diet, lack of physical activity, and genetic predispositions. Despite the seriousness of this condition, it is often underestimated, with societal perceptions sometimes reinforcing unhealthy behaviors. Understanding the regulation of food intake and identifying factors affecting the function of food intake-related proteins are crucial in combating obesity. Dysregulations in these proteins, whether due to genetic mutations, enzymatic dysfunctions, or receptor abnormalities, can have profound health consequences. Molecular biology techniques play a pivotal role in elucidating these mechanisms, offering insights into potential therapeutic interventions. The review categorizes food intake-related proteins into anorexigenic peptides (inhibitors of food intake) and orexigenic peptides (enhancers of food intake). It thoroughly examines current research on regulating energy balance in companion animals, emphasizing the clinical application of various peptides, including ghrelin, phoenixin (PNX), asprosin, glucagon-like peptide 1 (GLP-1), leptin, and nesfatin-1, in veterinary obesity management. This comprehensive review aims to provide valuable insights into the complex interplay between peptides, energy balance regulation, and obesity in companion animals. It underscores the importance of targeted interventions and highlights the potential of peptide-based therapies in improving the health outcomes of obese pets.
Collapse
Affiliation(s)
- Cezary Osiak-Wicha
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland; (C.O.-W.); (K.K.)
| | - Katarzyna Kras
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland; (C.O.-W.); (K.K.)
| | - Ewa Tomaszewska
- Department of Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland;
| | - Siemowit Muszyński
- Department of Biophysics, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland;
| | - Marcin B. Arciszewski
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland; (C.O.-W.); (K.K.)
| |
Collapse
|
2
|
Summers KM, Bush SJ, Davis MR, Hume DA, Keshvari S, West JA. Fibrillin-1 and asprosin, novel players in metabolic syndrome. Mol Genet Metab 2023; 138:106979. [PMID: 36630758 DOI: 10.1016/j.ymgme.2022.106979] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Fibrillin-1 is a major component of the extracellular microfibrils, where it interacts with other extracellular matrix proteins to provide elasticity to connective tissues, and regulates the bioavailability of TGFβ family members. A peptide consisting of the C-terminal 140 amino acids of fibrillin-1 has recently been identified as a glucogenic hormone, secreted from adipose tissue during fasting and targeting the liver to release glucose. This fragment, called asprosin, also signals in the hypothalamus to stimulate appetite. Asprosin levels are correlated with many of the pathologies indicative of metabolic syndrome, including insulin resistance and obesity. Previous studies and reviews have addressed the therapeutic potential of asprosin as a target in obesity, diabetes and related conditions without considering mechanisms underlying the relationship between generation of asprosin and expression of the much larger fibrillin-1 protein. Profibrillin-1 undergoes obligatory cleavage at the cell surface as part of its assembly into microfibrils, producing the asprosin peptide as well as mature fibrillin-1. Patterns of FBN1 mRNA expression are inconsistent with the necessity for regulated release of asprosin. The asprosin peptide may be protected from degradation in adipose tissue. We present evidence for an alternative possibility, that asprosin mRNA is generated independently from an internal promoter within the 3' end of the FBN1 gene, which would allow for regulation independent of fibrillin-synthesis and is more economical of cellular resources. The discovery of asprosin opened exciting possibilities for treatment of metabolic syndrome related conditions, but there is much to be understood before such therapies could be introduced into the clinic.
Collapse
Affiliation(s)
- Kim M Summers
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, Queensland 4102, Australia.
| | - Stephen J Bush
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DS, United Kingdom.
| | - Margaret R Davis
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, United Kingdom
| | - David A Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, Queensland 4102, Australia.
| | - Sahar Keshvari
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, Queensland 4102, Australia.
| | - Jennifer A West
- Faculty of Medicine, The University of Queensland, Mayne Medical Building, 288 Herston Road, Herston, Queensland 4006, Australia.
| |
Collapse
|
3
|
Muthu ML, Tiedemann K, Fradette J, Komarova S, Reinhardt DP. Fibrillin-1 regulates white adipose tissue development, homeostasis, and function. Matrix Biol 2022; 110:106-128. [DOI: 10.1016/j.matbio.2022.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/12/2022] [Accepted: 05/04/2022] [Indexed: 12/28/2022]
|
4
|
Singh M, Becker M, Godwin AR, Baldock C. Structural studies of elastic fibre and microfibrillar proteins. Matrix Biol Plus 2021; 12:100078. [PMID: 34355160 PMCID: PMC8322146 DOI: 10.1016/j.mbplus.2021.100078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 11/27/2022] Open
Abstract
Elastic tissues owe their functional properties to the composition of their extracellular matrices, particularly the range of extracellular, multidomain extensible elastic fibre and microfibrillar proteins. These proteins include elastin, fibrillin, latent TGFβ binding proteins (LTBPs) and collagens, where their biophysical and biochemical properties not only give the matrix structural integrity, but also play a vital role in the mechanisms that underlie tissue homeostasis. Thus far structural information regarding the structure and hierarchical assembly of these molecules has been challenging and the resolution has been limited due to post-translational modification and their multidomain nature leading to flexibility, which together result in conformational and structural heterogeneity. In this review, we describe some of the matrix proteins found in elastic fibres and the new emerging techniques that can shed light on their structure and dynamic properties.
Collapse
Affiliation(s)
- Mukti Singh
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Mark Becker
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Alan R.F. Godwin
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Clair Baldock
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| |
Collapse
|
5
|
Hoffmann JG, Xie W, Chopra AR. Energy Regulation Mechanism and Therapeutic Potential of Asprosin. Diabetes 2020; 69:559-566. [PMID: 32198197 PMCID: PMC7085243 DOI: 10.2337/dbi19-0009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 01/15/2020] [Indexed: 12/11/2022]
Abstract
Genetic studies of patients with neonatal progeroid syndrome led to the discovery of the novel fasting-induced, glucogenic, and orexigenic hormone named asprosin, the C-terminal cleavage product of profibrillin. Upon secretion, asprosin travels to the liver, where it exerts a glucogenic effect through OR4M1, an olfactory G-protein-coupled receptor. It also crosses the blood-brain barrier to stimulate appetite-modulating neurons in the arcuate nucleus of the hypothalamus, exerting an orexigenic effect via an as yet unidentified receptor. Specifically, it stimulates appetite by activating orexigenic AgRP neurons and inhibiting anorexigenic POMC neurons. Studies have also focused on the therapeutic potential of inhibiting asprosin for treatment of obesity and type 2 diabetes, both of which are characterized by high levels of circulating asprosin. It has been shown that anti-asprosin monoclonal antibodies reduce blood glucose, appetite, and body weight, validating asprosin as a therapeutic target. Current work aims to uncover key features of the asprosin biology such as the identification of its neuronal receptor, identification of the secretion mechanism from adipose tissue, and development of anti-asprosin monoclonal antibodies as diabetes and obesity therapies.
Collapse
Affiliation(s)
| | - Wei Xie
- Harrington Discovery Institute at University Hospitals, Cleveland, OH
| | - Atul R Chopra
- Harrington Discovery Institute at University Hospitals, Cleveland, OH
- Department of Medicine, Case Western Reserve University, Cleveland, OH
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
6
|
Abstract
Fibrillins are one of the major components of supramolecular fibrous structures in the extracellular matrix of elastic and nonelastic tissues, termed microfibrils. Microfibrils provide tensile strength in nonelastic tissues and scaffolds for the assembly of tropoelastin in elastic tissues, and act a regulator of growth factor bioavailability and activity in connective tissues. Mutations in fibrillins lead to a variety of connective tissue disorders including Marfan syndrome, stiff skin syndrome, dominant Weill-Marchesani syndrome, and others. Therefore, fibrillins are frequently studied to understand the pathophysiology of these diseases and to identify effective treatment strategies. Extraction of endogenous microfibrils from cells and tissues can aid in obtaining structural insights of microfibrils. Recombinant production of fibrillins is an important tool which can be utilized to study the properties of normal fibrillins and the consequences of disease causing mutations. Other means of studying the role of fibrillins in the context of various physiological settings is by knocking down the mRNA expression and analyzing its downstream consequences. It is also important to study the interactome of fibrillins by protein-protein interactions, which can be derailed in pathological situations. Interacting proteins can affect the assembly of fibrillins in cells and tissues or can affect the levels of growth factors in the matrix. This chapter describes important techniques in the field that facilitate answering relevant questions of fibrillin biology and pathophysiology.
Collapse
|
7
|
Kielty CM. Fell-Muir Lecture: Fibrillin microfibrils: structural tensometers of elastic tissues? Int J Exp Pathol 2017; 98:172-190. [PMID: 28905442 PMCID: PMC5639267 DOI: 10.1111/iep.12239] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/13/2017] [Indexed: 12/21/2022] Open
Abstract
Fibrillin microfibrils are indispensable structural elements of connective tissues in multicellular organisms from early metazoans to humans. They have an extensible periodic beaded organization, and support dynamic tissues such as ciliary zonules that suspend the lens. In tissues that express elastin, including blood vessels, skin and lungs, microfibrils support elastin deposition and shape the functional architecture of elastic fibres. The vital contribution of microfibrils to tissue form and function is underscored by the heritable fibrillinopathies, especially Marfan syndrome with severe elastic, ocular and skeletal tissue defects. Research since the early 1990s has advanced our knowledge of biology of microfibrils, yet understanding of their mechanical and homeostatic contributions to tissues remains far from complete. This review is a personal reflection on key insights, and puts forward the conceptual hypothesis that microfibrils are structural 'tensometers' that direct cells to monitor and respond to altered tissue mechanics.
