1
|
Huang D, Chen L, Wang Z, He F, Zhang X, Wang X. Characterization of a secondary palmitoleoyltransferase of lipid A in Vibrio parahaemolyticus. Enzyme Microb Technol 2024; 180:110504. [PMID: 39191067 DOI: 10.1016/j.enzmictec.2024.110504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/31/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024]
Abstract
The detection of pathogenicity and immunogenicity in Vibrio parahaemolyticus poses a significant challenge due to its threat to human health and food safety, which is strongly correlated with lipid A. Lipid A, a critical component found in most Gram-negative bacteria, functions as a hydrophobic anchor for lipopolysaccharide. V. parahaemolyticus synthesizes multiple lipid A species with various secondary acyl chains. In this study, a secondary acyltransferase of lipid A encoded by VP_RS08405 in V. parahaemolyticus was identified. Based on sequence alignment analysis, V. parahaemolyticus VP_RS08405 has high homology to E. coli lpxL, lpxM and lpxP which encode the three secondary acyltransferases of lipid A. Therefore, V. parahaemolyticus VP_RS08405 was cloned into pBAD33, and the resulting pB08405 was introduced in E. coli mutants WHL00 in which lpxL was deleted, WHM00 in which lpxM was deleted, WHP00 in which lpxP was deleted, and WH300 in which lpxL, lpxM and lpxP were deleted. The recombinant strains WHL00/pB08405, WHM00/pB08405, WHP00/pB08405, WH300/pB08405, as well as their vector controls, were grown at normal and low temperatures. Lipid A species were isolated from the above strains and analyzed by using high-performance liquid chromatography-tandem mass spectrometry and thin-layer chromatography. After comparing the secondary acyl alterations of lipid A from different recombinant strains, it is concluded that VP_RS08405 specifically catalyzed the addition of a palmitoleate to the 2'-position of lipid A and its activity is not temperature-sensitive. In addition, to determine the dependence of VP_RS08405 on Kdo, VP_RS08405 was overexpressed in E. coli mutants WH001 in which waaA was deleted, and WH400 in which waaA, lpxL, lpxM and lpxP were deleted. Lipid A species were isolated from WH001/pB08405 and WH400/pB08405, and analyzed. The results show that the function of VP_RS08405 is Kdo-dependent. These findings provide a better understanding of the structural diversity of lipid A in V. parahaemolyticus.
Collapse
Affiliation(s)
- Danyang Huang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Ningbo Institute of Marine Medicine Peking University, Ningbo 315832, China
| | - Lingyan Chen
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhe Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Fenfang He
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xinrui Zhang
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Baijal K, Abramchuk I, Herrera CM, Stephen Trent M, Lavallée-Adam M, Downey M. Proteomics analysis reveals a role for E. coli polyphosphate kinase in membrane structure and polymyxin resistance during starvation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.06.546892. [PMID: 37461725 PMCID: PMC10350021 DOI: 10.1101/2023.07.06.546892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Polyphosphates (polyP) are chains of inorganic phosphates that can reach over 1000 residues in length. In Escherichia coli, polyP is produced by the polyP kinase (PPK) and is thought to play a protective role during the response to cellular stress. However, the molecular pathways impacted by PPK activity and polyP accumulation remain poorly characterized. In this work we used label-free mass spectrometry to study the response of bacteria that cannot produce polyP (∆ppk) during starvation to identify novel pathways regulated by PPK. In response to starvation, we found 92 proteins significantly differentially expressed between wild-type and ∆ppk mutant cells. Wild-type cells were enriched for proteins related to amino acid biosynthesis and transport, while Δppk mutants were enriched for proteins related to translation and ribosome biogenesis, suggesting that without PPK, cells remain inappropriately primed for growth even in the absence of required building blocks. From our dataset, we were particularly interested in Arn and EptA proteins, which were downregulated in ∆ppk mutants compared to wild-type controls, because they play a role in lipid A modifications linked to polymyxin resistance. Using western blotting, we confirm differential expression of these and related proteins, and provide evidence that this mis-regulation in ∆ppk cells stems from a failure to induce the BasS/BasR two-component system during starvation. We also show that ∆ppk mutants unable to upregulate Arn and EptA expression lack the respective L-Ara4N and pEtN modifications on lipid A. In line with this observation, loss of ppk restores polymyxin sensitivity in resistant strains carrying a constitutively active basR allele. Overall, we show a new role for PPK in lipid A modification during starvation and provide a rationale for targeting PPK to sensitize bacteria towards polymyxin treatment. We further anticipate that our proteomics work will provide an important resource for researchers interested in the diverse pathways impacted by PPK.
Collapse
Affiliation(s)
- Kanchi Baijal
- Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Iryna Abramchuk
- Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Carmen M. Herrera
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - M. Stephen Trent
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Mathieu Lavallée-Adam
- Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Michael Downey
- Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
3
|
Yang H, Sherman ME, Koo CJ, Treaster LM, Smith JP, Gallaher SG, Goodlett DR, Sweet CR, Ernst RK. Structure Determination of Lipid A with Multiple Glycosylation Sites by Tandem MS of Lithium-Adducted Negative Ions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:1047-1055. [PMID: 37184080 DOI: 10.1021/jasms.3c00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
FLATn is a tandem mass spectrometric technique that can be used to rapidly generate spectral information applicable for structural elucidation of lipids like lipid A from Gram-negative bacterial species from a single bacterial colony. In this study, we extend the scope and capability of FLATn by tandem MS fragmentation of lithium-adducted molecular lipid A anions and fragments (FLATn-Li) that provides additional structural and diagnostic data from FLATn samples allowing for the discrimination of terminal phosphate modifications in a variety of pathogenic and environmental species. Using FLATn-Li, we elucidated the lipid A structure from several bacterial species, including novel structures from arctic bacterioplankton of the Duganella and Massilia genera that favor 4-amino-4-deoxy-l-arabinopyranose (Ara4N) modification at the 1-phosphate position and that demonstrate double glycosylation with Ara4N at the 1 and 4' phosphate positions simultaneously. The structures characterized in this work demonstrate that some environmental psychrophilic species make extensive use of this structural lipid A modification previously characterized as a pathogenic adaptation and the structural basis of resistance to cationic antimicrobial peptides. This observation extends the role of phosphate modification(s) in environmental species adaptation and suggests that Ara4N modification can functionally replace the positive charge of the phosphoethanolamine modification that is more typically found attached to the 1-phosphate position of modified lipid A.
Collapse
Affiliation(s)
- Hyojik Yang
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, Maryland 21201, United States of America
| | - Matthew E Sherman
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, Maryland 21201, United States of America
| | - Caitlyn J Koo
- Chemistry Department, United States Naval Academy, Annapolis, Maryland 21402, United States of America
- School of Medicine, Uniformed Services University, Bethesda, Maryland 20814, United States of America
| | - Logan M Treaster
- Chemistry Department, United States Naval Academy, Annapolis, Maryland 21402, United States of America
- School of Medicine, University of Kansas, Kansas City, Kansas 66160, United States of America
| | - Joseph P Smith
- Oceanography Department, United States Naval Academy, Annapolis, Maryland 21402, United States of America
| | - Shawn G Gallaher
- Oceanography Department, United States Naval Academy, Annapolis, Maryland 21402, United States of America
| | - David R Goodlett
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
- Genome British Columbia Proteomics Centre, University of Victoria, Victoria, British Columbia V8Z 7Z8, Canada
| | - Charles R Sweet
- Chemistry Department, United States Naval Academy, Annapolis, Maryland 21402, United States of America
| | - Robert K Ernst
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, Maryland 21201, United States of America
| |
Collapse
|
4
|
Fux AC, Casonato Melo C, Michelini S, Swartzwelter BJ, Neusch A, Italiani P, Himly M. Heterogeneity of Lipopolysaccharide as Source of Variability in Bioassays and LPS-Binding Proteins as Remedy. Int J Mol Sci 2023; 24:ijms24098395. [PMID: 37176105 PMCID: PMC10179214 DOI: 10.3390/ijms24098395] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Lipopolysaccharide (LPS), also referred to as endotoxin, is the major component of Gram-negative bacteria's outer cell wall. It is one of the main types of pathogen-associated molecular patterns (PAMPs) that are known to elicit severe immune reactions in the event of a pathogen trespassing the epithelial barrier and reaching the bloodstream. Associated symptoms include fever and septic shock, which in severe cases, might even lead to death. Thus, the detection of LPS in medical devices and injectable pharmaceuticals is of utmost importance. However, the term LPS does not describe one single molecule but a diverse class of molecules sharing one common feature: their characteristic chemical structure. Each bacterial species has its own pool of LPS molecules varying in their chemical composition and enabling the aggregation into different supramolecular structures upon release from the bacterial cell wall. As this heterogeneity has consequences for bioassays, we aim to examine the great variability of LPS molecules and their potential to form various supramolecular structures. Furthermore, we describe current LPS quantification methods and the LPS-dependent inflammatory pathway and show how LPS heterogeneity can affect them. With the intent of overcoming these challenges and moving towards a universal approach for targeting LPS, we review current studies concerning LPS-specific binders. Finally, we give perspectives for LPS research and the use of LPS-binding molecules.
Collapse
Affiliation(s)
- Alexandra C Fux
- Division of Allergy & Immunology, Department of Biosciences & Medical Biology, Paris Lodron University of Salzburg (PLUS), Hellbrunnerstraße 34, 5020 Salzburg, Austria
- Chemical Biology Department, R&D Reagents, Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429 Bergisch Gladbach, Germany
| | - Cristiane Casonato Melo
- Division of Allergy & Immunology, Department of Biosciences & Medical Biology, Paris Lodron University of Salzburg (PLUS), Hellbrunnerstraße 34, 5020 Salzburg, Austria
- Chemical Biology Department, R&D Reagents, Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429 Bergisch Gladbach, Germany
| | - Sara Michelini
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Benjamin J Swartzwelter
- Department of Microbiology, Immunology, and Pathology, 1601 Campus Delivery, Colorado State University, Fort Collins, CO 80523, USA
| | - Andreas Neusch
- Experimental Medical Physics, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Paola Italiani
- Institute of Biochemistry and Cell Biology, Consiglio Nazionale delle Ricerche (CNR), Via P. Castellino 111, 80131 Naples, Italy
- Stazione Zoologica Anton Dohrn (SZN), Villa Comunale, 80121 Naples, Italy
| | - Martin Himly
- Division of Allergy & Immunology, Department of Biosciences & Medical Biology, Paris Lodron University of Salzburg (PLUS), Hellbrunnerstraße 34, 5020 Salzburg, Austria
| |
Collapse
|
5
|
Kumar Pal S, Kumar S. LpxC (UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase) inhibitors: A long path explored for potent drug design. Int J Biol Macromol 2023; 234:122960. [PMID: 36565833 DOI: 10.1016/j.ijbiomac.2022.12.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Microbial infections are becoming resistant to traditional antibiotics. As novel resistance mechanisms are developed and disseminated across the world, our ability to treat the most common infectious diseases is becoming increasingly compromised. As existing antibiotics are losing their effectiveness, especially treatment of bacterial infections, is difficult. In order to combat this issue, it is of utmost importance to identify novel pharmacological targets or antibiotics. LpxC, a zinc-dependent metalloamidase that catalyzes the committed step in the biosynthesis of lipid A (endotoxin) in bacteria, is a prime candidate for drug/therapeutic target. So far, the rate-limiting metallo-amidase LpxC has been the most-targeted macromolecule in the Raetz pathway. This is because it is important for the growth of these bacterial infections. This review showcases on the research done to develop efficient drugs in this area before and after the 2015.
