1
|
Miles L, Powell J, Kozak C, Song Y. Mechanosensitive Ion Channels, Axonal Growth, and Regeneration. Neuroscientist 2022:10738584221088575. [PMID: 35414308 PMCID: PMC9556659 DOI: 10.1177/10738584221088575] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cells sense and respond to mechanical stimuli by converting those stimuli into biological signals, a process known as mechanotransduction. Mechanotransduction is essential in diverse cellular functions, including tissue development, touch sensitivity, pain, and neuronal pathfinding. In the search for key players of mechanotransduction, several families of ion channels were identified as being mechanosensitive and were demonstrated to be activated directly by mechanical forces in both the membrane bilayer and the cytoskeleton. More recently, Piezo ion channels were discovered as a bona fide mechanosensitive ion channel, and its characterization led to a cascade of research that revealed the diverse functions of Piezo proteins and, in particular, their involvement in neuronal repair.
Collapse
Affiliation(s)
- Leann Miles
- The Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Jackson Powell
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Casey Kozak
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yuanquan Song
- The Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, USA.,Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
2
|
Two-Pore-Domain Potassium (K 2P-) Channels: Cardiac Expression Patterns and Disease-Specific Remodelling Processes. Cells 2021; 10:cells10112914. [PMID: 34831137 PMCID: PMC8616229 DOI: 10.3390/cells10112914] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 12/23/2022] Open
Abstract
Two-pore-domain potassium (K2P-) channels conduct outward K+ currents that maintain the resting membrane potential and modulate action potential repolarization. Members of the K2P channel family are widely expressed among different human cell types and organs where they were shown to regulate important physiological processes. Their functional activity is controlled by a broad variety of different stimuli, like pH level, temperature, and mechanical stress but also by the presence of lipids or pharmacological agents. In patients suffering from cardiovascular diseases, alterations in K2P-channel expression and function have been observed, suggesting functional significance and a potential therapeutic role of these ion channels. For example, upregulation of atrial specific K2P3.1 (TASK-1) currents in atrial fibrillation (AF) patients was shown to contribute to atrial action potential duration shortening, a key feature of AF-associated atrial electrical remodelling. Therefore, targeting K2P3.1 (TASK-1) channels might constitute an intriguing strategy for AF treatment. Further, mechanoactive K2P2.1 (TREK-1) currents have been implicated in the development of cardiac hypertrophy, cardiac fibrosis and heart failure. Cardiovascular expression of other K2P channels has been described, functional evidence in cardiac tissue however remains sparse. In the present review, expression, function, and regulation of cardiovascular K2P channels are summarized and compared among different species. Remodelling patterns, observed in disease models are discussed and compared to findings from clinical patients to assess the therapeutic potential of K2P channels.
Collapse
|
3
|
TRPM2 Oxidation Activates Two Distinct Potassium Channels in Melanoma Cells through Intracellular Calcium Increase. Int J Mol Sci 2021; 22:ijms22168359. [PMID: 34445066 PMCID: PMC8393965 DOI: 10.3390/ijms22168359] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022] Open
Abstract
Tumor microenvironments are often characterized by an increase in oxidative stress levels. We studied the response to oxidative stimulation in human primary (IGR39) or metastatic (IGR37) cell lines obtained from the same patient, performing patch-clamp recordings, intracellular calcium ([Ca2+]i) imaging, and RT-qPCR gene expression analysis. In IGR39 cells, chloramine-T (Chl-T) activated large K+ currents (KROS) that were partially sensitive to tetraethylammonium (TEA). A large fraction of KROS was inhibited by paxilline—a specific inhibitor of large-conductance Ca2+-activated BK channels. The TEA-insensitive component was inhibited by senicapoc—a specific inhibitor of the Ca2+-activated KCa3.1 channel. Both BK and KCa3.1 activation were mediated by an increase in [Ca2+]i induced by Chl-T. Both KROS and [Ca2+]i increase were inhibited by ACA and clotrimazole—two different inhibitors of the calcium-permeable TRPM2 channel. Surprisingly, IGR37 cells did not exhibit current increase upon the application of Chl-T. Expression analysis confirmed that the genes encoding BK, KCa3.1, and TRPM2 are much more expressed in IGR39 than in IGR37. The potassium currents and [Ca2+]i increase observed in response to the oxidizing agent strongly suggest that these three molecular entities play a major role in the progression of melanoma. Pharmacological targeting of either of these ion channels could be a new strategy to reduce the metastatic potential of melanoma cells, and could complement classical radio- or chemotherapeutic treatments.
Collapse
|
4
|
Kitagawa MG, Reynolds JO, Durgan D, Rodney G, Karmouty‐Quintana H, Bryan R, Pandit LM. Twik-2 -/- mouse demonstrates pulmonary vascular heterogeneity in intracellular pathways for vasocontractility. Physiol Rep 2019; 7:e13950. [PMID: 30632293 PMCID: PMC6328926 DOI: 10.14814/phy2.13950] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/06/2018] [Accepted: 11/15/2018] [Indexed: 11/24/2022] Open
Abstract
We have previously shown Twik-2-/- mice develop pulmonary hypertension and vascular remodeling. We hypothesized that distal pulmonary arteries (D-PAs) of the Twik-2-/- mice are hypercontractile under physiological venous conditions due to altered electrophysiologic properties between the conduit and resistance vessels in the pulmonary vascular bed. We measured resting membrane potential and intracellular calcium through Fura-2 in freshly digested pulmonary artery smooth muscles (PASMCs) from both the right main (RM-PA) and D-PA (distal) regions of pulmonary artery from WT and Twik-2-/- mice. Whole segments of RM-PAs and D-PAs from 20 to 24-week-old wildtype (WT) and Twik-2-/- mice were also pressurized between two glass micropipettes and bathed in buffer with either arterial or venous conditions. Abluminally-applied phenylephrine (PE) and U46619 were added to the buffer at log increments and vessel diameter was measured. All values were expressed as averages with ±SEM. Vasoconstrictor responses did not differ between WT and Twik-2-/- RM-PAs under arterial conditions. Under venous conditions, Twik-2-/- RM-PAs showed an increased sensitivity to PE with a lower EC50 (P = 0.02). Under venous conditions, Twik-2-/- D-PAs showed an increase maximal vasoconstrictor response to both phenylephrine and U46619 compared to the WT mice (P < 0.05). Isolated PASMCs from Twik-2 -/- D-PA were depolarized and had higher intracellular calcium levels compared to PASMCs from RM-PA of both WT and Twik-2-/- mice. These studies suggest that hypercontractile responses and electrophysiologic properties unique to the anatomic location of the D-PAs may contribute to pulmonary hypertensive vasculopathy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lavannya M. Pandit
- Baylor College of MedicineHoustonTexas
- Michael E.DeBakey Veterans Affairs Medical CenterHoustonTexas
| |
Collapse
|
5
|
Extraoral Taste Receptor Discovery: New Light on Ayurvedic Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017. [PMID: 28642799 PMCID: PMC5469997 DOI: 10.1155/2017/5435831] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
More and more research studies are revealing unexpectedly important roles of taste for health and pathogenesis of various diseases. Only recently it has been shown that taste receptors have many extraoral locations (e.g., stomach, intestines, liver, pancreas, respiratory system, heart, brain, kidney, urinary bladder, pancreas, adipose tissue, testis, and ovary), being part of a large diffuse chemosensory system. The functional implications of these taste receptors widely dispersed in various organs or tissues shed a new light on several concepts used in ayurvedic pharmacology (dravyaguna vijnana), such as taste (rasa), postdigestive effect (vipaka), qualities (guna), and energetic nature (virya). This review summarizes the significance of extraoral taste receptors and transient receptor potential (TRP) channels for ayurvedic pharmacology, as well as the biological activities of various types of phytochemical tastants from an ayurvedic perspective. The relative importance of taste (rasa), postdigestive effect (vipaka), and energetic nature (virya) as ethnopharmacological descriptors within Ayurveda boundaries will also be discussed.
Collapse
|
6
|
Hughes S, Foster RG, Peirson SN, Hankins MW. Expression and localisation of two-pore domain (K2P) background leak potassium ion channels in the mouse retina. Sci Rep 2017; 7:46085. [PMID: 28443635 PMCID: PMC5405414 DOI: 10.1038/srep46085] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 03/10/2017] [Indexed: 12/11/2022] Open
Abstract
Two-pore domain (K2P) potassium channels perform essential roles in neuronal function. These channels produce background leak type potassium currents that act to regulate resting membrane potential and levels of cellular excitability. 15 different K2P channels have been identified in mammals and these channels perform important roles in a wide number of physiological systems. However, to date there is only limited data available concerning the expression and role of K2P channels in the retina. In this study we conduct the first comprehensive study of K2P channel expression in the retina. Our data show that K2P channels are widely expressed in the mouse retina, with variations in expression detected at different times of day and throughout postnatal development. The highest levels of K2P channel expression are observed for Müller cells (TWIK-1, TASK-3, TRAAK, and TREK-2) and retinal ganglion cells (TASK-1, TREK-1, TWIK-1, TWIK-2 and TWIK-3). These data offer new insight into the channels that regulate the resting membrane potential and electrical activity of retinal cells, and suggests that K2P channels are well placed to act as central regulators of visual signalling pathways. The prominent role of K2P channels in neuroprotection offers novel avenues of research into the treatment of common retinal diseases.
Collapse
Affiliation(s)
- Steven Hughes
- The Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Sir William Dunn School of Pathology, OMPI G, South Parks Road, Oxford, OX1 3RE, UK
| | - Russell G. Foster
- The Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Sir William Dunn School of Pathology, OMPI G, South Parks Road, Oxford, OX1 3RE, UK
| | - Stuart N. Peirson
- The Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Sir William Dunn School of Pathology, OMPI G, South Parks Road, Oxford, OX1 3RE, UK
| | - Mark W. Hankins
- The Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Sir William Dunn School of Pathology, OMPI G, South Parks Road, Oxford, OX1 3RE, UK
| |
Collapse
|
7
|
Recombinant tandem of pore-domains in a Weakly Inward rectifying K + channel 2 (TWIK2) forms active lysosomal channels. Sci Rep 2017; 7:649. [PMID: 28381826 PMCID: PMC5428834 DOI: 10.1038/s41598-017-00640-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 03/07/2017] [Indexed: 12/27/2022] Open
Abstract
Recombinant TWIK2 channels produce weak basal background K+ currents. Current amplitudes depend on the animal species the channels have been isolated from and on the heterologous system used for their re-expression. Here we show that this variability is due to a unique cellular trafficking. We identified three different sequence signals responsible for the preferential expression of TWIK2 in the Lamp1-positive lysosomal compartment. Sequential inactivation of tyrosine-based (Y308ASIP) and di-leucine-like (E266LILL and D282EDDQVDIL) trafficking motifs progressively abolishes the targeting of TWIK2 to lysosomes, and promotes its functional relocation at the plasma membrane. In addition, TWIK2 contains two N-glycosylation sites (N79AS and N85AS) on its luminal side, and glycosylation is necessary for expression in lysosomes. As shown by electrophysiology and electron microscopy, TWIK2 produces functional background K+ currents in the endolysosomes, and its expression affects the number and mean size of the lysosomes. These results show that TWIK2 is expressed in lysosomes, further expanding the registry of ion channels expressed in these organelles.