Collapse
Affiliation(s)
- Cay M Kielty
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
8
|
Reyes-Hernández OD, Palacios-Reyes C, Chávez-Ocaña S, Cortés-Malagón EM, Alonso-Themann PG, Ramos-Cano V, Ramírez-Bello J, Sierra-Martínez M. Skeletal manifestations of Marfan syndrome associated to heterozygous R2726W FBN1 variant: sibling case report and literature review. BMC Musculoskelet Disord 2016; 17:79. [PMID: 26875674 PMCID: PMC4753669 DOI: 10.1186/s12891-016-0935-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 02/06/2016] [Indexed: 11/16/2022] Open
Abstract
Background FBN1 (15q21.1) encodes fibrillin-1, a large glycoprotein which is a major component of microfibrils that are widely distributed in structural elements of elastic and non-elastic tissues. FBN1 variants are responsible for the related connective tissue disorders, grouped under the generic term of type-1 fibrillinopathies, which include Marfan syndrome (MFS), MASS syndrome (Mitral valve prolapse, Aortic enlargement, Skin and Skeletal findings, Acromicric dysplasia, Familial ectopia lentis, Geleophysic dysplasia 2, Stiff skin syndrome, and dominant Weill-Marchesani syndrome. Case presentation Two siblings presented with isolated skeletal manifestations of MFS, including severe pectus excavatum, elongated face, scoliosis in one case, and absence of other clinical features according to Ghent criteria diagnosis, were screened for detection of variants in whole FBN1 gene (65 exons). Both individuals were heterozygous for the R2726W variant. This variant has been previously reported in association with some skeletal features of Marfan syndrome in the absence of both tall stature and non-skeletal features. These features are consistent with the presentation of the siblings reported here. Conclusion The presented cases confirm that the R2726W FBN1 variant is associated with skeletal features of MFS in the absence of cardiac or ocular findings. These findings confirm that FBN1 variants are associated with a broad phenotypic spectrum and the value of sequencing in atypical cases.
Collapse
Affiliation(s)
- Octavio D Reyes-Hernández
- Laboratorio de Genética y Diagnóstico Molecular, Hospital Juárez de México, Instituto Politécnico Nacional 5160, Gustavo A. Madero, Magdalena de Las Salinas, Ciudad de México, DF, 07760, Mexico.
| | - Carmen Palacios-Reyes
- Laboratorio de Genética y Diagnóstico Molecular, Hospital Juárez de México, Instituto Politécnico Nacional 5160, Gustavo A. Madero, Magdalena de Las Salinas, Ciudad de México, DF, 07760, Mexico.
| | - Sonia Chávez-Ocaña
- Laboratorio de Genética y Diagnóstico Molecular, Hospital Juárez de México, Instituto Politécnico Nacional 5160, Gustavo A. Madero, Magdalena de Las Salinas, Ciudad de México, DF, 07760, Mexico.
| | - Enoc M Cortés-Malagón
- Laboratorio de Genética y Diagnóstico Molecular, Hospital Juárez de México, Instituto Politécnico Nacional 5160, Gustavo A. Madero, Magdalena de Las Salinas, Ciudad de México, DF, 07760, Mexico.
| | - Patricia Garcia Alonso-Themann
- Seguimiento Pediátrico, Instituto Nacional de Perinatología, Montes Urales 800 Col. Lomas de Chapultepec, Del. Miguel Hidalgo, 11000, Ciudad de México, Mexico.
| | - Víctor Ramos-Cano
- Servicio de Cirugía Cardio-torácica, Hospital Juárez de México. Av, Instituto Politécnico Nacional 5160, Gustavo A. Madero, Magdalena de Las Salinas, 07760, Ciudad de México, Mexico.
| | - Julián Ramírez-Bello
- Laboratorio de Medicina Genómica, Hospital Juárez de México, Instituto Politécnico Nacional 5160, Gustavo A. Madero, Magdalena de Las Salinas, 07760, Ciudad de México, Mexico.
| | - Mónica Sierra-Martínez
- Laboratorio de Genética y Diagnóstico Molecular, Hospital Juárez de México, Instituto Politécnico Nacional 5160, Gustavo A. Madero, Magdalena de Las Salinas, Ciudad de México, DF, 07760, Mexico.
| |
Collapse
|
9
|
Fibrillin-containing microfibrils are key signal relay stations for cell function. J Cell Commun Signal 2015; 9:309-25. [PMID: 26449569 DOI: 10.1007/s12079-015-0307-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 09/29/2015] [Indexed: 12/26/2022] Open
Abstract
Fibrillins constitute the backbone of microfibrils in the extracellular matrix of elastic and non-elastic tissues. Mutations in fibrillins are associated with a wide range of connective tissue disorders, the most common is Marfan syndrome. Microfibrils are on one hand important for structural stability in some tissues. On the other hand, microfibrils are increasingly recognized as critical mediators and drivers of cellular signaling. This review focuses on the signaling mechanisms initiated by fibrillins and microfibrils, which are often dysregulated in fibrillin-associated disorders. Fibrillins regulate the storage and bioavailability of growth factors of the TGF-β superfamily. Cells sense microfibrils through integrins and other receptors. Fibrillins potently regulate pathways of the immune response, inflammation and tissue homeostasis. Emerging evidence show the involvement of microRNAs in disorders caused by fibrillin deficiency. A thorough understanding of fibrillin-mediated cell signaling pathways will provide important new leads for therapeutic approaches of the underlying disorders.
Collapse
|
10
|
Wide mutation spectrum and frequent variant Ala27Thr of FBN1 identified in a large cohort of Chinese patients with sporadic TAAD. Sci Rep 2015; 5:13115. [PMID: 26272055 PMCID: PMC4536522 DOI: 10.1038/srep13115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 07/16/2015] [Indexed: 12/11/2022] Open
Abstract
Genetic etiology in majority of patients with sporadic thoracic aortic aneurysm and dissections (STAAD) remains unknown. Recent GWAS study suggested common variant(s) in FBN1 is associated with STAAD. The present study aims to test this hypothesis and to identify mutation spectrum by targeted exome sequencing of the FBN1 gene in 146 unrelated patients with STAAD. Totally, 15.75% of FBN1 variants in STAAD were identified, including 5 disruptive and 18 missense mutations. Most of the variants were novel. Genotype-phenotype correlation analysis suggested that the maximum aortic diameter in the disruptive mutation group was significantly larger than that in the non-Cys missense mutation group. Interestingly, the variant Ala27Thr at −1 position, which is predicted to change the cleavage site of the signal peptidase of fibrillin-1, was detected in two unrelated patients. Furthermore, genotyping analysis of this variant detected 10 heterozygous Ala27Thr from additional 666 unrelated patients (1.50%), versus 7 from 1500 controls (0.47%), indicating a significant association of this variant with STAAD. Collectively, the identification of the variant Ala27Thr may represent a relatively common genetic predisposition and a novel pathogenetic mechanism for STAAD. Also, expansion of the mutation spectrum in FBN1 will be helpful in genetic counselling for Chinese patients with STAAD.
Collapse
|
11
|
Rainger J, Keighren M, Keene DR, Charbonneau NL, Rainger JK, Fisher M, Mella S, Huang JTJ, Rose L, van't Hof R, Sakai LY, Jackson IJ, FitzPatrick DR. A trans-acting protein effect causes severe eye malformation in the Mp mouse. PLoS Genet 2013; 9:e1003998. [PMID: 24348270 PMCID: PMC3861116 DOI: 10.1371/journal.pgen.1003998] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 10/18/2013] [Indexed: 12/18/2022] Open
Abstract
Mp is an irradiation-induced mouse mutation associated with microphthalmia, micropinna and hind limb syndactyly. We show that Mp is caused by a 660 kb balanced inversion on chromosome 18 producing reciprocal 3-prime gene fusion events involving Fbn2 and Isoc1. The Isoc1-Fbn2 fusion gene (Isoc1Mp) mRNA has a frameshift and early stop codon resulting in nonsense mediated decay. Homozygous deletions of Isoc1 do not support a significant developmental role for this gene. The Fbn2-Isoc1 fusion gene (Fbn2Mp) predicted protein consists of the N-terminal Fibrillin-2 (amino acids 1–2646, exons 1–62) lacking the C-terminal furin-cleavage site with a short out-of-frame extension encoded by the final exon of Isoc1. The Mp limb phenotype is consistent with that reported in Fbn2 null embryos. However, severe eye malformations, a defining feature of Mp, are not seen in Fbn2 null animals. Fibrillin-2Mp forms large fibrillar structures within the rough endoplasmic reticulum (rER) associated with an unfolded protein response and quantitative mass spectrometry shows a generalised defect in protein secretion in conditioned media from mutant cells. In the embryonic eye Fbn2 is expressed within the peripheral ciliary margin (CM). Mp embryos show reduced canonical Wnt-signalling in the CM – known to be essential for ciliary body development - and show subsequent aplasia of CM-derived structures. We propose that the Mp “worse-than-null” eye phenotype plausibly results from a failure in normal trafficking of proteins that are co-expressed with Fbn2 within the CM. The prediction of similar trans-acting protein effects will be an important challenge in the medical interpretation of human mutations from whole exome sequencing. With the current increase in large-scale sequencing efforts, correct interpretation of mutation consequences has never been more important. Here, we present evidence for a trans-acting protein effect in a novel mutation of Fbn2, associated with severe developmental eye defects not found in loss of function Fibrillin-2 alleles. The mutant protein is expressed in the developing eye but is unable to exit the cells, instead forming large protein aggregates within the endoplasmic reticulum. We observed ER-stress in mutant eyes, and detected a general reduction to secretion of co-expressed proteins in cell cultures. We propose that similar effects could be caused by mutations to other proteins that are trafficked through the ER, highlighting a disease mechanism that results in different clinical outcomes than observed, or predicted, from loss-off-function alleles.