Collapse
Affiliation(s)
- Sudhir Kumar Pal
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.
| | - Sanjit Kumar
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
6
|
Ji F, Huang D, Tan X, Guo Y, Wang Z, Zhou Q, Wang X. Structure analysis of lipid A species in Vibrio parahaemolyticus by constructing mutants lacking multiple secondary acyltransferases of lipid A. Biotechnol Appl Biochem 2022; 70:716-729. [PMID: 35913040 DOI: 10.1002/bab.2393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/24/2022] [Indexed: 11/10/2022]
Abstract
Four secondary acyltransferases of Vibrio parahaemolyticus lipid A encoded by VP_RS00880, VP_RS08405, VP_RS12170 and VP_RS01045 have been identified. In this study, mutants of V. parahaemolyticus were constructed by deleting two, three or four of these genes. The double mutants showed similar growth pattern with the wild type, but the quadruple mutant VPW011 showed significant growth defect at both 37°C and 21°C. Lipid A samples were extracted from these mutants and analyzed by electrospray ionization-mass spectrometry. The double and triple mutants could synthesize hepta- and octa-acylated lipid A species, while the quadruple mutant VPW011could synthesized hexa- and hepta-acylated lipid A. The results suggest that the four secondary acyltransferases could complement each other in V. parahaemolyticus. More importantly, additional secondary acyltransferases of lipid A might exist in V. parahaemolyticus and their activities might be as strong as the four known secondary acyltransferases. The unusual multiple secondary acyltransferases of lipid A might play roles in pathogenicity and antimicrobic resistance of V. parahaemolyticus. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Fan Ji
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Danyang Huang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xin Tan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yong Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zhen Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Qing Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
7
|
Ginez LD, Osorio A, Vázquez-Ramírez R, Arenas T, Mendoza L, Camarena L, Poggio S. Changes in fluidity of the E. coli outer membrane in response to temperature, divalent cations and polymyxin-B show two different mechanisms of membrane fluidity adaptation. FEBS J 2022; 289:3550-3567. [PMID: 35038363 DOI: 10.1111/febs.16358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/23/2021] [Accepted: 01/13/2022] [Indexed: 12/28/2022]
Abstract
The outer membrane (OM) is an essential component of the Gram-negative bacterial cell envelope. Restricted diffusion of integral OM proteins and lipopolysaccharide (LPS) that constitute the outer leaflet of the OM support a model in which the OM is in a semi-crystalline state. The low fluidity of the OM has been suggested to be an important property of this membrane that even contributes to cell rigidity. The LPS characteristics strongly determine the properties of the OM and the LPS layer fluidity has been measured using different techniques that require specific conditions or are technically challenging. Here, we characterize the Escherichia coli LPS fluidity by evaluating the lateral diffusion of the styryl dye FM4-64FX in fluorescence recovery after photobleaching experiments. This technique allowed us to determine the effect of different conditions and genetic backgrounds on the LPS fluidity. Our results show that a fraction of the LPS can slowly diffuse and that the fluidity of the LPS layer adapts by modifying the diffusion of the LPS and the fraction of mobile LPS molecules.
Collapse
Affiliation(s)
- Luis David Ginez
- Departamento Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México
| | - Aurora Osorio
- Departamento Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México
| | - Ricardo Vázquez-Ramírez
- Departamento Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México
| | - Thelma Arenas
- Departamento Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México
| | - Luis Mendoza
- Departamento Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México
| | - Laura Camarena
- Departamento Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México
| | - Sebastian Poggio
- Departamento Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México
| |
Collapse
|
8
|
Lakey JH, Paracini N, Clifton LA. Exploiting neutron scattering contrast variation in biological membrane studies. BIOPHYSICS REVIEWS 2022; 3:021307. [PMID: 38505417 PMCID: PMC10903484 DOI: 10.1063/5.0091372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/03/2022] [Indexed: 03/21/2024]
Abstract
Biological membranes composed of lipids and proteins are central for the function of all cells and individual components, such as proteins, that are readily studied by a range of structural approaches, including x-ray crystallography and cryo-electron microscopy. However, the study of complex molecular mixtures within the biological membrane structure and dynamics requires techniques that can study nanometer thick molecular bilayers in an aqueous environment at ambient temperature and pressure. Neutron methods, including scattering and spectroscopic approaches, are useful since they can measure structure and dynamics while also being able to penetrate sample holders and cuvettes. The structural approaches, such as small angle neutron scattering and neutron reflectometry, detect scattering caused by the difference in neutron contrast (scattering length) between different molecular components such as lipids or proteins. Usually, the bigger the contrast, the clearer the structural data, and this review uses examples from our research to illustrate how contrast can be increased to allow the structures of individual membrane components to be resolved. Most often this relies upon the use of deuterium in place of hydrogen, but we also discuss the use of magnetic contrast and other elements with useful scattering length values.
Collapse
Affiliation(s)
- Jeremy H. Lakey
- Institute for Cell and Molecular Bioscience, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Nicolò Paracini
- Biofilms Research Center for Biointerfaces, Malmö University, Per Albin Hanssons väg 35, 21432 Malmö, Sweden
| | - Luke A. Clifton
- ISIS Pulsed Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| |
Collapse
|
9
|
Kay EJ, Mauri M, Willcocks SJ, Scott TA, Cuccui J, Wren BW. Engineering a suite of E. coli strains for enhanced expression of bacterial polysaccharides and glycoconjugate vaccines. Microb Cell Fact 2022; 21:66. [PMID: 35449016 PMCID: PMC9026721 DOI: 10.1186/s12934-022-01792-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 04/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Glycoengineering, in the biotechnology workhorse bacterium, Escherichia coli, is a rapidly evolving field, particularly for the production of glycoconjugate vaccine candidates (bioconjugation). Efficient production of glycoconjugates requires the coordinated expression within the bacterial cell of three components: a carrier protein, a glycan antigen and a coupling enzyme, in a timely fashion. Thus, the choice of a suitable E. coli host cell is of paramount importance. Microbial chassis engineering has long been used to improve yields of chemicals and biopolymers, but its application to vaccine production is sparse. RESULTS In this study we have engineered a family of 11 E. coli strains by the removal and/or addition of components rationally selected for enhanced expression of Streptococcus pneumoniae capsular polysaccharides with the scope of increasing yield of pneumococcal conjugate vaccines. Importantly, all strains express a detoxified version of endotoxin, a concerning contaminant of therapeutics produced in bacterial cells. The genomic background of each strain was altered using CRISPR in an iterative fashion to generate strains without antibiotic markers or scar sequences. CONCLUSIONS Amongst the 11 modified strains generated in this study, E. coli Falcon, Peregrine and Sparrowhawk all showed increased production of S. pneumoniae serotype 4 capsule. Eagle (a strain without enterobacterial common antigen, containing a GalNAc epimerase and PglB expressed from the chromosome) and Sparrowhawk (a strain without enterobacterial common antigen, O-antigen ligase and chain length determinant, containing a GalNAc epimerase and chain length regulators from Streptococcus pneumoniae) respectively produced an AcrA-SP4 conjugate with 4 × and 14 × more glycan than that produced in the base strain, W3110. Beyond their application to the production of pneumococcal vaccine candidates, the bank of 11 new strains will be an invaluable resource for the glycoengineering community.
Collapse
Affiliation(s)
- Emily J Kay
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Marta Mauri
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Sam J Willcocks
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Timothy A Scott
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Jon Cuccui
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Brendan W Wren
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK.
| |
Collapse
|
10
|
Valvano MA. Remodelling of the Gram-negative bacterial Kdo 2-lipid A and its functional implications. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35394417 DOI: 10.1099/mic.0.001159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The lipopolysaccharide (LPS) is a characteristic molecule of the outer leaflet of the Gram-negative bacterial outer membrane, which consists of lipid A, core oligosaccharide, and O antigen. The lipid A is embedded in outer membrane and provides an efficient permeability barrier, which is particularly important to reduce the permeability of antibiotics, toxic cationic metals, and antimicrobial peptides. LPS, an important modulator of innate immune responses ranging from localized inflammation to disseminated sepsis, displays a high level of structural and functional heterogeneity, which arise due to regulated differences in the acylation of the lipid A and the incorporation of non-stoichiometric modifications in lipid A and the core oligosaccharide. This review focuses on the current mechanistic understanding of the synthesis and assembly of the lipid A molecule and its most salient non-stoichiometric modifications.
Collapse
Affiliation(s)
- Miguel A Valvano
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, UK
| |
Collapse
|
11
|
Sun J, Rutherford ST, Silhavy TJ, Huang KC. Physical properties of the bacterial outer membrane. Nat Rev Microbiol 2022; 20:236-248. [PMID: 34732874 PMCID: PMC8934262 DOI: 10.1038/s41579-021-00638-0] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2021] [Indexed: 11/09/2022]
Abstract
It has long been appreciated that the Gram-negative outer membrane acts as a permeability barrier, but recent studies have uncovered a more expansive and versatile role for the outer membrane in cellular physiology and viability. Owing to recent developments in microfluidics and microscopy, the structural, rheological and mechanical properties of the outer membrane are becoming apparent across multiple scales. In this Review, we discuss experimental and computational studies that have revealed key molecular factors and interactions that give rise to the spatial organization, limited diffusivity and stress-bearing capacity of the outer membrane. These physical properties suggest broad connections between cellular structure and physiology, and we explore future prospects for further elucidation of the implications of outer membrane construction for cellular fitness and survival.