Collapse
|
8
|
Ryoo K, Park JY. Two-pore Domain Potassium Channels in Astrocytes. Exp Neurobiol 2016; 25:222-232. [PMID: 27790056 PMCID: PMC5081468 DOI: 10.5607/en.2016.25.5.222] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/01/2016] [Accepted: 09/15/2016] [Indexed: 12/23/2022] Open
Abstract
Two-pore domain potassium (K2P) channels have a distinct structure and channel properties, and are involved in a background K+ current. The 15 members of the K2P channels are identified and classified into six subfamilies on the basis of their sequence similarities. The activity of the channels is dynamically regulated by various physical, chemical, and biological effectors. The channels are expressed in a wide variety of tissues in mammals in an isoform specific manner, and play various roles in many physiological and pathophysiological conditions. To function as channels, the K2P channels form dimers, and some isoforms form heterodimers that provide diversity in channel properties. In the brain, TWIK1, TREK1, TREK2, TRAAK, TASK1, and TASK3 are predominantly expressed in various regions, including the cerebral cortex, dentate gyrus, CA1-CA3, and granular layer of the cerebellum. TWIK1, TREK1, and TASK1 are highly expressed in astrocytes, where they play specific cellular roles. Astrocytes keep leak K+ conductance, called the passive conductance, which mainly involves TWIK1-TREK1 heterodimeric channel. TWIK1 and TREK1 also mediate glutamate release from astrocytes in an exocytosis-independent manner. The expression of TREK1 and TREK2 in astrocytes increases under ischemic conditions, that enhance neuroprotection from ischemia. Accumulated evidence has indicated that astrocytes, together with neurons, are involved in brain function, with the K2P channels playing critical role in these astrocytes.
Collapse
Affiliation(s)
- Kanghyun Ryoo
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul 02841, Korea
| | - Jae-Yong Park
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul 02841, Korea
| |
Collapse
|
9
|
Zúñiga L, Zúñiga R. Understanding the Cap Structure in K2P Channels. Front Physiol 2016; 7:228. [PMID: 27378938 PMCID: PMC4906011 DOI: 10.3389/fphys.2016.00228] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/30/2016] [Indexed: 12/25/2022] Open
Affiliation(s)
- Leandro Zúñiga
- Escuela de Medicina, Centro de Investigaciones Médicas, Universidad de Talca Talca, Chile
| | - Rafael Zúñiga
- Escuela de Medicina, Centro de Investigaciones Médicas, Universidad de Talca Talca, Chile
| |
Collapse
|
10
|
Renigunta V, Schlichthörl G, Daut J. Much more than a leak: structure and function of K₂p-channels. Pflugers Arch 2015; 467:867-94. [PMID: 25791628 DOI: 10.1007/s00424-015-1703-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 03/09/2015] [Indexed: 11/27/2022]
Abstract
Over the last decade, we have seen an enormous increase in the number of experimental studies on two-pore-domain potassium channels (K2P-channels). The collection of reviews and original articles compiled for this special issue of Pflügers Archiv aims to give an up-to-date summary of what is known about the physiology and pathophysiology of K2P-channels. This introductory overview briefly describes the structure of K2P-channels and their function in different organs. Its main aim is to provide some background information for the 19 reviews and original articles of this special issue of Pflügers Archiv. It is not intended to be a comprehensive review; instead, this introductory overview focuses on some unresolved questions and controversial issues, such as: Do K2P-channels display voltage-dependent gating? Do K2P-channels contribute to the generation of action potentials? What is the functional role of alternative translation initiation? Do K2P-channels have one or two or more gates? We come to the conclusion that we are just beginning to understand the extremely complex regulation of these fascinating channels, which are often inadequately described as 'leak channels'.
Collapse
Affiliation(s)
- Vijay Renigunta
- Institute of Physiology and Pathophysiology, Marburg University, 35037, Marburg, Germany
| | | | | |
Collapse
|
11
|
Feliciangeli S, Chatelain FC, Bichet D, Lesage F. The family of K2P channels: salient structural and functional properties. J Physiol 2015; 593:2587-603. [PMID: 25530075 DOI: 10.1113/jphysiol.2014.287268] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 12/10/2014] [Indexed: 12/11/2022] Open
Abstract
Potassium channels participate in many biological functions, from ion homeostasis to generation and modulation of the electrical membrane potential. They are involved in a large variety of diseases. In the human genome, 15 genes code for K(+) channels with two pore domains (K2P ). These channels form dimers of pore-forming subunits that produce background conductances finely regulated by a range of natural and chemical effectors, including signalling lipids, temperature, pressure, pH, antidepressants and volatile anaesthetics. Since the cloning of TWIK1, the prototypical member of this family, a lot of work has been carried out on their structure and biology. These studies are still in progress, but data gathered so far show that K2P channels are central players in many processes, including ion homeostasis, hormone secretion, cell development and excitability. A growing number of studies underline their implication in physiopathological mechanisms, such as vascular and pulmonary hypertension, cardiac arrhythmias, nociception, neuroprotection and depression. This review gives a synthetic view of the most noticeable features of these channels.
Collapse
Affiliation(s)
- Sylvain Feliciangeli
- LabEx ICST, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS and Université de Nice-Sophia Antipolis, 660 Route des Lucioles, 06560, Valbonne, France
| | - Frank C Chatelain
- LabEx ICST, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS and Université de Nice-Sophia Antipolis, 660 Route des Lucioles, 06560, Valbonne, France
| | - Delphine Bichet
- LabEx ICST, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS and Université de Nice-Sophia Antipolis, 660 Route des Lucioles, 06560, Valbonne, France
| | - Florian Lesage
- LabEx ICST, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS and Université de Nice-Sophia Antipolis, 660 Route des Lucioles, 06560, Valbonne, France
| |
Collapse
|
12
|
Silent but not dumb: how cellular trafficking and pore gating modulate expression of TWIK1 and THIK2. Pflugers Arch 2014; 467:1121-31. [PMID: 25339226 DOI: 10.1007/s00424-014-1631-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/09/2014] [Accepted: 10/12/2014] [Indexed: 12/25/2022]
Abstract
Among K2P channels, a few of them turned out to be difficult to express in heterologous systems and were coined "silent subunits". Recent studies have shed light on the mechanisms behind this apparent lack of channel activity at the plasma membrane. For TWIK1 and THIK2 channels, silence is related to a combination of intracellular retention and low intrinsic activity. TWIK1 is constitutively endocytosed from the plasma membrane before being transported to recycling endosomes, whereas THIK2 is restricted to endoplasmic reticulum. These intracellular localizations are related to trafficking signals located in the cytoplasmic parts of the channels. When these motifs are mutated or masked, channels are redistributed at the plasma membrane and produce measurable currents. However, these currents are of modest amplitude. This weak basal activity is due to a hydrophobic barrier in the deep pore that limits water and ions in the conduction pathway. Other silent channels KCNK7, TWIK2, and TASK5 are still under study. Expression and characterization of these K2P channels pave the way for a better understanding of the mechanisms controlling intracellular trafficking of membrane proteins, ion conduction, and channel gating.
Collapse
|
13
|
Pandit LM, Lloyd EE, Reynolds JO, Lawrence WS, Reynolds C, Wehrens XHT, Bryan RM. TWIK-2 channel deficiency leads to pulmonary hypertension through a rho-kinase-mediated process. Hypertension 2014; 64:1260-5. [PMID: 25245387 DOI: 10.1161/hypertensionaha.114.03406] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
TWIK-2 (KCNK6) is a member of the 2-pore domain (K2P) family of potassium channels, which are highly expressed in the vascular system. We tested the hypothesis that TWIK-2 deficiency leads to pulmonary hypertension. TWIK-2 knockout mice and their wildtype littermates at 8 weeks of age had similar mean right ventricular systolic pressures (24±3 and 21±3 mm Hg, respectively.) Significantly, by 20 weeks of age, the mean right ventricular systolic pressures in TWIK-2 knockout mice increased to 35±3 mm Hg (P≤0.036), whereas mean right ventricular systolic pressures in wildtype littermates remained at 22±3 mm Hg. Elevated mean right ventricular systolic pressures in the TWIK-2 knockout mice was accompanied by pulmonary vascular remodeling as determined by a 25% increase in the cross-sectional area of the vessels occupied by the vessel wall. Additionally, secondary branches of the pulmonary artery from 20-week-old TWIK-2 knockout mice showed an enhanced contractile response to U46619 (10(-6) moles/L), a thromboxane A2 mimetic, which was completely abolished with the Rho-kinase inhibitor, Y27632 (10(-6) and 10(-5) moles/L). Treatment of TWIK-2 knockout mice with the Rho-kinase inhibitor, fasudil, in the drinking water for 12 weeks, abolished the development of pulmonary hypertension and attenuated the vessel remodeling. We concluded that mice deficient in the TWIK-2 channel develop pulmonary hypertension between 8 and 20 weeks of age through a mechanism involving Rho-kinase. Our results suggest that downregulation of TWIK-2 in the pulmonary vasculature may be an underlying mechanism in the development of pulmonary hypertension.