Collapse
Affiliation(s)
- Joe Rainger
- The MRC Human Genetics Unit, MRC Institute of Genetic and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Margaret Keighren
- The MRC Human Genetics Unit, MRC Institute of Genetic and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Douglas R. Keene
- Shriners Hospital for Children, Portland, Oregon, United States of America
| | - Noe L. Charbonneau
- Shriners Hospital for Children, Portland, Oregon, United States of America
| | - Jacqueline K. Rainger
- The MRC Human Genetics Unit, MRC Institute of Genetic and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Malcolm Fisher
- The MRC Human Genetics Unit, MRC Institute of Genetic and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Sebastien Mella
- The MRC Human Genetics Unit, MRC Institute of Genetic and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Jeffrey T-J. Huang
- Biomarker and Drug Analysis Core Facility, Medical Research Institute, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Lorraine Rose
- Molecular Medicine Centre, MRC Institute of Genetic and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Rob van't Hof
- Molecular Medicine Centre, MRC Institute of Genetic and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Lynne Y. Sakai
- Shriners Hospital for Children, Portland, Oregon, United States of America
| | - Ian J. Jackson
- The MRC Human Genetics Unit, MRC Institute of Genetic and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
- * E-mail: (IJJ); (DRF)
| | - David R. FitzPatrick
- The MRC Human Genetics Unit, MRC Institute of Genetic and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
- * E-mail: (IJJ); (DRF)
| |
Collapse
|
12
|
Boregowda RK, Krovic BM, Ritty TM. Selective integrin subunit reduction disrupts fibronectin extracellular matrix deposition and fibrillin 1 gene expression. Mol Cell Biochem 2012; 369:205-16. [PMID: 22782528 DOI: 10.1007/s11010-012-1383-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 06/20/2012] [Indexed: 10/28/2022]
Abstract
Integrins are transmembrane receptors that can specifically bind extracellular matrix (ECM) proteins. Assembly of the ECM protein fibronectin into fibrils has been shown to be a cell-mediated process that requires integrins. Like fibronectin, fibrillin 1 is an ECM glycoprotein that can assemble into fibrils, but the role of integrins in fibril formation is not understood. To investigate the role of integrins in fibrillin 1 ECM deposition, cells that normally produce and assemble fibrillin 1 fibers in vitro were stably transfected with plasmid constructs encoding short interfering RNAs that target specific integrin subunits. Cells that were deficient in α2- and β3-integrin subunits produced and deposited fibronectin normally, but cells that were deficient for α5 and αV were unable to elaborate a fibronectin matrix, although they continued to produce and secrete the protein. Surprisingly, the cells that were unable to elaborate a fibronectin matrix also lost fibrillin 1 gene expression.
Collapse
Affiliation(s)
- Rajeev K Boregowda
- Division of Musculoskeletal Sciences, Department of Orthopaedics, Penn State College of Medicine, Hershey, PA 17033, USA.
| | | | | |
Collapse
|
13
|
Jensen SA, Robertson IB, Handford PA. Dissecting the fibrillin microfibril: structural insights into organization and function. Structure 2012; 20:215-25. [PMID: 22325771 DOI: 10.1016/j.str.2011.12.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 12/07/2011] [Accepted: 12/09/2011] [Indexed: 01/09/2023]
Abstract
Force-bearing tissues such as blood vessels, lungs, and ligaments depend on the properties of elasticity and flexibility. The 10 to 12 nm diameter fibrillin microfibrils play vital roles in maintaining the structural integrity of these highly dynamic tissues and in regulating extracellular growth factors. In humans, defective microfibril function results in several diseases affecting the skin, cardiovascular, skeletal, and ocular systems. Despite the discovery of fibrillin-1 having occurred more than two decades ago, the structure and organization of fibrillin monomers within the microfibrils are still controversial. Recent structural data have revealed strategies by which fibrillin is able to maintain its architecture in dynamic tissues without compromising its ability to interact with itself and other cell matrix components. This review summarizes our current knowledge of microfibril structure, from individual fibrillin domains and the calcium-dependent tuning of pairwise interdomain interactions to microfibril dynamics, and how this relates to microfibril function in health and disease.
Collapse
Affiliation(s)
- Sacha A Jensen
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | | |
Collapse
|
14
|
Piha-Gossack A, Sossin W, Reinhardt DP. The evolution of extracellular fibrillins and their functional domains. PLoS One 2012; 7:e33560. [PMID: 22438950 PMCID: PMC3306419 DOI: 10.1371/journal.pone.0033560] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 02/14/2012] [Indexed: 11/19/2022] Open
Abstract
Fibrillins constitute the major backbone of multifunctional microfibrils in elastic and non-elastic extracellular matrices, and are known to interact with several binding partners including tropoelastin and integrins. Here, we study the evolution of fibrillin proteins. Following sequence collection from 39 organisms representative of the major evolutionary groups, molecular evolutionary genetics and phylogeny inference software were used to generate a series of evolutionary trees using distance-based and maximum likelihood methods. The resulting trees support the concept of gene duplication as a means of generating the three vertebrate fibrillins. Beginning with a single fibrillin sequence found in invertebrates and jawless fish, a gene duplication event, which coincides with the appearance of elastin, led to the creation of two genes. One of the genes significantly evolved to become the gene for present-day fibrillin-1, while the other underwent evolutionary changes, including a second duplication, to produce present-day fibrillin-2 and fibrillin-3. Detailed analysis of several sequences and domains within the fibrillins reveals distinct similarities and differences across various species. The RGD integrin-binding site in TB4 of all fibrillins is conserved in cephalochordates and vertebrates, while the integrin-binding site within cbEGF18 of fibrillin-3 is a recent evolutionary change. The proline-rich domain in fibrillin-1, glycine-rich domain in fibrillin-2 and proline-/glycine-rich domain in fibrillin-3 are found in all analyzed tetrapod species, whereas it is completely replaced with an EGF-like domain in cnidarians, arthropods, molluscs and urochordates. All collected sequences contain the first 9-cysteine hybrid domain, and the second 8-cysteine hybrid domain with exception of arthropods containing an atypical 10-cysteine hybrid domain 2. Furin cleavage sites within the N- and C-terminal unique domains were found for all analyzed fibrillin sequences, indicating an essential role for processing of the fibrillin pro-proteins. The four cysteines in the unique N-terminus and the two cysteines in the unique C-terminus are also highly conserved.
Collapse
Affiliation(s)
- Adam Piha-Gossack
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Wayne Sossin
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Dieter P. Reinhardt
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
15
|
Smith KD, Vaughan-Thomas A, Spiller DG, Innes JF, Clegg PD, Comerford EJ. The organisation of elastin and fibrillins 1 and 2 in the cruciate ligament complex. J Anat 2011; 218:600-7. [PMID: 21466551 DOI: 10.1111/j.1469-7580.2011.01374.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Although elastin fibres and oxytalan fibres (bundles of microfibrils) have important mechanical, biochemical and cell regulatory functions, neither their distribution nor their function in cruciate ligaments has been investigated. Twelve pairs of cruciate ligaments (CLs) were obtained from 10 adult dogs with no evidence of knee osteoarthritis. Elastic fibres were identified using Verhoeff's and Miller's staining. Fibrillins 1 and 2 were immunolocalised and imaged using confocal laser scanning microscopy. Hydrated, unfixed tissue was analysed using Nomarski differential interference microscopy (NDIC), allowing structural and mechanical analysis. Microfibrils and elastin fibres were widespread in both CLs, predominantly within ligament fascicles, parallel to collagen bundles. Although elastin fibres were sparse, microfibrils were abundant. We described abundant fibres composed of both fibrillin 1 and fibrillin 2, which had a similar pattern of distribution to oxytalan fibres. NDIC demonstrated complex interfascicular and interbundle anatomy in the CL complex. The distribution of elastin fibres is suggestive of a mechanical role in bundle reorganisation following ligament deformation. The presence and location of fibrillin 2 in oxytalan fibres in ligament differs from the solely fibrillin 1-containing oxytalan fibres previously described in tendon and may demonstrate a fundamental difference between ligament and tendon.
Collapse
Affiliation(s)
- Kinley D Smith
- Department of Musculoskeletal Biology, Institute of Aging and Chronic disease and School of Veterinary Science, Leahurst Campus, University of Liverpool, Liverpool, UK.
| | | | | | | | | | | |
Collapse
|
16
|
Roopnariane A, Freed RJ, Price S, Fox EJ, Ritty TM. Osteosarcoma in a Marfan patient with a novel premature termination codon in the FBN1 gene. Connect Tissue Res 2011; 52:157-65. [PMID: 20672986 DOI: 10.3109/03008207.2010.500430] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Osteosarcoma is a malignant neoplasm of mesenchymal origin that is presumed to arise from osteoblasts. Considered a rare tumor, approximately 1000 cases of osteosarcoma are diagnosed in the United States each year, and osteosarcoma of the foot is rarer still. Marfan syndrome (MFS) is a rare genetic disorder that affects 1 in 5000 individuals and is caused by mutations in the fibrillin 1 (FBN1) gene. MFS phenotype affects several body systems, including soft connective tissue and bone. Here we report, for the first time, an individual with MFS that was treated for osteosarcoma. Surgically resected tissue was used to initiate an osteosarcoma cell line (PSU-OS-M) that exhibits attachment-independent growth and loss of contact inhibition in vitro. Genomic DNA was isolated from the tumor cells, and primers that anneal to intronic regions were used to amplify and sequence all 65 coding exons of the FBN1 gene. A two base pair insertion that results in a novel premature termination codon (PTC) was found in exon 52. Protein from the normal allele is detectable in PSU-OS-M cell-conditioned medium, but protein from the mutant allele was not detectable. Immunofluorescent microscopy demonstrates that PSU-OS-M cells can assemble fibrillin 1 microfibrils in culture, and fibronectin assembly is normal. As such, the PSU-OS-M cell line is to our knowledge the first oncogenically transformed cell line with a mutant fibrillin gene and may serve as a useful tool for studying molecular mechanisms of MFS and nonsense-mediated decay.