Collapse
Affiliation(s)
- Jiawei Sun
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Steven T. Rutherford
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA 94080, USA,To whom correspondence should be addressed: , ,
| | - Thomas J. Silhavy
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA,To whom correspondence should be addressed: , ,
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA, USA. .,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA. .,Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
12
|
Guo R, He M, Zhang X, Ji X, Wei Y, Zhang QL, Zhang Q. Genome-Wide Transcriptional Changes of Rhodosporidium kratochvilovae at Low Temperature. Front Microbiol 2021; 12:727105. [PMID: 34603256 PMCID: PMC8481953 DOI: 10.3389/fmicb.2021.727105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/26/2021] [Indexed: 12/20/2022] Open
Abstract
Rhodosporidium kratochvilovae strain YM25235 is a cold-adapted oleaginous yeast strain that can grow at 15°C. It is capable of producing polyunsaturated fatty acids. Here, we used the Nanopore Platform to first assemble the R. kratochvilovae strain YM25235 genome into a 23.71 Mb size containing 46 scaffolds and 8,472 predicted genes. To explore the molecular mechanism behind the low temperature response of R. kratochvilovae strain YM25235, we analyzed the RNA transcriptomic data from low temperature (15°C) and normal temperature (30°C) groups using the next-generation deep sequencing technology (RNA-seq). We identified 1,300 differentially expressed genes (DEGs) by comparing the cultures grown at low temperature (15°C) and normal temperature (30°C) transcriptome libraries, including 553 significantly upregulated and 747 significantly downregulated DEGs. Gene ontology and pathway enrichment analysis revealed that DEGs were primarily related to metabolic processes, cellular processes, cellular organelles, and catalytic activity, whereas the overrepresented pathways included the MAPK signaling pathway, metabolic pathways, and amino sugar and nucleotide sugar metabolism. We validated the RNA-seq results by detecting the expression of 15 DEGs using qPCR. This study provides valuable information on the low temperature response of R. kratochvilovae strain YM25235 for further research and broadens our understanding for the response of R. kratochvilovae strain YM25235 to low temperature.
Collapse
Affiliation(s)
- Rui Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Meixia He
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xiaoqing Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xiuling Ji
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Yunlin Wei
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Qi-Lin Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Qi Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
13
|
Clark MM, Paxhia MD, Young JM, Manzella MP, Reguera G. Adaptive Synthesis of a Rough Lipopolysaccharide in Geobacter sulfurreducens for Metal Reduction and Detoxification. Appl Environ Microbiol 2021; 87:e0096421. [PMID: 34347518 PMCID: PMC8478458 DOI: 10.1128/aem.00964-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 07/31/2021] [Indexed: 11/20/2022] Open
Abstract
The ability of some metal-reducing bacteria to produce a rough (no O-antigen) lipopolysaccharide (LPS) could facilitate surface interactions with minerals and metal reduction. Consistent with this, the laboratory model metal reducer Geobacter sulfurreducens PCA produced two rough LPS isoforms (with or without a terminal methyl-quinovosamine sugar) when growing with the soluble electron acceptor fumarate but expressed only the shorter and more hydrophilic variant when reducing iron oxides. We reconstructed from genomic data conserved pathways for the synthesis of the rough LPS and generated heptosyltransferase mutants with partial (ΔrfaQ) or complete (ΔrfaC) truncations in the core oligosaccharide. The stepwise removal of the LPS core sugars reduced the hydrophilicity of the cell and increased outer membrane vesiculation. These changes in surface charge and remodeling did not substantially impact planktonic growth but disrupted the developmental stages and structure of electroactive biofilms. Furthermore, the mutants assembled conductive pili for extracellular mineralization of the toxic uranyl cation but were unable to prevent permeation and mineralization of the radionuclide in the cell envelope. Hence, not only does the rough LPS promote cell-cell and cell-mineral interactions critical to biofilm formation and metal respiration but it also functions as a permeability barrier to toxic metal cations. In doing so, the rough LPS maximizes the extracellular reduction of soluble and insoluble metals and preserves cell envelope functions critical to the environmental survival of Geobacter bacteria in metal-rich environments and their performance in bioremediation and bioenergy applications. IMPORTANCE Some metal-reducing bacteria produce an LPS without the repeating sugars (O-antigen) that decorate the surface of most Gram-negative bacteria, but the biological significance of this adaptive feature was not previously investigated. Using the model representative Geobacter sulfurreducens strain PCA and mutants carrying stepwise truncations in the LPS core sugars, we demonstrate the importance of the rough LPS in the control of cell surface chemistry during the respiration of iron minerals and the formation of electroactive biofilms. Importantly, we describe hitherto overlooked roles for the rough LPS in metal sequestration and outer membrane vesiculation that are critical for the extracellular reduction and detoxification of toxic metals and radionuclides. These results are of interest for the optimization of bioremediation schemes and electricity-harvesting platforms using these bacteria.
Collapse
Affiliation(s)
- Morgen M. Clark
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Michael D. Paxhia
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Jenna M. Young
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Michael P. Manzella
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Gemma Reguera
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
14
|
Abstract
Bacteria often encounter temperature fluctuations in their natural habitats and must adapt to survive. The molecular response of bacteria to sudden temperature upshift or downshift is termed the heat shock response (HSR) or the cold shock response (CSR), respectively. Unlike the HSR, which activates a dedicated transcription factor that predominantly copes with heat-induced protein folding stress, the CSR is mediated by a diverse set of inputs. This review provides a picture of our current understanding of the CSR across bacteria. The fundamental aspects of CSR involved in sensing and adapting to temperature drop, including regulation of membrane fluidity, protein folding, DNA topology, RNA metabolism, and protein translation, are discussed. Special emphasis is placed on recent findings of a CSR circuitry in Escherichia coli mediated by cold shock family proteins and RNase R that monitors and modulates messenger RNA structure to facilitate global translation recovery during acclimation. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Microbiology and Immunology, University of California, San Francisco, California 94158, USA;
| | - Carol A Gross
- Department of Microbiology and Immunology, University of California, San Francisco, California 94158, USA; .,Department of Cell and Tissue Biology, University of California, San Francisco, California 94158, USA.,California Institute of Quantitative Biology, University of California, San Francisco, California 94158, USA
| |
Collapse
|
15
|
Homeoviscous Adaptation of the Acinetobacter baumannii Outer Membrane: Alteration of Lipooligosaccharide Structure during Cold Stress. mBio 2021; 12:e0129521. [PMID: 34425709 PMCID: PMC8406137 DOI: 10.1128/mbio.01295-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To maintain optimal membrane dynamics, cells from all domains of life must acclimate to various environmental signals in a process referred to as homeoviscous adaptation. Alteration of the lipid composition is critical for maintaining membrane fluidity, permeability of the lipid bilayer, and protein function under diverse conditions. It is well documented, for example, that glycerophospholipid content varies substantially in both Gram-negative and Gram-positive bacteria with changes in growth temperature. However, in the case of Gram-negative bacteria, far less is known concerning structural changes in lipopolysaccharide (LPS) or lipooligosaccharide (LOS) during temperature shifts. LPS/LOS is anchored at the cell surface by the highly conserved lipid A domain and localized in the outer leaflet of the outer membrane. Here, we identified a novel acyltransferase, termed LpxS, involved in the synthesis of the lipid A domain of Acinetobacter baumannii. A. baumannii is a significant, multidrug-resistant, opportunistic pathogen that is particularly difficult to clear from health care settings because of its ability to survive under diverse conditions. LpxS transfers an octanoate (C8:0) fatty acid, the shortest known secondary acyl chain reported to date, replacing a C12:0 fatty acid at the 2' position of lipid A. Expression of LpxS was highly upregulated under cold conditions and likely increases membrane fluidity. Furthermore, incorporation of a C8:0 acyl chain under cold conditions increased the effectiveness of the outer membrane permeability barrier. LpxS orthologs are found in several Acinetobacter species and may represent a common mechanism for adaptation to cold temperatures in these organisms. IMPORTANCE To maintain cellular fitness, the composition of biological membranes must change in response to shifts in temperature or other stresses. This process, known as homeoviscous adaptation, allows for maintenance of optimal fluidity and membrane permeability. Here, we describe an enzyme that alters the fatty acid content of A. baumannii LOS, a major structural feature and key component of the bacterial outer membrane. Although much is known regarding how glycerophospholipids are altered during temperature shifts, our understanding of LOS or LPS alterations under these conditions is lacking. Our work identifies a cold adaptation mechanism in A. baumannii, a highly adaptable and multidrug-resistant pathogen.
Collapse
|
16
|
Molecular Basis of Essentiality of Early Critical Steps in the Lipopolysaccharide Biogenesis in Escherichia coli K-12: Requirement of MsbA, Cardiolipin, LpxL, LpxM and GcvB. Int J Mol Sci 2021; 22:ijms22105099. [PMID: 34065855 PMCID: PMC8151780 DOI: 10.3390/ijms22105099] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 12/11/2022] Open
Abstract
To identify the physiological factors that limit the growth of Escherichia coli K-12 strains synthesizing minimal lipopolysaccharide (LPS), we describe the first construction of strains devoid of the entire waa locus and concomitantly lacking all three acyltransferases (LpxL/LpxM/LpxP), synthesizing minimal lipid IVA derivatives with a restricted ability to grow at around 21 °C. Suppressors restoring growth up to 37 °C of Δ(gmhD-waaA) identified two independent single-amino-acid substitutions—P50S and R310S—in the LPS flippase MsbA. Interestingly, the cardiolipin synthase-encoding gene clsA was found to be essential for the growth of ΔlpxLMP, ΔlpxL, ΔwaaA, and Δ(gmhD-waaA) bacteria, with a conditional lethal phenotype of Δ(clsA lpxM), which could be overcome by suppressor mutations in MsbA. Suppressor mutations basS A20D or basR G53V, causing a constitutive incorporation of phosphoethanolamine (P-EtN) in the lipid A, could abolish the Ca++ sensitivity of Δ(waaC eptB), thereby compensating for P-EtN absence on the second Kdo. A single-amino-acid OppA S273G substitution is shown to overcome the synthetic lethality of Δ(waaC surA) bacteria, consistent with the chaperone-like function of the OppA oligopeptide-binding protein. Furthermore, overexpression of GcvB sRNA was found to repress the accumulation of LpxC and suppress the lethality of LapAB absence. Thus, this study identifies new and limiting factors in regulating LPS biosynthesis.
Collapse
|
17
|
Analyses of Lipid A Diversity in Gram-Negative Intestinal Bacteria Using Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry. Metabolites 2021; 11:metabo11040197. [PMID: 33810392 PMCID: PMC8065654 DOI: 10.3390/metabo11040197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 11/17/2022] Open
Abstract
Lipid A is a characteristic molecule of Gram-negative bacteria that elicits an immune response in mammalian cells. The presence of structurally diverse lipid A types in the human gut bacteria has been suggested before, and this appears associated with the immune response. However, lipid A structures and their quantitative heterogeneity have not been well characterized. In this study, a method of analysis for lipid A using liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOF/MS) was developed and applied to the analyses of Escherichia coli and Bacteroidetes strains. In general, phosphate compounds adsorb on stainless-steel piping and cause peak tailing, but the use of an ammonia-containing alkaline solvent produced sharp lipid A peaks with high sensitivity. The method was applied to E. coli strains, and revealed the accumulation of lipid A with abnormal acyl side chains in knockout strains as well as known diphosphoryl hexa-acylated lipid A in a wild-type strain. The analysis of nine representative strains of Bacteroidetes showed the presence of monophosphoryl penta-acylated lipid A characterized by a highly heterogeneous main acyl chain length. Comparison of the structures and amounts of lipid A among the strains suggested a relationship between lipid A profiles and the phylogenetic classification of the strains.