Collapse
Affiliation(s)
- Lavannya M Pandit
- From the Departments of Internal Medicine (L.M.P., X.H.T.W., R.M.B.), Anesthesiology (E.E.L., R.M.B.), Cardiovascular Research Institute, Department of Molecular Physiology and Biophysics (J.O.R., C.R., X.H.T.W., R.M.B.), Baylor College of Medicine, and Department of Microbiology and Immunology (W.S.L.), The University of Texas Medical Branch
| | - Eric E Lloyd
- From the Departments of Internal Medicine (L.M.P., X.H.T.W., R.M.B.), Anesthesiology (E.E.L., R.M.B.), Cardiovascular Research Institute, Department of Molecular Physiology and Biophysics (J.O.R., C.R., X.H.T.W., R.M.B.), Baylor College of Medicine, and Department of Microbiology and Immunology (W.S.L.), The University of Texas Medical Branch
| | - Julia O Reynolds
- From the Departments of Internal Medicine (L.M.P., X.H.T.W., R.M.B.), Anesthesiology (E.E.L., R.M.B.), Cardiovascular Research Institute, Department of Molecular Physiology and Biophysics (J.O.R., C.R., X.H.T.W., R.M.B.), Baylor College of Medicine, and Department of Microbiology and Immunology (W.S.L.), The University of Texas Medical Branch
| | - William S Lawrence
- From the Departments of Internal Medicine (L.M.P., X.H.T.W., R.M.B.), Anesthesiology (E.E.L., R.M.B.), Cardiovascular Research Institute, Department of Molecular Physiology and Biophysics (J.O.R., C.R., X.H.T.W., R.M.B.), Baylor College of Medicine, and Department of Microbiology and Immunology (W.S.L.), The University of Texas Medical Branch
| | - Corey Reynolds
- From the Departments of Internal Medicine (L.M.P., X.H.T.W., R.M.B.), Anesthesiology (E.E.L., R.M.B.), Cardiovascular Research Institute, Department of Molecular Physiology and Biophysics (J.O.R., C.R., X.H.T.W., R.M.B.), Baylor College of Medicine, and Department of Microbiology and Immunology (W.S.L.), The University of Texas Medical Branch
| | - Xander H T Wehrens
- From the Departments of Internal Medicine (L.M.P., X.H.T.W., R.M.B.), Anesthesiology (E.E.L., R.M.B.), Cardiovascular Research Institute, Department of Molecular Physiology and Biophysics (J.O.R., C.R., X.H.T.W., R.M.B.), Baylor College of Medicine, and Department of Microbiology and Immunology (W.S.L.), The University of Texas Medical Branch
| | - Robert M Bryan
- From the Departments of Internal Medicine (L.M.P., X.H.T.W., R.M.B.), Anesthesiology (E.E.L., R.M.B.), Cardiovascular Research Institute, Department of Molecular Physiology and Biophysics (J.O.R., C.R., X.H.T.W., R.M.B.), Baylor College of Medicine, and Department of Microbiology and Immunology (W.S.L.), The University of Texas Medical Branch
| |
Collapse
|
14
|
Blin S, Chatelain FC, Feliciangeli S, Kang D, Lesage F, Bichet D. Tandem pore domain halothane-inhibited K+ channel subunits THIK1 and THIK2 assemble and form active channels. J Biol Chem 2014; 289:28202-12. [PMID: 25148687 DOI: 10.1074/jbc.m114.600437] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Despite a high level of sequence homology, tandem pore domain halothane-inhibited K(+) channel 1 (THIK1) produces background K(+) currents, whereas THIK2 is silent. This lack of activity is due to a unique combination of intracellular retention and weak basal activity in the plasma membrane. Here, we designed THIK subunits containing dominant negative mutations (THIK1(DN) and THIK2(DN)). THIK2(DN) mutant inhibits THIK1 currents, whereas THIK1(DN) inhibits an activated form of THIK2 (THIK2-A155P-I158D). In situ proximity ligation assays and Förster/fluorescence resonance energy transfer (FRET) experiments support a physical association between THIK1 and THIK2. Next, we expressed covalent tandems of THIK proteins to obtain expression of pure heterodimers. Td-THIK1-THIK2 (where Td indicates tandem) produces K(+) currents of amplitude similar to Td-THIK1-THIK1 but with a noticeable difference in the current kinetics. Unlike Td-THIK2-THIK2 that is mainly detected in the endoplasmic reticulum, Td-THIK1-THIK2 distributes at the plasma membrane, indicating that THIK1 can mask the endoplasmic reticulum retention/retrieval motif of THIK2. Kinetics and unitary conductance of Td-THIK1-THIK2 are intermediate between THIK1 and THIK2. Altogether, these results show that THIK1 and THIK2 form active heteromeric channels, further expanding the known repertoire of K(+) channels.
Collapse
Affiliation(s)
- Sandy Blin
- From LabEx ICST, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, and Université de Nice Sophia Antipolis, 660 Route des Lucioles, 06560 Valbonne, France and
| | - Franck C Chatelain
- From LabEx ICST, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, and Université de Nice Sophia Antipolis, 660 Route des Lucioles, 06560 Valbonne, France and
| | - Sylvain Feliciangeli
- From LabEx ICST, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, and Université de Nice Sophia Antipolis, 660 Route des Lucioles, 06560 Valbonne, France and
| | - Dawon Kang
- the Department of Physiology and Institute of Health Sciences, Gyeongsang National University, School of Medicine, Jinju 660-751, South Korea
| | - Florian Lesage
- From LabEx ICST, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, and Université de Nice Sophia Antipolis, 660 Route des Lucioles, 06560 Valbonne, France and
| | - Delphine Bichet
- From LabEx ICST, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, and Université de Nice Sophia Antipolis, 660 Route des Lucioles, 06560 Valbonne, France and
| |
Collapse
|
15
|
Renigunta V, Zou X, Kling S, Schlichthörl G, Daut J. Breaking the silence: functional expression of the two-pore-domain potassium channel THIK-2. Pflugers Arch 2013; 466:1735-45. [DOI: 10.1007/s00424-013-1404-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 11/09/2013] [Indexed: 10/26/2022]
|
16
|
An increased TREK-1-like potassium current in ventricular myocytes during rat cardiac hypertrophy. J Cardiovasc Pharmacol 2013; 61:302-10. [PMID: 23232841 DOI: 10.1097/fjc.0b013e318280c5a9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
To elucidate the expression and identify the functional changes of 2 pore domain potassium channel TREK-1 during cardiac hypertrophy in rats, left ventricular hypertrophy was induced by subcutaneous injection with isoproterenol. Western blot was used to detect the expression of TREK-1 channel protein, and inside-out and whole-cell recordings were used to record TREK-1 currents. The results showed that TREK-1 protein expression in endocardium was slightly higher than that in epicardium in control left ventricles. However, it was obviously upregulated by 89.8% during hypertrophy, 2.3-fold higher than in epicardium. Mechanical stretch, intracellular acidification, and arachidonic acid could activate a TREK-1-like current in cardiomyocytes. The slope conductances of cardiac TREK-1 and CHO/TREK-1 channels were 123 ± 7 and 113 ± 17 pS, respectively. The TREK-1 inhibitor L-3-n-butylphthalide (10 μM) reduced the currents in CHO/TREK-1 cells, normal cardiomyocytes, and hypertrophic cardiomyocytes by 48.5%, 54.3%, and 55.5%, respectively. The percentage of L-3-n-butylphthalide-inhibited outward whole-cell current in hypertrophic cardiomyocytes (23.7%) was larger than that in normal cardiomyocytes (14.2%). The percentage of chloroform-activated outward whole-cell current in hypertrophic cardiomyocytes (58.3%) was also larger than normal control (40.2%). Our results demonstrated that in hypertrophic rats, TREK-1 protein expression in endocardium was specifically increased and the ratio of TREK-1 channel current in cardiac outward currents was also enhanced. TREK-1 might balance potassium ion flow during hypertrophy and might be a potential drug target for heart protection.
Collapse
|
17
|
Chatelain FC, Bichet D, Feliciangeli S, Larroque MM, Braud VM, Douguet D, Lesage F. Silencing of the tandem pore domain halothane-inhibited K+ channel 2 (THIK2) relies on combined intracellular retention and low intrinsic activity at the plasma membrane. J Biol Chem 2013; 288:35081-92. [PMID: 24163367 DOI: 10.1074/jbc.m113.503318] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The tandem pore domain halothane-inhibited K(+) channel 1 (THIK1) produces background K(+) currents. Despite 62% amino acid identity with THIK1, THIK2 is not active upon heterologous expression. Here, we show that this apparent lack of activity is due to a unique combination of retention in the endoplasmic reticulum and low intrinsic channel activity at the plasma membrane. A THIK2 mutant containing a proline residue (THIK2-A155P) in its second inner helix (M2) produces K(+)-selective currents with properties similar to THIK1, including inhibition by halothane and insensitivity to extracellular pH variations. Another mutation in the M2 helix (I158D) further increases channel activity and affects current kinetics. We also show that the cytoplasmic amino-terminal region of THIK2 (Nt-THIK2) contains an arginine-rich motif (RRSRRR) that acts as a retention/retrieval signal. Mutation of this motif in THIK2 induces a relocation of the channel to the plasma membrane, resulting in measurable currents, even in the absence of mutations in the M2 helix. Cell surface delivery of a Nt-THIK2-CD161 chimera is increased by mutating the arginines of the retention motif but also by converting the serine embedded in this motif to aspartate, suggesting a phosphorylation-dependent regulation of THIK2 trafficking.
Collapse
Affiliation(s)
- Franck C Chatelain
- From the Laboratory of Excellence Ion Channel Science and Therapeutics, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, and Université de Nice Sophia Antipolis, 660 Route des Lucioles, 06560 Valbonne, France
| | | | | | | | | | | | | |
Collapse
|
18
|
Nielsen G, Wandall-Frostholm C, Sadda V, Oliván-Viguera A, Lloyd EE, Bryan RM, Simonsen U, Köhler R. Alterations of N-3 polyunsaturated fatty acid-activated K2P channels in hypoxia-induced pulmonary hypertension. Basic Clin Pharmacol Toxicol 2013; 113:250-8. [PMID: 23724868 DOI: 10.1111/bcpt.12092] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 05/24/2013] [Indexed: 01/06/2023]
Abstract
Polyunsaturated fatty acid (PUFA)-activated two-pore domain potassium channels (K2P ) have been proposed to be expressed in the pulmonary vasculature. However, their physiological or pathophysiological roles are poorly defined. Here, we tested the hypothesis that PUFA-activated K2P are involved in pulmonary vasorelaxation and that alterations of channel expression are pathophysiologically linked to pulmonary hypertension. Expression of PUFA-activated K2P in the murine lung was investigated by quantitative reverse-transcription polymerase chain reaction (qRT-PCR), immunohistochemistry (IHC), by patch clamp (PC) and myography. K2P -gene expression was examined in chronic hypoxic mice. qRT-PCR showed that the K2P 2.1 and K2P 6.1 were the predominantly expressed K2P in the murine lung. IHC revealed protein expression of K2P 2.1 and K2P 6.1 in the endothelium of pulmonary arteries and of K2P 6.1 in bronchial epithelium. PC showed pimozide-sensitive K2P -like K(+) -current activated by docosahexaenoic acid (DHA) in freshly isolated endothelial cells as well as DHA-induced membrane hyperpolarization. Myography on pulmonary arteries showed that DHA induced concentration-dependent instantaneous relaxations that were resistant to endothelial removal and inhibition of NO and prostacyclin synthesis and to a cocktail of blockers of calcium-activated K(+) channels but were abolished by high extracellular (30 mM) K(+) -concentration. Gene expression and protein of K2P 2.1 were not altered in chronic hypoxic mice, while K2P 6.1 was up-regulated by fourfold. In conclusion, the PUFA-activated K2P 2.1 and K2P 6.1 are expressed in murine lung and functional K2P -like channels contribute to endothelium hyperpolarization and pulmonary artery relaxation. The increased K2P 6.1-gene expression may represent a novel counter-regulatory mechanism in pulmonary hypertension and suggest that arterial K2P 2.1 and K2P 6.1 could be novel therapeutic targets.