Collapse
Affiliation(s)
- Adriana Roopnariane
- Department of Orthopaedics, Division of Musculoskeletal Sciences, Penn State College of Medicine, Hershey, PA 17033-0850, USA
| | | | | | | | | |
Collapse
|
17
|
TB domain proteins: evolutionary insights into the multifaceted roles of fibrillins and LTBPs. Biochem J 2011; 433:263-76. [PMID: 21175431 DOI: 10.1042/bj20101320] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Fibrillins and LTBPs [latent TGFβ (transforming growth factor β)-binding proteins] perform vital and complex roles in the extracellular matrix and are relevant to a wide range of human diseases. These proteins share a signature 'eight cysteine' or 'TB (TGFβ-binding protein-like)' domain that is found nowhere else in the human proteome, and which has been shown to mediate a variety of protein-protein interactions. These include covalent binding of the TGFβ propeptide, and RGD-directed interactions with a repertoire of integrins. TB domains are found interspersed with long arrays of EGF (epidermal growth factor)-like domains, which occur more widely in extracellular proteins, and also mediate binding to a large number of proteins and proteoglycans. In the present paper, newly available protein sequence information from a variety of sources is reviewed and related to published findings on the structure and function of fibrillins and LTBPs. These sequences give valuable insight into the evolution of TB domain proteins and suggest that the fibrillin domain organization emerged first, over 600 million years ago, prior to the divergence of Cnidaria and Bilateria, after which it has remained remarkably unchanged. Comparison of sequence features and domain organization in such a diverse group of organisms also provides important insights into how fibrillins and LTBPs might perform their roles in the extracellular matrix.
Collapse
|
18
|
Powell MD, Manandhar G, Spate L, Sutovsky M, Zimmerman S, Sachdev SC, Hannink M, Prather RS, Sutovsky P. Discovery of putative oocyte quality markers by comparative ExacTag proteomics. Proteomics Clin Appl 2010; 4:337-51. [PMID: 21137054 DOI: 10.1002/prca.200900024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 10/01/2009] [Accepted: 11/03/2009] [Indexed: 12/28/2022]
Abstract
PURPOSE Identification of the biomarkers of oocyte quality, and developmental and reprogramming potential is of importance to assisted reproductive technology in humans and animals. EXPERIMENTAL DESIGN PerkinElmer ExacTag™ Kit was used to label differentially proteins in pig oocyte extracts (oocyte proteome) and pig oocyte-conditioned in vitro maturation media (oocyte secretome) obtained with high- and low-quality oocytes. RESULTS We identified 16 major proteins in the oocyte proteome that were expressed differentially in high- versus low-quality oocytes. More abundant proteins in the high-quality oocyte proteome included kelch-like ECH-associated protein 1 (an adaptor for ubiquitin-ligase CUL3), nuclear export factor CRM1 and ataxia-telangiectasia mutated protein kinase. Dystrophin (DMD) was more abundant in low-quality oocytes. In the secretome, we identified 110 proteins, including DMD and cystic fibrosis transmembrane conductance regulator, two proteins implicated in muscular dystrophy and cystic fibrosis, respectively. Monoubiquitin was identified in the low-quality-oocyte secretome. CONCLUSIONS AND CLINICAL IMPLICATIONS A direct, quantitative proteomic analysis of small oocyte protein samples can identify potential markers of oocyte quality without the need for a large amount of total protein. This approach will be applied to discovery of non-invasive biomarkers of oocyte quality in assisted human reproduction and in large animal embryo transfer programs.
Collapse
|
19
|
Biogenesis and function of fibrillin assemblies. Cell Tissue Res 2009; 339:71-82. [PMID: 19513754 DOI: 10.1007/s00441-009-0822-x] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Accepted: 05/08/2009] [Indexed: 12/14/2022]
Abstract
Fibrillin-1 and fibrillin-2 are large cysteine-rich glycoproteins that serve two key physiological functions: as supporting structures that impart tissue integrity and as regulators of signaling events that instruct cell performance. The structural role of fibrillins is exerted through the temporal and hierarchical assembly of microfibrils and elastic fibers, whereas the instructive role reflects the ability of fibrillins to sequester transforming growth factor beta (TGFbeta) and bone morphogenetic protein (BMP) complexes in the extracellular matrix. Characterization of fibrillin mutations in human patients and in genetically engineered mice has demonstrated that perturbation of either function manifests in disease. More generally, these studies have indicated that fibrillins are integral components of a broader biological network of extracellular, cell surface, and signaling molecules that orchestrate morphogenetic and homeostatic programs in multiple organ systems. They have also suggested that the relative composition of fibrillin-rich microfibrils imparts contextual specificity to TGFbeta and BMP signaling by concentrating the ligands locally so as to regulate cell differentiation within a spatial context during organ formation (positive regulation) and by restricting their bioavailability so as to modulate cell performance in a timely fashion during tissue remodeling/repair (negative regulation). Correlative evidence suggests functional coupling of the cell-directed assembly of microfibrils and targeting of TGFbeta and BMP complexes to fibrillins. Hence, the emerging view is that fibrillin-rich microfibrils are molecular integrators of structural and instructive signals, with TGFbeta and BMPs as the nodal points that convert extracellular inputs into discrete and context-dependent cellular responses.
Collapse
|
20
|
Ramirez F, Sakai LY. Biogenesis and function of fibrillin assemblies. Cell Tissue Res 2009. [DOI: 10.1007/s00441-009-0822-x doi:dx.doi.org] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
|
21
|
Nonaka R, Onoue S, Wachi H, Sato F, Urban Z, Starcher BC, Seyama Y. DANCE/fibulin-5 promotes elastic fiber formation in a tropoelastin isoform-dependent manner. Clin Biochem 2009; 42:713-21. [DOI: 10.1016/j.clinbiochem.2008.12.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 12/17/2008] [Accepted: 12/19/2008] [Indexed: 10/21/2022]
|
22
|
Weinbaum JS, Broekelmann TJ, Pierce RA, Werneck CC, Segade F, Craft CS, Knutsen RH, Mecham RP. Deficiency in microfibril-associated glycoprotein-1 leads to complex phenotypes in multiple organ systems. J Biol Chem 2008; 283:25533-25543. [PMID: 18625713 DOI: 10.1074/jbc.m709962200] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Microfibril-associated glycoprotein-1 (MAGP-1) is a small molecular weight component of the fibrillin-rich microfibril. Gene-targeted inactivation of MAGP-1 reveals a complex phenotype that includes increased body weight and size due to excess body fat, an altered wound healing response in bone and skin, and a bleeding diathesis. Elastic tissues rich in MAGP-1-containing microfibrils develop normally and show normal function. The penetrance of MAGP-1-null phenotypes is highly variable and mouse strain-dependent, suggesting the influence of modifier genes. MAGP-1 was found to bind active transforming growth factor-beta (TGF-beta) and BMP-7 with high affinity, suggesting that it may be an important modulator of microfibril-mediated growth factor signaling. Many of the phenotypic traits observed in MAGP-1-deficient mice are consistent with loss of TGF-beta function and are generally opposite those associated with mutations in fibrillin-1 that result in enhanced TGF-beta signaling. Increased body size and fat deposition in MAGP-1-mutant animals are particularly intriguing given the localization of obesity traits in humans to the region on chromosome 1 containing the MAGP-1 gene.
Collapse
Affiliation(s)
- Justin S Weinbaum
- Departments of Cell Biology and Physiology, St. Louis, Missouri 63110
| | | | - Richard A Pierce
- Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Claudio C Werneck
- Departamento de Bioquimica, Universidade Estadual de Campinas, Campinas 13084-225, Brazil
| | - Fernando Segade
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6030
| | - Clarissa S Craft
- Departments of Cell Biology and Physiology, St. Louis, Missouri 63110
| | - Russell H Knutsen
- Departments of Cell Biology and Physiology, St. Louis, Missouri 63110
| | - Robert P Mecham
- Departments of Cell Biology and Physiology, St. Louis, Missouri 63110.
| |
Collapse
|
23
|
McGowan SE, Holmes AJ, Mecham RP, Ritty TM. Arg-Gly-Asp-containing domains of fibrillins-1 and -2 distinctly regulate lung fibroblast migration. Am J Respir Cell Mol Biol 2007; 38:435-45. [PMID: 18006876 DOI: 10.1165/rcmb.2007-0281oc] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Development of the extracellular matrix is a critical feature of alveolar formation and actively involves pulmonary interstitial fibroblasts. The elastic fiber network is an interconnected system of load-bearing fibers that also influences the behavior of adjacent cells, particularly the interstitial lung fibroblasts (LF). We hypothesized that discrete domains of fibrillins-1 and -2 interact with LF integrins and direct their migration in the presence of platelet-derived growth factor (PDGF)-A. Surfaces coated with recombinant peptides lacking or including an arginine-glycine-aspartic acid (RGD) motif were used to study LF migration across porous filters and on protein-coated glass. Exon 24 of fibrillin-2 (Fib2 24), which encodes for an RGD-containing transforming growth factor-beta-binding (TB) domain, stimulated migration with greater directional persistence and more effectively stimulated trans-filter migration at low concentrations. Exons 36-44 of fibrillin-1 (Fib1 36-44), which include epidermal growth factor-like domains and an RGD-containing TB domain, induce more lamlellipodia and more widespread remodeling of the leading edge, resulting in greater migration velocity than did Fib2 24. Distinct structural features in regions that surround the RGD motifs may differentially regulate how the PDGF receptor-alpha promotes integrin distribution and actin filament remodeling at the cell's leading edge. Understanding how fibrillins regulate LF migration may help elucidate how the elastic fiber system could be restored as an interconnected unit, which fails to occur in emphysematous lungs.