Collapse
|
18
|
Müller E, Hotzel H, Linde J, Hänel I, Tomaso H. Antimicrobial Resistance and in silico Virulence Profiling of Aliarcobacter butzleri Strains From German Water Poultry. Front Microbiol 2020; 11:617685. [PMID: 33381106 PMCID: PMC7767855 DOI: 10.3389/fmicb.2020.617685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 11/27/2020] [Indexed: 11/13/2022] Open
Abstract
Aliarcobacter butzleri is an emerging foodborne and zoonotic pathogen that is usually transmitted via contaminated food or water. A. butzleri is not only the most prevalent Aliarcobacter species, it is also closely related to thermophilic Campylobacter, which have shown increasing resistance in recent years. Therefore, it is important to assess its resistance and virulence profiles. In this study, 45 Aliarcobacter butzleri strains from water poultry farms in Thuringia, Germany, were subjected to an antimicrobial susceptibility test using the gradient strip diffusion method and whole-genome sequencing. In the phylogenetic analysis, the genomes of the German strains showed high genetic diversity. Thirty-three isolates formed 11 subgroups containing two to six strains. The antimicrobial susceptibility testing showed that 32 strains were resistant to erythromycin, 26 to doxycycline, and 20 to tetracycline, respectively. Only two strains were resistant to ciprofloxacin, while 39 strains were resistant to streptomycin. The in silico prediction of the antimicrobial resistance profiles identified a large repertoire of potential resistance mechanisms. A strong correlation between a gyrA point mutation (Thr-85-Ile) and ciprofloxacin resistance was found in 11 strains. A partial correlation was observed between the presence of the bla3 gene and ampicillin resistance. In silico virulence profiling revealed a broad spectrum of putative virulence factors, including a complete lipid A cluster in all studied genomes.
Collapse
Affiliation(s)
- Eva Müller
- Institute of Bacterial Infections and Zoonoses (IBIZ), Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Jena, Germany
| | - Helmut Hotzel
- Institute of Bacterial Infections and Zoonoses (IBIZ), Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Jena, Germany
| | - Jörg Linde
- Institute of Bacterial Infections and Zoonoses (IBIZ), Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Jena, Germany
| | - Ingrid Hänel
- Institute of Bacterial Infections and Zoonoses (IBIZ), Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Jena, Germany
| | - Herbert Tomaso
- Institute of Bacterial Infections and Zoonoses (IBIZ), Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Jena, Germany
| |
Collapse
|
19
|
Choi E, Jeon H, Oh C, Hwang J. Elucidation of a Novel Role of YebC in Surface Polysaccharides Regulation of Escherichia coli bipA-Deletion. Front Microbiol 2020; 11:597515. [PMID: 33240252 PMCID: PMC7682190 DOI: 10.3389/fmicb.2020.597515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/23/2020] [Indexed: 12/19/2022] Open
Abstract
The BipA (BPI-inducible protein A) protein is ubiquitously conserved in various bacterial species and belongs to the translational GTPase family. Interestingly, the function of Escherichia coli BipA is not essential for cell growth under normal growth conditions. However, cultivation of bipA-deleted cells at 20°C leads to cold-sensitive growth defect and several phenotypic changes in ribosome assembly, capsule production, and motility, suggesting its global regulatory roles. Previously, our genomic library screening revealed that the overexpressed ribosomal protein (r-protein) L20 partially suppressed cold-sensitive growth defect by resolving the ribosomal abnormality in bipA-deleted cells at low temperature. Here, we explored another genomic library clone containing yebC, which encodes a predicted transcriptional factor that is not directly associated with ribosome biogenesis. Interestingly, overexpression of yebC in bipA-deleted cells diminished capsule synthesis and partially restored lipopolysaccharide (LPS) core maturation at a low temperature without resolving defects in ribosome assembly or motility, indicating that YebC may be specifically involved in the regulation of exopolysaccharide and LPS core synthesis. In this study, we collectively investigated the impacts of bipA-deletion on E. coli capsule, LPS, biofilm formation, and motility and revealed novel roles of YebC in extracellular polysaccharide production and LPS core synthesis at low temperature using this mutant strain. Furthermore, our findings suggest that ribosomal defects as well as increased capsule synthesis, and changes in LPS composition may contribute independently to the cold-sensitivity of bipA-deleted cells, implying multiple regulatory roles of BipA.
Collapse
Affiliation(s)
- Eunsil Choi
- Microbiological Resource Research Institute, Pusan National University, Busan, South Korea.,Department of Microbiology, Pusan National University, Busan, South Korea
| | - Hyerin Jeon
- Microbiological Resource Research Institute, Pusan National University, Busan, South Korea
| | - Changmin Oh
- Microbiological Resource Research Institute, Pusan National University, Busan, South Korea
| | - Jihwan Hwang
- Microbiological Resource Research Institute, Pusan National University, Busan, South Korea.,Department of Microbiology, Pusan National University, Busan, South Korea
| |
Collapse
|
20
|
Zhou Q, Tan X, Meng X, Wang J, Ji F, Wang X. Identification of four secondary acyltransferases for lipid A biosynthesis in Vibrio parahaemolyticus. Biotechnol Appl Biochem 2020; 68:1486-1500. [PMID: 33150647 DOI: 10.1002/bab.2070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/30/2020] [Indexed: 12/14/2022]
Abstract
In this study, four genes encoding secondary acyltransferases of lipid A in Vibrio parahaemolyticus ATCC33846 were identified. When the four genes were overexpressed in Escherichia coli MLK1067 that which produces the penta-acylated lipid A lacking the secondary acylation at the C3' position, a C12:0 secondary acyl chain was added at the C3' position of lipid A only in E. coli overexpressing VP_RS01045, but not VP_RS00880, VP_RS08405, or VP_RS12170. When the four genes were overexpressed in E. coli MKV15b that produces lipid IVA , a C12:0 secondary acyl chain was again added at the C3' position in E. coli overexpressing VP_RS01045, but a C14:0 secondary acyl chain was added at the C2' position of lipid A in E. coli overexpressing VP_RS00880, VP_RS08405, or VP_RS12170. The results indicate that four acyltransferases of lipid A are encoded by VP_RS01045, VP_RS00880, VP_RS08405, or VP_RS12170 in V. parahaemolyticus. The acyltransferase encoded by VP_RS01045 adds a C12:0 secondary acyl chain at the C3' position of lipid A, whereas the acyltransferase encoded by VP_RS00880, VP_RS08405, or VP_RS12170 adds a C14:0 secondary acyl chain at the C2' position of lipid A. This work contributes to understanding the biosynthetic pathway of lipid A in V. parahaemolyticus.
Collapse
Affiliation(s)
- Qing Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China
| | - Xin Tan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China
| | - Xiangyu Meng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China
| | - Jianli Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China
| | - Fan Ji
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
21
|
Horne JE, Brockwell DJ, Radford SE. Role of the lipid bilayer in outer membrane protein folding in Gram-negative bacteria. J Biol Chem 2020; 295:10340-10367. [PMID: 32499369 PMCID: PMC7383365 DOI: 10.1074/jbc.rev120.011473] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/03/2020] [Indexed: 01/09/2023] Open
Abstract
β-Barrel outer membrane proteins (OMPs) represent the major proteinaceous component of the outer membrane (OM) of Gram-negative bacteria. These proteins perform key roles in cell structure and morphology, nutrient acquisition, colonization and invasion, and protection against external toxic threats such as antibiotics. To become functional, OMPs must fold and insert into a crowded and asymmetric OM that lacks much freely accessible lipid. This feat is accomplished in the absence of an external energy source and is thought to be driven by the high thermodynamic stability of folded OMPs in the OM. With such a stable fold, the challenge that bacteria face in assembling OMPs into the OM is how to overcome the initial energy barrier of membrane insertion. In this review, we highlight the roles of the lipid environment and the OM in modulating the OMP-folding landscape and discuss the factors that guide folding in vitro and in vivo We particularly focus on the composition, architecture, and physical properties of the OM and how an understanding of the folding properties of OMPs in vitro can help explain the challenges they encounter during folding in vivo Current models of OMP biogenesis in the cellular environment are still in flux, but the stakes for improving the accuracy of these models are high. OMP folding is an essential process in all Gram-negative bacteria, and considering the looming crisis of widespread microbial drug resistance it is an attractive target. To bring down this vital OMP-supported barrier to antibiotics, we must first understand how bacterial cells build it.
Collapse
Affiliation(s)
- Jim E Horne
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
22
|
Kloska A, Cech GM, Sadowska M, Krause K, Szalewska-Pałasz A, Olszewski P. Adaptation of the Marine Bacterium Shewanella baltica to Low Temperature Stress. Int J Mol Sci 2020; 21:ijms21124338. [PMID: 32570789 PMCID: PMC7352654 DOI: 10.3390/ijms21124338] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 11/30/2022] Open
Abstract
Marine bacteria display significant versatility in adaptation to variations in the environment and stress conditions, including temperature shifts. Shewanella baltica plays a major role in denitrification and bioremediation in the marine environment, but is also identified to be responsible for spoilage of ice-stored seafood. We aimed to characterize transcriptional response of S. baltica to cold stress in order to achieve a better insight into mechanisms governing its adaptation. We exposed bacterial cells to 8 °C for 90 and 180 min, and assessed changes in the bacterial transcriptome with RNA sequencing validated with the RT-qPCR method. We found that S. baltica general response to cold stress is associated with massive downregulation of gene expression, which covered about 70% of differentially expressed genes. Enrichment analysis revealed upregulation of only few pathways, including aminoacyl-tRNA biosynthesis, sulfur metabolism and the flagellar assembly process. Downregulation was observed for fatty acid degradation, amino acid metabolism and a bacterial secretion system. We found that the entire type II secretion system was transcriptionally shut down at low temperatures. We also observed transcriptional reprogramming through the induction of RpoE and repression of RpoD sigma factors to mediate the cold stress response. Our study revealed how diverse and complex the cold stress response in S. baltica is.