Collapse
Affiliation(s)
- Gorm Nielsen
- Cardiovascular and Renal Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Wells GD, Tang QY, Heler R, Tompkins-MacDonald GJ, Pritchard EN, Leys SP, Logothetis DE, Boland LM. A unique alkaline pH-regulated and fatty acid-activated tandem pore domain potassium channel (K₂P) from a marine sponge. ACTA ACUST UNITED AC 2012; 215:2435-44. [PMID: 22723483 DOI: 10.1242/jeb.066233] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A cDNA encoding a potassium channel of the two-pore domain family (K(2P), KCNK) of leak channels was cloned from the marine sponge Amphimedon queenslandica. Phylogenetic analysis indicated that AquK(2P) cannot be placed into any of the established functional groups of mammalian K(2P) channels. We used the Xenopus oocyte expression system, a two-electrode voltage clamp and inside-out patch clamp electrophysiology to determine the physiological properties of AquK(2P). In whole cells, non-inactivating, voltage-independent, outwardly rectifying K(+) currents were generated by external application of micromolar concentrations of arachidonic acid (AA; EC(50) ∼30 μmol l(-1)), when applied in an alkaline solution (≥pH 8.0). Prior activation of channels facilitated the pH-regulated, AA-dependent activation of AquK(2P) but external pH changes alone did not activate the channels. Unlike certain mammalian fatty-acid-activated K(2P) channels, the sponge K(2P) channel was not activated by temperature and was insensitive to osmotically induced membrane distortion. In inside-out patch recordings, alkalinization of the internal pH (pK(a) 8.18) activated the AquK(2P) channels independently of AA and also facilitated activation by internally applied AA. The gating of the sponge K(2P) channel suggests that voltage-independent outward rectification and sensitivity to pH and AA are ancient and fundamental properties of animal K(2P) channels. In addition, the membrane potential of some poriferan cells may be dynamically regulated by pH and AA.
Collapse
Affiliation(s)
- Gregory D Wells
- University of Richmond, Department of Biology, Richmond, VA 23173, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Leak K⁺ channel mRNAs in dorsal root ganglia: relation to inflammation and spontaneous pain behaviour. Mol Cell Neurosci 2012; 49:375-86. [PMID: 22273507 PMCID: PMC3334831 DOI: 10.1016/j.mcn.2012.01.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 01/02/2012] [Accepted: 01/04/2012] [Indexed: 02/05/2023] Open
Abstract
Two pore domain potassium (K2P) channels (KCNKx.x) cause K + leak currents and are major contributors to resting membrane potential. Their roles in dorsal root ganglion (DRG) neurons normally, and in pathological pain models, are poorly understood. Therefore, we examined mRNA levels for 10 K2P channels in L4 and L5 rat DRGs normally, and 1 day and 4 days after unilateral cutaneous inflammation, induced by intradermal complete Freund's adjuvant (CFA) injections. Spontaneous foot lifting (SFL) duration (spontaneous pain behaviour) was measured in 1 day and 4 day rats < 1 h before DRG harvest. mRNA levels for KCNK channels and Kv1.4 relative to GAPDH (n = 4–6 rats/group) were determined with real-time RT-PCR. This study is the first to demonstrate expression of THIK1, THIK2 and TWIK2 mRNA in DRGs. Abundance in normal DRGs was, in descending order:
Kv1.4 > TRESK(KCNK18) > TRAAK(KCNK4) > TREK2(KCNK10) = TWIK2(KCNK6) > TREK1 (KCNK2) = THIK2(KCNK12) > TASK1(KCNK3) > TASK2(KCNK5) > THIK1(KCNK13) = TASK3(KCNK9).
During inflammation, the main differences from normal in DRG mRNA levels were bilateral, suggesting systemic regulation, although some channels showed evidence of ipsilateral modulation. By 1 day, bilateral K2P mRNA levels had decreased (THIK1) or increased (TASK1, THIK2) but by 4 days they were consistently decreased (TASK2, TASK3) or tended to decrease (excluding TRAAK). The decreased TASK2 mRNA was mirrored by decreased protein (TASK2-immunoreactivity) at 4 days. Ipsilateral mRNA levels at 4 days compared with 1 day were lower (TRESK, TASK1, TASK3, TASK2 and THIK2) or higher (THIK1). Ipsilateral SFL duration during inflammation was positively correlated with ipsilateral TASK1 and TASK3 mRNAs, and contralateral TASK1, TRESK and TASK2 mRNAs. Thus changes in K2P mRNA levels occurred during inflammation and for 4 K2P channels were associated with spontaneous pain behaviour (SFL). K2P channels and their altered expression are therefore associated with inflammation-induced pain.
Collapse
|
21
|
Moulton G, Attwood TK, Parry-Smith DJ, Packer JCL. Phylogenomic Analysis and Evolution of the Potassium Channel Gene Family. ACTA ACUST UNITED AC 2011; 9:363-77. [PMID: 14698964 DOI: 10.3109/714041017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Potassium channels govern the permeability of cells to potassium ions, thereby controlling the membrane potential. In metazoa, potassium channels are encoded by a large, diverse gene family. Previous analyses of this gene family have focused on its diversity in mammals. Here we have pursued a more comprehensive study in Caenorhabditis elegans, Drosophila melanogaster, and mammalian genomes. The investigation revealed 164 potassium channel encoding genes in C. elegans, D. melanogaster, and mammals, classified into seven conserved families, which we applied to phylogenetic analysis. The trees are discussed in relation to the assignment of orthologous relationships between genes and vertebrate genome duplication.
Collapse
Affiliation(s)
- G Moulton
- School of Biological Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom.
| | | | | | | |
Collapse
|
22
|
Lloyd EE, Crossland RF, Phillips SC, Marrelli SP, Reddy AK, Taffet GE, Hartley CJ, Bryan RM. Disruption of K(2P)6.1 produces vascular dysfunction and hypertension in mice. Hypertension 2011; 58:672-8. [PMID: 21876070 DOI: 10.1161/hypertensionaha.111.175349] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
K(2P)6.1, a member of the 2-pore domain K channel family, is highly expressed in the vascular system; however, its function is unknown. We tested the following hypotheses. K(2P)6.1 regulates the following: (1) systemic blood pressure; (2) the contractile state of arteries; (3) vascular smooth muscle cell migration; (4) proliferation; and/or (5) volume regulation. Mice lacking K(2P)6.1 (KO) were generated by deleting exon 1 of Kcnk6. Mean arterial blood pressure in both anesthetized and awake KO mice was increased by 17±2 and 26±3 mm Hg, respectively (P<0.05). The resting membrane potential in freshly dispersed vascular smooth muscle cells was depolarized by 17±2 mV in the KO compared with wild-type littermates (P<0.05). The contractile responses to KCl (P<0.05) and BAY K 8644 (P<0.01), an activator of L-type calcium channels, were enhanced in isolated segments of aorta from KO mice. However, there was no difference in the current density of L-type calcium channels. Responses to U46619, an agent that activates rho kinase, showed an enhanced contraction in aorta from KO mice (P<0.001). The BAY K 8644-mediated increase in contraction was decreased to wild-type levels when treated with Y27632, a rho kinase inhibitor, (P<0.05). K(2P)6.1 does not appear to be involved with migration, proliferation, or volume regulation in cultured vascular smooth muscle cells. We conclude that K(2P)6.1 deficiency induces vascular dysfunction and hypertension through a mechanism that may involve smooth muscle cell depolarization and enhanced rho kinase activity.
Collapse
Affiliation(s)
- Eric E Lloyd
- Department of Anesthesiology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Mathie A, Rees KA, El Hachmane MF, Veale EL. Trafficking of neuronal two pore domain potassium channels. Curr Neuropharmacol 2010; 8:276-86. [PMID: 21358977 PMCID: PMC3001220 DOI: 10.2174/157015910792246146] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 01/18/2010] [Accepted: 01/18/2010] [Indexed: 01/05/2023] Open
Abstract
The activity of two pore domain potassium (K2P) channels regulates neuronal excitability and cell firing. Post-translational regulation of K2P channel trafficking to the membrane controls the number of functional channels at the neuronal membrane affecting the functional properties of neurons. In this review, we describe the general features of K channel trafficking from the endoplasmic reticulum (ER) to the plasma membrane via the Golgi apparatus then focus on established regulatory mechanisms for K2P channel trafficking. We describe the regulation of trafficking of TASK channels from the ER or their retention within the ER and consider the competing hypotheses for the roles of the chaperone proteins 14-3-3, COP1 and p11 in these processes and where these proteins bind to TASK channels. We also describe the localisation of TREK channels to particular regions of the neuronal membrane and the involvement of the TREK channel binding partners AKAP150 and Mtap2 in this localisation. We describe the roles of other K2P channel binding partners including Arf6, EFA6 and SUMO for TWIK1 channels and Vpu for TASK1 channels. Finally, we consider the potential importance of K2P channel trafficking in a number of disease states such as neuropathic pain and cancer and the protection of neurons from ischemic damage. We suggest that a better understanding of the mechanisms and regulations that underpin the trafficking of K2P channels to the plasma membrane and to localised regions therein may considerably enhance the probability of future therapeutic advances in these areas.
Collapse
Affiliation(s)
- Alistair Mathie
- Medway School of Pharmacy, Universities of Kent and Greenwich at Medway, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK
| | | | | | | |
Collapse
|
24
|
Enyedi P, Czirják G. Molecular background of leak K+ currents: two-pore domain potassium channels. Physiol Rev 2010; 90:559-605. [PMID: 20393194 DOI: 10.1152/physrev.00029.2009] [Citation(s) in RCA: 642] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Two-pore domain K(+) (K(2P)) channels give rise to leak (also called background) K(+) currents. The well-known role of background K(+) currents is to stabilize the negative resting membrane potential and counterbalance depolarization. However, it has become apparent in the past decade (during the detailed examination of the cloned and corresponding native K(2P) channel types) that this primary hyperpolarizing action is not performed passively. The K(2P) channels are regulated by a wide variety of voltage-independent factors. Basic physicochemical parameters (e.g., pH, temperature, membrane stretch) and also several intracellular signaling pathways substantially and specifically modulate the different members of the six K(2P) channel subfamilies (TWIK, TREK, TASK, TALK, THIK, and TRESK). The deep implication in diverse physiological processes, the circumscribed expression pattern of the different channels, and the interesting pharmacological profile brought the K(2P) channel family into the spotlight. In this review, we focus on the physiological roles of K(2P) channels in the most extensively investigated cell types, with special emphasis on the molecular mechanisms of channel regulation.
Collapse
Affiliation(s)
- Péter Enyedi
- Department of Physiology, Semmelweis University, Budapest, Hungary.
| | | |
Collapse
|
25
|
Lloyd EE, Marrelli SP, Namiranian K, Bryan RM. Characterization of TWIK-2, a two-pore domain K+ channel, cloned from the rat middle cerebral artery. Exp Biol Med (Maywood) 2009; 234:1493-502. [PMID: 19934370 DOI: 10.3181/0903-rm-110] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
TWIK-2, a member of the Two-Pore Domain K channel family, is expressed in a number of mammalian tissues including the vascular system. The function of TWIK-2 is not known. The purpose of this study was to clone the TWIK-2 channel from the rat middle cerebral artery, express it in CHO cells, and characterize the channel's electrical properties. In light of the fact that there are no specific TWIK-2 inhibitors or activators, a better characterization of the channel should enhance our understanding of its role in the vascular system. TWIK-2 was cloned from the rat middle cerebral artery and expressed with an N-terminal green fluorescence protein (GFP) in CHO cells. We report that rTWIK-2-GFP currents were relatively linear at physiological K(+) concentrations but become slightly inwardly rectifying in symmetrical K(+). rTWIK-2-GFP was insensitive to 10 mM TEA, 3 mM 4-aminopyridine, and 10 microM glibenclamide. However, rTWIK-2-GFP was inhibited by Ba(2+) with 50% of the current being blocked at 80 microM. rTWIK-2-GFP activity was enhanced 60% by 100 microM arachidonic acid. The electrophysiological characteristics of TWIK-2 indicate that it could serve an important role in ion homeostasis and regulation of the membrane potential in arteries and arterioles.