Collapse
Affiliation(s)
- Stephen E McGowan
- Department of Veterans Affairs Research Service and University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.
| | | | | | | |
Collapse
|
24
|
Sato F, Wachi H, Ishida M, Nonaka R, Onoue S, Urban Z, Starcher BC, Seyama Y. Distinct steps of cross-linking, self-association, and maturation of tropoelastin are necessary for elastic fiber formation. J Mol Biol 2007; 369:841-51. [PMID: 17459412 DOI: 10.1016/j.jmb.2007.03.060] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2006] [Revised: 03/19/2007] [Accepted: 03/23/2007] [Indexed: 10/23/2022]
Abstract
Elastic fibers play an important role in the characteristic resilience of many tissues. The assembly of tropoelastin into a fibrillar matrix is a complex stepwise process and the deposition and cross-linking of tropoelastin are believed to be key steps of elastic fiber formation. However, the detailed mechanisms of elastic fiber assembly have not been defined yet. Here, we demonstrate the relationship between deposition and the cross-linking/maturation of tropoelastin. Our data show that a C-terminal half-fragment of tropoelastin encoded by exons 16-36 (BH) is deposited onto microfibrils, yet we detect very limited amounts of the cross-linking amino acid, desmosine, an indicator of maturation, whereas the N-terminal half-fragment encoded by exons 2-15 (FH) was deficient for both deposition and cross-linking, suggesting that elastic fiber formation requires full-length tropoelastin molecules. A series of experiments using mutant BH fragments, lacking either exon 16 or 30, or a deletion of both exons showed that self-association of tropoelastin polypeptides was an early step in elastic fiber assembly. Immunofluorescence and Western blot assay showed that the treatment of cell culture medium or conditioned medium with beta-aminopropionitrile to inhibit cross-linking, prevented both the deposition and polymerization of tropoelastin. In conclusion, our present results support the view that self-association and oxidation by lysyl oxidase precedes tropoelastin deposition onto microfibrils and the entire molecule of tropoelastin is required for this following maturation process.
Collapse
Affiliation(s)
- Fumiaki Sato
- Department of Clinical Chemistry, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Wachi H, Sato F, Nakazawa J, Nonaka R, Szabo Z, Urban Z, Yasunaga T, Maeda I, Okamoto K, Starcher BC, Li DY, Mecham RP, Seyama Y. Domains 16 and 17 of tropoelastin in elastic fibre formation. Biochem J 2007; 402:63-70. [PMID: 17037986 PMCID: PMC1783983 DOI: 10.1042/bj20061145] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Naturally occurring mutations are useful in identifying domains that are important for protein function. We studied a mutation in the elastin gene, 800-3G>C, a common disease allele for SVAS (supravalvular aortic stenosis). We showed in primary skin fibroblasts from two different SVAS families that this mutation causes skipping of exons 16-17 and results in a stable mRNA. Tropoelastin lacking domains 16-17 (Delta16-17) was synthesized efficiently and secreted by transfected retinal pigment epithelium cells, but showed the deficient deposition into the extracellular matrix compared with normal as demonstrated by immunofluorescent staining and desmosine assays. Solid-phase binding assays indicated normal molecular interaction of Delta16-17 with fibrillin-1 and fibulin-5. However, self-association of Delta16-17 was diminished as shown by an elevated coacervation temperature. Moreover, negative staining electron microscopy confirmed that Delta16-17 was deficient in forming fibrillar polymers. Domain 16 has high homology with domain 30, which can form a beta-sheet structure facilitating fibre formation. Taken together, we conclude that domains 16-17 are important for self-association of tropoelastin and elastic fibre formation. This study is the first to discover that domains of elastin play an essential role in elastic fibre formation by facilitating homotypic interactions.
Collapse
Affiliation(s)
- Hiroshi Wachi
- Department of Clinical Chemistry, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Sato F, Wachi H, Starcher BC, Murata H, Amano S, Tajima S, Seyama Y. The characteristics of elastic fiber assembled with recombinant tropoelastin isoform. Clin Biochem 2006; 39:746-53. [PMID: 16690047 DOI: 10.1016/j.clinbiochem.2006.02.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Revised: 01/20/2006] [Accepted: 02/24/2006] [Indexed: 11/18/2022]
Abstract
OBJECTIVE It is known that elastin mRNA is transcribed from a single gene. The variety of tropoelastin isoforms results from multiple alternative splicing of the primary transcript. The purpose of this study was to investigate the characteristics of elastic fiber assembled with tropoelastin isoform, which is full-length human tropoelastin (HTE), exon 26A missing tropoelastin (Delta26A), and exon 32 missing tropoelastin (Delta32). DESIGN AND METHODS We demonstrated the process of elastic fiber assembly and the existence of elastic fiber resistant to pancreatic elastase with HTE, Delta26A, or Delta32 fiber using an in vitro model of elastic fiber assembly. These elastic fibers were evaluated by immunofluorescent staining, the quantitative analysis of cross-linked amino acids, and semi-quantitative analysis of matrix-associated tropoelastin. RESULTS There were no big differences getting into the matrix among these tropoelastins in immunofluorescence microscopy and semi-quantitative analysis. In the comparison with the HTE, the Delta26A and the Delta32 significantly increased and decreased, respectively, the formation of cross-linking amino acids and the binding to scaffold proteins. Furthermore, it was found that it is difficult to degrade the Delta26A assembly with pancreatic elastase as compared with HTE or Delta32 assembly. CONCLUSION The elastic fiber assembled with the tropoelastin isoforms was characterized using an in vitro model. The present study provides important information regarding the pathology of human diseases including emphysema and atherosclerosis.
Collapse
Affiliation(s)
- Fumiaki Sato
- Department of Clinical Chemistry, Hoshi University School of Pharmacy and Pharmaceutical Science, 2-4-41 Ebara, Tokyo, 142-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Robinson PN, Arteaga-Solis E, Baldock C, Collod-Béroud G, Booms P, De Paepe A, Dietz HC, Guo G, Handford PA, Judge DP, Kielty CM, Loeys B, Milewicz DM, Ney A, Ramirez F, Reinhardt DP, Tiedemann K, Whiteman P, Godfrey M. The molecular genetics of Marfan syndrome and related disorders. J Med Genet 2006; 43:769-87. [PMID: 16571647 PMCID: PMC2563177 DOI: 10.1136/jmg.2005.039669] [Citation(s) in RCA: 288] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Marfan syndrome (MFS), a relatively common autosomal dominant hereditary disorder of connective tissue with prominent manifestations in the skeletal, ocular, and cardiovascular systems, is caused by mutations in the gene for fibrillin-1 (FBN1). The leading cause of premature death in untreated individuals with MFS is acute aortic dissection, which often follows a period of progressive dilatation of the ascending aorta. Recent research on the molecular physiology of fibrillin and the pathophysiology of MFS and related disorders has changed our understanding of this disorder by demonstrating changes in growth factor signalling and in matrix-cell interactions. The purpose of this review is to provide a comprehensive overview of recent advances in the molecular biology of fibrillin and fibrillin-rich microfibrils. Mutations in FBN1 and other genes found in MFS and related disorders will be discussed, and novel concepts concerning the complex and multiple mechanisms of the pathogenesis of MFS will be explained.
Collapse
Affiliation(s)
- P N Robinson
- Institute of Medical Genetics, Charité University Hospital, Humboldt University, Augustenburger Platz 1, 13353 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Arribas SM, Hinek A, González MC. Elastic fibres and vascular structure in hypertension. Pharmacol Ther 2006; 111:771-91. [PMID: 16488477 DOI: 10.1016/j.pharmthera.2005.12.003] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2005] [Indexed: 01/22/2023]
Abstract
Blood vessels are dynamic structures composed of cells and extracellular matrix (ECM), which are in continuous cross-talk with each other. Thus, cellular changes in phenotype or in proliferation/death rate affect ECM synthesis. In turn, ECM elements not only provide the structural framework for vascular cells, but they also modulate cellular function through specific receptors. These ECM-cell interactions, together with neurotransmitters, hormones and the mechanical forces imposed by the heart, modulate the structural organization of the vascular wall. It is not surprising that pathological states related to alterations in the nervous, humoral or haemodynamic environment-such as hypertension-are associated with vascular wall remodeling, which, in the end, is deleterious for cardiovascular function. However, the question remains whether these structural alterations are simply a consequence of the disease or if there are early cellular or ECM alterations-determined either genetically or by environmental factors-that can predispose to vascular remodeling independent of hypertension. Elastic fibres might be key elements in the pathophysiology of hypertensive vascular remodeling. In addition to the well known effects of hypertension on elastic fibre fatigue and accelerated degradation, leading to loss of arterial wall resilience, recent investigations have highlighted new roles for individual components of elastic fibres and their degradation products. These elements can act as signal transducers and regulate cellular proliferation, migration, phenotype, and ECM degradation. In this paper, we review current knowledge regarding components of elastic fibres and discuss their possible pathomechanistic associations with vascular structural abnormalities and with hypertension development or progression.