Collapse
Affiliation(s)
- Anna Kloska
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
- Correspondence: (A.K.); (P.O.)
| | - Grzegorz M. Cech
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (G.M.C.); (M.S.); (K.K.); (A.S.-P.)
| | - Marta Sadowska
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (G.M.C.); (M.S.); (K.K.); (A.S.-P.)
| | - Klaudyna Krause
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (G.M.C.); (M.S.); (K.K.); (A.S.-P.)
| | - Agnieszka Szalewska-Pałasz
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (G.M.C.); (M.S.); (K.K.); (A.S.-P.)
| | - Paweł Olszewski
- 3P Medicine Laboratory, International Research Agenda, Medical University of Gdańsk, Dębinki 7, 80-211 Gdańsk, Poland
- Correspondence: (A.K.); (P.O.)
| |
Collapse
|
23
|
Li C, Murugaiyan J, Thomas C, Alter T, Riedel C. Isolate Specific Cold Response of Yersinia enterocolitica in Transcriptional, Proteomic, and Membrane Physiological Changes. Front Microbiol 2020; 10:3037. [PMID: 32038527 PMCID: PMC6990146 DOI: 10.3389/fmicb.2019.03037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 12/17/2019] [Indexed: 12/24/2022] Open
Abstract
Yersinia enterocolitica, a zoonotic foodborne pathogen, is able to withstand low temperatures. This psychrotrophic ability allows it to multiply in food stored in refrigerators. However, little is known about the Y. enterocolitica cold response. In this study, isolate-specific behavior at 4°C was demonstrated and the cold response was investigated by examining changes in phenotype, gene expression, and the proteome. Altered expression of cold-responsive genes showed that the ability to survive at low temperature depends on the capacity to acclimate and adapt to cold stress. This cold acclimation at the transcriptional level involves the transient induction and effective repression of cold-shock protein (Csp) genes. Moreover, the resumption of expression of genes encoding other non-Csp is essential during prolonged adaptation. Based on proteomic analyses, the predominant functional categories of cold-responsive proteins are associated with protein synthesis, cell membrane structure, and cell motility. In addition, changes in membrane fluidity and motility were shown to be important in the cold response of Y. enterocolitica. Isolate-specific differences in the transcription of membrane fluidity- and motility-related genes provided evidence to classify strains within a spectrum of cold response. The combination of different approaches has permitted the systematic description of the Y. enterocolitica cold response and gives a better understanding of the physiological processes underlying this phenomenon.
Collapse
Affiliation(s)
- Chenyang Li
- Institute of Food Safety and Food Hygiene, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Jayaseelan Murugaiyan
- Institute for Animal Hygiene and Environmental Health, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Department of Biotechnology, SRM University AP, Amaravati, India
| | - Christian Thomas
- Department of Food Science and Technology, Beuth University of Applied Sciences Berlin, Berlin, Germany
| | - Thomas Alter
- Institute of Food Safety and Food Hygiene, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Carolin Riedel
- Institute of Food Safety and Food Hygiene, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
24
|
Yang SP, Xie J, Cheng Y, Zhang Z, Zhao Y, Qian YF. Response of Shewanella putrefaciens to low temperature regulated by membrane fluidity and fatty acid metabolism. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108638] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
25
|
Role of DEAD-box RNA helicase genes in the growth of Yersinia pseudotuberculosis IP32953 under cold, pH, osmotic, ethanol and oxidative stresses. PLoS One 2019; 14:e0219422. [PMID: 31287844 PMCID: PMC6615604 DOI: 10.1371/journal.pone.0219422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/24/2019] [Indexed: 01/03/2023] Open
Abstract
Yersinia pseudotuberculosis is an important foodborne pathogen threatening modern food safety due to its ability to survive and grow at low temperatures. DEAD-box RNA helicase CsdA has been shown to play an important role in the low-temperature growth of psychrotrophic Y. pseudotuberculosis. A total of five DEAD-box RNA helicase genes (rhlB, csdA, rhlE, dbpA, srmB) have been identified in Y. pseudotuberculosis IP32953. However, their role in various stress conditions used in food production is unclear. We studied the involvement of the DEAD-box RNA helicase-encoding genes in the cold tolerance of Y. pseudotuberculosis IP32953 using quantitative real-time reverse transcription (RT-qPCR) and mutational analysis. Quantitative RT-PCR revealed that mRNA transcriptional levels of csdA, rhlE, dbpA and srmB were significantly higher after cold shock at 3°C compared to non-shocked culture at 28°C, suggesting the involvement of these four genes in cold shock response at the transcriptional level. The deletion of csdA ceased growth, while the deletion of dbpA or srmB significantly impaired growth at 3°C, suggesting the requirement of these three genes in Y. pseudotuberculosis at low temperatures. Growth of each DEAD-box RNA helicase mutant was also investigated under pH, osmotic, ethanol and oxidative stress conditions. The five helicase-encoding genes did not play major roles in the growth of Y. pseudotuberculosis IP32953 under pH, osmotic, ethanol or oxidative stress.
Collapse
|
26
|
Bale NJ, Rijpstra WIC, Sahonero-Canavesi DX, Oshkin IY, Belova SE, Dedysh SN, Sinninghe Damsté JS. Fatty Acid and Hopanoid Adaption to Cold in the Methanotroph Methylovulum psychrotolerans. Front Microbiol 2019; 10:589. [PMID: 31024466 PMCID: PMC6460317 DOI: 10.3389/fmicb.2019.00589] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 03/07/2019] [Indexed: 12/31/2022] Open
Abstract
Three strains of aerobic psychrotolerant methanotrophic bacteria Methylovulum psychrotolerans, isolated from geographically remote low-temperature environments in Northern Russia, were grown at three different growth temperatures, 20, 10 and 4°C and were found to be capable of oxidizing methane at all temperatures. The three M. psychrotolerans strains adapted their membranes to decreasing growth temperature by increasing the percent of unsaturated fatty acid (FAs), both for the bulk and intact polar lipid (IPL)-bound FAs. Furthermore, the ratio of βOH-C16:0 to n-C16:0 increased as growth temperature decreased. The IPL head group composition did not change as an adaption to temperature. The most notable hopanoid temperature adaptation of M. psychrotolerans was an increase in unsaturated hopanols with decreasing temperature. As the growth temperature decreased from 20 to 4°C, the percent of unsaturated M. psychrotolerans bulk-FAs increased from 79 to 89 % while the total percent of unsaturated hopanoids increased from 27 to 49 %. While increased FA unsaturation in response to decreased temperature is a commonly observed response in order to maintain the liquid-crystalline character of bacterial membranes, hopanoid unsaturation upon cold exposition has not previously been described. In order to investigate the mechanisms of both FA and hopanoid cold-adaption in M. psychrotolerans we identified genes in the genome of M. psychrotolerans that potentially code for FA and hopanoid desaturases. The unsaturation of hopanoids represents a novel membrane adaption to maintain homeostasis upon cold adaptation.
Collapse
Affiliation(s)
- Nicole J Bale
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Institute for Sea Research, and Utrecht University, Texel, Netherlands
| | - W Irene C Rijpstra
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Institute for Sea Research, and Utrecht University, Texel, Netherlands
| | - Diana X Sahonero-Canavesi
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Institute for Sea Research, and Utrecht University, Texel, Netherlands
| | - Igor Y Oshkin
- Research Center of Biotechnology of the Russian Academy of Sciences, Winogradsky Institute of Microbiology, Moscow, Russia
| | - Svetlana E Belova
- Research Center of Biotechnology of the Russian Academy of Sciences, Winogradsky Institute of Microbiology, Moscow, Russia
| | - Svetlana N Dedysh
- Research Center of Biotechnology of the Russian Academy of Sciences, Winogradsky Institute of Microbiology, Moscow, Russia
| | - Jaap S Sinninghe Damsté
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Institute for Sea Research, and Utrecht University, Texel, Netherlands.,Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
27
|
Abstract
The cell envelope is the first line of defense between a bacterium and the world-at-large. Often, the initial steps that determine the outcome of chemical warfare, bacteriophage infections, and battles with other bacteria or the immune system greatly depend on the structure and composition of the bacterial cell surface. One of the most studied bacterial surface molecules is the glycolipid known as lipopolysaccharide (LPS), which is produced by most Gram-negative bacteria. Much of the initial attention LPS received in the early 1900s was owed to its ability to stimulate the immune system, for which the glycolipid was commonly known as endotoxin. It was later discovered that LPS also creates a permeability barrier at the cell surface and is a main contributor to the innate resistance that Gram-negative bacteria display against many antimicrobials. Not surprisingly, these important properties of LPS have driven a vast and still prolific body of literature for more than a hundred years. LPS research has also led to pioneering studies in bacterial envelope biogenesis and physiology, mostly using Escherichia coli and Salmonella as model systems. In this review, we will focus on the fundamental knowledge we have gained from studies of the complex structure of the LPS molecule and the biochemical pathways for its synthesis, as well as the transport of LPS across the bacterial envelope and its assembly at the cell surface.
Collapse
|
28
|
Klein G, Raina S. Regulated Assembly of LPS, Its Structural Alterations and Cellular Response to LPS Defects. Int J Mol Sci 2019; 20:ijms20020356. [PMID: 30654491 PMCID: PMC6358824 DOI: 10.3390/ijms20020356] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/11/2019] [Accepted: 01/13/2019] [Indexed: 12/21/2022] Open
Abstract
Distinguishing feature of the outer membrane (OM) of Gram-negative bacteria is its asymmetry due to the presence of lipopolysaccharide (LPS) in the outer leaflet of the OM and phospholipids in the inner leaflet. Recent studies have revealed the existence of regulatory controls that ensure a balanced biosynthesis of LPS and phospholipids, both of which are essential for bacterial viability. LPS provides the essential permeability barrier function and act as a major virulence determinant. In Escherichia coli, more than 100 genes are required for LPS synthesis, its assembly at inner leaflet of the inner membrane (IM), extraction from the IM, translocation to the OM, and in its structural alterations in response to various environmental and stress signals. Although LPS are highly heterogeneous, they share common structural elements defining their most conserved hydrophobic lipid A part to which a core polysaccharide is attached, which is further extended in smooth bacteria by O-antigen. Defects or any imbalance in LPS biosynthesis cause major cellular defects, which elicit envelope responsive signal transduction controlled by RpoE sigma factor and two-component systems (TCS). RpoE regulon members and specific TCSs, including their non-coding arm, regulate incorporation of non-stoichiometric modifications of LPS, contributing to LPS heterogeneity and impacting antibiotic resistance.
Collapse
Affiliation(s)
- Gracjana Klein
- Unit of Bacterial Genetics, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland.
| | - Satish Raina
- Unit of Bacterial Genetics, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland.
| |
Collapse
|
29
|
Current Progress in the Structural and Biochemical Characterization of Proteins Involved in the Assembly of Lipopolysaccharide. Int J Microbiol 2018; 2018:5319146. [PMID: 30595696 PMCID: PMC6286764 DOI: 10.1155/2018/5319146] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/29/2018] [Indexed: 12/25/2022] Open
Abstract
The lipid component of the outer leaflet of the outer membrane of Gram-negative bacteria is primarily composed of the glycolipid lipopolysaccharide (LPS), which serves to form a protective barrier against hydrophobic toxins and many antibiotics. LPS is comprised of three regions: the lipid A membrane anchor, the nonrepeating core oligosaccharide, and the repeating O-antigen polysaccharide. The lipid A portion is also referred to as endotoxin as its overstimulation of the toll-like receptor 4 during systemic infection precipitates potentially fatal septic shock. Because of the importance of LPS for the viability and virulence of human pathogens, understanding how LPS is synthesized and transported to the outer leaflet of the outer membrane is important for developing novel antibiotics to combat resistant Gram-negative strains. The following review describes the current state of our understanding of the proteins responsible for the synthesis and transport of LPS with an emphasis on the contribution of protein structures to our understanding of their functions. Because the lipid A portion of LPS is relatively well conserved, a detailed description of the biosynthetic enzymes in the Raetz pathway of lipid A synthesis is provided. Conversely, less well-conserved biosynthetic enzymes later in LPS synthesis are described primarily to demonstrate conserved principles of LPS synthesis. Finally, the conserved LPS transport systems are described in detail.