Collapse
Affiliation(s)
- Eric E Lloyd
- Department of Anesthesiology, Room 434D, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
26
|
Heitzmann D, Warth R. Physiology and pathophysiology of potassium channels in gastrointestinal epithelia. Physiol Rev 2008; 88:1119-82. [PMID: 18626068 DOI: 10.1152/physrev.00020.2007] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Epithelial cells of the gastrointestinal tract are an important barrier between the "milieu interne" and the luminal content of the gut. They perform transport of nutrients, salts, and water, which is essential for the maintenance of body homeostasis. In these epithelia, a variety of K(+) channels are expressed, allowing adaptation to different needs. This review provides an overview of the current literature that has led to a better understanding of the multifaceted function of gastrointestinal K(+) channels, thereby shedding light on pathophysiological implications of impaired channel function. For instance, in gastric mucosa, K(+) channel function is a prerequisite for acid secretion of parietal cells. In epithelial cells of small intestine, K(+) channels provide the driving force for electrogenic transport processes across the plasma membrane, and they are involved in cell volume regulation. Fine tuning of salt and water transport and of K(+) homeostasis occurs in colonic epithelia cells, where K(+) channels are involved in secretory and reabsorptive processes. Furthermore, there is growing evidence for changes in epithelial K(+) channel expression during cell proliferation, differentiation, apoptosis, and, under pathological conditions, carcinogenesis. In the future, integrative approaches using functional and postgenomic/proteomic techniques will help us to gain comprehensive insights into the role of K(+) channels of the gastrointestinal tract.
Collapse
Affiliation(s)
- Dirk Heitzmann
- Institute of Physiology and Clinic and Policlinic for Internal Medicine II, Regensburg, Germany
| | | |
Collapse
|
27
|
Berntson AK, Walmsley B. Characterization of a potassium-based leak conductance in the medial nucleus of the trapezoid body. Hear Res 2008; 244:98-106. [PMID: 18761066 DOI: 10.1016/j.heares.2008.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 07/29/2008] [Accepted: 08/05/2008] [Indexed: 10/21/2022]
Abstract
Principal neurons of the medial nucleus of the trapezoid body (MNTB) integrate the large, excitatory inputs from anteroventral cochlear nucleus (AVCN) bushy cells with conventional inhibitory inputs to produce an inhibitory output to the lateral and medial superior olive. This circuit is critical in the sound localization pathway of the auditory brainstem. Many ionic currents act in concert to produce the rapid phase-locked firing properties characteristic of MNTB principal neurons. We report here that MNTB neurons of the mouse possess a 2-4nS instantaneous potassium-based leak current, probably mediated by TWIK two-pore potassium leak channels. The function of the leak current was examined by modulating its magnitude with a dynamic clamp. The leak current modulates the resting voltage by 5mV/nS, reduces the input resistance of the cell by 5MOmega/nS and reduces the membrane time constant by 0.075 micros/nS. The leak current also modulates spike timing. Given leak channels are highly regulated, they are well placed to influence the firing properties, and action potential timing in principal neurons of the MNTB.
Collapse
Affiliation(s)
- A K Berntson
- Division of Neuroscience, John Curtin School of Medical Research, Australian National University, Acton, Australian Capital Territory 0200, Australia.
| | | |
Collapse
|
28
|
Yost CS, Oh I, Eger EI, Sonner JM. Knockout of the gene encoding the K(2P) channel KCNK7 does not alter volatile anesthetic sensitivity. Behav Brain Res 2008; 193:192-6. [PMID: 18572259 DOI: 10.1016/j.bbr.2008.05.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 03/26/2008] [Accepted: 05/13/2008] [Indexed: 10/22/2022]
Abstract
The molecular site of action for volatile anesthetics remains unknown despite many years of study. Members of the K(2P) potassium channel family, whose currents are potentiated by volatile anesthetics have emerged as possible anesthetic targets. In fact, a mouse model in which the gene for TREK-1 (KCNK2) has been inactivated shows resistance to volatile anesthetics. In this study we tested whether inactivation of another member of this ion channel family, KCNK7, in a knockout mouse displayed altered sensitivity to the anesthetizing effect of volatile anesthetics. KCNK7 knockout mice were produced by standard gene inactivation methods. Heterozygous breeding pairs produced animals that were homozygous, heterozygous or wild-type for the inactivated gene. Knockout animals were tested for movement in response to noxious stimulus (tail clamp) under varying concentrations of isoflurane, halothane, and desflurane to define the minimum alveolar concentration (MAC) preventing movement. Mice homozygous for inactivated KCNK7 were viable and indistinguishable in weight, general development and behavior from heterozygotes or wild-type littermates. Knockout mice (KCNK7-/-) displayed no difference in MAC for the three volatile anesthetics compared to heterozygous (+/-) or wild-type (+/+) littermates. Because inactivation of KCNK7 does not alter MAC, KCNK7 may play only a minor role in normal CNS function or may have had its function compensated for by other inhibitory mechanisms. Additional studies with transgenic animals will help define the overall role of the K(2P) channels in normal neurophysiology and in volatile anesthetic mechanisms.
Collapse
Affiliation(s)
- C Spencer Yost
- Department of Anesthesia and Perioperative Care, Medical Sciences Building, 513 Parnassus Avenue, University of California, San Francisco, CA 94143, USA.
| | | | | | | |
Collapse
|
29
|
Aller M, Wisden W. Changes in expression of some two-pore domain potassium channel genes (KCNK) in selected brain regions of developing mice. Neuroscience 2008; 151:1154-72. [DOI: 10.1016/j.neuroscience.2007.12.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2007] [Revised: 12/03/2007] [Accepted: 12/11/2007] [Indexed: 10/22/2022]
|
30
|
Saeki Y, Ohara A, Nishikawa M, Yamamoto T, Yamamoto G. The presence of arachidonic acid-activated K+ channel, TREK-1, in human periodontal ligament fibroblasts. Drug Metab Rev 2007; 39:457-65. [PMID: 17786632 DOI: 10.1080/03602530701498786] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Human periodontal ligament (PDL) fibroblasts expressed following two-pore-domain K(+) channels, TWIK-2 > TREK-1 > TWIK-1 >> TASK-1 > TRAAK > TASK-2. TREK-2 message was not detectable. We found the presence of arachidonic acid-activated and mechanical stress-sensitive K(+) channel, TREK-1, in the PDL fibroblasts by patch-clamp technique. It was also found the significant increase of intracellular concentration of arachidonic acid upon the application of cyclic stretch. Therefore, we suppose that the mechanical stretch due to the mastication activates phospholipase A(2) to release arachidonic acid (AA) from membrane, then, the released AA activates TREK-1. Thus, TREK-1 K(+) channels may play a protective role to maintain the negative membrane potential of PDL fibroblasts against the environmental stimuli.
Collapse
Affiliation(s)
- Yukikazu Saeki
- Department of Basic Science for Health and Nursing, Shiga University of Medical Science, Ohtsu, Shiga, Japan.
| | | | | | | | | |
Collapse
|
31
|
Lotshaw DP. Biophysical, pharmacological, and functional characteristics of cloned and native mammalian two-pore domain K+ channels. Cell Biochem Biophys 2007; 47:209-56. [PMID: 17652773 DOI: 10.1007/s12013-007-0007-8] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/12/2022]
Abstract
The mammalian family of two-pore domain K+ (K2P) channel proteins are encoded by 15 KCNK genes and subdivided into six subfamilies on the basis of sequence similarities: TWIK, TREK, TASK, TALK, THIK, and TRESK. K2P channels are expressed in cells throughout the body and have been implicated in diverse cellular functions including maintenance of the resting potential and regulation of excitability, sensory transduction, ion transport, and cell volume regulation, as well as metabolic regulation and apoptosis. In recent years K2P channel isoforms have been identified as important targets of several widely employed drugs, including: general anesthetics, local anesthetics, neuroprotectants, and anti-depressants. An important goal of future studies will be to identify the basis of drug actions and channel isoform selectivity. This goal will be facilitated by characterization of native K2P channel isoforms, their pharmacological properties and tissue-specific expression patterns. To this end the present review examines the biophysical, pharmacological, and functional characteristics of cloned mammalian K2P channels and compares this information with the limited data available for native K2P channels in order to determine criteria which may be useful in identifying ionic currents mediated by native channel isoforms and investigating their pharmacological and functional characteristics.
Collapse
Affiliation(s)
- David P Lotshaw
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA.
| |
Collapse
|
32
|
Chow GE, Muller CH, Curnow EC, Hayes ES. Expression of two-pore domain potassium channels in nonhuman primate sperm. Fertil Steril 2006; 87:397-404. [PMID: 17067589 PMCID: PMC1852539 DOI: 10.1016/j.fertnstert.2006.06.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Revised: 06/22/2006] [Accepted: 06/22/2006] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Two-pore domain potassium channels (K(2P)) play integral roles in cell signaling pathways by modifying cell membrane resting potential. Here we describe the expression and function of K(2P) channels in nonhuman primate sperm. DESIGN Experimental animal study, randomized blinded concentration-response experiments. SETTING University-affiliated primate research center. ANIMAL(S) Male nonhuman primates. INTERVENTION(S) Western blot and immunofluorescent analysis of epididymal sperm samples. Kinematic measures (curvilinear velocity and lateral head displacement) and acrosome status were studied in epididymal sperm samples exposed to K(2P) agonist (docosahexaenoic acid) and antagonist (gadolinium). MAIN OUTCOME MEASURE(S) Semiquantitative protein expression and cellular localization and quantitative changes in specific kinematic parameters and acrosome integrity. RESULT(S) Molecular analysis demonstrated expression and specific regional distribution of TRAAK, TREK-1, and TASK-2 in nonhuman primate sperm. Docosahexaenoic acid produced a concentration-dependent increase in curvilinear velocity (P<.0001) with concomitant concentration-dependent reductions in lateral head displacement (P=.005). Gadolinium reduced velocity measures (P<.01) without significantly affecting lateral head displacement. CONCLUSION(S) The results demonstrated expression and function of K(2P) potassium channels in nonhuman primate sperm for the first time. The unique, discrete distributions of K(2P) channels in nonhuman primate sperm suggest specific roles for this subfamily of ion channels in primate sperm function.