Collapse
Affiliation(s)
- Silvia M Arribas
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo 2, 28029-Madrid, Spain.
| | | | | |
Collapse
|
29
|
Hubmacher D, Tiedemann K, Reinhardt DP. Fibrillins: from biogenesis of microfibrils to signaling functions. Curr Top Dev Biol 2006; 75:93-123. [PMID: 16984811 DOI: 10.1016/s0070-2153(06)75004-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fibrillins are large proteins that form extracellular microfibril suprastructures ubiquitously found in elastic and nonelastic tissues. Mutations in fibrillin-1 and -2 lead to a number of heritable connective tissue disorders generally termed fibrillinopathies. Clinical symptoms in fibrillinopathies manifest in the skeletal, ocular, and cardiovascular systems and highlight the importance of fibrillins in development and homeostasis of tissues and organs, including blood vessels, bone, and eye. Microfibrils appear to have dual roles in (1) conferring mechanical stability and limited elasticity to tissues, and (2) modulating the activity of growth factors of the transforming growth factor beta (TGF-beta) superfamily. This chapter's focus is on the biogenesis of microfibrils, developmental expression patterns of fibrillins, signaling functions of microfibrils, and mouse models deficient in fibrillins.
Collapse
Affiliation(s)
- Dirk Hubmacher
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University Montreal, Quebec, H3A 2B2, Canada
| | | | | |
Collapse
|
30
|
Sato F, Wachi H, Starcher BC, Seyama Y. Biochemical Analysis of Elastic Fiber Formation with a Frameshift-Mutated Tropoelastin (fmTE) at the C-Terminus of Tropoelastin. ACTA ACUST UNITED AC 2006. [DOI: 10.1248/jhs.52.259] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Fumiaki Sato
- Department of Clinical Chemistry, Hoshi University School of Pharmacy and Pharmaceutical Sciences
| | - Hiroshi Wachi
- Department of Clinical Chemistry, Hoshi University School of Pharmacy and Pharmaceutical Sciences
| | - Barry C. Starcher
- Department of Biochemistry, University of Texas Health Center at Tyler
| | - Yoshiyuki Seyama
- Department of Clinical Chemistry, Hoshi University School of Pharmacy and Pharmaceutical Sciences
| |
Collapse
|
31
|
Cain SA, Morgan A, Sherratt MJ, Ball SG, Shuttleworth CA, Kielty CM. Proteomic analysis of fibrillin-rich microfibrils. Proteomics 2006; 6:111-22. [PMID: 16302274 DOI: 10.1002/pmic.200401340] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
MS has been used to investigate the composition of fibrillin-rich microfibrils from non-elastic and elastic tissues, and to compare fibrillin-1 tryptic fingerprints derived from whole zonules, microfibrils and recombinant fibrillin-1. In all microfibril preparations, fibrillin-1 was abundant and the only fibrillin isoform. MAGP-1 was the only other microfibril-associated molecule. gamma-Crystallin co-purified with zonular microfibrils, so this association may contribute to ciliary zonule anchorage to lens. Recombinant fibrillin-1 tryptic peptides mapped throughout the molecule and included virtually all predicted peptides except for those larger than 4.5 kDa, smaller than 600 Da or post-translationally modified. In contrast, fewer microfibril tryptic fibrillin-1 peptides were detected, although they were derived from domains throughout the molecule and included two peptides after the C-terminal furin processing site. Several microfibril-derived N- and C-terminal domains never yielded any peptides, while tryptic peptides from other domains yielded numerous peptides, suggesting that some tissue microfibril features are retained after trypsinisation. This first MS analysis of a purified extracellular matrix assembly has provided new insights into microfibril composition and fibrillin-1 organisation within them.
Collapse
Affiliation(s)
- Stuart A Cain
- Wellcome Trust Centre for Cell-Matrix Research, Manchester, UK
| | | | | | | | | | | |
Collapse
|
32
|
Wachi H, Sato F, Murata H, Nakazawa J, Starcher BC, Seyama Y. Development of a new in vitro model of elastic fiber assembly in human pigmented epithelial cells. Clin Biochem 2005; 38:643-53. [PMID: 15922999 DOI: 10.1016/j.clinbiochem.2005.04.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Revised: 04/15/2005] [Accepted: 04/15/2005] [Indexed: 11/23/2022]
Abstract
OBJECTIVES We developed an in vitro model of elastic fiber assembly that provides a comparison of the efficiency of different tropoelastin molecules to organize into fibers. DESIGN AND METHODS Recombinant tropoelastin was added to ARPE-19 cell culture medium. The elastic fiber assembly was evaluated by immunofluorescence staining, the quantitative analysis of cross-linking amino acids, and semi-quantitative analysis of matrix-associated tropoelastin. RESULTS We confirmed that ARPE-19 cells express fibrillin-containing microfibrils and lysyl oxidase, but they do not express tropoelastin. Immunofluorescence staining showed a dose- and time-dependent increase in the extracellular matrix. The quantity of cross-linking amino acids and matrix-associated tropoelastin also increased together with the matrix-associated elastin. Moreover, the analysis of a radioimmunoprecipitation assay (RIPA) buffer-soluble fraction indicated that tropoelastin interacted with microfibrils and cross-linked elastin was detected as a super molecular complex. CONCLUSION These observations indicate that this in vitro model is especially useful for the analysis of mechanisms of elastic fiber formation.
Collapse
Affiliation(s)
- Hiroshi Wachi
- Department of Clinical Chemistry, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| | | | | | | | | | | |
Collapse
|
33
|
Hubmacher D, Tiedemann K, Bartels R, Brinckmann J, Vollbrandt T, Bätge B, Notbohm H, Reinhardt DP. Modification of the Structure and Function of Fibrillin-1 by Homocysteine Suggests a Potential Pathogenetic Mechanism in Homocystinuria. J Biol Chem 2005; 280:34946-55. [PMID: 16096271 DOI: 10.1074/jbc.m504748200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Homocystinuria, a disorder originating in defects in the methionine metabolism, is characterized by an elevated plasma concentration of homocysteine. Most patients have a defect in the cystathionine-beta-synthase, the key enzyme in the conversion of homocysteine to cysteine. Many abnormalities in the connective tissue of patients with homocystinuria resemble those seen in Marfan syndrome, caused by mutations in fibrillin-1. These observations led to the hypothesis that the structure and function of fibrillin-1 is compromised in patients with homocystinuria. To test this hypothesis we produced recombinant human fibrillin-1 fragments spanning the central portion of the molecule (8-Cys/transforming growth factor-beta binding domain 3 to calcium binding EGF domain 22) and extensively analyzed the potential of homocysteine to modify structural and functional properties of these proteins. Circular dichroism spectroscopy revealed moderate changes of their secondary structures after incubation with homocysteine. Equilibrium dialysis demonstrated a number of high affinity calcium binding sites in the tandemly repeated calcium binding epidermal growth factor-like domains 11-22. Calcium binding of homocysteine-modified fragments was completely abolished. Incubation of the recombinant proteins with homocysteine rendered the analyzed calcium binding EGF domains as well as the 8-Cys/transforming growth factor-beta binding domain 3 significantly more susceptible to proteolytic degradation. Furthermore, data were obtained demonstrating that homocysteine can covalently modify fibrillin-1 via disulfide bonds. These data strongly suggest that structural and functional modifications as well as degradation processes of fibrillin-1 in the connective tissues of patients with homocystinuria play a major role in the pathogenesis of this disorder.
Collapse
Affiliation(s)
- Dirk Hubmacher
- Faculty of Medicine, Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A2B2, Canada
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Fibrillin microfibrils are widely distributed extracellular matrix assemblies that endow elastic and nonelastic connective tissues with long-range elasticity. They direct tropoelastin deposition during elastic fibrillogenesis and form an outer mantle for mature elastic fibers. Microfibril arrays are also abundant in dynamic tissues that do not express elastin, such as the ciliary zonules of the eye. Mutations in fibrillin-1-the principal structural component of microfibrils-cause Marfan syndrome, a heritable disease with severe aortic, ocular, and skeletal defects. Isolated fibrillin-rich microfibrils have a complex 56 nm "beads-on-a-string" appearance; the molecular basis of their assembly and elastic properties, and their role in higher-order elastic fiber formation, remain incompletely understood.
Collapse
Affiliation(s)
- Cay M Kielty
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | | | | | | |
Collapse
|
35
|
Kim MH, Billiar TR, Seol DW. The secretable form of trimeric TRAIL, a potent inducer of apoptosis. Biochem Biophys Res Commun 2004; 321:930-5. [PMID: 15358116 DOI: 10.1016/j.bbrc.2004.07.046] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Indexed: 12/17/2022]
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a type II transmembrane cytokine molecule of the TNF family. Soluble recombinant TRAIL has been shown to induce apoptosis in a wide variety of cancer cells in vitro and to specifically limit tumor growth without damaging normal cells and tissues in vivo. These results suggest a strong potential of TRAIL as an anticancer therapy. Here we report an artificial TRAIL gene that expresses and secretes trimeric TRAIL into the culture supernatant. This novel TRAIL gene is composed of three functional elements, including a secretion signal, a trimerization domain, and an apoptosis-inducing moiety of TRAIL gene sequence. The expression vectors delivering this TRAIL gene produced secretable forms of trimeric TRAIL proteins. These TRAIL proteins showed greater apoptotic activity than the known TRAIL protein that does not contain an additional trimerization domain. Our data suggest that the gene therapy using our artificial TRAIL gene may be used as an anticancer therapy.