Collapse
|
30
|
Li Y, Zhou D, Hu S, Xiao X, Yu Y, Li X. Transcriptomic analysis by RNA-seq of Escherichia coli O157:H7 response to prolonged cold stress. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.06.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Casillo A, Ziaco M, Lindner B, Parrilli E, Schwudke D, Holgado A, Beyaert R, Lanzetta R, Tutino ML, Corsaro MM. Lipid A structural characterization from the LPS of the Siberian psychro-tolerant Psychrobacter arcticus 273-4 grown at low temperature. Extremophiles 2018; 22:955-963. [PMID: 30128707 DOI: 10.1007/s00792-018-1051-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 08/13/2018] [Indexed: 12/24/2022]
Abstract
Psychrobacter arcticus 273-4 is a Gram-negative bacterium isolated from a 20,000-to-30,000-year-old continuously frozen permafrost in the Kolyma region in Siberia. The survival strategies adopted to live at subzero temperatures include all the outer membrane molecules. A strategic involvement in the well-known enhancement of cellular membrane fluidity is attributable to the lipopolysaccharides (LPSs). These molecules covering about the 75% of cellular surface contribute to cold adaptation through structural modifications in their portions. In this work, we elucidated the exact structure of lipid A moiety obtained from the lipopolysaccharide of P. arcticus grown at 4 °C, to mimic the response to the real environment temperatures. The lipid A was obtained from the LPS by mild acid hydrolysis. The lipid A and its partially deacylated derivatives were exhaustively characterized by chemical analysis and by means of ESI Q-Orbitrap mass spectrometry. Moreover, biological assays indicated that P. arcticus 273-4 lipid A may behave as a weak TLR4 agonist.
Collapse
Affiliation(s)
- Angela Casillo
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Naples, Italy.
| | - Marcello Ziaco
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Naples, Italy
| | - Buko Lindner
- Division of Bioanalytical Chemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Parkallee 10, 23845, Borstel, Germany
| | - Ermenegilda Parrilli
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Naples, Italy
| | - Dominik Schwudke
- Division of Bioanalytical Chemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Parkallee 10, 23845, Borstel, Germany
| | - Aurora Holgado
- Unit for Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Rudi Beyaert
- Unit for Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Rosa Lanzetta
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Naples, Italy
| | - Maria Luisa Tutino
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Naples, Italy
| | - Maria Michela Corsaro
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Naples, Italy.
| |
Collapse
|
32
|
Liquid crystalline bacterial outer membranes are critical for antibiotic susceptibility. Proc Natl Acad Sci U S A 2018; 115:E7587-E7594. [PMID: 30037998 DOI: 10.1073/pnas.1803975115] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The outer membrane (OM) of Gram-negative bacteria is a robust, impermeable, asymmetric bilayer of outer lipopolysaccharides (LPSs) and inner phospholipids containing selective pore proteins which confer on it the properties of a molecular sieve. This structure severely limits the variety of antibiotic molecules effective against Gram-negative pathogens and, as antibiotic resistance has increased, so has the need to solve the OM permeability problem. Polymyxin B (PmB) represents those rare antibiotics which act directly on the OM and which offer a distinct starting point for new antibiotic development. Here we investigate PmB's interactions with in vitro OM models and show how the physical state of the lipid matrix of the OM is a critical factor in regulating the interaction with the antimicrobial peptide. Using neutron reflectometry and infrared spectroscopy, we reveal the structural and chemical changes induced by PmB on OM models of increasing complexity. In particular, only a tightly packed model reproduced the temperature-controlled disruption of the asymmetric lipid bilayer by PmB observed in vivo. By measuring the order of outer-leaflet LPS and inner-leaflet phospholipids, we show that PmB insertion is dependent on the phase transition of LPS from the gel to the liquid crystalline state. The demonstration of a lipid phase transition in the physiological temperature range also supports the hypothesis that bacteria grown at different temperatures adapt their LPS structures to maintain a homeoviscous OM.
Collapse
|
33
|
Xiao X, Sankaranarayanan K, Khosla C. Biosynthesis and structure-activity relationships of the lipid a family of glycolipids. Curr Opin Chem Biol 2017; 40:127-137. [PMID: 28942130 DOI: 10.1016/j.cbpa.2017.07.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/14/2017] [Accepted: 07/20/2017] [Indexed: 10/18/2022]
Abstract
Lipopolysaccharide (LPS), a glycolipid found in the outer membrane of Gram-negative bacteria, is a potent elicitor of innate immune responses in mammals. A typical LPS molecule is composed of three different structural domains: a polysaccharide called the O-antigen, a core oligosaccharide, and Lipid A. Lipid A is the amphipathic glycolipid moiety of LPS. It stimulates the immune system by tightly binding to Toll-like receptor 4. More recently, Lipid A has also been shown to activate intracellular caspase-4 and caspase-5. An impressive diversity is observed in Lipid A structures from different Gram-negative bacteria, and it is well established that subtle changes in chemical structure can result in dramatically different immune activities. For example, Lipid A from Escherichia coli is highly toxic to humans, whereas a biosynthetic precursor called Lipid IVA blocks this toxic activity, and monophosphoryl Lipid A from Salmonella minnesota is a vaccine adjuvant. Thus, an understanding of structure-activity relationships in this glycolipid family could be used to design useful immunomodulatory agents. Here we review the biosynthesis, modification, and structure-activity relationships of Lipid A.
Collapse
Affiliation(s)
- Xirui Xiao
- Department of Chemistry, Stanford University, Stanford, CA 94305, United States
| | | | - Chaitan Khosla
- Department of Chemistry, Stanford University, Stanford, CA 94305, United States; Department of Chemical Engineering, Stanford University, Stanford, CA 94305, United States; Stanford ChEM-H, Stanford University, Stanford, CA 94305, United States.
| |
Collapse
|
34
|
Casillo A, Ziaco M, Lindner B, Parrilli E, Schwudke D, Holgado A, Verstrepen L, Sannino F, Beyaert R, Lanzetta R, Tutino ML, Corsaro MM. Unusual Lipid A from a Cold-Adapted Bacterium: Detailed Structural Characterization. Chembiochem 2017. [PMID: 28650563 DOI: 10.1002/cbic.201700287] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Colwellia psychrerythraea 34H is a Gram-negative cold-adapted microorganism that adopts many strategies to cope with the limitations associated with the low temperatures of its habitat. In this study, we report the complete characterization of the lipid A moiety from the lipopolysaccharide of Colwellia. Lipid A and its partially deacylated derivative were completely characterized by high-resolution mass spectrometry, NMR spectroscopy, and chemical analysis. An unusual structure with a 3-hydroxy unsaturated tetradecenoic acid as a component of the primary acylation pattern was identified. In addition, the presence of a partially acylated phosphoglycerol moiety on the secondary acylation site at the 3-position of the reducing 2-amino-2-deoxyglucopyranose unit caused tremendous natural heterogeneity in the structure of lipid A. Biological-activity assays indicated that C. psychrerythraea 34H lipid A did not show an agonistic or antagonistic effect upon testing in human macrophages.
Collapse
Affiliation(s)
- Angela Casillo
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Naples, Italy
| | - Marcello Ziaco
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Naples, Italy
| | - Buko Lindner
- Division of Bioanalytical Chemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Parkallee 10, 23845, Borstel, Germany
| | - Ermenegilda Parrilli
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Naples, Italy
| | - Dominik Schwudke
- Division of Bioanalytical Chemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Parkallee 10, 23845, Borstel, Germany
| | - Aurora Holgado
- Unit for Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, VIB, Technologiepark 927, 9052, Zwijnaarde, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Zwijnaarde, Ghent, Belgium
| | - Lynn Verstrepen
- Unit for Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, VIB, Technologiepark 927, 9052, Zwijnaarde, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Zwijnaarde, Ghent, Belgium
| | - Filomena Sannino
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Naples, Italy
| | - Rudi Beyaert
- Unit for Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, VIB, Technologiepark 927, 9052, Zwijnaarde, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Zwijnaarde, Ghent, Belgium
| | - Rosa Lanzetta
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Naples, Italy
| | - Maria Luisa Tutino
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Naples, Italy
| | - Maria Michela Corsaro
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Naples, Italy
| |
Collapse
|
35
|
Liang Y, Guo Z, Gao L, Guo Q, Wang L, Han Y, Duan K, Shen L. The role of the temperature-regulated acyltransferase (PA3242) on growth, antibiotic resistance and virulence in Pseudomonas aeruginosa. Microb Pathog 2016; 101:126-135. [DOI: 10.1016/j.micpath.2016.09.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 09/14/2016] [Accepted: 09/21/2016] [Indexed: 11/26/2022]
|
36
|
Zariri A, Pupo E, van Riet E, van Putten JPM, van der Ley P. Modulating endotoxin activity by combinatorial bioengineering of meningococcal lipopolysaccharide. Sci Rep 2016; 6:36575. [PMID: 27841285 PMCID: PMC5107901 DOI: 10.1038/srep36575] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 10/10/2016] [Indexed: 11/16/2022] Open
Abstract
Neisseria meningitidis contains a very potent hexa-acylated LPS that is too toxic for therapeutic applications. We used systematic molecular bioengineering of meningococcal LPS through deletion of biosynthetic enzymes in combination with induction of LPS modifying enzymes to yield a variety of novel LPS mutants with changes in both lipid A acylation and phosphorylation. Mass spectrometry was used for detailed compositional determination of the LPS molecular species, and stimulation of immune cells was done to correlate this with endotoxic activity. Removal of phosphethanolamine in lipid A by deletion of lptA slightly reduces activity of hexa-acylated LPS, but this reduction is even more evident in penta-acylated LPS. Surprisingly, expression of PagL deacylase in a penta-acylated lpxL1 mutant increased LPS activity, contradicting the general rule that tetra-acylated LPS is less active than penta-acylated LPS. Further modification included expression of lpxP, an enzyme known to add a secondary 9-hexadecenoic acid to the 2’ acyl chain. The LpxP enzyme is temperature-sensitive, enabling control over the ratio of expressed modified hexa- and penta-acylated LPS by simply changing the growth temperature. These LPS derivatives display a broad range of TLR4 activity and differential cytokine induction, which can be exploited for use as vaccine adjuvant or other TLR4-based therapeutics.