Collapse
Affiliation(s)
- Gregory E. Chow
- Washington National Primate Research Center, University of Washington, Seattle, WA 98195 USA
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195 USA
| | - Charles H. Muller
- Department of Urology, University of Washington, Seattle, WA 98195 USA
| | - Eliza C. Curnow
- Washington National Primate Research Center, University of Washington, Seattle, WA 98195 USA
| | - Eric S. Hayes
- Washington National Primate Research Center, University of Washington, Seattle, WA 98195 USA
| |
Collapse
|
33
|
Döring F, Scholz H, Kühnlein RP, Karschin A, Wischmeyer E. NovelDrosophilatwo-pore domain K+channels: rescue of channel function by heteromeric assembly. Eur J Neurosci 2006; 24:2264-74. [PMID: 17074048 DOI: 10.1111/j.1460-9568.2006.05102.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ten genes with essential structural features of two-pore domain potassium channels were identified in the genome of Drosophila melanogaster. Two Drosophila two-pore domain potassium subunits displayed substantial amino acid similarity to human TWIK-related acid-sensitive K(+) (TASK) channels (38-43%), whereas all others were less than 26% similar to any human homolog. The cDNAs of Drosophila TASK (dTASK)-6 and dTASK-7 channels were isolated from adult fruit flies. In Northern blots dTASK transcripts were found predominantly in the head fraction of adult flies and whole-mount brain in situ hybridizations showed strongly overlapping expression patterns of both dTASK isoforms in the antennal lobes. When heterologously expressed in Drosophila Schneider 2 cells, dTASK-6 gave rise to rapidly activating K(+)-selective currents that steeply depended on external pH. Structural elements in the extracellular M1-P1 loop of dTASK-6 were found to be involved in proton sensation. In contrast to mammalian TASK channels, the pH sensitivity was independent of extracellular histidines adjacent to the GYG selectivity filter (His98). As revealed by mutational analysis, functional expression of dTASK-7 was prevented by two nonconserved amino acids (Ala92-Met93) in the pore domain. When these two residues were replaced by conserved Thr92-Thr93, typical K(+)-selective leak currents were generated that were insensitive to changes in external pH. Nonfunctional wildtype dTASK-7 channels appeared to form heteromeric assemblies with dTASK-6. Following cotransfection of dTASK-6 and wildtype dTASK-7 (or when engineered as concatemers), K(+) currents were observed that were smaller in amplitude, harbored slower activation kinetics and were considerably less inhibited by local anesthetics as compared with dTASK-6. Thus, pore-loop residues in dTASK-7 changed functional and pharmacological properties in heteromeric dTASK channels.
Collapse
Affiliation(s)
- Frank Döring
- Institute of Physiology, University of Würzburg, Röntgenring 9, 97070 Würzburg, Germany.
| | | | | | | | | |
Collapse
|
34
|
Kiyoshi H, Yamazaki D, Ohya S, Kitsukawa M, Muraki K, Saito SY, Ohizumi Y, Imaizumi Y. Molecular and electrophysiological characteristics of K+ conductance sensitive to acidic pH in aortic smooth muscle cells of WKY and SHR. Am J Physiol Heart Circ Physiol 2006; 291:H2723-34. [PMID: 16815980 DOI: 10.1152/ajpheart.00894.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Changes in K(+) conductances and their contribution to membrane depolarization in the setting of an acidic pH environment have been studied in myocytes from aortic smooth muscle cells of spontaneously hypertensive rats (SHR) compared with those from Wistar-Kyoto (WKY) rats. The resting membrane potential (RMP) of aortic smooth muscle at extracellular pH (pH(o)) of 7.4 was significantly more depolarized in SHR than in WKY rats. Acidification to pH(o) 6.5 made this difference in RMP between SHR and WKY rats more significant by further depolarizing the SHR myocytes. Large-conductance Ca(2+)-activated K(+) (BK) currents, which were markedly suppressed by acidification, were larger in aortic myocytes of SHR than in those of WKY rats. In contrast, acid-sensitive, non-BK currents were smaller in SHR. Western blot analyses showed that expression of BK-alpha- and -beta(1) subunits in SHR aortas was upregulated and comparable with those in WKY rats, respectively. Additional electrophysiological and molecular studies showed that pH- and halothane-sensitive two-pore domain weakly inward rectifying K(+) channel (TWIK)-like acid-sensitive K(+) (TASK) channel subtypes were functionally expressed in aortas, and TASK1 expression was significantly higher in WKY than in SHR. Although the background current through TASK channels at normal pH(o) (7.4) was small and may not contribute significantly to the regulation of RMP, TASK channel activation by halothane or alkalization (pH(o) 8.0) induced significant hyperpolarization in WKY but not in SHR. In conclusion, the larger depolarization and subsequent abnormal contractions after acidification in aortic myocytes in the setting of SHR hypertension are mainly attributable to the larger contribution of BK current to the total membrane conductance than in WKY aortas.
Collapse
MESH Headings
- Animals
- Aorta/metabolism
- Aorta/pathology
- Aorta/physiopathology
- Down-Regulation/physiology
- Electrophysiology
- Halothane/pharmacology
- Hydrogen-Ion Concentration
- Hypertension/pathology
- Hypertension/physiopathology
- Male
- Membrane Potentials/genetics
- Membrane Potentials/physiology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Myocardial Contraction/physiology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Nerve Tissue Proteins
- Potassium Channels, Calcium-Activated/genetics
- Potassium Channels, Calcium-Activated/metabolism
- Potassium Channels, Tandem Pore Domain/genetics
- Potassium Channels, Tandem Pore Domain/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred SHR
- Rats, Inbred WKY
Collapse
Affiliation(s)
- Hidekazu Kiyoshi
- Dept. of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Mizuhoku, Nagoya 467-8603, Japan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Kim D. Chapter 12 Two‐Pore Domain Potassium Channels in Sensory Transduction. CURRENT TOPICS IN MEMBRANES 2006. [DOI: 10.1016/s1063-5823(06)57011-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Czirják G, Enyedi P. Zinc and Mercuric Ions Distinguish TRESK from the Other Two-Pore-Domain K+Channels. Mol Pharmacol 2005; 69:1024-32. [PMID: 16354767 DOI: 10.1124/mol.105.018556] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
TWIK-related spinal cord K+ channel (TRESK) is the most recently cloned two-pore-domain potassium (2PK+) channel, regulated by the calcium/calmodulin-dependent protein phosphatase calcineurin. Functional identification of endogenous TRESK and its distinction from the other 2PK+ channels, producing similar background K+ current, are impeded by the lack of specific inhibitors. Therefore, we searched for antagonists selective against TRESK among the mouse 2PK+ channels by screening more than 200 substances. Mibefradil, zinc, and mercuric ions inhibited TRESK expressed in Xenopus laevis oocytes with IC50 values lower than 10 microM. The specificity of the identified agents was determined by measuring their effects on mouse TALK-1, TASK-1, TASK-2, TASK-3, THIK-1, TRAAK, TREK-1, and TREK-2. Mibefradil failed to discriminate well among the functional 2PK+ channels; however, Zn2+ and Hg2+ exerted a significantly stronger inhibitory effect on TRESK than on the other channels. Sensitivity to zinc but insensitivity to ruthenium red were distinctive features of TRESK. Whereas both Zn2+ and Hg2+ were selective blockers of TRESK among the mouse 2PK+ channels, human TRESK was resistant to Zn2+; it was blocked only by Hg2+. His132 of mouse TRESK was partly responsible for this difference. Mouse TRESK expressed in COS-7 cells was also inhibited by Zn2+ and Hg2+, and TRESK single-channel current was diminished in outside-out patches, indicating that the action of the ions was membrane-delimited, most probably targeting the channel itself. Thus, both Zn2+ and Hg2+ are expected to inhibit endogenous TRESK in isolated mouse cells, and these ions can be applied to identify the calcineurin-activated 2PK+ channel in its natural environment.
Collapse
Affiliation(s)
- Gábor Czirják
- Department of Physiology, Semmelweis University, Budapest, Hungary, H-1444
| | | |
Collapse
|
37
|
Sheng JZ, Weljie A, Sy L, Ling S, Vogel HJ, Braun AP. Homology modeling identifies C-terminal residues that contribute to the Ca2+ sensitivity of a BKCa channel. Biophys J 2005; 89:3079-92. [PMID: 16100257 PMCID: PMC1366805 DOI: 10.1529/biophysj.105.063610] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Activation of BK(Ca) channels by direct Ca(2+) binding and membrane depolarization occur via independent and additive molecular processes. The "calcium bowl" domain is critically involved in Ca(2+)-dependent gating, and we have hypothesized that a sequence within this domain may resemble an EF hand motif. Using a homology modeling strategy, it was observed that a single Ca(2+) ion may be coordinated by the oxygen-containing side chains of residues within the calcium bowl (i.e., (912)ELVNDTNVQFLD(923)). To examine these predictions directly, alanine-substituted BK(Ca) channel mutants were expressed in HEK 293 cells and the voltage and Ca(2+) dependence of macroscopic currents were examined in inside-out membrane patches. Over the range of 1-10 microM free Ca(2+), single point mutations (i.e., E912A and D923A) produced rightward shifts in the steady-state conductance-voltage relations, whereas the mutants N918A or Q920A had no effect on Ca(2+)-dependent gating. The double mutant E912A/D923A displayed a synergistic shift in Ca(2+)-sensitive gating, as well as altered kinetics of current activation/deactivation. In the presence of 1, 10, and 80 mM cytosolic Mg(2+), this double mutation significantly reduced the Ca(2+)-induced free energy change associated with channel activation. Finally, mutations that altered sensitivity of the holo-channel to Ca(2+) also reduced direct (45)Ca binding to the calcium bowl domain expressed as a bacterial fusion protein. These findings, along with other recent data, are considered in the context of the calcium bowl's high affinity Ca(2+) sensor and the known properties of EF hands.
Collapse
Affiliation(s)
- Jian-Zhong Sheng
- Department of Pharmacology, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | | | | | | | | | | |
Collapse
|
38
|
Anderle P, Sengstag T, Mutch DM, Rumbo M, Praz V, Mansourian R, Delorenzi M, Williamson G, Roberts MA. Changes in the transcriptional profile of transporters in the intestine along the anterior-posterior and crypt-villus axes. BMC Genomics 2005; 6:69. [PMID: 15882471 PMCID: PMC1145182 DOI: 10.1186/1471-2164-6-69] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Accepted: 05/10/2005] [Indexed: 01/03/2023] Open
Abstract
Background The purpose of this work was to characterize the expression of drug and nutrient carriers along the anterior-posterior and crypt-villus axes of the intestinal epithelium and to study the validity of utilizing whole gut tissue rather than purified epithelial cells to examine regional variations in gene expression. Results We have characterized the mRNA expression profiles of 76 % of all currently known transporters along the anterior-posterior axis of the gut. This is the first study to describe the expression profiles of the majority of all known transporters in the intestine. The expression profiles of transporters, as defined according to the Gene Ontology consortium, were measured in whole tissue of the murine duodenum, jejunum, ileum and colon using high-density microarrays. For nine transporters (Abca1, Abcc1, Abcc3, Abcg8, Slc10a2, Slc28a2, Slc2a1, Slc34a2 and Slc5a8), the mRNA profiles were further measured by RT-PCR in laser micro-dissected crypt and villus epithelial cells corresponding to the aforementioned intestinal regions. With respect to differentially regulated transporters, the colon had a distinct expression profile from small intestinal segments. The majority (59 % for p cutoff ≤ 0.05) of transporter mRNA levels were constant across the intestinal sections studied. For the transporter subclass "carrier activity", which contains the majority of known carriers for biologically active compounds, a significant change (p ≤ 0.05) along the anterior-posterior axis was observed. Conclusion All nine transporters examined in laser-dissected material demonstrated good replication of the region-specific profiles revealed by microarray. Furthermore, we suggest that the distribution characteristics of Slc5a8 along the intestinal tract render it a suitable candidate carrier for monocarboxylate drugs in the posterior portion of the intestine. Our findings also predict that there is a significant difference in the absorption of carrier-mediated compounds in the different intestinal segments. The most pronounced differences can be expected between the adjoining segments ileum and colon, but the differences between the other adjoining segments are not negligible. Finally, for the examined genes, profiles measured in whole intestinal tissue extracts are representative of epithelial cell-only gene expression.