Collapse
Affiliation(s)
- Mi-Hyang Kim
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
36
|
Ritty TM, Broekelmann TJ, Werneck CC, Mecham RP. Fibrillin-1 and -2 contain heparin-binding sites important for matrix deposition and that support cell attachment. Biochem J 2003; 375:425-32. [PMID: 12837131 PMCID: PMC1223679 DOI: 10.1042/bj20030649] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2003] [Revised: 06/25/2003] [Accepted: 07/02/2003] [Indexed: 01/10/2023]
Abstract
Fibrillin-1 and -2 are large modular extracellular matrix glycoproteins found in many vertebrate organ systems and are known to be key components of the elastic fibre. In the present study, we identify a new heparin-binding region in fibrillin-2 between exons 18 and 24. Additionally, we have narrowed the location of heparin-binding activity previously identified in fibrillin-1 to the last 17 residues of the mature proteolytically processed protein. This domain demonstrated higher activity as a multimer than as a monomer. The fibrillin-1 C-terminal site supported cell attachment in each of nine cell types tested. Attachment was shown to be mediated by cell-surface heparan sulphate proteoglycans. Fibrillin-1 has been shown previously to have heparin-binding activity that is important for matrix deposition of the molecule by fibroblasts. This function in deposition was confirmed in two additional fibrillin-producing cell types (osteosarcoma and epithelial cells) for the deposition of both fibrillin-1 and -2 into the extracellular matrix.
Collapse
Affiliation(s)
- Timothy M Ritty
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
37
|
Wallis DD, Putnam EA, Cretoiu JS, Carmical SG, Cao SN, Thomas G, Milewicz DM. Profibrillin-1 maturation by human dermal fibroblasts: proteolytic processing and molecular chaperones. J Cell Biochem 2003; 90:641-52. [PMID: 14523997 PMCID: PMC1424223 DOI: 10.1002/jcb.10657] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Fibrillin-1 is synthesized as a proprotein that undergoes proteolytic processing in the unique C-terminal domain by a member of the PACE/furin family of endoproteases. This family of endoproteases is active in the trans-Golgi network (TGN), but metabolic labeling studies have been controversial as to whether profibrillin-1 is processed intracellularly or after secretion. This report provides evidence that profibrillin-1 processing is not an intracellular event. Bafilomycin A(1) and incubation of dermal fibroblasts at 22 degrees C were used to block secretion in the TGN to confirm that profibrillin-1 processing did not occur in this compartment. Profibrillin-1 immunoprecipitation studies revealed that two endoplasmic reticulum-resident molecular chaperones, BiP and GRP94, interacted with profibrillin-1. To determine the proprotein convertase responsible for processing profibrillin-1, a specific inhibitor of furin, alpha-1-antitrypsin, Portland variant, was both expressed in the cells and added to cells exogenously. In both cases, the inhibitor blocked the processing of profibrillin-1, providing evidence that furin is the enzyme responsible for profibrillin-1 processing. These studies delineate the secretion and proteolytic processing of profibrillin-1, and identify the proteins that interact with profibrillin-1 in the secretory pathway.
Collapse
Affiliation(s)
- Debra D. Wallis
- Department of Internal Medicine, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Elizabeth A. Putnam
- Department of Internal Medicine, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Jill S. Cretoiu
- Department of Internal Medicine, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Sonya G. Carmical
- Department of Internal Medicine, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Shi-Nian Cao
- Department of Internal Medicine, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Gary Thomas
- Vollum Institute, Oregon Health Sciences University, Portland, Oregon 97201
| | - Dianna M. Milewicz
- Department of Internal Medicine, University of Texas-Houston Medical School, Houston, Texas 77030
| |
Collapse
|
38
|
Sugitani H, Wachi H, Mecham RP, Seyama Y. Accelerated calcification represses the expression of elastic fiber components and lysyl oxidase in cultured bovine aortic smooth muscle cells. J Atheroscler Thromb 2003; 9:292-8. [PMID: 12560590 DOI: 10.5551/jat.9.292] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Vascular calcification is a common feature of advanced atherosclerosis resulting in reduced elasticity of elastic arteries. However, the relationship between elastic fibers and vascular calcification at the molecular and cellular levels remains unknown. We investigated the expression of major elastic fiber components such as tropoelastin (TE) and fibrillin-1 (FBN1) and elastin-related enzyme, lysyl oxidase (LO), in a calcification model using beta-glycerophosphate (beta-GP) in cultured bovine aortic smooth muscle cells (BASMCs). Ten mM of beta-GP stimulated calcium deposition in a time-dependent manner. As determined by Western blot analysis, 10 mM of beta-GP time-dependently decreased TE and FBN1 protein levels. TE, FBN1, and LO mRNA levels, assessed by reverse transcription-polymerase chain reaction, were also decreased by exposure to 10 mM beta-GP. Furthermore, we investigated whether the processes of calcification in BASMCs directly control these regulations. In experiments using levamisole, an alkaline phosphatase inhibitor, and DMDP, a bisphosphonate, both inhibitors inhibited down-regulation during beta-GP-induced calcification, suggesting that the down-regulation of TE, FBN1, and LO directly relates to calcium deposition. In cases of vascular calcification, the decreased expression of TE, FBN1, and LO may be partially responsible for decreased vascular elasticity and also for the decreased formation of new elastic fibers.
Collapse
Affiliation(s)
- Hideki Sugitani
- Department of Clinical Chemistry, Hoshi University, Tokyo, Japan
| | | | | | | |
Collapse
|
39
|
Kozel BA, Wachi H, Davis EC, Mecham RP. Domains in tropoelastin that mediate elastin deposition in vitro and in vivo. J Biol Chem 2003; 278:18491-8. [PMID: 12626514 DOI: 10.1074/jbc.m212715200] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Elastic fiber assembly is a complicated process involving multiple different proteins and enzyme activities. However, the specific protein-protein interactions that facilitate elastin polymerization have not been defined. To identify domains in the tropoelastin molecule important for the assembly process, we utilized an in vitro assembly model to map sequences within tropoelastin that facilitate its association with fibrillin-containing microfibrils in the extracellular matrix. Our results show that an essential assembly domain is located in the C-terminal region of the molecule, encoded by exons 29-36. Fine mapping studies using an exon deletion strategy and synthetic peptides identified the hydrophobic sequence in exon 30 as a major functional element in this region and suggested that the assembly process is driven by the propensity of this sequence to form beta-sheet structure. Tropoelastin molecules lacking the C-terminal assembly domain expressed as transgenes in mice did not assemble nor did they interfere with assembly of full-length normal mouse elastin. In addition to providing important information about elastin assembly in general, the results of this study suggest how removal or alteration of the C terminus through stop or frameshift mutations might contribute to the elastin-related diseases supravalvular aortic stenosis and cutis laxa.
Collapse
Affiliation(s)
- Beth A Kozel
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
40
|
Lin G, Tiedemann K, Vollbrandt T, Peters H, Batge B, Brinckmann J, Reinhardt DP. Homo- and heterotypic fibrillin-1 and -2 interactions constitute the basis for the assembly of microfibrils. J Biol Chem 2002; 277:50795-804. [PMID: 12399449 DOI: 10.1074/jbc.m210611200] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fibrillin-1 and fibrillin-2 constitute the backbone of extracellular filaments, called microfibrils. Fibrillin assembly involves complex multistep mechanisms to result in a periodical head-to-tail alignment in microfibrils. Impaired assembly potentially plays a role in the molecular pathogenesis of genetic disorders caused by mutations in fibrillin-1 (Marfan syndrome) and fibrillin-2 (congenital contractural arachnodactyly). Presently, the basic molecular interactions involved in fibrillin assembly are obscure. Here, we have generated recombinant full-length human fibrillin-1, and two overlapping recombinant polypeptides spanning the entire human fibrillin-2 in a mammalian expression system. Characterization by gel electrophoresis, electron microscopy after rotary shadowing, and reactivity with antibodies demonstrated correct folding of these recombinant polypeptides. Analyses of homotypic and heterotypic interaction repertoires showed N- to C-terminal binding of fibrillin-1, and of fibrillin-1 with fibrillin-2. The interactions were of high affinity with dissociation constants in the low nanomolar range. However, the N- and C-terminal fibrillin-2 polypeptides did not interact with each other. These results demonstrate that fibrillins can directly interact in an N- to C-terminal fashion to form homotypic fibrillin-1 or heterotypic fibrillin-1/fibrillin-2 microfibrils. This conclusion was further strengthened by double immunofluorescence labeling of microfibrils. In addition, the binding epitopes as well as the entire fibrillin molecules displayed very stable properties.
Collapse
Affiliation(s)
- Guoqing Lin
- Department of Medical Molecular Biology, University of Lübeck, Germany
| | | | | | | | | | | | | |
Collapse
|
41
|
Ritty TM, Ditsios K, Starcher BC. Distribution of the elastic fiber and associated proteins in flexor tendon reflects function. THE ANATOMICAL RECORD 2002; 268:430-40. [PMID: 12420291 DOI: 10.1002/ar.10175] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The elastic fiber is known to be an important component of skin, lung, and vasculature. Much less is known about the distribution of elastin and elastic fiber-related proteins in connective tissues, yet genetic defects of elastic fiber constituents can lead to deficiencies in these tissues. For the first time, we determine the distribution of elastin, fibrillins 1 and 2, and microfibril-associated glycoproteins (MAGPs) 1 and 2 in the flexor digitorum profundus (FDP) tendon. Three functionally distinct regions of the FDP tendon, the fibrocartilagenous (FC) region, avascular/tensional (AV/T) region, and insertion region, were evaluated by immunohistochemical methods for these five proteins. Biochemical analysis of desmosine content, an elastin-specific cross-link, demonstrated the presence of elastin in each region, and this was verified histochemically. The fibrillins were found with elastin and also pericellularly with internal fibroblasts where elastin was not detected. Although there was overlapping distribution, fibrillin 2 was more prominent in the interior of the tendon while fibrillin 1 was prominent in outer cell layers that contained elastic fibers. Both MAGP-1 and -2 were found throughout the tendon, although the greatest abundance was near the tendon insertion to bone. Surprisingly, MAGP-1 demonstrated a filamentous appearance within the fibrocartilage that did not correspond to the fibrillin 1 or 2 or MAGP-2 staining pattern. Lastly, we have shown that a vincular membrane located along the dorsal surface of the tendon near the insertion has a very high elastin content and a unique interface with the tendon that consists of an elastic anchor within the tendon body.