Collapse
Affiliation(s)
- Afshin Zariri
- Institute for Translational Vaccinology (Intravacc), Antonie van Leeuwenhoeklaan 9, 3720 AL Bilthoven, the Netherlands.,Department of Infectious Diseases and Immunology, Utrecht University, 3584 CL, Utrecht, the Netherlands
| | - Elder Pupo
- Institute for Translational Vaccinology (Intravacc), Antonie van Leeuwenhoeklaan 9, 3720 AL Bilthoven, the Netherlands
| | - Elly van Riet
- Institute for Translational Vaccinology (Intravacc), Antonie van Leeuwenhoeklaan 9, 3720 AL Bilthoven, the Netherlands
| | - Jos P M van Putten
- Department of Infectious Diseases and Immunology, Utrecht University, 3584 CL, Utrecht, the Netherlands
| | - Peter van der Ley
- Institute for Translational Vaccinology (Intravacc), Antonie van Leeuwenhoeklaan 9, 3720 AL Bilthoven, the Netherlands
| |
Collapse
|
37
|
Trent MS, Stead CM, Tran AX, Hankins JV. Invited review: Diversity of endotoxin and its impact on pathogenesis. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519060120040201] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Lipopolysaccharide or LPS is localized to the outer leaflet of the outer membrane and serves as the major surface component of the bacterial cell envelope. This remarkable glycolipid is essential for virtually all Gram-negative organisms and represents one of the conserved microbial structures responsible for activation of the innate immune system. For these reasons, the structure, function, and biosynthesis of LPS has been an area of intense research. The LPS of a number of bacteria is composed of three distinct regions — lipid A, a short core oligosaccharide, and the O-antigen polysaccharide. The lipid A domain, also known as endotoxin, anchors the molecule in the outer membrane and is the bioactive component recognized by TLR4 during human infection. Overall, the biochemical synthesis of lipid A is a highly conserved process; however, investigation of the lipid A structures of various organisms shows an impressive amount of diversity. These differences can be attributed to the action of latent enzymes that modify the canonical lipid A molecule. Variation of the lipid A domain of LPS serves as one strategy utilized by Gram-negative bacteria to promote survival by providing resistance to components of the innate immune system and helping to evade recognition by TLR4. This review summarizes the biochemical machinery required for the production of diverse lipid A structures of human pathogens and how structural modification of endotoxin impacts pathogenesis.
Collapse
Affiliation(s)
- M. Stephen Trent
- Department of Microbiology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA,
| | - Christopher M. Stead
- Department of Microbiology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - An X. Tran
- Department of Microbiology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Jessica V. Hankins
- Department of Microbiology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| |
Collapse
|
38
|
Gronow S, Brade H. Invited review: Lipopolysaccharide biosynthesis: which steps do bacteria need to survive? ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519010070010301] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A detailed knowledge of LPS biosynthesis is of the utmost importance in understanding the function of the outer membrane of Gram-negative bacteria. The regulation of LPS biosynthesis affects many more compartments of the bacterial cell than the outer membrane and thus contributes to the understanding of the physiology of Gram-negative bacteria in general, on the basis of which only mechanisms of virulence and antibiotic resistance can be studied to find new targets for antibacterial treatment. The study of LPS biosynthesis is also an excellent example to demonstrate the limitations of `genomics' and `proteomics', since secondary gene products can be studied only by the combined tools of molecular genetics, enzymology and analytical structural biochemistry. Thus, the door to the field of `glycomics' is opened.
Collapse
Affiliation(s)
- Sabine Gronow
- Division of Medical and Biochemical Microbiology, Research Center Borstel, Center for Medicine and Biosciences, Borstel, Germany,
| | - Helmut Brade
- Division of Medical and Biochemical Microbiology, Research Center Borstel, Center for Medicine and Biosciences, Borstel, Germany
| |
Collapse
|
39
|
Steimle A, Autenrieth IB, Frick JS. Structure and function: Lipid A modifications in commensals and pathogens. Int J Med Microbiol 2016; 306:290-301. [DOI: 10.1016/j.ijmm.2016.03.001] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 02/07/2023] Open
|
40
|
Sessions JW, Hanks BW, Lindstrom DL, Hope S, Jensen BD. Transient Low-Temperature Effects on Propidium Iodide Uptake in Lance Array Nanoinjected HeLa Cells. J Nanotechnol Eng Med 2016. [DOI: 10.1115/1.4033323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Understanding environmental factors relative to transfection protocols is key for improving genetic engineering outcomes. In the following work, the effects of temperature on a nonviral transfection procedure previously described as lance array nanoinjection are examined in context of molecular delivery of propidium iodide (PI), a cell membrane impermeable nucleic acid dye, to HeLa 229 cells. For treatment samples, variables include varying the temperature of the injection solution (3C and 23C) and the magnitude of the pulsed voltage used during lance insertion into the cells (+5 V and +7 V). Results indicate that PI is delivered at levels significantly higher for samples injected at 3C as opposed to 23C at four different postinjection intervals (t = 0, 3, 6, 9 mins; p-value ≤ 0.005), reaching a maximum value of 8.3 times the positive control for 3 C/7 V pulsed samples. Suggested in this work is that between 3 and 6 mins postinjection, a large number of induced pores from the injection event close. While residual levels of PI still continue to enter the treatment samples after 6 mins, it occurs at decreased levels, suggesting from a physiological perspective that many lance array nanoinjection (LAN) induced pores have closed, some are still present.
Collapse
Affiliation(s)
- John W. Sessions
- Department of Mechanical Engineering, Brigham Young University, Provo, UT 84602 e-mail:
| | - Brad W. Hanks
- Department of Mechanical Engineering, Brigham Young University, Provo, UT 84602 e-mail:
| | - Dallin L. Lindstrom
- Department of Exercise Science, Brigham Young University, Provo, UT 84602 e-mail:
| | - Sandra Hope
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602 e-mail:
| | - Brian D. Jensen
- Department of Mechanical Engineering, Brigham Young University, Provo, UT 84602 e-mail:
| |
Collapse
|
41
|
Cold Stress Makes Escherichia coli Susceptible to Glycopeptide Antibiotics by Altering Outer Membrane Integrity. Cell Chem Biol 2016; 23:267-277. [DOI: 10.1016/j.chembiol.2015.12.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 12/02/2015] [Accepted: 12/22/2015] [Indexed: 11/20/2022]
|
42
|
Low KB, Murray SR, Pawelek J, Bermudes D. Isolation and Analysis of Suppressor Mutations in Tumor-Targeted msbB Salmonella. Methods Mol Biol 2016; 1409:95-123. [PMID: 26846806 DOI: 10.1007/978-1-4939-3515-4_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Tumor-targeted Salmonella offers a promising approach to the delivery of therapeutics for the treatment of cancer. The Salmonella strains used, however, must be stably attenuated in order to provide sufficient safety for administration. Approaches to the generation of attenuated Salmonella strains have included deletion of the msbB gene that is responsible for addition of the terminal myristol group to lipid A. In the absence of myristoylation, lipid A is no longer capable of inducing septic shock, resulting in a significant enhancement in safety. However, msbB Salmonella strains also exhibit an unusual set of additional physiological characteristics, including sensitivities to NaCl, EGTA, deoxycholate, polymyxin, and CO2. Suppressor mutations that compensate for these sensitivities include somA, Suwwan, pmrA (C), and zwf. We describe here methods for isolation of strains with compensatory mutations that suppress these types of sensitivities and techniques for determining their underlying genetic changes and analysis of their effects in murine tumor models.
Collapse
Affiliation(s)
- K Brooks Low
- Department of Therapeutic Radiology, School of Medicine, Yale University, New Haven, CT, 06511, USA.
| | - Sean R Murray
- Biology Department, California State University, Northridge, Northridge, CA, 91330-8303, USA.
- Interdisciplinary Research Institute for the Sciences (IRIS), California State University, Northridge, Northridge, CA, 91330-8303, USA.
| | - John Pawelek
- Department of Dermatology, School of Medicine, Yale University, New Haven, CT, 06511, USA.
| | - David Bermudes
- Biology Department, California State University, Northridge, Northridge, CA, 91330-8303, USA.
- Interdisciplinary Research Institute for the Sciences (IRIS), California State University, Northridge, Northridge, CA, 91330-8303, USA.
| |
Collapse
|
43
|
Wang B, Li B, Liang Y, Li J, Gao L, Chen L, Duan K, Shen L. Pleiotropic effects of temperature-regulated 2-OH-lauroytransferase (PA0011) on Pseudomonas aeruginosa antibiotic resistance, virulence and type III secretion system. Microb Pathog 2015; 91:5-17. [PMID: 26596709 DOI: 10.1016/j.micpath.2015.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 10/24/2015] [Accepted: 11/12/2015] [Indexed: 10/22/2022]
Abstract
Pseudomonas aeruginosa is an important human pathogen which adapts to changing environment, such as temperature variations and entering host by regulating their gene expression. Here, we report that gene PA0011 in P. aeruginosa PAO1, which encodes a 2-OH-lauroytransferase participating in lipid A biosynthesis, is involved in carbapenem resistance and virulence in a temperature-regulated manner in PAO1. The expression of PA0011 was higher at an environment temperature (21 °C) than that at a body temperature (37 °C). The inactivation of PA0011 rendered increased antibiotic susceptibility and decreased virulence both in vivo and in vitro. The impaired integrity and the decreased stability of the outer membrane were the cause of the increased susceptibility of PAO1(Δ0011) to carbapenem and many other common antibiotics. The reduced endotoxic activity of lipopolysaccharide (LPS) contributed to the decreased virulence both at 21 °C and 37 °C in PAO1 (Δ0011). In addition, we have found that PA0011 repressed the expression of TTSS virulence factors both at transcriptional and translational levels, similar to the effect of O antigen of LPS but unlike any effect of its homologue reported in other bacteria. The effect of PA0011 on resistance to many antibiotics including carbapenem and virulence in P. aeruginosa makes it a target for novel antimicrobial therapies.