Collapse
Affiliation(s)
- Pascale Anderle
- ISREC, Swiss Institute for Experimental Cancer Research, 1066 Epalinges s/Lausanne, Switzerland
| | - Thierry Sengstag
- Swiss Institute for Experimental Cancer Research (ISREC) and Swiss Institute of Bioinformatics (SIB), NCCR Molecular Oncology, CH-1066 Epalinges s/Lausanne, Switzerland
| | - David M Mutch
- Nestle Research Center, Vers-chez-les-Blanc, 1000 Lausanne 26, Switzerland
| | - Martin Rumbo
- ISREC, Swiss Institute for Experimental Cancer Research, 1066 Epalinges s/Lausanne, Switzerland
| | - Viviane Praz
- ISREC and Swiss Institute of Bioinformatics, 1066 Epalinges s/Lausanne, Switzerland
| | - Robert Mansourian
- Nestle Research Center, Vers-chez-les-Blanc, 1000 Lausanne 26, Switzerland
| | - Mauro Delorenzi
- Swiss Institute for Experimental Cancer Research (ISREC) and Swiss Institute of Bioinformatics (SIB), NCCR Molecular Oncology, CH-1066 Epalinges s/Lausanne, Switzerland
| | - Gary Williamson
- Nestle Research Center, Vers-chez-les-Blanc, 1000 Lausanne 26, Switzerland
| | | |
Collapse
|
39
|
Rajan S, Plant LD, Rabin ML, Butler MH, Goldstein SAN. Sumoylation Silences the Plasma Membrane Leak K+ Channel K2P1. Cell 2005; 121:37-47. [PMID: 15820677 DOI: 10.1016/j.cell.2005.01.019] [Citation(s) in RCA: 213] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Revised: 01/19/2005] [Accepted: 01/21/2005] [Indexed: 11/15/2022]
Abstract
Reversible, covalent modification with small ubiquitin-related modifier proteins (SUMOs) is known to mediate nuclear import/export and activity of transcription factors. Here, the SUMO pathway is shown to operate at the plasma membrane to control ion channel function. SUMO-conjugating enzyme is seen to be resident in plasma membrane, to assemble with K2P1, and to modify K2P1 lysine 274. K2P1 had not previously shown function despite mRNA expression in heart, brain, and kidney and sequence features like other two-P loop K+ leak (K2P) pores that control activity of excitable cells. Removal of the peptide adduct by SUMO protease reveals K2P1 to be a K+-selective, pH-sensitive, openly rectifying channel regulated by reversible peptide linkage.
Collapse
Affiliation(s)
- Sindhu Rajan
- Department of Pediatrics, Institute for Molecular Pediatric Sciences, Pritzker School of Medicine, University of Chicago, 5721 South Maryland Avenue, Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|
40
|
Morton MJ, Chipperfield S, Abohamed A, Sivaprasadarao A, Hunter M. Na+-induced inward rectification in the two-pore domain K+channel, TASK-2. Am J Physiol Renal Physiol 2005; 288:F162-9. [PMID: 15328068 DOI: 10.1152/ajprenal.00248.2004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
TASK-2 is a member of the two-pore domain K+(K2P) channel family that is expressed at high levels in several epithelia, including the proximal tubule. In common with the other TASK channels, TASK-2 is sensitive to changes in extracellular pH. We have expressed human TASK-2 in Chinese hamster ovary cells and studied whole cell and single-channel activity by patch clamp. The open probability of K2Pchannels is generally independent of voltage, yielding linear current-voltage ( I- V) curves. Despite these properties, we found that these channels showed distinct inward rectification immediately on the establishment of whole cell clamp, which became progressively less pronounced with time. This rectification was due to intracellular Na+but was unaffected by polyamines or Mg2+(agents that cause rectification in Kir channels). Rectification was concentration- and voltage-dependent and could be reversibly induced by switching between Na+-rich and Na+-free bath solutions. In excised inside-out patches, Na+reduced the amplitude of single-channel currents, indicative of rapid block and unblock of the pore. Mutations in the selectivity filter abolished Na+-induced rectification, suggesting that Na+binds within the selectivity filter in wild-type channels. This sensitivity to intracellular Na+may be an additional potential regulatory mechanism of TASK-2 channels.
Collapse
|
41
|
Skatchkov SN, Eaton MJ, Shuba YM, Kucheryavykh YV, Derst C, Veh RW, Wurm A, Iandiev I, Pannicke T, Bringmann A, Reichenbach A. Tandem-pore domain potassium channels are functionally expressed in retinal (Müller) glial cells. Glia 2005; 53:266-76. [PMID: 16265669 DOI: 10.1002/glia.20280] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Tandem-pore domain (2P-domain) K+-channels regulate neuronal excitability, but their function in glia, particularly, in retinal glial cells, is unclear. We have previously demonstrated the immunocytochemical localization of the 2P-domain K+ channels TASK-1 and TASK-2 in retinal Müller glial cells of amphibians. The purpose of the present study was to determine whether these channels were functional, by employing whole-cell recording from frog and mammalian (guinea pig, rat and mouse) Müller cells and confocal microscopy to monitor swelling in rat Müller cells. TASK-like immunolabel was localized in these cells. The currents mediated by 2P-domain channels were studied in isolation after blocking Kir, K(A), K(D), and BK channels. The remaining cell conductance was mostly outward and was depressed by acid pH, bupivacaine, methanandamide, quinine, and clofilium, and activated by alkaline pH in a manner consistent with that described for TASK channels. Arachidonic acid (an activator of TREK channels) had no effect on this conductance. Blockade of the conductance with bupivacaine depolarized the Müller cell membrane potential by about 50%. In slices of the rat retina, adenosine inhibited osmotic glial cell swelling via activation of A1 receptors and subsequent opening of 2P-domain K+ channels. The swelling was strongly increased by clofilium and quinine (inhibitors of 2P-domain K+ channels). These data suggest that 2P-domain K+ channels are involved in homeostasis of glial cell volume, in activity-dependent spatial K+ buffering and may play a role in maintenance of a hyperpolarized membrane potential especially in conditions where Kir channels are blocked or downregulated.
Collapse
Affiliation(s)
- S N Skatchkov
- CMBN, Department of Biochemistry, School of Medicine, Universidad Central del Caribe, Bayamón, Puerto Rico 00960-6032.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Duprat F, Girard C, Jarretou G, Lazdunski M. Pancreatic two P domain K+ channels TALK-1 and TALK-2 are activated by nitric oxide and reactive oxygen species. J Physiol 2004; 562:235-44. [PMID: 15513946 PMCID: PMC1665469 DOI: 10.1113/jphysiol.2004.071266] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
This study firstly shows with in situ hybridization on human pancreas that TALK-1 and TALK-2, two members of the 2P domain potassium channel (K(2P)) family, are highly and specifically expressed in the exocrine pancreas and absent in Langherans islets. On the contrary, expression of TASK-2 in mouse pancreas is found both in the exocrine pancreas and in the Langherans islets. This study also shows that TALK-1 and TALK-2 channels, expressed in Xenopus oocytes, are strongly and specifically activated by nitric oxide (obtained with a mixture of sodium nitroprussate (SNP) and dithiothreitol (DTT)), superoxide anion (obtained with xanthine and xanthine oxidase) and singlet oxygen (obtained upon photoactivation of rose bengal, and with chloramine T). Other nitric oxide and reactive oxygen species (NOS and ROS) donors, as well as reducing conditions were found to be ineffective on TALK-1, TALK-2 and TASK-2 (sin-1, angeli's salt, SNP alone, tBHP, H(2)O(2), and DTT). These results suggest that, in the exocrine pancreas, specific members of the NOS and ROS families could act as endogenous modulators of TALK channels with a role in normal secretion as well as in disease states such as acute pancreatitis and apoptosis.
Collapse
Affiliation(s)
- F Duprat
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR 6097, 660 route des Lucioles, Sophia Antipolis, 06560 Vabonne, France
| | | | | | | |
Collapse
|
43
|
Cotten JF, Zou HL, Liu C, Au JD, Yost CS. Identification of native rat cerebellar granule cell currents due to background K channel KCNK5 (TASK-2). ACTA ACUST UNITED AC 2004; 128:112-20. [PMID: 15363886 DOI: 10.1016/j.molbrainres.2004.06.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2004] [Indexed: 11/18/2022]
Abstract
The TWIK-related, Acid Sensing K (TASK-2; KCNK5) potassium channel is a member of the tandem pore (2P) family of potassium channels and mediates an alkaline pH-activated, acid pH-inhibited, outward-rectified potassium conductance. In previous work, we demonstrated TASK-2 protein expression in newborn rat cerebellar granule neurons (CGNs). In this study, we demonstrate TASK-2 functional expression in CGNs as a component of the pH-sensitive, volatile anesthetic-potentiated, standing-outward potassium conductance (I(K,SO)). Using excised, inside-out patch-clamp technique, we studied CGNs grown in primary culture. We identified four distinct, noninactivating single channel potassium conductances, Types 1-4. Types 1-3 have previously been attributed to TASK-1 (KCNK3), TASK-3 (KCNK9) and TASK-1/TASK-3 heteromers, and TREK-2 (KCNK10) 2P potassium channel function, respectively; however, the Type 4 conductance is currently unassigned. Previous studies demonstrated that Type 4 single channel activity is potentiated by extracellular, alkaline pH and cytoplasmic arachidonic acid (10-20 microM) and inhibited by cytoplasmic tetraethylammonium (TEA; 1 mM). We determined that heterologously expressed TASK-2 channels have single channel gating, conductance properties and pH sensitivity identical to the Type 4 conductance. Additionally, we found that TASK-2 single channel activity, like the Type 4 conductance is potentiated by cytoplasmic arachidonic acid (20 microM) and inhibited by cytoplasmic TEA (1 mM). We conclude that TASK-2 mediates the Type 4 single channel conductance in CGNs as a component of I(K,SO).