Collapse
Affiliation(s)
- Timothy M Ritty
- Department of Orthopaedic Surgery at Barnes-Jewish Hospital, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | |
Collapse
|
42
|
Abstract
Elastic fibres are essential extracellular matrix macromolecules comprising an elastin core surrounded by a mantle of fibrillin-rich microfibrils. They endow connective tissues such as blood vessels, lungs and skin with the critical properties of elasticity and resilience. The biology of elastic fibres is complex because they have multiple components, a tightly regulated developmental deposition, a multi-step hierarchical assembly and unique biomechanical functions. However, their molecular complexity is at last being unravelled by progress in identifying interactions between component molecules, ultrastructural analyses and studies of informative mouse models.
Collapse
Affiliation(s)
- Cay M Kielty
- School of Medicine, University of Manchester, UK.
| | | | | |
Collapse
|
43
|
Kielty CM, Baldock C, Lee D, Rock MJ, Ashworth JL, Shuttleworth CA. Fibrillin: from microfibril assembly to biomechanical function. Philos Trans R Soc Lond B Biol Sci 2002; 357:207-17. [PMID: 11911778 PMCID: PMC1692929 DOI: 10.1098/rstb.2001.1029] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Fibrillins form the structural framework of a unique and essential class of extracellular microfibrils that endow dynamic connective tissues with long-range elasticity. Their biological importance is emphasized by the linkage of fibrillin mutations to Marfan syndrome and related connective tissue disorders, which are associated with severe cardiovascular, ocular and skeletal defects. These microfibrils have a complex ultrastructure and it has proved a major challenge both to define their structural organization and to relate it to their biological function. However, new approaches have at last begun to reveal important insights into their molecular assembly, structural organization and biomechanical properties. This paper describes the current understanding of the molecular assembly of fibrillin molecules, the alignment of fibrillin molecules within microfibrils and the unique elastomeric properties of microfibrils.
Collapse
Affiliation(s)
- Cay M Kielty
- School of Medicine, University of Manchester, Manchester M13 9PT, UK.
| | | | | | | | | | | |
Collapse
|
44
|
Osakabe T, Hayashi M, Hasegawa K, Okuaki T, Ritty TM, Mecham RP, Wachi H, Seyama Y. Age- and gender-related changes in ligament components. Ann Clin Biochem 2001; 38:527-32. [PMID: 11587131 DOI: 10.1177/000456320103800510] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The age- and gender-related changes in extracellular matrix components (elastin, elastin cross-links, fibrillin, collagen and glycoprotein) and mineral components (calcium, Ca; phosphorus, P) in human lumbar yellow ligaments were investigated using samples obtained from surgical specimens. The mineral (Ca and P) contents increased with ageing (r = 0.703 and r = 0.772, respectively), whereas the contents of matrix components tended to decrease with ageing (elastin r = -0.261, elastin cross-links r = -0.213, fibrillin r = 0.494; collagen r = -0.322 and glycoprotein r = -0.143). Comparison of the male and female groups revealed that the ligament elastin content and elastin cross-links decreased in the male group, whereas the ligament collagen content decreased in the female group significantly in an age-dependent manner (r = -0.788, r = -0.753 and r = -0.721, respectively). These findings demonstrate age- and gender-related changes in mineral and matrix components (especially elastin and collagen) in the lumbar yellow ligaments in the Japanese population. It is suggested that elastin and collagen metabolism in ligaments changes both with age and according to gender.
Collapse
Affiliation(s)
- T Osakabe
- Department of Clinical Chemistry, Hoshi College of Pharmacy, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Baldock C, Koster AJ, Ziese U, Rock MJ, Sherratt MJ, Kadler KE, Shuttleworth CA, Kielty CM. The supramolecular organization of fibrillin-rich microfibrils. J Cell Biol 2001; 152:1045-56. [PMID: 11238459 PMCID: PMC2198817 DOI: 10.1083/jcb.152.5.1045] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We propose a new model for the alignment of fibrillin molecules within fibrillin microfibrils. Automated electron tomography was used to generate three-dimensional microfibril reconstructions to 18.6-A resolution, which revealed many new organizational details of untensioned microfibrils, including heart-shaped beads from which two arms emerge, and interbead diameter variation. Antibody epitope mapping of untensioned microfibrils revealed the juxtaposition of epitopes at the COOH terminus and near the proline-rich region, and of two internal epitopes that would be 42-nm apart in unfolded molecules, which infers intramolecular folding. Colloidal gold binds microfibrils in the absence of antibody. Comparison of colloidal gold and antibody binding sites in untensioned microfibrils and those extended in vitro, and immunofluorescence studies of fibrillin deposition in cell layers, indicate conformation changes and intramolecular folding. Mass mapping shows that, in solution, microfibrils with periodicities of <70 and >140 nm are stable, but periodicities of approximately 100 nm are rare. Microfibrils comprise two in-register filaments with a longitudinal symmetry axis, with eight fibrillin molecules in cross section. We present a model of fibrillin alignment that fits all the data and indicates that microfibril extensibility follows conformation-dependent maturation from an initial head-to-tail alignment to a stable approximately one-third staggered arrangement.
Collapse
Affiliation(s)
- C Baldock
- Wellcome Trust Centre for Cell-Matrix Research, Schools of Biological Sciences and Medicine, University of Manchester, Manchester, M13 9PT, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Sherratt MJ, Wess TJ, Baldock C, Ashworth J, Purslow PP, Shuttleworth CA, Kielty CM. Fibrillin-rich microfibrils of the extracellular matrix: ultrastructure and assembly. Micron 2001; 32:185-200. [PMID: 10936461 DOI: 10.1016/s0968-4328(99)00082-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fibrillin-rich microfibrils are a unique class of extensible connective tissue macromolecules. Their critical contribution to the establishment and maintenance of diverse extracellular matrices was underlined by the linkage of their principal structural component fibrillin to Marfan syndrome, a heritable connective tissue disorder with pleiotropic manifestations. Microscopy and preparative techniques have contributed substantially to the understanding of microfibril structure and function. The supramolecular organisation of microfibrillar assemblies in tissues has been examined by tissue sectioning and X-ray diffraction methods. Published findings are discussed and new information reported on the organisation of microfibrils in the ciliary zonular fibrils by environmental scanning electron microscopy. This review summarises microscopy and X-ray diffraction studies that are informing current understanding of the ultrastructure of fibrillin-rich microfibrils.
Collapse
Affiliation(s)
- M J Sherratt
- School of Biological Sciences, 2.205 Stopford Building, University of Manchester M13 9PT, Manchester, UK.
| | | | | | | | | | | | | |
Collapse
|
47
|
Metzler DE, Metzler CM, Sauke DJ. Lipids, Membranes, and Cell Coats. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50011-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
48
|
Affiliation(s)
- J L Ashworth
- Academic Department of Ophthalmology, Royal Eye Hospital, Oxford Road, Manchester M13 9WH, UK
| | | | | |
Collapse
|
49
|
Handford PA, Downing AK, Reinhardt DP, Sakai LY. Fibrillin: from domain structure to supramolecular assembly. Matrix Biol 2000; 19:457-70. [PMID: 11068200 DOI: 10.1016/s0945-053x(00)00100-1] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the last 5 years, significant progress has been made in understanding the structure and function of all the major domains composing the fibrillins. A previous review [Meth. Enzymol. 245 (1994), 29] focused on the isolation of fibrillin monomers and fibrillin-containing polymers (microfibrils). In this article, information gained from recent studies which have further elucidated molecular structure and investigated effects of mutations on structural and functional properties will be summarized. In addition, studies of functional domains in fibrillins which may be important in assembling microfibrils will be discussed. Throughout this review, the authors have attempted to identify areas of research which have been controversial. In the conclusion, we raise important questions which remain unresolved.
Collapse
Affiliation(s)
- P A Handford
- Division of Molecular and Cellular Biochemistry, Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU, Oxford, UK
| | | | | | | |
Collapse
|
50
|
Trask TM, Trask BC, Ritty TM, Abrams WR, Rosenbloom J, Mecham RP. Interaction of tropoelastin with the amino-terminal domains of fibrillin-1 and fibrillin-2 suggests a role for the fibrillins in elastic fiber assembly. J Biol Chem 2000; 275:24400-6. [PMID: 10825173 DOI: 10.1074/jbc.m003665200] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alignment of tropoelastin molecules during the process of elastogenesis is thought to require fibrillin-containing microfibrils. In this study, we have demonstrated that amino-terminal domains of two microfibrillar proteins, fibrillin-1 and fibrillin-2, interact with tropoelastin in solid phase binding assays. The tropoelastin-binding site was localized to a region beginning at the glycine-rich and proline-rich regions of fibrillin-2 and fibrillin-1, respectively, and continuing through the second 8-cysteine domain. Characterization of the binding requirements using the fibrillin-2 construct found that a folded, secondary structure was necessary for binding. Furthermore, binding between tropoelastin and fibrillin was mediated by ionic interactions involving the lysine side chains of tropoelastin. The importance of the lysine side chains was corroborated by the finding that the fibrillin-2 construct did not bind to mature elastin, whose lysine side chains have been modified to form cross-links. Interestingly, there was no interaction between the fibrillin constructs and tropoelastin in solution phase, suggesting that binding of tropoelastin to a solid substrate exposes a cryptic binding site. These results suggest that fibrillin plays an important role in elastic fiber assembly by binding tropoelastin and perhaps facilitating side chain alignment for efficient cross-linking.
Collapse
Affiliation(s)
- T M Trask
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|