Collapse
Affiliation(s)
- Bobo Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Bo Li
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Ying Liang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Jing Li
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Lang Gao
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Lin Chen
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Kangmin Duan
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, 710069, China; Department of Oral Biology; Department of Medical Microbiology, University of Manitoba, 780 Bannatyne Ave., Winnipeg, MB, R3E 0W2, Canada.
| | - Lixin Shen
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
44
|
Regulated Control of the Assembly and Diversity of LPS by Noncoding sRNAs. BIOMED RESEARCH INTERNATIONAL 2015; 2015:153561. [PMID: 26618164 PMCID: PMC4651636 DOI: 10.1155/2015/153561] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/07/2015] [Accepted: 10/13/2015] [Indexed: 01/31/2023]
Abstract
The outer membrane (OM) of Gram-negative bacteria is asymmetric due to the presence of lipopolysaccharide (LPS) facing the outer leaflet of the OM and phospholipids facing the periplasmic side. LPS is essential for bacterial viability, since it provides a permeability barrier and is a major virulence determinant in pathogenic bacteria. In Escherichia coli, several steps of LPS biosynthesis and assembly are regulated by the RpoE sigma factor and stress responsive two-component systems as well as dedicated small RNAs. LPS composition is highly heterogeneous and dynamically altered upon stress and other challenges in the environment because of the transcriptional activation of RpoE regulon members and posttranslational control by RpoE-regulated Hfq-dependent RybB and MicA sRNAs. The PhoP/Q two-component system further regulates Kdo2-lipid A modification via MgrR sRNA. Some of these structural alterations are critical for antibiotic resistance, OM integrity, virulence, survival in host, and adaptation to specific environmental niches. The heterogeneity arises following the incorporation of nonstoichiometric modifications in the lipid A part and alterations in the composition of inner and outer core of LPS. The biosynthesis of LPS and phospholipids is tightly coupled. This requires the availability of metabolic precursors, whose accumulation is controlled by sRNAs like SlrA, GlmZ, and GlmY.
Collapse
|
45
|
Joo SH. Lipid A as a Drug Target and Therapeutic Molecule. Biomol Ther (Seoul) 2015; 23:510-6. [PMID: 26535075 PMCID: PMC4624066 DOI: 10.4062/biomolther.2015.117] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 09/22/2015] [Accepted: 10/05/2015] [Indexed: 11/05/2022] Open
Abstract
In this review, lipid A, from its discovery to recent findings, is presented as a drug target and therapeutic molecule. First, the biosynthetic pathway for lipid A, the Raetz pathway, serves as a good drug target for antibiotic development. Several assay methods used to screen for inhibitors of lipid A synthesis will be presented, and some of the promising lead compounds will be described. Second, utilization of lipid A biosynthetic pathways by various bacterial species can generate modified lipid A molecules with therapeutic value.
Collapse
Affiliation(s)
- Sang Hoon Joo
- Laboratory of Biochemistry, College of Pharmacy, Catholic University of Daegu, Gyeongbuk 38430, Republic of Korea
| |
Collapse
|
46
|
Sweet CR, Watson RE, Landis CA, Smith JP. Temperature-Dependence of Lipid A Acyl Structure in Psychrobacter cryohalolentis and Arctic Isolates of Colwellia hornerae and Colwellia piezophila. Mar Drugs 2015; 13:4701-20. [PMID: 26264000 PMCID: PMC4557000 DOI: 10.3390/md13084701] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 07/19/2015] [Accepted: 07/20/2015] [Indexed: 12/21/2022] Open
Abstract
Lipid A is a fundamental Gram-negative outer membrane component and the essential element of lipopolysaccharide (endotoxin), a potent immunostimulatory molecule. This work describes the metabolic adaptation of the lipid A acyl structure by Psychrobacter cryohalolentis at various temperatures in its facultative psychrophilic growth range, as characterized by MALDI-TOF MS and FAME GC-MS. It also presents the first elucidation of lipid A structure from the Colwellia genus, describing lipid A from strains of Colwellia hornerae and Colwellia piezophila, which were isolated as primary cultures from Arctic fast sea ice and identified by 16S rDNA sequencing. The Colwellia strains are obligate psychrophiles, with a growth range restricted to 15 °C or less. As such, these organisms have less need for fluidity adaptation in the acyl moiety of the outer membrane, and they do not display alterations in lipid A based on growth temperature. Both Psychrobacter and Colwellia make use of extensive single-methylene variation in the size of their lipid A molecules. Such single-carbon variations in acyl size were thought to be restricted to psychrotolerant (facultative) species, but its presence in these Colwellia species shows that odd-chain acyl units and a single-carbon variation in lipid A structure are present in obligate psychrophiles, as well.
Collapse
Affiliation(s)
- Charles R Sweet
- Chemistry Department, 572M Holloway Road, United States Naval Academy, Annapolis, MD 21402, USA.
| | - Rebecca E Watson
- Chemistry Department, 572M Holloway Road, United States Naval Academy, Annapolis, MD 21402, USA.
| | - Corinne A Landis
- Chemistry Department, 572M Holloway Road, United States Naval Academy, Annapolis, MD 21402, USA.
| | - Joseph P Smith
- Oceanography Department, 572C Holloway Road, United States Naval Academy, Annapolis, MD 21402, USA.
| |
Collapse
|
47
|
Putker F, Bos MP, Tommassen J. Transport of lipopolysaccharide to the Gram-negative bacterial cell surface. FEMS Microbiol Rev 2015; 39:985-1002. [DOI: 10.1093/femsre/fuv026] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2015] [Indexed: 12/15/2022] Open
|
48
|
Membrane fluidity-related adaptive response mechanisms of foodborne bacterial pathogens under environmental stresses. Food Res Int 2015. [DOI: 10.1016/j.foodres.2015.03.016] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Mamat U, Wilke K, Bramhill D, Schromm AB, Lindner B, Kohl TA, Corchero JL, Villaverde A, Schaffer L, Head SR, Souvignier C, Meredith TC, Woodard RW. Detoxifying Escherichia coli for endotoxin-free production of recombinant proteins. Microb Cell Fact 2015; 14:57. [PMID: 25890161 PMCID: PMC4404585 DOI: 10.1186/s12934-015-0241-5] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 04/07/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lipopolysaccharide (LPS), also referred to as endotoxin, is the major constituent of the outer leaflet of the outer membrane of virtually all Gram-negative bacteria. The lipid A moiety, which anchors the LPS molecule to the outer membrane, acts as a potent agonist for Toll-like receptor 4/myeloid differentiation factor 2-mediated pro-inflammatory activity in mammals and, thus, represents the endotoxic principle of LPS. Recombinant proteins, commonly manufactured in Escherichia coli, are generally contaminated with endotoxin. Removal of bacterial endotoxin from recombinant therapeutic proteins is a challenging and expensive process that has been necessary to ensure the safety of the final product. RESULTS As an alternative strategy for common endotoxin removal methods, we have developed a series of E. coli strains that are able to grow and express recombinant proteins with the endotoxin precursor lipid IVA as the only LPS-related molecule in their outer membranes. Lipid IVA does not trigger an endotoxic response in humans typical of bacterial LPS chemotypes. Hence the engineered cells themselves, and the purified proteins expressed within these cells display extremely low endotoxin levels. CONCLUSIONS This paper describes the preparation and characterization of endotoxin-free E. coli strains, and demonstrates the direct production of recombinant proteins with negligible endotoxin contamination.
Collapse
Affiliation(s)
- Uwe Mamat
- Division of Structural Biochemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Parkallee 1-40, D-23845, Borstel, Germany.
| | - Kathleen Wilke
- Division of Structural Biochemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Parkallee 1-40, D-23845, Borstel, Germany.
| | - David Bramhill
- Research Corporation Technologies, Inc, 5210 East Williams Circle, Suite 240, Tucson, AZ, 85711-4410, USA. .,Present address: Bramhill Biological Consulting, LLC, 8240 East Moonstone Drive, Tucson, AZ, 85750, USA.
| | - Andra Beate Schromm
- Division of Immunobiophysics, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Parkallee 1-40, D-23845, Borstel, Germany.
| | - Buko Lindner
- Division of Bioanalytical Chemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Parkallee 1-40, D-23845, Borstel, Germany.
| | - Thomas Andreas Kohl
- Division of Molecular Mycobacteriology, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Parkallee 1-40, D-23845, Borstel, Germany.
| | - José Luis Corchero
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Cerdanyola del Vallès, Spain. .,Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain. .,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain.
| | - Antonio Villaverde
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Cerdanyola del Vallès, Spain. .,Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain. .,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain.
| | - Lana Schaffer
- NGS and Microarray Core Facility, The Scripps Research Institute, 10550 North, Pines Road, La Jolla, Torrey, CA, 92037, USA.
| | - Steven Robert Head
- NGS and Microarray Core Facility, The Scripps Research Institute, 10550 North, Pines Road, La Jolla, Torrey, CA, 92037, USA.
| | - Chad Souvignier
- Research Corporation Technologies, Inc, 5210 East Williams Circle, Suite 240, Tucson, AZ, 85711-4410, USA.
| | - Timothy Charles Meredith
- Department of Biochemistry and Molecular Biology, 206 South Frear, Pennsylvania State University, University Park, PA, 16802, USA.
| | - Ronald Wesley Woodard
- Department of Medicinal Chemistry, University of Michigan, 428 Church Street, Ann Arbor, MI, 48109-1065, USA.
| |
Collapse
|
50
|
Di Lorenzo F, De Castro C, Lanzetta R, Parrilli M, Silipo A, Molinaro A. Lipopolysaccharides as Microbe-associated Molecular Patterns: A Structural Perspective. CARBOHYDRATES IN DRUG DESIGN AND DISCOVERY 2015. [DOI: 10.1039/9781849739993-00038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The lipopolysaccharide (LPS) macromolecule is the major constituent of the external leaflet of the Gram-negative outer membrane, exerting a plethora of biological activities in animals and plants. Among all, it represents a defensive barrier which helps bacteria to resist antimicrobial compounds and external stress factors and is involved in most aspects of host–bacterium interactions such as recognition, adhesion and colonization. One of the most interesting and studied LPS features is its key role in the pathogenesis of Gram-negative infections potentially causing fever or circulatory shock. On the other hand, the LPS acts as a beneficial factor for the host since it is recognized by specific receptors of the host innate immune system; this recognition activates the host defenses culminating, in most cases, in destruction of the pathogen. Most of the biological roles of the LPS are strictly related to its primary structure; thus knowledge of the structural architecture of such a macromolecule, which is different even among bacterial strains belonging to the same species, is a first step but is essential in order to understand the molecular bases of the wide variety of biological activities exerted by LPSs.
Collapse
Affiliation(s)
- Flaviana Di Lorenzo
- Department of Chemical Sciences, University of Naples Federico II Via Cinthia 4 80126 Naples Italy
| | - Cristina De Castro
- Department of Chemical Sciences, University of Naples Federico II Via Cinthia 4 80126 Naples Italy
| | - Rosa Lanzetta
- Department of Chemical Sciences, University of Naples Federico II Via Cinthia 4 80126 Naples Italy
| | - Michelangelo Parrilli
- Department of Chemical Sciences, University of Naples Federico II Via Cinthia 4 80126 Naples Italy
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples Federico II Via Cinthia 4 80126 Naples Italy
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Naples Federico II Via Cinthia 4 80126 Naples Italy
| |
Collapse
|