Collapse
Affiliation(s)
- Joseph F Cotten
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, 513 Parnassus Ave., Room S-261, Box 0542, San Francisco, CA 94143, USA
| | | | | | | | | |
Collapse
|
44
|
Patel AJ, Honore E. 2P domain K+ channels: novel pharmacological targets for volatile general anesthetics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 536:9-23. [PMID: 14635644 DOI: 10.1007/978-1-4419-9280-2_2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Affiliation(s)
- Amanda J Patel
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-UMR6097, 660 route des Lucioles, Sophia Antipolis, 06560 Valbonne, France
| | | |
Collapse
|
45
|
Kang D, Kim D. Single-channel properties and pH sensitivity of two-pore domain K+ channels of the TALK family. Biochem Biophys Res Commun 2004; 315:836-44. [PMID: 14985088 DOI: 10.1016/j.bbrc.2004.01.137] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2004] [Indexed: 11/24/2022]
Abstract
The two-pore K2P channel family comprises TASK, TREK, TWIK, TRESK, TALK, and THIK subfamilies, and TALK-1, TALK-2, and TASK-2 are functional members of the TALK subfamily. Here we report for the first time the single-channel properties of TALK-2 and its pHo sensitivity, and compare them to those of TALK-1 and TASK-2. In transfected COS-7 cells, the three TALK K2P channels could be identified easily by their differences in single-channel conductance and gating kinetics. The single-channel conductances of TALK-1, TALK-2, and TASK-2 in symmetrical 150 mM KCl were 21, 33, and 70 pS (-60 mV), respectively. TALK-2 was sensitive mainly to the alkaline range (pH 7-10), whereas TALK-1 and TASK-2 were sensitive to a wider pHo range (6-10). The effect of pH changes was mainly on the opening frequency. Thus, members of the TALK family expressed in native tissues may be identified based on their single-channel kinetics and pHo sensitivity.
Collapse
Affiliation(s)
- Dawon Kang
- Department of Physiology and Biophysics, The Chicago Medical School, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | | |
Collapse
|
46
|
Liu W, Saint DA. HETEROGENEOUS EXPRESSION OF TANDEM-PORE K+ CHANNEL GENES IN ADULT AND EMBRYONIC RAT HEART QUANTIFIED BY REAL-TIME POLYMERASE CHAIN REACTION. Clin Exp Pharmacol Physiol 2004; 31:174-8. [PMID: 15008961 DOI: 10.1111/j.1440-1681.2004.03964.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
1. Many members of the tandem-pore K+ channel gene family have been reported to be present in cardiac cells. However, the pattern of gene expression of these channels in the heart is a matter of some dispute. 2. Here, we used reverse transcription and real-time quantitative polymerase chain reaction to investigate the pattern of gene expression of nine members of the tandem-pore K+ channel genes in adult and embryonic rat heart. The genes (TWIK-1, TWIK-2, TASK-1, TASK-2, TASK-3, TREK-1, TREK-2, TRAAK and KCNK6) were quantified, relative to glyceraldehyde-3-phosphate dehydrogenase (GADPH), in all four chambers of adult rat hearts and in the ventricles of embryonic rat hearts. 3. All these genes were detected in at least one chamber of the heart, with a predominance of TWIK-2, TASK-1 and TREK-1 expression. The expression of TWIK-2 was higher in the right atrium than in other cardiac chambers, TASK-1 was expressed more in atria than in ventricles and TREK-1 was highly expressed in the right ventricle. 4. The expression levels of the three predominant genes in embryonic rat ventricle are much lower than their expression in adult rat ventricles. 5. The physiological implications of the differential gene expression of the tandem-pore K+ channels is discussed.
Collapse
Affiliation(s)
- W Liu
- School of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | | |
Collapse
|
47
|
Mhatre AN, Li J, Chen AF, Yost CS, Smith RJH, Kindler CH, Lalwani AK. Genomic structure, cochlear expression, and mutation screening of KCNK6, a candidate gene for DFNA4. J Neurosci Res 2004; 75:25-31. [PMID: 14689445 DOI: 10.1002/jnr.10839] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
KCNK6 encodes a tandem pore domain potassium channel, TWIK-2, that maps to chromosome 19. Both STS and linkage maps established KCNK6 as a positional candidate gene for DFNA4, a form of autosomal dominant nonsyndromic hereditary hearing loss. Identification and characterization of Kcnk6 expression within the mammalian cochlea established the gene as a functional candidate for DFNA4. Identification of Twik-2 expression in the mouse cochlea was initially established via RT-PCR assay of cochlear RNA. Subsequent immunoblot analysis of cochlear homogenate yielded a distinct 35-kDa band corresponding to the calculated molecular weight of the mouse Twik-2. Immunohistochemical studies localized Twik-2 expression in the cochlea predominantly within the stria vascularis. This vascular tissue borders the cochlear duct and is a critical regulator of potassium concentration in the endolymph. Genomic structure of TWIK-2 was subsequently determined and shown to consist of three coding exons with splice acceptor and donor sites in accordance with the consensus GT-AG rule. Two separate DFNA4 families were screened for KCNK6 sequence alterations. No mutations were found, thus excluding TWIK-2 as the DFNA4 candidate disease gene. Nevertheless, expression of Twik-2 within the stria vascularis suggests a potential role for this protein as one of the terminal components of the potassium ion-recycling pathway that contributes toward its reabsorption into the endolymph.
Collapse
Affiliation(s)
- Anand N Mhatre
- Laboratory of Molecular Genetics, Epstein Laboratories, Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, California, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Czirják G, Tóth ZE, Enyedi P. The two-pore domain K+ channel, TRESK, is activated by the cytoplasmic calcium signal through calcineurin. J Biol Chem 2004; 279:18550-8. [PMID: 14981085 DOI: 10.1074/jbc.m312229200] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Agonist-induced cytoplasmic calcium signals often have profound effects on the membrane potential during cellular activation. In the present study, we report that cytoplasmic calcium elevation can regulate the membrane potential by a novel mechanism. TRESK, a recently described member of the two-pore domain potassium (2PK(+)) channel family, was activated 5-15-fold after stimulation of various Ca(2+)-mobilizing receptors in Xenopus oocytes. Extracellular application of ionomycin, as well as the microinjection of inositol 1,4,5-trisphosphate or calcium, also evoked TRESK activation, whereas microinjection of EGTA or pretreatment of the oocytes with thapsigargin prevented the receptor-mediated effect. These data indicate that TRESK is activated by increased cytoplasmic calcium concentration. However, application of Ca(2+) to inside-out membrane patches failed to influence TRESK single channel activity, suggesting that cytoplasmic factors are also required for the regulation. Cyclosporin A and FK506, specific inhibitors of the calcium/calmodulin-dependent protein phosphatase (calcineurin), completely eliminated TRESK activation. Coexpression of a constitutively active form of calcineurin with TRESK increased the basal background K(+) current and attenuated the response of the channel to the calcium signal, indicating that TRESK was activated by the permanent calcineurin activity. Serine 276 was identified as the major functional target of calcineurin in TRESK by alanine-scanning mutagenesis. This is the first example of calcineurin being involved in the regulation of a two-pore domain K(+) channel, and thus, TRESK channels may regulate the excitability of neurons and other cell types in response to Ca(2+)-mobilizing hormones and neurotransmitters in a manner that is sensitive to immunosuppressive drugs.
Collapse
Affiliation(s)
- Gábor Czirják
- Department of Physiology and Laboratory of Neuromorphology, Semmelweis University, H-1444 Budapest, Hungary
| | | | | |
Collapse
|
49
|
Han J, Kang D, Kim D. Functional properties of four splice variants of a human pancreatic tandem-pore K+ channel, TALK-1. Am J Physiol Cell Physiol 2003; 285:C529-38. [PMID: 12724142 DOI: 10.1152/ajpcell.00601.2002] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
TALK-1a, originally isolated from human pancreas, is a member of the tandem-pore K+ channel family. We identified and characterized three novel splice variants of TALK-1 from human pancreas. The cDNAs of TALK-1b, TALK-1c, and TALK-1d encode putative proteins of 294, 322, and 262 amino acids, respectively. TALK-1a and TALK-1b possessed all four transmembrane segments, whereas TALK-1c and TALK-1d lacked the fourth transmembrane domain because of deletion of exon 5. Northern blot analysis showed that among the 15 tissues examined, TALK-1 was expressed mainly in the pancreas. TALK-1a and TALK-1b, but not TALK-1c and TALK-1d, could be functionally expressed in COS-7 cells. Like TALK-1a, TALK-1b was a K+-selective channel that was active at rest. Single-channel openings of TALK-1a and TALK-1b were extremely brief such that the mean open time was <0.2 ms. In symmetrical 150 mM KCl, the apparent single-channel conductances of TALK-1a and TALK-1b were 23 +/- 3 and 21 +/- 2 pS at -60 mV and 11 +/- 2 and 10 +/- 2 pS at +60 mV, respectively. TALK-1b whole cell current was inhibited 31% by 1 mM Ba2+ and 71% by 1 mM quinidine but was not affected by 1 mM tetraethylammonium, 1 mM Cs+, and 100 microM 4-aminopyridine. Similar to TALK-1a, TALK-1b was sensitive to changes in external pH. Acid conditions inhibited and alkaline conditions activated TALK-1a and TALK-1b, with a K1/2 at pH 7.16 and 7.21, respectively. These results indicate that at least two functional TALK-1 variants are present and may serve as background K+ currents in certain cells of the human pancreas.
Collapse
Affiliation(s)
- Jaehee Han
- Department of Physiology and Biophysics, Finch University of Health Sciences/Chicago Medical School, 3333 Green Bay Rd., North Chicago, IL 60064, USA
| | | | | |
Collapse
|
50
|
Mathie A, Clarke CE, Ranatunga KM, Veale EL. What are the roles of the many different types of potassium channel expressed in cerebellar granule cells? CEREBELLUM (LONDON, ENGLAND) 2003; 2:11-25. [PMID: 12882230 DOI: 10.1080/14734220310015593] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Potassium (K) channels have a key role in the regulation of neuronal excitability. Over a hundred different subunits encoding distinct K channel subtypes have been identified so far. A major challenge is to relate these many different channel subunits to the functional K currents observed in native neurons. In this review, we have concentrated on cerebellar granule neurons (CGNs). We have considered each of the three principal super families of K channels in turn, namely, the six transmembrane domain, voltage-gated super family, the two transmembrane domain, inward-rectifier super family and the four transmembrane domain, leak channel super family. For each super family, we have identified the subunits that are expressed in CGNs and related the properties of these expressed channel subunits to the functional currents seen in electrophysiological recordings from these neurons. In some cases, there are strong molecular candidates for proteins underlying observed currents. In other cases the correlation is less clear. We show that at least 26 potassium channel alpha subunits are moderately or strongly expressed in CGNs. Nevertheless, a good empirical model of CGN function has been obtained with just six distinct K conductances. The transient KA current in CGNs, seems due to expression of Kv4.2 channels or Kv4.2/4.3 heteromers, while the KCa current is due to expression of large-conductance slo channels. The G-protein activated KIR current is probably due to heteromeric expression of KIR3.1 and KIR3.2. Perhaps KIR2.2 subunits underlie the KIR current when it is constitutively active. The leak conductance can be attributed to TASK-1 and or TASK-3 channels. With less certainty, the IK-slow current may be due to expression of one or more members of the KCNQ or EAG family. Lastly, the delayed-rectifier Kv current has as many as six different potential contributors from the extensive Kv family of alpha subunits. Since many of these subunits are highly regulated by neurotransmitters, physiological regulators and, often, auxiliary subunits, the resulting electrical properties of CGNs may be highly dynamic and subject to constant fine-tuning.
Collapse
Affiliation(s)
- Alistair Mathie
- Biophysics Section, Blackett Laboratory, Department of Biological Sciences, Imperial College of Science Technology and Medicine, London, UK.
| | | | | | | |
Collapse
|